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Abstract. We introduce a new type of cryptanalytic algorithm on the obfuscations based on
the branching programs. Applying this algorithm to two recent general-purpose obfuscation
schemes one by Chen et al. (CRYPTO 2018) and the other by Bartusek et al. (TCC 2018),
we can show that they do not have the desired security. In other words, there exist two
functionally equivalent branching programs whose obfuscated programs can be distinguished
in polynomial time.
Our strategy is to reduce the security problem of indistinguishability obfuscation into the dis-
tinguishing problem of two distributions where polynomially many samples are given. More
precisely, we perform the obfuscating process ourselves with randomly chosen secret values
to obtain identical and independent samples according to the distribution of evaluations of
obfuscations. We then use the variance of samples as a new distinguisher of two functionally
equivalent obfuscated programs.
This statistical attack gives a new perspective on the security of the indistinguishability
obfuscations: We should consider the shape of distributions of the evaluations of obfuscations
to ensure the security. In other words, while most of the previous (weak) security proofs have
been studied with respect to algebraic attack model or ideal model, our attack shows that
this algebraic security is not enough to achieve indistinguishability obfuscation.
Keywords: Cryptanalysis, indistinguishability obfuscation, multilinear map

1 Introduction

Indistinguishability obfuscation (iO) is one of the most powerful tools used to construct many
cryptographic applications such as multiparty key exchange and functional encryption [6, 21, 34].
While to construct a general-purpose of iO has been posed as an longstanding open problem, Garg
et al. [21] firstly proposed a plausible candidate general-purpose iO based on a multilinear map in
2013. Starting from this work, many subsequent studies have proposed the iO design method using
a multilinear map [1–3,8, 21,22,30,31].

Most of the general-purpose obfuscation are built upon the multilinear maps. Thus the multi-
linear maps rise as an essential building block to construct the obfuscations; However, all of the
currently known candidates, so-called GGH13, CLT13 and GGH15 [19, 20, 23], are not known to
have the desired security of multilinear map under the standard assumptions. Indeed, when the
encodings of zero are given to adversary, theses candidates were broken due to the first class of
zeroizing attacks, such as the CHLRS attack and Hu-Jia attack [13,17,27], which exploits the exis-
tence of public low level encodings of zero. Due to these attacks, many of their applications such
as the multi-party key exchange cannot be instantiated by known candidates multilinear map.

Fortunately, many iO candidates are robust against the first class of zeroizing attack since iOs
do not publish low level encodings of zero. However, it does not imply the security of the current
constructions of iO. Indeed, it turned out that most of candidates iO are failed to achieve the
desired security by the second class of zeroizing attacks [11,12,14–16,18,32], which employs algebraic
relations from the top level encodings of zero. Thus, many researches focus on the algebraic security
of obfuscation in the weak multilinear map models [4, 22,28].

Recently, GGH15 multilinear map has been in the spotlight because it is shown that GGH15
and its variants can be exploited to construct the provable secure special-purpose obfuscations and
other cryptographic applications including constraint pseudorandom function under the hardness



of LWE and its variants [9,10,12,26,35]. Therefore, GGH15 multilinear map has been believed to
the most plausible candidate for constructing the general-purpose obfuscation.

In this respect, Chen et al. [12] proposed a new iO candidate over GGH15, called CVW obfusca-
tion, to be secure against all known attacks. On the other hand, Bartusek et al. [4] provided a new
candidate over GGH15, called BGMZ obfuscation, which is provably secure against generalized
zeroizing attacks. The security of these two schemes remains as an open problem.

1.1 Our Result

We give a new polynomial time cryptanalytic algorithm, statistical zeroizing attack, on candidates
of iO. Our algorithm shows that the recent candidates iO suggested by Chen et al. and Bartusek et
al. constructed upon GGH15 multilinear map do not satisfy the desired security. Our attack leads
a new direction to the study of iO: our cryptanalysis shows that the distribution of evaluations
should be (almost) the same regardless of the choice of target branching program. Previously, most
of attacks and constructions focus only on the algebraic structure of evaluations.

Overview of Attack and Technique. We briefly describe our attack which consists of three
steps. Assume that the adversary has two functionally equivalent branching programs M and N,
and an obfuscated program O(P) where P = M or N. The purpose of adversary is to determine
whether P = M or N. Two branching programs which have the different distribution of the
obfuscated program evaluations are in the scope of the attack. Intuitive description of each step of
the attack is as follows:

1. As the first step of the attack, the adversary implements sampling algorithms for distributions
of evaluation of obfuscated program O(M) and O(N) by mimicking whole obfuscating process,
where the probability of sampling is over every secret values used in obfuscating process. More
precisely, the adversary samples every secret and error values used in the construction process
of obfuscator and the obfuscating process of program. Then the adversary constructs obfuscator
and obfuscates targeted programs M and N itself using the sampled errors and secrets, and
then evaluates the new obfuscated programs at a fixed input x. Since the obfuscation and
evaluation process is done in polynomial time, the adversary obtains the polynomial time
sampling procedure for evaluations of obfuscation.

2. The adversary then applies a well-known theorem: If one can sample two distributions D1 and
D2 in polynomial time, then one-sample indistinguishability of D1 and D2 implies polynomially
many sample indistinguishability of D1 and D2.
In other words, if the adversary can distinguish two distribution when polynomially many sam-
ple are given, then the adversary can distinguish two distribution even when only one sample is
given. Thanks to this theorem the adversary can reduce the distinguishing problem of evalua-
tions of obfuscation O(M) and O(N) into the distinguishing problem of two distributions DM

and DN which follow the evaluations of O(M) and O(N), respectively, where the polynomially
many samples are given.

3. At last, the adversary computes the variance of samples, which serves as a distinguisher of
two distribution DM and DN. In other words, we estimate the confidence intervals of sample
variances using Chebyshev inequality with high probability, say 99%. In our choice of M and
N, two intervals are disjoint thus the adversary can distinguish two distribution by checking
the sample variance is included in which interval.

Though the last step is conceptually simple, it is difficult to verify that the conditions of attack
hold well, and this verification requires several complex computational tasks. Thus we give the
sufficient conditions that attack works well for the simpler description of the attack. And then
we assign most of papers including appendix to deal with many random variables that might be
dependent themselves. We derive many lemmas to deal with such intertwined random variables.

Applicability and Limitation of Statistical Zeroizing Attack. We discuss the applicability
and limitation of our attack. First of all, our attack refutes the open problem suggested in [12]
(as well as the same question of the BGMZ obfuscation): the CVW obfuscation is not secure even
when only the honest evaluations (as matrices product) are given as oracle outputs.
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The class of branching programs constructed from CNF formulas, which is suggested in [12,
Construction 6.4], is in the range of our attack. For example, if we choose two branching programs
N = {Ni,b} and M = {Mi,b} as follows: N1,b as an identity matrix with w × w size and all other
matrices of M and N as zero matrix. These two branching programs M and N are corresponding to
some CNF formulas following the construction. This is exactly the same to the branching programs
described in Section 4.2 as attack example.

On the other hand, there is a class of the branching programs that are robust against our attack:
permutation matrix branching programs. For this class of branching programs, the distributions of
evaluations except bookend vectors are always the same for any choice of permutation branching
program M in many obfuscation constructions. Interestingly, the first candidate iO [21] has targeted
such branching programs so it is robust against our attack.

Counter Measures. Unfortunately, CVW and BGMZ obfuscations in the suggested form are not
appropriate to obfuscate the permutation branching programs, which are robust against our attack.
More precisely, though there is a general transformation from permutation branching program (or
Type II branching programs) into Type I branching program [12, Claim 6.2], this transformation
induces the Type I branching program with bookend vector (v| − v), which does not coincide to
11×w that is the implicitly supposed bookend vector of CVW obfuscation.3 In other words, slight
modifications are required to obfuscate the permutation branching program and its transformed
forms. The similar problem also appears in BGMZ obfuscation.

On the other hand, fortunately, we can modify CVW obfuscation to obfuscate the Type II
branching programs; this modified construction is secure against all existing attacks including the
attack suggested in this paper. This can be done by choosing the bookends J and L appropriately
for such branching program. Namely, change the 11×w and 1w×1 in J and L by repeated random
vectors, and do not make public the choice of them; they are hid in the output matrices. More precise
description is placed in Appendix A. The similar modification works well in BGMZ obfuscation,
and we believe that the security of this modified scheme can be proven in more generalized model.

Open Questions. We also leave some open problems:

1. The modified candidates as in Appendix A are at least secure against all known attacks, includ-
ing the attack suggested in this paper. Can we prove the security of those construction under
the standard or plausible assumption? How about the same question if the only evaluations
are given as oracle outputs?

2. Our attack is still a zeroizing attack in spite of brand-new, therefore the class of evasive
functions is out of the range of attack.

3. The candidate witness encryption constructed in [12] shares almost same structure to obfus-
cation construction in [12] but we do not know whether it is (provably) secure or not.

4. The attack presented in this paper shows some weakness of obfuscation for non-permutation
branching program, while this class of branching program is known to have several advantages
compared to permutation branching programs including efficiency [12]. Can we avoid this attack
without choosing the permutation branching programs?

Organization. In Section 2, we introduce preliminary information related to the branching pro-
gram, iO, and lattices. We describe the statistical zeroizing attack in Section 3. In Section 4, we
briefly describe CVW obfuscation and its cryptanalysis. In addition, we review BGMZ obfuscation
and its cryptanalysis in Section 5.

2 Preliminaries

Notations. N,Z,R denote the sets of natural numbers, integers, and real numbers, respectively.
For an integer q ≥ 2, Zq is the set of integers modulo q. Elements are in Zq are usually considered
as integers in [−q/2, q/2). We denote the set {1, 2, · · · , h} by [h] for a natural number h.

3 We write bookend vector to denote the vector v in [12, Definition 6]. In [12, Section 11.1], 11×w part of
J means that the bookend vector v is in fact 11×w.
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Lower bold letters means row vectors and capital bold letters denote matrices. In addition,
capital italic letters denote random matrices or random variables. For a random variable X , we let
E(X ) be the expected value of X , V ar(X ) the variance of X .

The n-dimensional identity matrix is denoted by In×n. For a row vector v, a i-th component
of v is denoted by vi, and for a matrix A, a (i, j)-th entry of a matrix A is denoted by ai,j ,
respectively. A notation 1a×b means a a × b matrix such that all entries are 1. The `p norm of a
vector v = (vi) is denoted by ‖v‖p = (

∑
i |vi|p)1/p. We denote ‖A‖∞ by the infinity norm of a

matrix A, ‖A‖∞ = maxi,j ai,j with A = (ai,j).
We use a notation x← χ to denote the operation of sampling element x from the distribution

χ. Especially, if χ is the uniform distribution on a finite set X, we denote x← U(X).
For two square4 matrices A = (ai,j) ∈ Rn×n, B ∈ Rn×n, the tensor product of matrix A and

B is defined as

A⊗B :=


a1,1 ·B · · · a1,n ·B

...
. . .

...

an,1 ·B, · · · , an,n ·B

 .

Moreover, for four matrices A,B,C,D ∈ Rn×n, the equation (A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D)
holds.

2.1 Matrix Branching Program

A matrix branching program (BP) is the set which consists of an index-to-input function and
several matrix chains.

Definition 2.1 A width w, length h, and a s-ary matrix branching program P over a `-bit input
is a set which consists of an index-to-input map {inpµ : [h]→ [`]}µ∈[s], sequences of matrices, and
two disjoint sets of target matrices

P = {(inpµ)µ∈[s], {Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}s ,P0,P1 ⊂ Zw×w}.

The evaluation of P on input x = (xµ)µ∈[s] ∈ {0, 1}`×s is computed by

P(x) =

0 if
∏h
i=1 Pi,(xµ

inpµ(i)
)µ∈[s] ∈ P0

1 if
∏h
i=1 Pi,(xµ

inpµ(i)
)µ∈[s] ∈ P1

.

When s = 1 (s = 2), the BP is called a single-input (dual-input) BP. In this paper, we usually
use P0 = 0w×w and P1 is the set of all nonzero matrices in Zw×w. Also, we call {Pi,b}b∈{0,1}s
the i-th layer of the BP. Remark that CVW obfuscation and BGMZ obfuscation take as input
different BP type (e.g. single and dual BP) and the required properties of BP for each obfuscation
are different. Therefore, we mention the required properties used to construct an obfuscation again
before describing each obfuscation.

2.2 Indistinguishability Obfuscation

Definition 2.2 (Indistinguishability Obfuscation) A probabilistic polynomial time machine
O is an indistinguishability obfuscator for a circuit class C if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all circuits C ∈ C, for all inputs x, the following
probability holds:

Pr [C ′(x) = C(x) : C ′ ← O(λ,C)] = 1.

– For any p.p.t distinguisher D, there exists a negligible function α satisfying the following state-
ment: For all security parameters λ ∈ N and all pairs of circuits C0, C1 ∈ C, C0(x) = C1(x)
for all inputs x implies

|Pr [D(O(λ,C0)) = 1]− Pr [D(O(λ,C1)) = 1] | ≤ α(λ).
4 The tensor product can be defined for arbitrary matrices, however, we only need the tensor product of

square matrices.
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2.3 Lattice Background

A lattice L of dimension n is a discrete additive subgroup of Rn. If L is generated by the set
{b1, · · · ,bn}, all elements in L are of the form

∑n
i=1 xi · bi for some integers xi’s. In this case,

the lattice L is called the full rank lattice. Throughout this paper, we only consider the full rank
lattice. Now we give several definitions and lemmas used in this paper.

For any σ > 0, the Gaussian function on Rn centered at c with parameter σ is defined as

ρσ,c(x) = exp−π‖x−c‖/σ
2

for all x ∈ Rn.

Definition 2.3 (Discrete Gaussian Distribution on Lattices) For any element c ∈ Rn, σ >
0 and any full rank lattice L of Rn, the discrete Gaussian distribution over L is defined as

DL,σ,c(x) =
ρσ,c(x)

ρσ,c(L)
for all x ∈ L

where ρσ,c(L) =
∑

x∈L ρσ,c(x).

Definition 2.4 (Decisional Learning with Errors (LWE) [33]) For integers n,m ∈ N and
modulus q ≥ 2, let θ, π, and χ over Z be a distribution for secret vectors, public matrices, and error
vectors, respectively. Then, an LWE sample is defined as (A, sTA + eT mod q) where s ← θn,
A← πn×m, e← χm. If there exists an algorithm that distinguishes the LWE sample from one that
is uniformly sampled from πn×m ×U(Z1×m) with probability non-negligibly greater than 1/2, then
we say an algorithm can solve LWEn,m,q,θ,π,χ.

Lemma 2.5 (Hardness of LWE [7,33]) Given n ∈ N, for any m = poly(n), q ≥ 2poly(n). Let θ
and π be an uniform distribtuion over Zq and χ the Gaussian distribution DZ,σ with σ ≥ 2

√
n. If

there exists an efficient (possibly quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then there exists
an efficient (possible quantum) algorithm for approximate SIVP and GapSVP in the `2 norm, in
the worst case, to within Õ(nq/σ) factors.

Lemma 2.6 (LWE with Small Public Matrices [5]) Given n ∈ N, for m = poly(n), q ≤
2poly(n) with n′ ≥ 2n log q, LWEn′,m,q,U(Zq),DZ,σ,DZ,σ is hard as LWEn,m,q,U(Zq),U(Zq),DZ,σ .

Theorem 2.7 ([29]) There is a p.p.t algorithm TrapSam(1n, 1m, q) for any integers n ≥ 1, modu-
lus q ≥ 2, and m ≥ 2n log q, outputs a matrix A ∈ Zn×mq and a trapdoor τ such that the distribution
of A is statistically indistinguishable in n with a uniform distribution Zn×mq . Moreover, there is a
p.p.t algorithm Invert that with overwhelming probability over all random choices, do the following:

– For bT = sT ·A + eT , where s ← U(Znq ) and either ‖e‖ < q/O(
√
n log q) or e ← DZm,αq for

1/α ≥
√
n log q · ω(

√
log n), the deterministic algorithm Invert(τ,A,b) outputs s and e.

Lemma 2.8 (Lemma 3.11 in [12]) There is a p.p.t. algorithm that for σ ≥ 2
√
n log q, given

(A, τ) ← TrapSam(1n, 1m, q), y ∈ Znq , outputs a vector d from DZm,σ conditioned on Ad ≡ y
mod q.

Lemma 2.9 ([24]) There is a p.p.t. algorithm Sample(A, τ,y, σ) that outputs a vector d from a
distribution DZm,σ. Moreover, if σ ≥ 2

√
n log q, then with all but negligible probability, we have

{A,d,y : y← U(Znq ),d← Sample(A, τ,y, σ)} ≈s {A,d,y : d← DZm,σ,Ad = y}.

3 Statistical Zeroizing Attack

We introduce our attack, statistical zeroizing attack, in this section. We give an abstract model
for branching program obfuscation and the attack on this model. In this attack, we are given
two functionally equivalent branching programs M and N, which will be decided later, and an
obfuscated program O(P). Our purpose is to distinguish whether P = M or P = N. The targeted
branching programs of obfuscation output 0 when the product corresponding to input is zero. The
obfuscated program O(P) consists of{

S, {Di,b}1≤i≤h,b∈{0,1}s ,T, inp = (inp1, · · · , inps) : [h]→ [`]s, B
}
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where every element is a matrix over Zq (possibly identity) except the input function inp. The
output of the obfuscated program at x = (x1, · · · , x`) ∈ {0, 1}` is computed by considering the
value

O(P)(x) = S ·
h∏
i=1

Di,xinp(i) ·T

where xinp(i) = (xinp1(i), · · · , xinps(i)). Note that O(P)(x) can be a matrix, vector or an element
(over Zq). Regard it as matrix/vector/integer over Z and check the value: If ‖O(P)(x)‖∞ < B < q
then it outputs 0, otherwise outputs 1. We note that we call O(P)(x) the evaluation of obfuscated
program (at x) in this section. We also call O(P)(x) evaluation of zero if P(x) = 0 in the plain
program. We stress that we do not say the output value of P(x) as an evaluation of obfuscated
program in this section and Section 4 and 5.

To distinguish two different obfuscated programs, we see the distribution of valid evaluations
of zero of O(M) and O(N). For the evaluation of zero, the size of these products is far small
compared to q (or B) and thus we can obtain the integer value rather than the element in Zq.
Now, if the evaluation is of the form matrix or vector, we consider only the first entry, namely (1,1)
entry of the matrix or the first entry of the vector, in the whole procedure of the attack. We call
all of these entries by the first entry of the evaluation, including the case of the evaluation is just a
real value. Our strategy is to compute the sample variance of the first entries of many independent
evaluations which follow the same distribution. The key of the attack is that this variance depends
on the plain program of the obfuscated program and the variance is sufficiently different for two
certain programs. Therefore, from the variance of the independent evaluations follow the same
distribution, we can decide the obfuscated program is from which program.

Three natural questions arise for this strategy, which are stated as follows:

1. How can we use the given obfuscation O(P)?
2. How can we sample independent evaluations of obfuscated programs O(M) and/or O(N)?
3. How does the message part affects the variance of evaluations?

The first two questions are resolved by mimicking the obfuscator along with a well-known theorem
about one-sample and multiple-sample indistinguishability, which is discussed in Section 3.1. The
last question is rather complex to give a simple answer. What we need is that this effect suffices
to distinguish two obfuscated programs. In Section 3.1 and 3.2, we give the detailed answers of
these questions respectively. To illustrate the behavior of the obfuscation in practice, we place a
simple obfuscation and the attack on that in Section 3.3. We recommend the readers to read the
description of the attack while comparing the abstract description and the simple example.

3.1 Independent Multiple Sampling of Evaluations

Now we give a mimicking technique, which allow us to sample identical independent samples of
evaluations. We begin with a simple but failed method for sampling to explain the obstacle of using
O(P) itself. In other words, we can obtain multiple samples of evaluation at zero by evaluating
several different zeros on the obfuscated program O(P). Unfortunately, this way cannot ensure
that we obtain independent samples.

Our strategy to bypass this issue is to mimic the whole process of obfuscation, which resolves
the second question. More precisely, we re-sample every secret values of obfuscation (such as errors
or bundling matrices) and construct a new obfuscator, obfuscated program and its evaluation
ourselves. The i-th sampling for 2 ≤ i ≤ κ of evaluation for obfuscation of M proceeds as follows:

1. randomly sample all secrets following the specified distribution of given obfuscation process.
2. construct obfuscator O(i) ourselves using the sampled secrets and errors.
3. obfuscate the program M using O(i) and obtain O(i)(M).
4. compute O(i)(M)(x) for a fixed x satisfying M(x) = 0.

In other words, we compute O(i)(M)(x) by doing whole obfuscating procedure, instead of using the
given obfuscated program O(P) to obtain several evaluations. Note that all of these O(i)(M)(x)
follow the same distribution, whose samples are computed as in the above procedure. We write the
distributions of the first entry of O(i)(M)(x) by DM and define DN similarly.
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In this setting, we can consider the first entry of O(P)(x) = O(1)(P)(x) as a sample from
DM or DN. Further, both sampling procedure of DM and DN can be done in polynomial time
since the sampling can be done by initializing obfuscation, obfuscating branching program and
evaluating obfuscated program which all can be done in polynomial time by definition. Now the
following lemma gives the answer for the first question. Namely, this lemma enable us to assume
that polynomially many independent evaluations of obfuscation are given.

Proposition 3.1 (Theorem 3.2.6 in [25], adapted) Let X and Y be two distributions from
which one can sample in polynomial time. Then (one sample) indistinguishability of X and Y
implies polynomial-sample indistinguishability of X and Y.

The corresponding algorithm that transforms the κ = poly(λ)-sample distinguisher into one sample
distinguisher as follows: sample k samples from X and κ− k − 1 samples from Y with probability
1/κ and then apply the κ-sample indistinguishability adversary with new samples plus the given
sample. For more detailed proof we refer [25, Section 3.2] to readers.

We recall that we can sample two distributions DM and DN in polynomial time. By combining
the fact that two distributionsDM andDN can be sampled in polynomial time with Proposition 3.1,
we can transform the distinguishing problem of obfuscation into the distinguishing problem of
distributions with given polynomially many samples. In the remainder of the paper, we assume
that we can obtain polynomially many samples from one of two distributions DM and DN and
try to solve the polynomial-sample distinguishing problem on the given distributions, instead of
the distinguishing problem with one obfuscated program O(P). Note that, for each sampling, we
re-sample every secrets and errors so that all samples are independent of each other.

3.2 Distinguishing Distributions Using the Sample Variance

Now we describe the distinguishing attack algorithm, assuming that we have polynomially many
samples. The targeted branching programs are chosen as follows:

M =
(
Mi,b = 0w×w for i = 1

)
,

N =
(
Ni,b = 0w×w for i = 2

)
,

where 0w×w means the w by w matrix with all zero entries. The other matrices will be determined
later, appropriately for each case. Note that the valid evaluation of both branching programs
is always 0w×w so they are functionally equivalent. We fix the input x = x0, which is used to
construct distributions. We write XN and XN to denote the random variables that follow the
distribution DM and DN, respectively. We remark that this choice (and choice of other matrices)
make a difference on two distributions DM and DN. The example in Section 3.3 exemplifies the
difference of two distributions.

Now we compute the variance of the samples, and check whether the distance between the
sample variance we computed and the expected variance of DM and DN. If the distance from the
sample variance to the variance of DM is less than the distance to the variance of DN, we decide
the given samples are from DM. Otherwise we decide the samples are from DN. The result of this
method is stated in the following proposition.

Proposition 3.2 Suppose that two random variables XM and XN that follow distributions DM

and DN, and have the variances σ2
N and σ2

M, respectively. For the security parameter λ and poly-
nomials p, q, r = poly(λ), there is a polynomial time algorithm that determines DP = DM or DN

with non-negligible probability when O(p · (√q+
√
r)) = poly(λ) independent samples from DP are

given as input of the algorithm and the following conditions hold with overwhelming probability:∣∣∣∣max(E[X2
N], E[X2

M])

σ2
N − σ2

M

∣∣∣∣ ≤ p(λ),

∣∣∣∣ E[X4
N]

E[X2
N]2

∣∣∣∣ ≤ q(λ), and

∣∣∣∣ E[X4
M]

E[X2
M]2

∣∣∣∣ ≤ r(λ).

In other words, if two known distributions satisfy the conditions, we can solve the distinguishing
problem of two distribution with multiple samples. Combining this result with Proposition 3.1 or
the corresponding algorithm, we obtain the statistical zeroizing attack to solve the distinguishing
problem of the obfuscations. Thus to cryptanalyze the concrete obfuscation schemes, it suffice to
show the conditions in Proposition 3.2. We conclude this section by giving the proof of Proposi-
tion 3.2.
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Proof (Proposition 3.2). We call two useful lemmas first.

Lemma 3.3 (Chebyshev’s inequality) Let X be a random variable with a finite expected value
µ and a finite variance σ2 > 0. Then, it holds that

Pr[|X − µ| ≥ kσ] ≤ 1/k2

for any real number k > 0.

Lemma 3.4 Let S2 be the variance of with replacement samples of size κ from a distribution D.
The variance of S2 satisfies

V ar(S2) =
1

κ

(
µ4 −

κ− 3

κ− 1
µ2

2

)
where µn = E[Xn], X is random variable that follow a distribution D.

Suppose that all of the conditions hold for polynomials p, q, r ∈ poly(λ). We compute the 99%
confidence interval of variance of S2. By Lemma 3.3 and 3.4,

Pr

[
|S2 − σ2

P | ≥ 10 ·

√
1

κ
·
(
E[X4

P ]− κ− 1

κ− 3
· E[X2

P ]2
)]
≤ 1

100

with κ number of samples. If two intervals (for M and N) are disjoint, we can distinguish two dis-

tribution with the probability ≥
(

99
100

)2
. More precisely, when κ ≥ 100 ·(p(λ) ·

√
q(λ)+p(λ) ·

√
r(λ))

that is poly(λ), we can distinguish two random variables with probability more than or equal to(
99
100

)2
since σ2

M +10 ·
√

1

κ
·
(
E[X4

M]− κ−1
κ−3 · E[X2

M]2
)
< σ2

N −10 ·
√

1

κ
·
(
E[X4

N]− κ−1
κ−3 · E[X2

N ]2
)

holds. ut

3.3 Example of the Statistical Zeroizing Attack

In this section, we give a simple example of the statistical zeroizing attack. First, we briefly review
the construction of single input BP obfuscation based GGH15 without safeguard.

For an index to input function inp : [h]→ [`], let

P =
{
{Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1},P0 = 0w×w,P1 = Zw×w \ P0

}
be a single input BP.

For parameters w,m, q,B ∈ N and σ ∈ R+,5 the BP obfuscation based GGH15 consists of the
matrices and input function, namely

O(P) =
{
inp,A0, {Di,b ∈ Zm×m}i∈[h],b∈{0,1}

}
.

In this case, the matrix T in the abstract model is the identity matrix and S = A0. The output of
the obfuscation at x is computing as follows: compute the matrix A0 ·

∏h
i=1 Di,xinp(i)

and compare
its ‖ · ‖∞ to a zerotest bound B. If it is less than B, outputs zero. Otherwise, outputs 1.

More precisely, the algorithm to construct an obfuscated program O(P) proceeds as follows:

• Sample matrices (Ai, τi) ← TrapSam(1w, 1m, q) for i = 0, 1, · · · , h − 1, Ah ← U(Zw×mq ) and
Ei,b ← χw×m.

• By using the trapdoor τi, sample matrices

Di,b ∈ Zm×m ← Sample(Ai−1, τi−1,Pi,b ·Ai + Ei,b, σ) with 1 ≤ i ≤ h.

• Output matrices {A0, {Di,b ∈ Zm×m}i∈[h],b∈{0,1}}.

5 We do not discuss the size of parameters for the simplicity of the description.
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Then, we observe the product O(P)(x) = [A0 ·
∏h
i=1 Di,xinp(i)

]q is equal to

h∏
i=1

Pi,xinp(i)
·Ah +

h∑
j=1

(j−1∏
i=1

Pi,xinp(i)

)
·Ej,xinp(j)

·
h∏

k=j+1

Di,xinp(k)


over Zq. If

∏h
i=1 Pi,xinp(i)

= 0w×w, then O(P)(x) can be regarded as a summation of matrices over
integers instead of Zq under the certain choice of parameters as follows

O(P)(x) =

[
A0 ·

h∏
i=1

Di,xinp(i)

]
q

=

h∑
j=1

(j−1∏
i=1

Pi,xinp(i)

)
·Ej,xinp(j)

·
h∏

k=j+1

Di,xinp(k)


since the infinity norm of the above matrix is less than B � q. Note that the evaluation values
only rely on the matrices Pi,b, Ei,b and Di,b. Thus, the evaluation result depends on the message
matrices Pi,b.

Suppose that we have two functionally equivalent BPs M = {Mi,b}i∈[h],b∈{0,1} and N =
{Ni,b}i∈[h],b∈{0,1} satisfies

Mi,b = 0w×w for all i, b and Ni,b =

{
Iw×w if i = 1

0w×w otherwise
,

and an obfuscated program O(P). Our goal is to determine whether P is M or not. For all
x ∈ {0, 1}`, the evaluation of the obfuscation is of the form

O(M)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
and

O(N)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
+ I ·E2,xinp(2)

·
h∏
k=3

Dk,xinp(k)
.

Note that they correspond to the distributions DM and DN for a fixed vector x. These equations
show the difference of two distributions in this case.

Our first strategy of the statistical zeroizing attack is mimicking obfuscated program. We know
how to sample matrices Ai,Ei,b and Di,b. Thus we can construct the obfuscated program by
running the algorithms as the same way, and obtain independent and identical samples.

More precisely, we can obtain the imitation pairs (A′i, τ
′
i) by implementing a TrapSam algorithm

and similarly get the mimicked matrices E′i,b and D′i,b from the distribution χw×m and the Sample

algorithm. Therefore, we can construct poly(λ) obfuscated program O(i)(M) and O(i)(N). If we
denote DM by a distribution of the (1,1) entry of O(i)(M) and use the notation DN similarly, the
one sample indistinguishable problem is converted into poly(λ) sample indistinguishable problem
by employing Proposition 3.1.

Lastly, we compute the range of sample variances of the two distributions DM and DN using
the Chebyshev’s inequality with a parameter k = 10. If the two distributions satisfy the conditions
of Proposition 3.2, the two ranges do not overlap with non-negligible probability. It implies that the
DM distribution and the DN distribution with polynomially many samples can be distinguished.
The remainder of this paper, in Section 4 and 5, we show that there are distributions that satisfy
the Proposition 3.2 in the CVW and BGMZ obfuscations, respectively.

4 Cryptanalysis of CVW Obfuscation

In this section, we briefly describe the construction of CVW obfuscation scheme and show that the
statistical zeroizing attack works well for CVW obfuscation.
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4.1 Construction of CVW Obfuscation

Chen, Vaikuntanathan and Wee proposed a new candidate of iO which is robust against all existing
attacks. We give a brief description of the candidate scheme here. For more details, we refer to
original paper [12].

First, we start with the description of BPs they used. The authors use single-input binary BPs,
i.e., inp = inp1. They employ a new function, called an input-to-index map ω̄: {0, 1}` → {0, 1}h
such that ω̄(x)i = xinp(i) for all i ∈ [h], x ∈ {0, 1}`. As used in the paper [12], we denote the∏h
i=1 Mi,ω̄(x)i by Mω̄(x) for the product of array of matrices
A target BP P = {inp, {Pi,b}i∈[h],b∈{0,1},P0,P1}, which is called Type I BP in the paper,

satisfies the following conditions.

1. All the matrices Pi,b are w × w matrices.
2. For a vector v = 11×w, the target sets P0,P1 satisfies v · P0 = {01×w}, v · P1 6= {01×w}.6
3. An index length h is set to (λ+ 1) · `.
4. An index-to-input function satisfies inp(i) = (i mod `). Thus, index-to-input function iterates
λ+ 1 times.

Construction. CVW obfuscation is a probabilistic polynomial time algorithm which takes as input
a BP P with an input length `, and outputs an obfuscated program with the same functionality.
The algorithm process consists of the following steps. Here we use new parameters n,m, q, t :=
(w + 2n`) · n, σ for the construction. We will specify the parameter settings later.

• Sample bundling matrices {Ri,b ∈ Z2n`×2n`}i∈[h],b∈{0,1} such that (11×2`⊗In×n) ·Rx′ ·(12`×1⊗
In×n) = 0 ⇐⇒ x′ ∈ ω̄({0, 1}`) for all x′ ∈ {0, 1}h. More precisely, Ri,b is a block diagonal

matrix diag(R
(1)
i,b ,R

(2)
i,b , · · · ,R

(`)
i,b ). Each R

(k)
i,b ∈ Z2n×2n is one of the following three cases.

R
(k)
i,b =



I2n×2n if inp(i) 6= k(
R̃

(k)
i,b

In×n

)
, R̃

(k)
i,b ← D

n×n
Z,σ if inp(i) = k and i ≤ λ`

−In×n

λ−1∏
j=0

R̃
(k)
k+j`,b

 if inp(i) = k and i > λ`

• Sample matrices {Si,b ← Dn×nZ,σ }i∈[h],b∈{0,1} and compute

J := (11×(w+2n`) ⊗ In×n) ∈ Zn×t

Ŝi,b :=

(
Pi,b ⊗ Si,b

Ri,b ⊗ Si,b

)
∈ Zt×t

L := (1(w+2n`)×1 ⊗ In×n) ∈ Zt×n

• Sample (Ai, τi)← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h−1, Ah ← U(Zn×nq ), {Ei,b ← Dt×mZ,σ }i∈[h−1],b∈{0,1}

and {Eh,b ← Dt×nZ,σ }b∈{0,1}.
• Run Sample algorithms to obtain

Di,b ∈ Zm×m ← Sample(Ai−1, τi−1, Ŝi,b ·Ai + Ei,b, σ) for 1 ≤ i ≤ h− 1,

Dh,b ∈ Zm×n ← Sample(Ah−1, τh−1, Ŝh,b · L ·Ah + Eh,b, σ).

• Define AJ as a matrix J ·A0 ∈ Zn×m and outputs matrices{
inp,AJ, {Di,b}i∈[h],b∈{0,1}

}
.

6 As noted in the remark of introduction, it is assumed implicitly that v = 11×w for the targeted BP,
while the definition of Type I BP uses v ∈ {0, 1}1×w.
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Evaluation. Evaluation process consists of two steps. The first step is to compute a matrix AJ ·
Dω̄(x). The last step is size comparison: If ‖AJ·Dω̄(x)‖∞ ≤ B, output 0 for some fixed B. Otherwise,
output 1.

Parameters and Zerotest Functionality. Due to Lemma 2.4 and 2.5, n = Ω(λ log q) and
χ = DZ,2

√
λ. Moreover, for the trapdoor functionality, m = Ω(t log q) and σ = Ω(

√
t log q) due to

Lemma 2.7 and 2.8. From the construction of the obfuscation, the following equality always holds,
which is essentially what we need.

[AJDω̄(x)]q =

J

(
h∏
i=1

Ŝi,xi

)
·Ah + J

h∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk


q

The honest evaluation with Px = 0w×w gives Ŝx = 0t×t due to the construction of Ri,b is zero
for the valid evaluation. Then, the following inequality holds:

‖[AJ ·Dω̄(x)]q‖∞ =

∥∥∥∥∥∥
J ·

h∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk


q

∥∥∥∥∥∥
∞

(1)

≤

∥∥∥∥∥∥J ·
h∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk

∥∥∥∥∥∥
∞

(2)

≤ h ·
(

max
i,b
‖Ŝi,b‖ · σ ·m

)h
(3)

for all but negligible probability. Therefore, the upper bound B of the error needs to be larger
than

(w + 2n`) · h ·
(
m · σ2 ·

√
n(2 + 2n`)σ

)h
.

If Px is not the zero matrix, then Ŝx is also not the zero matrix with overwhelming probability.
It implies that ‖[AJ ·Dω̄(x)]q‖∞ is larger than B with overwhelming property because of Ah ←
U(Zn×nq ). Lastly, q is larger than B · ω(poly(λ)) for the correctness of the evaluation, and q ≤
(σ/λ) · 2λ1−ε

for a fixed ε ∈ (0, 1) due to the security, Lemma 2.4.

4.2 Cryptanalysis of CVW Obfuscation

We apply the statistical zeroizing attack to the CVW obfuscation. As we stated in Section 3, it is
enough to show that the conditions of Proposition 3.2 hold.

We stress that every choice of secret elements is determined by the same way as the construction
of an obfuscation scheme in this section. We also note that we call all unknown matrices such as
Ei,b,Ai and Si,b by secret elements.

Our targeted two functionally equivalent BPs M = {Mi,b}i∈[h],b∈{0,1} and N = {Ni,b}i∈[h],b∈{0,1}
are of the form

Mi,b = 0w×w for all i, b and Ni,b =

{
1w×w if i = 1

0w×w otherwise
.

Suppose that we have an obfuscated program O(P) for P = M or P = N. Our main goal is to
determine whether the program O(P) is an obfuscation of M or N.

By applying Proposition 3.1, we can assume that we have polynomially many samples from
the one of two distributions DM and DN, where DM and DN denotes the distributions of the
(1,1) entry of evaluation at a fixed vector x of the obfuscated program of M or N, respectively.
The probability of samples of distribution is over the choice of all secrets to construct obfuscation,
including secrets for obfuscator.

Now our purpose is changed to deciding whether the samples comes from DM or DN. To exploit
Proposition 3.2, we transform the CVW construction into the language of random variables. We
denote the random matrix by the capital italic words, whose entry follows a distribution that
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corresponds to the distribution of entry of the bold matrix. For example, the entry of random
matrix Ei,b follows the distribution DZ,σ since the matrix Ei,b is chosen from Dt×mZ,σ in the CVW

construction. More precisely, we define random matrices R̃
(k)
i,b following Dn×nZ,σ , Si,b following Dn×nZ,σ

and Ai as in the trapdoor sampling algorithm. Then we obtain random matrices Ŝ
(P)
i,b , R

(P)
i,b , E

(P)
i,b

and D
(P)
i,b as in the construction of CVW obfuscation for the branching programs P = M or N.

We note that only Ŝ
(P)
i,b and D

(P)
i,b depend on the choice of branching program, but we put P in

some other random variables for convenience of distinction.
Under this setting, it suffices to show the following proposition.

Proposition 4.1 Let XM and XN be random variables satisfying

XM =

[(
J ·A0 ·D (M)

ω̄(x)

)
(1,1)

]
q

, XN =

[(
J ·A0 ·D (N)

ω̄(x)

)
(1,1)

]
q

.

Let σ2
M and σ2

N be variance of the random variables of XM and XN, respectively.
Then, it holds that∣∣∣∣max(E[X2

N], E[X2
M])

σ2
N − σ2

M

∣∣∣∣ ≤ p(λ),

∣∣∣∣ E[X4
N]

E[X2
N]2

∣∣∣∣ ≤ q(λ), and

∣∣∣∣ E[X4
M]

E[X2
M]2

∣∣∣∣ ≤ q(λ).

for some p, q = poly(λ).

The honest evaluation of the CVW obfuscation [AJ ·D(P)
ω̄(x)]q is the matrix of the form

J ·
h∑
j=1

( j∏
i=1

Ŝi,xi

)
·Ej+1,xj+1 ·

h∏
k=j+2

D
(P)
k,xk

 ,

which does not contain the term including the trapdoor matrices Ai for i = 0, · · · , h − 1. Thus,
to establish the statistical properties including a variance in Proposition 4.1, it suffices to analyze

the statistical properties of the random matrices Ŝ
(P)
i,b , E

(P)
i,b , D

(P)
i,b and their products.

To approximate the statistical values of the evaluations, we consider random variables D̃
(P)
i,b ’s

whose columns correspond to DZm,σ instead of the D
(P)
i,b ’s in the following lemmas. Since the

corresponding distributions of D
(P)
i,b ’s and D̃

(P)
i,b ’s are statistically close, it is enough to show the

lemmas and conditions of Proposition 3.2 using D̃
(P)
i,b ’s.7

More precisely, we consider the random variable

ZP = J ·
h∑
j=1

( j∏
i=1

Ŝi,xi

)
· Ej+1,xj+1

·
h∏

k=j+2

D̃
(P)
k,xk


for P = M or N. The lemmas are stated with the random variables ZM and ZN, but the statistical

closeness of two distribution D̃
(P)
i,b and D

(P)
i,b induces that the same results hold for XM and XN

with overwhelming probability.
Now we give the lemmas to prove Proposition 4.1. The proofs of lemmas are placed in Ap-

pendix D and sub-lemmas in Appendix C. The proof of Proposition 4.1 using the lemmas is placed
in the concluding part of this section.

For the convenience of the statement, let (Z
(M)
1,1 )j be random variables of (1, 1)-th entry of the

random matrices

J ·
j∏
i=1

Ŝ
(M)
i · E (M)

j+1 ·
h∏

k=j+2

D̃
(M)
k

for j = 0, 1, · · · , h− 1. In this notation, ZM be the summation of (Z
(M)
1,1 )j for j ∈ {0, 1, · · · , h− 1}.

Similarly, we define (Z
(N)
1,1 )j for all j = 0, · · · , h− 1 and ZN.

7 We remark that there is a subtle gap in this argument. In fact this argument already used in the
correctness of the obfuscation and many statistical analysis on the trapdoor samplings in spite of the
presence of the gap. We discuss this problem in Appendix B.
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Lemma 4.2 E[(Z
(M)
1,1 )µ1 · (Z

(M)
1,1 )µ2 ] = E[(Z

(N)
1,1 )µ1 · (Z

(N)
1,1 )µ2 ] = 0 for µ1 6= µ2.

Lemma 4.3 (j = 0) It holds that

V ar[(Z
(M)
1,1 )0] = V ar[(Z

(N)
1,1 )0] = (w + 2n`) ·mh−1 · σ2h and∣∣∣∣∣ E[(Z

(M)
1,1 )4

0]

V ar[(Z
(M)
1,1 )0]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

0]

V ar[(Z
(N)
1,1 )0]2

∣∣∣∣∣ ≤ 3 · (w + 2n`)2 · (1 +
2

m
)h−1 = poly(λ).

Lemma 4.4 (j = 1) It holds that

V ar[(Z
(M)
1,1 )1] =

(
n3σ2 + (2`− 1) · n2

)
·mh−2(σ2)h,

V ar[(Z
(N)
1,1 )1] =

(
w3 · n+ n3 · σ2 + (2`− 1) · n2

)
·mh−2(σ2)h∣∣∣∣∣ E[(Z

(M)
1,1 )4

1]

V ar[(Z
(M)
1,1 )1]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

1]

V ar[(Z
(N)
1,1 )1]2

∣∣∣∣∣ ≤ 27(w + 2n`)4n2(1 +
2

n
)j1+j−1(1 +

2

m
)h−j−1

= poly(λ).

Lemma 4.5 (1 < j ≤ λ · `) Let j be a fixed integer such that j = ` · j1 + j2 > 1 for 0 ≤ j2 < `
such that 2 ≤ j ≤ λ · `. Then, it holds that

V ar[(Z
(M)
1,1 )j ] = V ar[(Z

(N)
1,1 )j ]

=
(
j2n

j+j1+2(σ2)j1+1 + (`− j2)nj+j1+1(σ2)j1 + `nj+1
)
mh−j−1(σ2)h.

Moreover, it holds that∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

j ]

V ar[(Z
(N)
1,1 )j ]2

∣∣∣∣∣ ≤ 27(w + 2n`)4 · n2

(
1 +

2

n

)j1+j−1(
1 +

2

m

)h−j−1

= poly(λ).

Lemma 4.6 (j > λ · `)) Let j be a fixed integer such that j > λ · `. Then, it holds that

V ar[(Z
(M)
1,1 )j ] = V ar[(Z

(N)
1,1 )j ]

=
(

(`+ j2) · nλ+j+1 · (σ2)λ + (`− j2) · nj+1
)
·mh−j−1 · (σ2)h.

In addition, it holds that∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

j ]

V ar[(Z
(N)
1,1 )j ]2

∣∣∣∣∣ ≤ 27(w + 2n`)4n2

(
1 +

2

n

)λ+j−2(
1 +

2

m

)h−j−1

= poly(λ).

Now we give a proof of the proposition 4.1 using above lemmas.

Proof (of Proposition 4.1). Using the results of lemmas, we can prove the proposition by analyzing
the summation of random matrices in the above lemmas. We first verify the results for ZM. The
same result holds for ZN since the bounds of lemmas are the same.

Since ZM is equal to

h−1∑
j=0

(Z
(M)
1,1 )j , we have

V ar[ZM] = E

(

h−1∑
j=0

(Z
(M)
1,1 )j)

2

 = E

h−1∑
j=0

(Z
(M)
1,1 )2

j

 .
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Applying the Cauchy-Schwarz inequality, it also holds

E[Z4
M] = E

(

h−1∑
j=0

(Z
(M)
1,1 )j)

4

 ≤ E
h3 · (

h−1∑
j=0

(Z
(M)
1,1 )4

j )

 .
Diving both sides by V ar[ZM]2, we obtain the inequality

∣∣∣∣ E[Z4
M]

V ar[ZM]2

∣∣∣∣ ≤
∣∣∣∣∣E[h3 · (

∑h−1
j=0 (Z

(M)
1,1 )4

j )]

V ar[ZM]2

∣∣∣∣∣ = h3 ·

∣∣∣∣∣E[
∑h−1
j=0 (Z

(M)
1,1 )4

j ]

V ar[ZM]2

∣∣∣∣∣
= h3 ·

h−1∑
j=0

∣∣∣∣∣E[(Z
(M)
1,1 )4

j ]

V ar[ZM]2

∣∣∣∣∣ ≤ h3 ·
h−1∑
j=0

∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ .
By Lemma 4.3,4.4,4.5 and 4.6,

∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ is bounded by poly(λ) for all i = 0, 1, · · · , h−1

regardless of P = M or P = N. Therefore, the following inequality holds.∣∣∣∣ E[Z4
M]

V ar[ZM]2

∣∣∣∣ ≤ poly(λ) =: q(λ)

Moreover, we can compute the exact values E[Z2
M] = V ar[ZM]2 =

∑h−1
j=0 V ar[(Z

(M)
1,1 )j ]

2, the

same for ZN and the difference V ar[ZM]2 − V ar[ZN] using lemmas; these computations directly

show that

∣∣∣∣ max(E[Z2
N], E[Z2

M])

V ar[ZN]2 − V ar[ZM]2

∣∣∣∣ = poly(λ) holds.

At last the statistical closeness of distributions completes the proof for XM and XN. ut

Remark 1. In the original paper [12], the authors give two different choice of the distributions of
Ei,b; DZ,σ with corresponding dimension in Section 11, and χ = DZ,2

√
λ with appropriate dimension

in Section 5. We analyze the obfuscation with distribution DZ,σ stated in the construction but the
result still holds for χ = DZ,2

√
λ with slight modification.

5 Crtypanalysis of BGMZ Obfuscation

In this section, we briefly review the BGMZ obfuscation and show the obfuscation fails to achieve
the desired security.

5.1 Construction of BGMZ Obfuscation

Bartusek et al. proposed a new candidate of iO which is secure in the GGH15 zeroizing model. We
briefly review the construction of this candidate scheme. For more detail, we refer to an original
paper [4].

We start with the conditions of BP they used. The authors use a dual-input binary BP’s.
i.e., inp(i) = (inp1(i), inp2(i)). For simplicity, they use the notation x(i) = (xinp1(i), xinp2(i)). More-
over, they employ the new parameter η = poly(`, λ) with η ≥ `4 which decides the minimum
number of the BP layer.

The targeted BP P also satisfies the following conditions.

1. All the matrices {Pi,b}i∈[h],b∈{0,1}2 are w × w matrices.

2.
∏h
i=1 Pi,x(i) = 0w×w.

3. Each pair of input bits (j, k) is read in at least 4`2 different layers of branching program.

4. There exist layers i1 < i2 < · · · < it such that inp1(i1), · · · , inp1(iη) cycles η/` times through
[`].
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To obfuscate a branching program that does not satisfy the condition 3 or 4, we pad the identity
matrices to satisfy the conditions while preserving the functionality. Moreover, they employ the
asymmetric level construction to generate straddling sets used to enforce the honest evaluation.8

Construction. BGMZ obfuscation is a probabilistic polynomial time algorithm which takes as
input a BP P with a length h, and outputs an obfuscated program with the same functionality.
We use several parameter such as n,m, q, t := (w+1)·n, σ, ν, g in the construction. We will describe
the setting for new parameters such as g, ν later.

The obfuscation procedure consists of the following steps.

• Sample (Ai, τi)← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h−1, Ah ← U(Zt×mq ), {Ei,b ← χt×mZ,σ }i∈[h−1],b∈{0,1}2

and Eh ← χt×mZ,σ where t := (w + 1) · n.

• Sample matrices Bi,b ∈ Zg×gν and invertible matrices Ri ∈ Z(m+g)×(m+g)
q randomly.

• Sample matrices {Si,b ← Dn×nZ,σ }i∈[h−1],b∈{0,1}2 and a final encoding Dh as

Dh ∈ Zm×m ← Sample(Ah−1, τh−1,

(
Iwn×wn

0n×n

)
·Ah + Eh, σ),

and compute bookend vectors v and w as

v = [v′ · J ·A0 | bv] ·R1,

Ŝi,b :=

(
Pi,b ⊗ Si,b

Si,b

)
∈ Zt×t

wT = R−1
h ·

(
Dh ·w′T

bTw

)
where v′ ← DnZ,σ, w′ ← DmZ,σ, bv,bw ← U(Zkν) and J := [J′|In×n] with a randomly chosen

matrix J′ ← {0, 1}n×wn.
• Compute matrices

Di, ∈ Zm×m ← Sample(Ai−1, τi−1, Ŝi,b ·Ai + Ei,b, σ) with 1 ≤ i ≤ h− 1,

and Ci,b = R−1
i ·

(
Di,b

Bi,b

)
·Ri+1 with i = 1, · · · , h− 1.

Evaluation. Outputs 0 if |v ·
∏h−1
i=1 Ci,x(i) ·wT | ≤ B. Otherwise, outputs 1.

Parameters and Zerotest Functionality. Let λLWE and λSZ be security parameters depending
on the hardness of LWE and the security of the model in the paper [4], respectively. Both parameters
are poly(λ) for the security parameter λ, but λLWE � λSZ for the zerotesting functionality. Due
to Lemmas 2.4 and 2.5, they set n = Ω(λLWE log q), χ = DZ,s with s = Ω(

√
n). Moreover, for the

trapdoor functionality, the authors set m = Ω(t log q) and σ = Ω(
√
t log q) due to Lemma 2.7 and

2.8. In addition, they use parameters g = 5 and ν = poly(λSZ).
Moreover, from the construction of obfuscation, the following equality always holds if C :=∏h−1

i=1 Ci,x(i) is an encoding of zero computed by honest evaluation.

‖[v ·C ·wT ]q‖∞

=

∥∥∥∥∥∥
v′ · J

h∑
j=1

((

j−1∏
i=1

Ŝi,x(i))Ej,x(j)

h∏
k=j+1

Dk,x(k) ·w′T + bv ·
h−1∏
i=1

Bi,x(i) · bTw


q

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥v′ · J
h∑
j=1

((

j−1∏
i=1

Ŝi,x(i))Ej,x(j)

h∏
k=j+1

Dk,x(k) ·w′T + bv ·
h−1∏
i=1

Bi,x(i) · bTw

∥∥∥∥∥∥
∞

≤ σ2 ·m2 · (m · β · σ ·
√
t)h−1 + (k · ν)h+1

8 We omitted the straddling set and level parameters, because they prohibit invalid evaluations and do
not affect anything on the valid evaluations. Our attack only exploits the valid encodings.
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Since ‖[v ·C ·wT ]q‖∞ is bounded by σ2 ·m2 · (m ·β ·σ ·
√
t)h−1 + (k · ν)h+1 for all but negligible

probability, the zerotest bound is set to B := (m · β · σ
√
t)h+1. Moreover, if

∏h
i=1 Pi,x(i) is a

nonzero matrix, then
∏h
i=1 Ŝi,x(i) is also nonzero matrix. Thus, ‖[v ·C ·wT ]q‖∞ is larger than B

with overwhelming probability because of Ah ← U(Zt×mq ).
Lastly, q is chosen so that

q ≥ B · ω(poly(λSZ)) and q ≤ (σ/λLWE) · 2λ
1−ε
LWE

for some fixed ε ∈ (0, 1).

5.2 Cryptanalysis of BGMZ Obfuscation

In this section, we analyze the conditions for the statistical zeroizing attack on the BGMZ ob-
fuscation. As in Section 4.2, the notation written in the capital italic words are regarded as the
random matrix whose entry follows a distribution that corresponds to the distribution of entry of
the bold-written matrix.

The targeted BPs are M = {Mi,b}i∈[h],b∈{0,1}2 and N = {Ni,b}i∈[h],b∈{0,1}2 such that

Mi,b =

{
0w×w if i = 1

Iw×w otherwise
and Ni,b =

{
0w×w if i = 2

Iw×w otherwise
.

Note that two branching programs always output zero. Now we suppose that we have polynomi-
ally many samples from the one of two distributions DM and DN, where DM and DN are the
distributions of the evaluations of obfuscations of M and N.

Then our purpose is to distinguish whether the samples come from DM or DN by applying

Proposition 3.1 and 3.2. We obtain random matrices S
(P)
i,b , E

(P)
i,b , D

(P)
i,b and C

(P)
i,b as in the con-

struction of BGMZ obfuscation for branching programs P = M or N. As in the CVW case, it
suffices to prove Proposition 5.1.

Proposition 5.1 Let XM and XN be random variables satisfying

XM =

[
v ·

h−1∏
i=1

C
(M)
i,x(i) · w

T

]
q

and XN =

[
v ·

h−1∏
i=1

C
(N)
i,x(i) · w

T

]
q

.

Let σ2
M and σ2

N be variance of the random variables of XM and XN, respectively. Then, it holds
that ∣∣∣∣max(E[X 2

N], E[X 2
M])

σ2
N − σ2

M

∣∣∣∣ ≤ p(λ),

∣∣∣∣ E[X 4
N]

E[X 2
N]2

∣∣∣∣ ≤ q(λ), and

∣∣∣∣ E[X 4
M]

E[X 2
M]2

∣∣∣∣ ≤ q(λ).

for some p, q = poly(λ).

With the honest evaluation of the BGMZ obfuscation
[
v ·
∏h
i=1 Ci,x(i) ·wT

]
q
, we obtain an

integer of the form

v′ · J
h∑
j=1

((

j−1∏
i=1

Ŝi,x(i))Ej,x(j)

h∏
k=j+1

Dk,x(k) ·w′T + bv ·
h−1∏
i=1

Bi,x(i) · bTw

which does not contain the term including the trapdoor matrices Ai’s. Thus, similarly to the CVW

obfuscation case, we need to analyze the statistical properties of the random vectors v ′(P),w ′(P), b
(P)
v ,

b
(P)
w and random matrices Ŝ

(P)
i,b , E

(P)
i,b , D

(P)
i,b and their products to prove the statistical properties

including the variance in Proposition 5.1.

As stated in Section 4, we use new random variables D̃
(P)
i,b for P = M or N whose columns are

identical to DZm,σ, instead of D
(P)
i,b . Though our analysis focus on D̃

(P)
i,b cases, our attack still hold

due to the statistical closeness of D
(P)
i,b and D̃

(P)
i,b .

The proof of Proposition 5.1 is based on the following lemmas and placed in the concluding
part of this section. All proofs of these lemmas are in Appendix E.
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For the convenience of the statement, let (Z (M))j be a random variable of the form

v ′(M) · J (M) ·
j∏
i=1

Ŝ
(M)
i,x(i) · E

(M)
j+1,x(j+1) ·

h∏
k=j+2

D̃
(M)
k,x(k) · w

′(M)T

for j = 0, 1, · · · , h− 1. For the case of j = h, (Z (M))h be a random variable of the form

b(M)
v ·

h−1∏
i=1

B
(M)
i,x(i) · b

(M)T

w .

Similarly, we define (Z (N))j for j = 0, 1, · · · , h and ZP =
∑h
i=0(Z (P))j for P = M and N.

Lemma 5.2 E[(Z (M))µ1
· (Z (M))µ2

] = 0 for µ1 6= µ2.

Lemma 5.3 (j = 0) It holds that

V ar[(Z (M))0] = V ar[(Z (N))0] = nm · (w
2

+ 1) ·mh−1 · (σ2)h+1 · s2 and∣∣∣∣ E[(Z (M))4
0]

V ar[(Z (M))0]2

∣∣∣∣ , ∣∣∣∣ E[(Z (N))4
0]

V ar[(Z (N))0]2

∣∣∣∣ ≤ 108 · (nm)2 · (w + 1)2 ·
(

1 +
2

m

)h−1

= poly(λ).

Lemma 5.4 (j = 1) It holds that

V ar[(Z (M))1] = nm · n ·mh−2 · (σ2)h+1 · s2,

V ar[(Z (N))1] = nm ·
(

1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h+1 · s2.

Moreover, it holds that∣∣∣∣ E[(Z (M))4
1]

V ar[(Z (M))1]2

∣∣∣∣ ≤ 81 · (nm)2 · n2 ·
(

1 +
2

m

)h−2

= poly(λ),∣∣∣∣ E[(Z (N))4
1]

V ar[(Z (N))1]2

∣∣∣∣ ≤ 324 · (nm)2 · {(w + 1)n}2 · n2 ·
(

1 +
1

m

)h−2

= poly(λ).

Lemma 5.5 (2 ≤ j ≤ h− 1) It holds that

V ar[(Z (M))j ] = V ar[(Z (N))j ] = nm · nj ·mh−j−1 · (σ2)h+1 · s2.

Moreover, it holds that∣∣∣∣∣ E[(Z (M))4
j ]

V ar[(Z (M))j ]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z (N))4

j ]

V ar[(Z (N))j ]2

∣∣∣∣∣ ≤ 81(nm)2 · n2

(
1 +

2

n

)j−1(
1 +

2

m

)h−j−1

= poly(λ).

Lemma 5.6 (j = h) It holds that

V ar[(Z (M))h] = V ar[(Z (N))h] = gh ·
{

1

12
· v(v + 2)

}h+1

.

Moreover, it holds that∣∣∣∣ E[(Z (M))4
h]

V ar[(Z (M))h]2

∣∣∣∣ , ∣∣∣∣ E[(Z (N))4
h]

V ar[(Z (N))h]2

∣∣∣∣ ≤ 27 · (g2)2 ·
(

1 +
2

g

)h−2

= poly(λ).
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Now we give a proof of the proposition 5.1 using the above lemmas.

Proof (of Proposition 5.1). Note that elements (Z (M))j in the above lemmas are of the form

(Z (M))j = v ′(M) · J (M) ·
j∏
i=1

Ŝ
(M)
i,x(i) · E

(M)
j+1,x(j+1) ·

h∏
k=j+2

D̃
(M)
k,x(k) · w

′(M)T for j < h

(Z (M))h = b(M)
v ·

h−1∏
i=1

B
(M)
i,x(i) · b

(M)T

w

Let ZM be the summation of (Z (M))j for j ∈ {0, 1, · · · , h}. We have

V ar[ZM] = E

[
(

h∑
i=0

(Z (M))i)
2

]
= E

[
h∑
i=0

(Z (M))2
i

]
,

E[Z 4
M] = E

[
(

h∑
i=0

(Z (M))i)
4

]
≤ E

[
(h+ 1)3 · (

h∑
i=0

(Z (M))4
i )

]
.

Diving both sides by V ar[ZM]2, we obtain the inequality∣∣∣∣ E[Z 4
M]

V ar[ZM]2

∣∣∣∣ ≤
∣∣∣∣∣E[(h+ 1)3 · (

∑h
i=0(Z (M))4

i )]

V ar[ZM]2

∣∣∣∣∣ = (h+ 1)3 ·

∣∣∣∣∣E[
∑h
i=0(Z (M))4

i ]

V ar[ZM]2

∣∣∣∣∣
= (h+ 1)3 ·

h∑
i=0

∣∣∣∣E[(Z (M))4
i ]

V ar[ZM]2

∣∣∣∣ ≤ (h+ 1)3 ·
h∑
i=0

∣∣∣∣ E[(Z (M))4
i ]

V ar[(Z (M))i]2

∣∣∣∣
By Lemma 5.3,5.4,5.5 and 5.6,

∣∣∣∣ E[(Z (M))4
i ]

V ar[(Z (M))i]2

∣∣∣∣ is bounded by poly(λ) for all i = 0, 1, · · · , h re-

gardless of P = M or P = N. Therefore, the following inequality holds.∣∣∣∣ E[Z 4
M]

V ar[ZM]2

∣∣∣∣ ≤ poly(λ) =: q(λ)

Moreover, by the definition of ZN and ZM, it holds that E[Z 2
N] = σ2

N and E[Z 2
M] = σ2

M,

respectively. Thus, it is clear that σ2
M 6= σ2

N and

∣∣∣∣max(E[Z 2
N], E[Z 2

M])

σ2
N − σ2

M

∣∣∣∣ is bounded by poly(λ). At

last the statistical closeness of distributions completes the proof. ut
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learning with errors. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
pages 575–584. ACM, 2013.

8. Zvika Brakerski and Guy N Rothblum. Virtual black-box obfuscation for all circuits via generic graded
encoding. In Theory of Cryptography Conference, pages 1–25. Springer, 2014.

9. Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscating conjunctions
under entropic ring lwe. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 147–156. ACM, 2016.

10. Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from lwe. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, pages 446–476.
Springer, 2017.

11. Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program obfuscators.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages
278–307. Springer, 2017.

12. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. Ggh15 beyond permutation branching programs:
Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology – CRYPTO 2018, pages 577–607, Cham, 2018. Springer International Publishing.

13. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis
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A Modified CVW Obfuscation

We give a modification of CVW obfuscation, which can obfuscate the permutation matrix branch-
ing programs. This modification is, as far as we know, robust against all existing attacks. We
first describe the transformation of branching programs. Then, we give the modification of CVW
obfuscation.

A.1 Transformation of Branching Programs

We first introduce the transformation on single-input permutation matrix branching programs.
This transformation is applicable to BPs which outputs 0 when the product of BP matrices is the
identity matrix. The output of transformation is a new branching program that outputs 0 when the
product of BP matrices is the zero matrix. Through this transformation, the width of branching
program is doubled. Note that this is adapted version of [12, Claim 6.2].

We are given a branching program with input size `

P =
{
{Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}, inp : [h]→ [`]

}
where the evaluation of P at x ∈ {0, 1}` is computed by

P(x) =

{
0 if

∏h
i=1 Pi,(xinp(i)) = Iw

1 otherwise

Then the transformation is done by changing branching program matrices as

P′ =


{

P′i,b =

[
Pi,b 0

0 Iw

]
∈ {0, 1}2w×2w

}
i∈[h],b∈{0,1}

, inp : [h]→ [`]


and the evaluation is similar but uses new vectors v′ = (v| − v) and w′ = (w|w) for v,w ∈ Zw:

P′(x) =

{
0 if v′ ·

∏h
i=1 P′i,(xinp(i))

·w′T = 0

1 otherwise

We will choose v and w as random Gaussian vectors. Note that the resulting branching program
is also a permutation BP.
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A.2 Modification of CVW Obfuscation

We give here how to modify the CVW obfuscation to be applicable to the resulting permutation
BPs of the above transform. We also assume that the index length h = (λ+ 1) · ` and the index-to-
input function satisfies inp(i) = (i mod `) as in the CVW obfuscation. We also assume that the
BP is (λ + 1)-input repetition BP as in the original construction. The changed parts are written
in red. Note that the targeted BPs have width 2w. Thus we set t := (2w + 2n`) · n.

• Sample bundling matrices {Ri,b ∈ Z2n`×2n`}i∈[h],b∈{0,1} such that (11×2`⊗In×n) ·Rx′ ·(12`×1⊗
In×n) = 0 ⇐⇒ x′ ∈ ω̄({0, 1}`) for all x′ ∈ {0, 1}h. More precisely, Ri,b is a block diagonal

matrix diag(R
(1)
i,b ,R

(2)
i,b , · · · ,R

(`)
i,b ). Each R

(k)
i,b ∈ Z2n×2n is one of the following three cases.

R
(k)
i,b =



I2n×2n if inp(i) 6= k(
R̃

(k)
i,b

In×n

)
, R̃

(k)
i,b ← D

n×n
Z,σ if inp(i) = k and i ≤ λ`

−In×n

λ−1∏
j=0

R̃
(k)
k+j`,b

 if inp(i) = k and i > λ`

• Sample matrices {Si,b ← Dn×nZ,σ }i∈[h],b∈{0,1}, bookend vectors v ← DwZ,σ and w ← DwZ,σ and
compute

J := ((v| − v|11×2n`)⊗ In×n) ∈ Zn×t

Ŝi,b :=

(
Pi,b ⊗ Si,b

Ri,b ⊗ Si,b

)
∈ Zt×t

L := ((w|w|11×2n`)T ⊗ In×n) ∈ Zt×n

• Sample (Ai, τi)← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h−1, Ah ← U(Zn×nq ), {Ei,b ← Dt×mZ,σ }i∈[h−1],b∈{0,1}

and {Eh,b ← Dt×nZ,σ }b∈{0,1}.
• Run Sample algorithms to obtain

Di,b ∈ Zm×m ← Sample(Ai−1, τi−1, Ŝi,b ·Ai + Ei,b, σ) for 1 ≤ i ≤ h− 1,

Dh,b ∈ Zm×n ← Sample(Ah−1, τh−1, Ŝh,b · L ·Ah + Eh,b, σ).

• Define AJ as a matrix J ·A0 ∈ Zn×m and outputs matrices{
inp,AJ, {Di,b}i∈[h],b∈{0,1}

}
.

We omit the procedure and correctness of evaluation that are almost the same to the original one.

B Subtle Gap in the Argument using Statistical Indistinguishability

In this section, we give two subtle counter-intuitive problems which usually appear in arguments
dealing with statistical indistinguishability, and how to subvert them. We remark that this problem
is also found in many analysis related to the trapdoor sampling of lattice9 but we cannot find the
discussion on such problem in the literature. Since our attack and candidates obfuscations itself
cannot be run in practical time, it is meaningful to address the theoretical backgrounds.

The problems are stated as follows:

1. Statistical indistinguishability of two random variables does NOT imply that the statistical
values of those variables such as the expectations or variances are negligibly close.

2. The sequences of (dependent) statistical indistinguishable random variables may NOT be sta-
tistically indistinguishable.

The following examples show the problems of the above arguments.

9 e.g. the correctness of GGH15 multilinear map
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Expectations of two statistically indistinguishable distributions. Let Xλ, Yλ be two ran-
dom variables defined by

1. Xλ is always zero
2. Yλ = 0 with probability 1− 1/2λ and 2λ with probability 1/2λ

then this two distributions is clearly statistically indistinguishable but the expectations are differ;
E[X] = 0 and E[Y ] = 1.

Sequences of statistical indistinguishable random variables. Let A,B,X, Y be random
variables which are defined by

1. A,B, Y are independent and uniformly distributed over [0, 1]
2. X = 1−A

then clearly A ≈s B and X ≈s Y . However, (A,X) and (B, Y ) are not statistical indistinguishable;
even worse, (A,X) 6≈s (A, Y ).

B.1 Detour by Sample Variance

Fortunately, the algorithm (in Theorem 3.2) works with only the variance of samples and those
samples are independent. In this computation we do not compute the real variance of distribution
that may be problematic. Instead we compute the sample variance which can be considered as a
function of samples. More precisely, we sample random variables X(i) that follow the distribution
DP of the first entry of evaluation. In the main body of paper we prove Proposition 3.2 for random
variables Z(i) following D̃, which is substituted D into D̃, rather than D. We assume that D ≈s D̃,
which will be proven in the next subsection. Since all random variables are mutually independent,
we have ∏

i

(X(i)) ≈s
∏
i

(Z(i)).

Note that the same function evaluations on two random variable decrease the statistical distance;
this allows that the distributions of sample variance of (X(i))i and (Z(i))i are also statistically
indistinguishable. Thus Proposition 3.2 hold as well for X’s, that is, the inequality of sample
variance for D holds with overwhelming probability when the same one for D̃ holds.

B.2 How to deal D̃’s

The usual definition of statistical indistinguishability only consider the outputs of random variables
and does not embrace the relations of several random variables. We can deal with this problem
using the definition:

Definition B.1 (Ω-statistical distance) Let D,E : Ω → R be two random variables on a set
Ω. The Ω-statistical distance of D and E is defined by

∆(D,E) = max
X⊂Ω

∣∣∣Pr
D

(X)− Pr
E

(X)
∣∣∣ .

We say that D and E are Ω-statistical indistinguishable if the Ω-statistical distance is negligible
and denote this case by D ≈Ωs E.

In the usual cryptographic setting, we use Ω as outcomes of random variables such as Z, lattice
points or Zn. This choice does not ensure the dependency of random variables. However, if we
choose Ω that embraces all dependencies of random variables then it is enough to overcome the
second problem. That is, we choose Ω so that the every (conditional) events with respect to all

random variables are included in Ω, and D̃
(M)
i,xi

entry-wise Gaussian distribution so that

(D
(P)
i,xi

,E
(P)
i,xi

, Ŝ
(P)
i,xi

) ≈Ωs (D̃
(P)
i,xi

,E
(P)
i,xi

, Ŝ
(P)
i,xi

)
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holds. This choice of D̃ is possible because the only constraint of D̃ is that it is Gaussian distribu-
tion; the choice of specified distribution on each event is free except Gaussian.10

In this choice, we can obtain∏
i

(D
(P)
i,xi

,E
(P)
i,xi

, Ŝ
(P)
i,xi

) ≈Ωs
∏
i

(D̃
(P)
i,xi

,E
(P)
i,xi

, Ŝ
(P)
i,xi

)

since they are all independent except the random variables with the same index. Since the evalu-
ation of function decrease the statistical distance, the first entries of obfuscations are statistically
indistinguishable, i.e. (X(i))i ≈s (Z(i))i with the notation in the previous section.

C Useful Tools for Computing the Variances

We introduce useful lemmas to help our computation. We note that we consider the random
matrix A whose entries in the same columns are independent, while the other entries need not to
be independent, that corresponds to the output of trapdoor sampling.11

Lemma C.1 Let A = (Ai,j) be a n × n random matrix where Ai,t and Aj,t are independent for
every 1 ≤ i < j ≤ n and 1 ≤ t ≤ n. and X = [X1, X2, · · · , Xn] a n-dimensional random vector
which is independent to A. Assume that the following conditions for all distinct i, j, k, l ∈ [n]:

E[Xi ·Xj ] = 0, E[X3
i ·Xj ] = 0,

E[X2
i ·Xj ·Xk] = 0, and E[Xi ·Xj ·Xk ·Xl] = 0.

Then, a n-dimensional random vector Y = [Y1, Y2, · · · , Yn] = A · X also satisfies the similar
constraints

E[Yi · Yj ] = 0, E[Y 3
i · Yj ] = 0,

E[Y 2
i · Yj · Yk] = 0, and E[Yi · Yj · Yk · Yl] = 0.

for all distinct i, j, k, l ∈ [n].

Proof.

E[Yi · Yj ] = E

[
n∑
t=1

n∑
s=1

Ai,t ·Xt ·Aj,s ·Xs

]

=

n∑
t=1

n∑
s=1

E[Ai,t ·Xt ·Aj,s ·Xs]

=
∑

1≤t,s≤n,t6=s

E[Ai,t ·Aj,s] · E[Xt ·Xs] +

n∑
t=1

E[Ai,t] · E[Aj,t] · E[Xt ·Xt] = 0

ut

Lemma C.2 Let {Ai = (Aj,ki )}1≤i≤t be n× n random matrices where

• Aj,ki follow Gaussian distribution DZ,σ for all 1 ≤ j, k ≤ n and 1 ≤ i ≤ t,
• Aj,si and Ak,si are independent for every 1 ≤ j < k ≤ n, 1 ≤ s ≤ n and 1 ≤ i ≤ t,
• Ai1,j11 , · · · , Ait,jtt are mutually independent for every 1 ≤ ik, jk ≤ n for all k

and X = (Xi,j) =
∏t
k=1 Ak n× n random matrix. For all i, j, k ∈ [n], it holds that

E[Xi,j ] = 0, V ar[Xi,j ] = nt−1 · (σ2)t,

E[X4
i,j ] = 3 (n(n+ 2))

t−1 · (σ2)2t,

E[X2
i,j ·X2

k,j ] = (n(n+ 2))
t−1 · (σ2)2t

10 This part is done by constructing D̃ so that the difference of Pr[D̃ = x|condition] and Pr[D =
x|condition] is sufficiently small and the entries of D̃ follow Gaussian.

11 Since the trapdoor sampling uses some shared trapdoor, so we cannot ensure the independency of each
columns. The somewhat complex conditions in the lemma are used to deal with such problem.
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Proof. We apply mathematical induction on t. For t = 1, it is clear because of the property of
Gaussian distribution.

We assume that the equations hold when t = s and will show that the same results hold

for t = s + 1. Let X ′ =

s∏
i=1

Ai and Y = As+1 · X ′. Note that all entries of Ai follow Gaussian

distribution DZ,σ satisfy the same condition of the lemma. We denote As+1 = (Ai,j) for brevity

and Yi,j =

n∑
k=1

Ai,k ·Xk,j . Note that the results of Lemma C.1 holds for every columns of X, which

can be shown in the inductively applying Lemma C.1.

1. E[Yi,j ] = 0 is clear.

2. Since E[Yi,j ] = 0, V ar[Yi,j ] is the same to E[Y 2
i,j ]. Note that we can obtain E[Xk,j ·Xl,j ] = 0

and for k 6= l by applying Lemma C.1 inductively, thus E[Ai,k · Xk,j · Ai,l · Xl,j ] = E[Ai,k ·
Ai,l] · E[Xk,j ·Xl,j ] = 0 also holds. Now we obtain

V ar[Yi,j ] = E[Y 2
i,j ] = E

[
(

n∑
k=1

Ai,k ·Xk,j)
2

]

= E

[
n∑
k=1

A2
i,k ·X2

k,j

]
=

n∑
k=1

E[A2
i,k] · E[X2

k,j ]

= n · σ2 · ns−1 · (σ2)s = ns · (σ2)s+1

The last equality holds by the inductive hypothesis.

3. Note that E[Y 4
i,j ] = E[(

∑n
k=1Ai,k ·Xk,j)

4]. It holds that, for k 6= l,

E[(Ai,k ·Xk,j)
3 · (Ai,l ·Xl,j)] = E[A3

i,k ·Ai,l] · E[X3
k,j ·Xl,j ] = 0

E[(Ai,k ·Xk,j)
2 · (Ai,l ·Xl,j) · (Ai,m ·Xm,j)] = 0

E[(Ai,k ·Xk,j) · (Ai,l ·Xl,j) · (Ai,m ·Xm,j) · (Ai,u ·Xu,j)] = 0

for all for all distinct k, l,m, u ∈ {1, · · · , n}. By the induction hypothesis, it holds that

E[A4
i,k ·X4

k,j ] = E[A4
i,k] · E[X4

k,j ] = 3σ4 · 3(n(n+ 2))s−1 · (σ2)2s.

Therefore, we conclude that

E[(

n∑
k=1

Ai,k ·Xk,j)
4] = 3(n(n+ 2))s · (σ2)2(s+1).

4. Note that E[Y 2
i,j · Y 2

k,j ] = E[(
∑n
m=1Ai,m · Xm,j)

2 · (
∑n
u=1Ak,u · Xu,j)

2]. Then we obtain the
similar result as follows:

E[(

n∑
m=1

Ai,m ·Xm,j)
2 · (

n∑
u=1

Ai,u ·Xu,j)
2] = E

[
(

n∑
m=1

A2
i,m ·X2

m,j) · (
n∑
u=1

A2
k,u ·X2

u,j)

]

=

n∑
u=1

n∑
m=1

E[A2
i,m ·A2

k,u] · E[X2
m,j ·X2

u,j ] = (n(n+ 2))
s · (σ2)2(s+1).

ut

Lemma C.3 Let A = (Ai,j) be a n×m random matrix whose entries satisfy E[Ai,j ] = 0, E[A2
i,j ] =

σ2
1 and E[A4

i,j ] ≤ Cσ4
1 for all i ∈ [n], j ∈ [m] with some constant C, where the entries of A need not

to be independent. Let v = [v1, · · · , vn] and w = [w1, · · · , wm] be n-dimensional random vectors
whose entries are mutually independent and follow the Gaussian distribution DZ,σ2 . If the entries
of A are independent to the entries of v and w, then Y = v ·A ·wT satisfies the following condition:

E[Y ] = 0, E[Y 2] = nm · σ2
1 · σ4

2 , E[Y 4] ≤ (nm)4 · (Cσ4
1) · (3σ4

2)2.
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Proof. Note that Y =

m∑
j=1

n∑
i=1

vi ·Ai,j · wj .

1. E[Y ] = E[

m∑
j=1

n∑
i=1

vi ·Ai,j · wj ] =

m∑
j=1

n∑
i=1

E[vi]E[Ai,j ]E[wj ] = 0.

2. For all i, k ∈ [n], j, l ∈ [m] satisfy (i, j) 6= (k, l), E[(vi ·Ai,j ·wj) ·(vk ·Ak,l ·wl)] = E[vi ·vk]E[Ai,j ·
Ak,l]E[wj · wl] = 0 since one of E[vi · vk] or E[wj · wl] is zero. Then it holds that

E[Y 2] = E[(

m∑
j=1

n∑
i=1

vi ·Ai,j · wj)2] = E[

m∑
j=1

n∑
i=1

v2
i ·A2

i,j · w2
j ]

=

m∑
j=1

n∑
i=1

E[v2
i ]E[A2

i,j ]E[w2
j ] = nm · σ2

1 · σ4
2 .

3. By the Cauchy-Schwarz Inequality, it holds

E[Y 4] = E[(

m∑
j=1

n∑
i=1

vi ·Ai,j · wj)4] ≤ E[(nm)3 · (
m∑
j=1

n∑
i=1

v4
i ·A4

i,j · w4
j )]

= (nm)3 ·
m∑
j=1

n∑
i=1

E[v4
i ]E[A4

i,j ]E[w4
j ] ≤ (nm)4 · (Cσ4

1) · (3σ4
2)2.

ut

D Analysis of CVW Obfuscation

In this seciton, we describe how to prove the lemmas in Section 4.2. We use the same notation as
in Section 4. We re-use or abuse the some notations for the different proof for the convenience of
the writing. Fix a x satisfying O(P)(x) = 0.

Note that the appeared random matrices are of the form

J ·
j∏
i=1

Ŝ
(P)
i,xi
· E (P)

j+1,xj+1
·

h∏
k=j+2

D̃
(P)
k,xk

.

For the CVW obfuscation, all random matrices are independent except the tuples (D
(M)
i,xi

,E
(M)
i,xi

)

and (D
(M)
i,xi

, Ŝ
(M)
i,xi

). Though we use another random variable D̃i,b whose columns correspond to the

distribution DZm,σ instead of Di,b, we cannot ensure the independency of tuples (D̃
(M)
i,xi

,E
(M)
i,xi

) and

(D̃
(M)
i,xi

, Ŝ
(M)
i,xi

). Further, we also cannot ensure that the columns of trapdoor sampling matrices are
independent. From now on, we drop the tilde in the trapdoor sampling.

We also remark that all distributions corresponding to random variables appeared in lemmas

except
(
Z

(P)
1,1

)
1

are not changed regardless of the choice of P = M or N, because the matrices

of branching programs are all zero except the first matrix. Thus we consider the choice of the

branching program only in Lemma 4.4, which discusses
(
Z

(P)
1,1

)
1
.

By Lemma 2.9, each column of the random matrix D
(P)
i,xi

follows the distribution DZm,σ for
all i. Note that since DZm,σ is equal to DmZ,σ, entries of each column are mutually independent.

Therefore, we can use Lemma C.1 and C.2 to analyze the product of D
(P)
i,xi

.
At last, we note that many inequalities can be improved. For example, the bounds in Lemma 4.3

and 4.5 can be tightened as constant upper bound. We omit those calculation because we only need
the polynomial upper bounds.

Proof (of Lemma 4.2). We assume that µ1 < µ2 and only show the result for M. Note that the

random matrix E
(M)
j is only (possibly) dependent to D̃

(M)
j and the random variables (Z

(M)
1,1 )µ1

and (Z
(M)
1,1 )µ2

do not contain such random variables. Therefore, if we express (Z
(M)
1,1 )µ1

· (Z(M)
1,1 )µ2
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into the polynomials of random variables, then every monomial includes one entry of E
(M)
µ1+1 and

does not include the entries of D̃
(M)
µ1+1. Since the expectation of every entry of E

(M)
µ1+1 is zero, the

desired result holds. ut

Proof (of Lemma 4.3). We suffice to show the result for M. Let (X
(M)
u,v ) be random variables of

the (u, v)-th entry of the random matrix E
(M)
1,x1
·
∏h
k=2 D

(M)
k,xk

. Then, for all u ∈ [t], v ∈ [n], all

random variables X
(M)
u,v have the same variance mh−1(σ2)h by Lemma C.2. Moreover, it holds that

E[X
(M)
u,v ·X(M)

u′,v ] = 0 for distinct u, u′ and E[X
(M)4

u,v ] = 3 (m(m+ 2))
h−1 · (σ2)2h.

The random variables of the (u, v)-th entry of the random matrix J · E (M)
1,x1
·
∏h
k=2 D

(M)
k,xk

are

denoted by (Z
(M)
u,v )0. We observe (Z

(M)
1,1 )0 =

∑w+2n`
i=1 X

(M)
n·(i−1)+1,1. Then,

V ar[(Z
(M)
1,1 )0] = E

(w+2n`∑
i=1

X
(M)
n·(i−1)+1,1

)2


= E

[
w+2n`∑
i=1

X
(M)2

n·(i−1)+1,1

]
= (w + 2n`) ·mh−1(σ2)h.

In addition, the upper bound of E[(Z
(M)
1,1 )4

0] can be computed as follows:

E[(Z
(M)
1,1 )4

0] = E[(

w+2n`∑
i=1

X
(M)
n(i−1)+1,1)4]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

X
(M)4

n(i−1)+1,1)]

= (w + 2n`)4 · 3{m(m+ 2)}h−1 · (σ2)2h.

Combining them, we obtain the inequality

∣∣∣∣∣ E[(Z
(M)
1,1 )4

0]

V ar[(Z
(M)
1,1 )0]2

∣∣∣∣∣ ≤ 3·(w+2n`)2·
(

1 +
2

m

)h−1

= poly(λ).

All arguments with respect to N also hold well. ut

Proof (of Lemma 4.4). Only for this lemma, we give the proof of the two cases; P = M and P = N.

Case 1: J · Ŝ (M)
1,x1
· E (M)

2,x2
·
∏h
k=3 D

(M)
k,xk

.
Indeed, this case is a special case of Lemma 4.5. Readers refer to the proof of Lemma 4.5. In

particular, we can obtain that

V ar[(Z
(M)
1,1 )1] = (n3 · σ + (2`− 1) · n2) ·mh−2 · (σ2)h

and

E[(Z
(M)
1,1 )4

1] ≤ (w + 2n`)4 · (27n8 · (n(n+ 2))j1+j−1 · (m(m+ 2))h−j−1 · (σ2)2(h+j1+1).

Combining this we obtain the inequality∣∣∣∣∣ E[(Z
(M)
1,1 )4

1]

V ar[(Z
(M)
1,1 )1]2

∣∣∣∣∣ ≤ 27 · (w + 2n`)4 · n2 ·
(

1 +
2

n

)j1+j−1

·
(

1 +
2

m

)h−j−1

.

Case 2: J · Ŝ (N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

.
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Since Ŝ
(N)
1,x1

is diag(1w×w⊗S
(N)
1,x1

,0n
2×n2

) +diag(0wn×wn,R
(N)
1,x1
⊗S1,x1)(N), the random variable

can be written as

J · Ŝ (N)
1,x1
· E (N)

2,x2
·
h∏
k=3

D
(N)
k,xk

= J · diag(1w×w ⊗ S
(N)
1,x1

,0n
2×n2

) · E (N)
2,x2
·
h∏
k=3

D
(N)
k,xk

+ J · diag(0wn×wn,R
(N)
1,x1
⊗ S

(N)
1,x1

)E
(N)
2,x2
·
h∏
k=3

D
(N)
k,xk

.

By the lemma C.1, the variance of the random matrix J · Ŝ (N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

is equal to
summation of variances of two above two random matrices.

We only need to compute the variance of the first random matrix J ·diag(1w×w⊗S
(N)
1,x1

,0n
2×n2

) ·
E

(N)
2,x2
·
∏h
k=3 D

(N)
k,xk

; the variance of the latter term is a special case of the Lemma 4.5 as the above
case.

Let S
(N)
u,v be the random variables of (u, v)-th entry of the random matrix S

(N)
1,x1

. We define

X
(N)
u,v , Y

(N)
u,v and (Z

(N)
u,v )1 be random variables of the (u, v)-th entry of the random matrix E

(N)
2,x2
·∏h

k=3 D
(N)
k,xk

, Ŝ
(N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

and J · Ŝ (N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

, respectively.

Then, we observe Y
(N)
1,1 =

∑n
i=1 S

(N)
1,i ·X

(N)
i,1 + · · ·+

∑n
i=1 S

(N)
1,i ·X

(N)
i+(w−1)n,1 from the definition

of Kronecker tensor properties. Then, using Lemma C.1, we can obtain

V ar[Y
(N)
1,1 ] = E[(

n∑
i=1

S
(N)
1,i ·X

(N)
i,1 + · · ·+

n∑
i=1

S
(N)
1,i ·X

(N)
i+(w−1)n,1)2]

= E[

n∑
i=1

S
(N)2

1,i ·X(N)2

i,1 + · · ·+
n∑
i=1

S
(N)2

1,i ·X(N)2

i+(w−1)n,1]

= wn · (σ2) ·mh−2 · (σ2)h−1

= wn ·mh−2 · (σ2)h.

Moreover, we can calculate an upper bound of E[Y
(N)4

1,1 ] as follows:

E[Y
(N)4

1,1 ] = E

[
(

n∑
i=1

S
(N)
1,i ·X

(N)
i,1 + · · ·+

n∑
i=1

S
(N)
1,i ·X

(N)
i+(w−1)n,1)4

]

≤ E

[
(wn)3 · (

n∑
i=1

S
(N)4

1,i ·X(N)4

i,1 + · · ·+
n∑
i=1

S
(N)4

1,i ·X(N)4

i+(w−1)n,1)

]
= (wn)4 · 3(σ2)2 · {m(m+ 2)}h−2 · (σ2)2(h−1)

= 3(wn)4 · {m(m+ 2)}h−2 · (σ2)2h.

Similarly, we can compute Y
(N)
i,1 for i = 2, · · · , wn in the exactly same way. The equations and

inequalities are all equal to the Y
(N)
1,1 case. For i > wn, Y

(N)
i,1 is computed as in Case 1. In other

words, it is the special case j = 1 of Lemma 4.5 and the result is equal to Case 1 as well. Thus, we
omit the how to compute this value.
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Note that Y
(N)
i,1 = Y

(N)
i+(k−1)n,1 for all k = 1, · · · , wn. Thus, we obtain the desired results as

follows:

V ar[(Z
(N)
1,1 )1] = E[(

w+2n`∑
i=1

Y
(N)
1+(i−1)n,1)2]

= E[w2 · Y (N)2

1,1 +

w+2n`∑
i=w+1

Y
(N)2

1+(i−1)n,1]

= (w3 · n+ n3 · σ2 + (2`− 1) · n2) ·mh−2(σ2)h

E[(Z
(N)
1,1 )4

1] = E

[
(

w+2n`∑
i=1

Y
(N)
1+(i−1)n,1)4

]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(N)4

1+(i−1)n,1)]

≤ (w + 2n`)4 · (27n8 · (n(n+ 2)))j1+j−1 · (m(m+ 2))h−j−1 · (σ2)2(h+j1+1)

At last, with the two computations, we obtain∣∣∣∣∣ E[(Z
(N)
1,1 )4

1]

V ar[(Z
(N)
1,1 )1]2

∣∣∣∣∣ ≤ 27 · (w + 2n`)4 · n2 ·
(

1 +
2

n

)j1+j−1

·
(

1 +
2

m

)h−j−1

= poly(λ).

ut

Proof (of Lemma 4.5). We remark that, as noted in the above proof, this proof works for j =
1 as well and this case is used in the above proof. It suffice to prove the case P = M. Let

1 ≤ j < λ · ` be an integer that j = ` · j1 + j2 and X
(M)
u,v the random variables of the (u, v)-

th entry of the random matrix E
(M)
j+1,xj+1

∏h
k=j+2 D

(M)
k,xk

. Then, all random variables Xu,v have

the same variance mh−j−1 · (σ2)h−j , and we have E[X
(M)
u,v · X(M)

u′,v ] = 0 for distinct u, u′ and

E[X
(M)4

u,v ] = 3 (m(m+ 2))
h−j−1 · (σ2)2(h−j).

Let S
(M)
u,v be the random variable of (u, v)-th entry of the random matrix

∏j
i=1 S

(M)
i,xi

. Then,

V ar[S
(M)
u,v ] = nj−1 ·(σ2)j , E[S

(M)
u,v ·S(M)

u′,v ] = 0 for distinct u, u′ and E[S
(M)4

u,v ] = 3{n(n+2)}j−1 ·(σ2)2j

hold.
By the construction of the matrix R

(M)
i,xi

,
∏j
i=1 R

(M)
i,xi

is a block-diagonal matrix that consists of∏j
i=1 R

(k)(M)

i,xi
∈ Z2n×2n for k ∈ [`]. Note that

∏j
i=1 R

(k)(M)

i,xi
is of the form

j∏
i=1

R
(k)(M)

i,xi
=



(∏j1+1
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

In×n

)
if k = 1, 2, · · · , j2

(∏j1
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

In×n

)
if k = j2 + 1, · · · , `

Let R
(M)
u,v be the random variables of the (u, v)-th entry of the random matrix upper-left quad-

rant of
∏j
i=1 R

(1)(M)

i,xi
. Then V ar[R

(M)2

u,v ] = nj1 · (σ2)j1+1, E[R
(M)
u,v · R(M)

u′,v ] = 0 and E[R
(M)4

u,v ] =

3(n(n+ 2))j1 · (σ2)2(j1+1).

Similarly, we consider the random variables of the (u, v)-th entry of the matrix
(∏j

i=1 Ŝ
(M)
i,xi

)
·

E
(M)
j+1,xj+1

·
(∏h

k=j+2 D
(M)
k,xk

)
and denote it by Y

(M)
u,v . Then,

V ar[Y
(M)
1+wn,1] = E[(R

(M)
1,1

n∑
i=1

S
(M)
1,i X

(M)
i+wn,1 + · · ·+R

(M)
1,n

n∑
i=1

S
(M)
1,i X

(M)
i+n(w+n−1),1)2]

= n2 · nj1 · (σ2)j1+1 · nj−1 · (σ2)j ·mh−j−1 · (σ2)h−j

= nj1+j+1 · (σ2)j1+j+1 ·mh−j−1 · (σ2)h−j
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because of Lemma C.1. Moreover, it holds that

E[Y
(M)4

1+wn,1] = E[(R
(M)
1,1

n∑
i=1

S
(M)
1,i X

(M)
i+wn,1 + · · ·+R

(M)
1,n

n∑
i=1

S
(M)
1,i X

(M)
i+n(w+n−1),1)4]

≤ E[(n2)3(R
(M)4

1,1

n∑
i=1

S
(M)4

1,i X
(M)4

i+wn,1 + · · ·+R
(M)4

1,n

n∑
i=1

S
(M)4

1,i X
(M)4

i+n(w+n−1),1)]

= 27n8 · (n(n+ 2))j1+j−1 · (m(m+ 2))h−j−1 · (σ2)2(h+j1+1).

Therefore, we conclude that

∣∣∣∣∣∣ E[Y
(M)4

1+wn,1]

var[Y
(M)
1+wn,1]2

∣∣∣∣∣∣ ≤ 27 · n4 ·
(

1 +
2

n

)j1+j−1

·
(

1 +
2

m

)h−j−1

.

Similarly, we can compute all variances of Yi,1 for each i.

V ar[Y
(M)
i,1 ] =



0 if i ∈ [wn]

nj1+j+1 · (σ2)j1+j+1 ·mh−j−1 · (σ2)h−j
if i = a · n2 + b + w · n with
a/2 ∈ {0} ∪ [j2 − 1], b ∈ [n2]

nj1+j · (σ2)j1+j ·mh−j−1 · (σ2)h−j
if i = a · n2 + b + w · n with
a/2 ∈ {j2, · · · , `}, b ∈ [n2]

nj · (σ2)j ·mh−j−1 · (σ2)h−j otherwise.

Thus, we can derive upper bounds of E[Y 4
i,1] as follows:

E[Y
(M)4

i,1 ] ≤


0

27n8 · {n(n+ 2)}j1+j−1 · {m(m+ 2)}h−j−1 · (σ2)2(h+j1+1)

27n8 · {n(n+ 2)}j1+j−2 · {m(m+ 2)}h−j−1 · (σ2)2(h+j1)

9n4 · {n(n+ 2)}j−1 · {m(m+ 2)}h−j−1 · (σ2)2h

Let (Z
(M)
u,v )j be random variable of (u, v)-th entry of the matrix J ·

(∏j
i=1 Ŝ

(M)
i,xi

)
· E (M)

j+1,xj+1
·(∏h

k=j+2 D
(M)
k,xk

)
. Then, we observe (Z

(M)
1,1 )j =

∑w+2n`
i=1 Y

(M)
1+(i−1)n,1. Since, by Lemma C.1, E[S

(M)
u,v ·

S
(M)
u′,v ] = 0, E[R

(M)
u,v · R(M)

u′,v ] = 0, and E[X
(M)
u,v · X(M)

u′,v ] = 0 hold for all distinct u, u′, the equation

E[Y
(M)
u,1 · Y

(M)
v,1 ] = 0 holds for all u, v.

With the similar method, we compute V ar[(Z
(M)
1,1 )j ] and upper bound of E[(Z

(M)
1,1 )4

j ].

V ar[(Z
(M)
1,1 )j ] = E[(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)2] = E[

w+2n`∑
i=1

Y
(M)2

1+(i−1)n,1]

= j2n · nj1+j+1 · (σ2)j1+j+1 ·mh−j−1 · (σ2)h−j

+ (`− j2)n · nj1+j · (σ2)j1+j ·mh−j−1 · (σ2)h−j

+ `n · nj · (σ2)j ·mh−j−1 · (σ2)h−j

=
(
j2n

j1+j+2 · (σ2)j1+1 + (`− j2)nj1+j+1 · (σ2)j1 + `nj+1
)
·mh−j−1 · (σ2)h

29



E[(Z
(M)
1,1 )4

j ] = E[(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)4]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(M)4

1+(i−1)n,1)]

≤ (w + 2n`)3 · (j2n · 27n8 · (n(n+ 2))j1+j−1 · (m(m+ 2))h−j−1 · (σ2)2(h+j1+1)

+ (`− j2)n · 27n8 · (n(n+ 2))j1+j−2 · (m(m+ 2))h−j−1 · (σ2)2(h+j1)

+ `n · 9n4 · (n(n+ 2))j−1 · {m(m+ 2)}h−j−1 · (σ2)2h)

≤ (w + 2n`)4 · (27n8 · (n(n+ 2))j1+j−1 · (m(m+ 2))h−j−1 · (σ2)2(h+j1+1)

Overall, we obtain∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ≤ 27 · (w + 2n`)4 · n2 ·
(

1 +
2

n

)j1+j−1

·
(

1 +
2

m

)h−j−1

.

All arguments for N hold as well.
ut

Proof (of Lemma 4.6). Let j be an integer that j > λ · ` and j = ` · λ + j2. This proof is very

similar to Lemma 4.4. The difference only comes from a form of the random matrix
∏j
i=1 Ri,xi .

Thus, in this proof, we focus on the form of the matrix. Note that, because of the functionality,
the matrices Ri,b are completely different for i ≤ λ · ` and for i > λ · `. We also focus on P = M.

In this case,
∏j
i=1 Ri,xi is the block diagonal matrix

j∏
i=1

Ri,xi = diag(

j∏
i=1

R
(1)
i,xi

,

j∏
i=1

R
(2)
i,xi

, · · · ,
j∏
i=1

R
(`)
i,xi

)

where
∏j
i=1 R

(k)
i,xi

is of the form

(
−
∏λ
i=1 R̃

(k)
k+`(i−1),xk+`(i−1) ∏λ

i=1 R̃
(k)
k+`(i−1),xk+`(i−1)

)
if k = 1, 2, · · · , j2

(∏λ
i=1 R̃

(k)
k+`(i−1),xk+`(i−1)

I

)
if k = j2 + 1, · · · , `

Let Y
(M)
u,v and (Z

(M)
u,v )j be random variable of (u, v)-th entry of the matrix

(∏j
i=1 Ŝ

(M)
i,xi

)
·E (M)
j+1,xj+1

·(∏h
k=j+2 D

(M)
k,xk

)
and J ·

(∏j
i=1 Ŝ

(M)
i,xi

)
· E (M)

j+1,xj+1
·
(∏h

k=j+2 D
(M)
k,xk

)
, respectively.

Similarly, we get

V ar[(Z
(M)
1,1 )j ] = E

[
(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)2

]

= E

[
w+2n`∑
i=1

Y
(M)2

1+(i−1)n,1

]
=
(
(`+ j2)nλ+j+1 · (σ2)λ + (`− j2)nj+1

)
·mh−j−1 · (σ2)h

and

E[(Z
(M)
1,1 )4

j ] = E[(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)4]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(M)4

1+(i−1)n,1)]

≤ (w + 2n`)4 · (27n8 · (n(n+ 2))λ+j−2 · (m(m+ 2))h−j−1 · (σ2)2(h+λ)
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Then, we have∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ≤ 27(w + 2n`)4n2 ·
(

1 +
2

n

)λ+j−2

·
(

1 +
2

m

)h−j−1

.

The arguments for N hold as well. ut

E Analysis of BGMZ Obfuscation

In this section, we describe how to proof lemmas in Section 5.2. We modify the notation as in the
CVW obfuscation case. We replace n′, n with n, t. We re-use or abuse the some notations for the
different proof for the convenience of the writing. For example, we omit the index j in the main
body of the paper. Fix a x ∈ {0, 1}` satisfying O(P)(x) = 0.

By Lemma 2.9, each column of the random matrix D
(P)
i,xi

follows a distribution DZm,σ for all
i. Since DZm,σ is equal to DmZ,σ, entries of each column are mutually independent. Therefore, we

can use Lemma C.1 and C.2 when we analyze product of D
(P)
i,xi

. Note that all distributions are
independent except the tuples related to trapdoor samplings as in the CVW obfuscation. We omit
the proof of Lemma 5.2 since it is almost the same to the proof of Lemma 4.2.

Proof (of Lemma 5.3). Let (X
(M)
u,v ) be random variables of the (u, v)-th entry of the random

matrix E
(M)
x(1)

∏h
k=2 D

(M)
k,x(k). Then, for all u ∈ [t], v ∈ [n], all random variables X

(M)
u,v have the same

variance mh−1(σ2)h−1 · s2. Moreover, it holds that E[X
(M)
u,v · X(M)

u′,v ] = 0 for distinct u, u′ and

E[X
(M)4

u,v ] = 3 (m(m+ 2))
h−1 · (σ2)2(h−1) · (s2)2.

Similarly, the random variables of the (u, v)-th entry of the random matrix J (M)·E (M)
1,x(1)

∏h
k=2 D

(M)
k,x(k)

are denoted by Y
(M)
u,v . J is defined by [J ′(M)|In×n] and J ′(M) ← {0, 1}n×wn. Let the random vari-

ables of the (u, v)-th entry of the random matrix J ′(M) be denoted by J
′(M)
u,v . Then we can observe

that E[J
′(M)
u,v ] = 1

2 , E[J
′(M)2

u,v ] = 1
2 , E[J

′(M)4

u,v ] = 1
2 for all u, v.

Since Y
(M)
1,1 =

∑w
i=1 J

′(M)
1,n·(t−1)+1 ·X

(M)
n·(t−1)+1,1 +X

(M)
wn+1,1,

V ar[Y
(M)
1,1 ] = E

( w∑
i=1

J
′(M)
1,n·(t−1)+1 ·X

(M)
n·(t−1)+1,1 +X

(M)
wn+1,1

)2


= E

[
w∑
i=1

J
′(M)2

1,n·(t−1)+1 ·X
(M)2

n·(t−1)+1,1 +X
(M)2

wn+1,1

]
= (

w

2
+ 1) ·mh−1 · (σ2)h−1 · s2.

In addition, the upper bound of E[Y
(M)4

1,1 ] can be computed

E[Y
(M)4

1,1 ] = E[(

w∑
i=1

J
′(M)
1,n(t−1)+1 ·X

(M)
n(t−1)+1,1 +X

(M)
wn+1)4]

≤ E[(w + 1)3 · (
w∑
i=1

J
′(M)4

1,n(t−1)+1 ·X
(M)4

n(t−1)+1,1 +X
(M)4

wn+1)]

≤ (w + 1)4 · 3{m(m+ 2)}h−1 · (σ2)2(h−1) · (s2)2.

Similarly, we can derive the same results for Yu,v for all u, v. The variance of (Z (M))0 =

v ′(M) · J (M) · E (M)
1,x(1)

∏h
k=2 D

(M)
k,x(k) · w

′(M)T is computed by

V ar[(Z (M))0] = nm · (w
2

+ 1) ·mh−1 · (σ2)h−1 · s2 · σ4 = nm · (w
2

+ 1) ·mh−1 · (σ2)h+1 · s2
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We also have

E[(Z (M))4
0] ≤ (nm)4 · (w + 1)4 · 3{m(m+ 2)}h−1 · (σ2)2(h−1) · (s2)2 · (3σ4)2

= 27 · (nm)4 · (w + 1)4 · {m(m+ 2)}h−1 · (σ2)2(h+1) · (s2)2

At last the upper bound is computed as∣∣∣∣ E[(Z (M))4
0]

V ar[(Z (M))0]2

∣∣∣∣ ≤ 108 · (nm)2 · (w + 1)2 ·
(

1 +
2

m

)h−1

= poly(λ)

For N, all arguments are exactly same. ut

Proof (of Lemma 5.4). In this proof we consider the two cases; P = M and P = N.

Case 1: v ′(M) ·J (M) · Ŝ (M)
1,x(1) ·E

(M)
2,x(2)

∏h
k=3 D

(M)
k,x(k)w

′(M)T . This is the special case j = 1 of Lemma

5.5. Readers refer to the proof of Lemma 5.5. Based on this the following equation and inequalities
hold:

V ar[(Z (M))1] = nm · n ·mh−2 · (σ2)h+1 · s2

E[(Z (M))4
1] ≤ 81 · (nm)4 · n4 · {m(m+ 2)}h−2 · (σ2)2(h+1) · s4∣∣∣∣ E[(Z (M))4

1]

V ar[(Z (M))1]2

∣∣∣∣ ≤ 81 · (nm)2 · n2 ·
(

1 +
2

m

)h−2

Case 2: v ′(N) ·J (N) ·Ŝ (N)
1,x(1) ·E

(N)
2,x(2) ·

∏h
k=3 D

(N)
k,x(k) ·w

′(N)T . Let S
(N)
u,v be random variables of (u, v)-th

entry of the random matrix S
(N)
1,x(1). Similarly, we define X

(N)
u,v and Y

(N)
u,v are random variables of the

(u, v)-th entry of the random matrix E
(N)
2,x(2)

∏h
k=3 D

(N)
k,x(k) and J (N) · Ŝ (N)

1,x(1) ·E
(N)
2,x(2) ·

∏h
k=3 D

(N)
k,x(k),

respectively. J (N) is defined by [J ′(N)|In×n] and J ′(N) ← {0, 1}n×wn. The random variables of the

(u, v)-th entry of the random matrix J ′(N) is denoted by J ′
(N)
u,v .

Then, we observe

Y
(N)
1,1 =

w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1)) ·X

(N)
i,1 +

n∑
k=1

S
(M)
1,k ·X

(M)
wn+k,1.

By Lemma C.1,

V ar[Y
(N)
1,1 ]

= E


 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1)) ·X

(N)
i,1 +

n∑
k=1

S
(N)
1,k ·X

(N)
wn+k,1

2


= E

 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)2

k+n(j−1) · S
(N)2

k,i−n(j−1)) ·X
(N)2

i,1 +

n∑
k=1

S
(N)2

1,k ·X(N)2

wn+k,1


= wn ·

(n
2
· σ2
)
·mh−2 · (σ2)h−2 · s2 + n · σ2 ·mh−2 · (σ2)h−2 · s2

=

(
1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h−1 · s2
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In addition, the upper bound of E[Y
(N)4

1,1 ] can be computed

E[Y
(N)4

1,1 ]

= E


 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1)) ·X

(N)
i,1 ) +

n∑
k=1

S
(N)
1,k ·X

(N)
wn+k,1

4


≤ E

{(w + 1)n}3
 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1))

4 ·X(N)4

i,1 ) +

n∑
k=1

S
(N)4

1,k ·X(N)4

wn+k,1


≤ E

{(w + 1)n}3
 w∑
j=1

nj∑
i=1+n(j−1)

n3 · (
n∑
k=1

J ′k+n(j−1)
(N)4

S
(N)4

k,i−n(j−1))X
(N)4

i,1 ) +

n∑
k=1

S
(N)4

1,k X
(N)4

wn+k,1


≤ {(w + 1)n}3{wn · n4 · (1

2
· 3σ4) · 3{m(m+ 2)}h−2 · (σ2)2(h−2) · (s2)2

+ n · (·3σ4) · 3{m(m+ 2)}h−2 · (σ2)2(h−2) · (s2)2}
≤ 9 · {(w + 1)n}4 · n4 · {m(m+ 2)}h−2 · (σ2)2(h−1) · (s2)2

The same results for Y
(N)
u,v for all u, v can be shown in the same way. The variance of (Z (N))1 =

v ′(N) · J (N) · Ŝ1,x(1) · E
(N)
2,x(2)

∏h
k=3 D

(N)
k,x(k) · w

′(N)T is computed as follows:

V ar[(Z (N))1] = nm ·
(

1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h−1 · s2 · σ4

= nm ·
(

1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h+1 · s2.

Similarly, we have

E[(Z (N))4
1] ≤ (nm)4 · 9 · {(w + 1)n}4 · n4 · {m(m+ 2)}h−2 · (σ2)2(h−1) · (s2)2 · (3σ4)2

= 81 · (nm)4 · {(w + 1)n}4 · n4 · {m(m+ 2)}h−2 · (σ2)2(h+1) · (s2)2

Then,

∣∣∣∣ E[(Z (N))4
1]

V ar[(Z (N))1]2

∣∣∣∣ ≤ 324 · (nm)2 · {(w + 1)n}2 · n2 ·
(

1 +
1

m

)h−2

= poly(λ). ut

Proof (of Lemma 5.5). Let 1 ≤ j ≤ h be an integer and Xu,v the random variables of the (u, v)-th

entry of the random matrix E
(M)
j+1,x(j+1)

∏h
k=j+2 D

(M)
k,x(k). All random variables X

(M)
u,v have the same

variance mh−j−1 · (σ2)h−j−1 · s2, and E[X
(M)
u,v ·X(M)

u′,v ] = 0 holds for distinct u, u′ and E[X
(M)4

u,v ] =

3 (m(m+ 2))
h−j−1 · (σ2)2(h−j−1) · (s2)2.

We observe that
j∏
i=1

Ŝ
(M)
i,xi

=

(
0 ∏j

i=1 S
(M)
i,xi

)
.

Let S
(M)
u,v be the random variable of (i, j)-th entry of the random matrix

∏j
i=1 S

(M)
i,xi

. Then,

it hold that V ar[S
(M)2

u,v ] = nj−1 · (σ2)j , E[S
(M)
u,v · S(M)

u′,v ] = 0 for distinct u, u′ and E[S
(M)4

u,v ] =

3{n(n+ 2)}j−1 · (σ2)2j .

For a random variable of (u, v)-th entry of the random matrix J (M) ·
(∏j

i=1 Ŝ
(M)
i,x(i)

)
·E (M)
j+1,x(j+1) ·(∏h

k=j+2 D
(M)
k,x(k)

)
, we denote it by Y

(M)
u,v . Then a variance of Y

(M)
u,v can be computed using
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Lemma C.1.

V ar[Yu,v] = E

( n∑
k=1

S
(M)
u,k ·X

(M)
wn+k,v

)2
 = E

[
n∑
k=1

S
(M)2

u,k ·X(M)2

wn+k,v

]
= n · nj−1 · (σ2)j ·mh−j−1 · (σ2)h−j−1 · s2

= nj ·mh−j−1 · (σ2)h−1 · s2

Moreover, it holds that

E[Y (M)4

u,v ] = E

( n∑
k=1

S
(M)
u,k ·X

(M)
wn+k,v

)4
 ≤ E [n3 ·

(
n∑
k=1

S
(M)4

u,k ·X(M)4

wn+k,v

)]
= n4 · 3{n(n+ 2)}j−1 · (σ2)2j · 3 (m(m+ 2))

h−j−1 · (σ2)2(h−j−1) · (s2)2

= 9 · n4 · {n(n+ 2)}j−1 · (m(m+ 2))
h−j−1 · (σ2)2(h−1) · (s2)2

By Lemma C.3, we can compute v ′(M) · J (M) ·
∏j
i=1 Ŝ

(M)
i,x(i) ·E

(M)
j+1,x(j+1)

∏h
k=j+2 D

(M)
k,x(k) ·w

′(M)T

which is denoted by (Z (M))j . Then it hold that

V ar[(Z (M))j ] = nm · nj ·mh−j−1 · (σ2)h−1 · s2 · σ4 = nm · nj ·mh−j−1 · (σ2)h+1 · s2

E[(Z (M))4
j ] ≤ (nm)4 · 9 · n4 · {n(n+ 2)}j−1 · {m(m+ 2})h−j−1 · (σ2)2(h−1) · (s2)2 · (3σ4)2

= 81 · (nm)4 · n4 · {n(n+ 2)}j−1 · {m(m+ 2)}h−j−1 · (σ2)2(h+1) · (s2)2.

Overall,

∣∣∣∣∣ E[(Z (M))4
j ]

V ar[(Z (M))j ]2

∣∣∣∣∣ ≤ 81 · (nm)2 · n2 ·
(

1 +
2

n

)j−1

·
(

1 +
2

m

)h−j−1

= poly(λ). All argu-

ments hold as well for N. ut

Proof (of Lemma 5.6). Let X
(M)
u,v be the random variables of the (u, v)-th entry of the random

matrix
∏h−1
i=1 B

(M)
i,x(i). All random variables of entries of B

(M)
i,x(i) are mutually independent and follow

a uniform distribution [−ν2 ,
ν
2 ). For convenience, we assume random variables follow a uniform

distribution [−ν2 ,
ν
2 ].12

We note that the similar computations as in Lemma C.2 hold as well for the uniform distri-
butions. More precisely, for the random variable U1, U2 following the uniform distribution over

[−ν2 ,
ν
2 ], it hold that E[U1] = 0, E[U2

1 ] =
1

12
· ν(ν + 2), E[U4

1 ] =
1

80
· v(v + 2){v(v + 2)− 4

3}.

Thus, the variance of X
(M)
u,v is

V ar[X(M)
u,v ] = gh−2 ·

{
1

12
· v(v + 2)

}h−1

.

We also have

E[X(M)4

u,v ] ≤ 3 · {g(g + 2)}h−2 ·
{

1

12
· v(v + 2)

}2(h−1)

.

By Lemma C.3, we can compute the variance and expectation of quadruple of b
(M)
v ·

∏h−1
i=1 B

(M)
i,x(i)·

b
(M)T

w which is denoted by (Z (M))h.

V ar[(Z (M))h] = g2 · gh−2 ·
{

1

12
· v(v + 2)

}h−1

·
{

1

12
· v(v + 2)

}2

= gh ·
{

1

12
· v(v + 2)

}h+1

,

12 Our analysis can be applied without this assumption but the calculations are very tedious.
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E[(Z (M))4
h] ≤ (g2)4 · 3 · {g(g + 2)}h−2 ·

{
1

12
· v(v + 2)

}2(h−1)

·

[
3

{
1

12
· v(v + 2)

}2
]2

= 27 · (g2)4 · {g(g + 2)}h−2 ·
{

1

12
· v(v + 2)

}2(h+1)

.

As a result,

∣∣∣∣ E[(Z (M))4
h]

V ar[(Z (M))h]2

∣∣∣∣ ≤ 27 · (g2)2 ·
(

1 +
2

g

)h−2

= poly(λ). The same arguments hold as

well for N. ut
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