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Abstract The ZK-STARK technology, published by Ben-Sasson et al. in
ePrint 2018/046 is hailed by many as being a viable, efficient solution to
the scaling problem of cryptocurrencies. In essence, a ZK-STARK proof
uses a Merkle-tree to compress the data that needs to be verified, thus
greatly reduces the communication overhead between the prover and the
verifier.
We propose MARVELlous—a family of cryptographic algorithms spe-
cifically designed for STARK efficiency. The family currently includes the
block cipher Jarvis and the hash function Friday. The design of Jarvis

is inspired by the design of Rijndael, better known as the AES. By doing
so we create a cipher with similar properties to those of Rijndael which
allows us to reuse the wide trail strategy to argue the resistance of the
design against differential and linear cryptanalysis and focus our efforts
on resistance against algebraic attacks. Friday is a Merkle-Dåmgard based
hash function instantiated with Jarvis as its compression function thus it
inherits its security properties up to the birthday bound.
Jarvis and Friday have been suggested to be used in the Ethereum pro-
tocol by Ben-Sasson in Ethereum’s Devcon IV. In this paper, we instantiate
versions of Jarvis offering 128, 160, 192 and 256-bit security (both state-
and key-size) which are used to implement Friday. We warmly invite the
community to study and assess the security of the designs.

1 Introduction

Currently, the theory of non-interactive zero-knowledge proofs of knowledge
has advanced to the point where it is used in applications for cryptocurrencies,
DNA profile matching [1] or general verifiable computation. Recently, the ZK-
STARK technology emerged [1] offering zero-knowledge proofs in which veri-
fication scales exponentially faster than data size. Moreover, this technology
does not rely on a trusted setup or expensive cryptographic primitives such as
elliptic curves, pairings or the knowledge-of-exponent assumption. Instead it
relies on hash functions and information theory giving ZK-STARKs strong ar-
guments for post-quantum security. These hash functions need to be efficient as
time, memory and communication costs of ZK-STARKs are essential for their
applicability. However, the costs of hash functions over STARKs differ from
standard software or hardware costs due to the algebraic nature of the integrity
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verification. Moreover, standard primitives such as SHA-2 and AES are shown
to be costly for ZK-STARKs [1] which creates a need for new STARK-friendly
cryptographic primitives.

This work proposes a new Rijndael-inspired design, Jarvis which is used to
instantiate Friday, a Merkle-Dåmgard based hash function. Both Jarvis

1 and
Friday

2 are ZK-STARK optimised thus they result in efficient time, memory
and communication costs. The security of these designs is built on the se-
curity arguments of Rijndael and are further extended by focusing on algeb-
raic attacks such as interpolation attacks. Efficiency of the designs is optimsed
by minimising the algebraic execution trace, thus ensuring that the design is
STARK-friendly.

DesignMethodology We introduce Jarvis by steadily adapting the Rijndael cipher
making it more STARK-friendly with each step. An extensive investigation of
the new cipher’s security is made to then propose specific instantiations of Jar-
vis for 128 and 160-bit security. We follow up by introducing the established
Merkle-Damgård paradigm which is instantiated with Jarvis to implement the
Friday hash function. We finalise the work by extending the cryptanalysis for
hash specific security considerations.

2 Related Work

2.1 Rijndael-128

Since our block cipher, Jarvis, is a generalised version of Rijndael, we start with
a brief description of the latter. The Rijndael-128 cipher, better known as AES-
128, consists of five building blocks; AddroundKey, SubBytes, MixColumns,
ShiftRows and ExpandKey. For the new construction we focus mainly on chan-
ging the S-Boxes in the cipher. As such, we recall the SubBytes and ExpandKey
steps in more detail.

SubBytes For Rijndael-128, we have a 128-bit key and state sizes, where the
state is divided into 16 blocks of 8 bits each, see Figure 1. In Rijndael, the Sub-
Bytes step is a bricklayer function of S-Boxes, where each S-Box works over one
byte and consists of the composition of two functions, S-Box(z) = g ◦ f (z). The
first function f is defined as the adapted multiplicative inverse function over
F28 where zero is defined to be mapped to zero,

f : F28 → F28 : x 7→ x254.

The second function g in the SubBytes step is the affine transformation

g : F8
2→ F8

2 : x 7→Mx+ b,

1
J.A.R.V.I.S. is the assistant A.I. of Tony Stark (a.k.a. Iron Man) making it very STARK-
friendly.

2
F.R.I.D.A.Y is Tony Stark’s natural language interface for the Iron Man suit.
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with M ∈ F8×8
2 and b ∈ F8

2. The main property of this transformation is to make
the polynomial representation of the S-Box over F28 more complex and thus
to increase the resistance of the cipher against algebraic attacks. Note that the
affine transformation works over F2. However, the entire S-Box can be repres-
ented as the following polynomial over F28 ,

S-Box(z) = 0x05 · z254 + 0x09 · z253 + 0xF9 · z251 + 0x25 · z247 + 0xF4 · z239

+ 0x01 · z223 + 0xB5 · z191 + 0x8F · z127 + 0x63.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,3

b3,0 b3,1 b3,2 b3,3

a2,2 b2,2

S

Figure 1. Representation of the SubBytes step from Rijndael-128.

Rijndael ExpandKey Rijndael uses a key schedule to expand a short key into a
number of separate round keys used in the AddRoundKey steps of the cipher.
The key schedule mainly consists of four steps; SubWords, AddWords, Rot-
Words and AddConstants. The AddWords and RotWords steps are there to
introduce diffusion in the key schedule, while the SubWords step introduces
nonlinearity and the AddConstants step eliminates symmetry in the rounds.
As the diffusional steps can be omitted for Jarvis, we only go over the Sub-
Words and AddConstants steps. The SubWords step consists of a bricklayer
of four S-Boxes, the same as in the Rijndael round function, and works over
a word rather than a byte. The round constant rconi for round i is defined as
rconi = [rci 0 0 0] ∈ F232 , with the rci fixed constants in F28 .

The Wide Trail Strategy From [2] and [3, Section 3.1]: "The wide trail design
strategy is introduced as a means to guarantee lowmaximum probability of multiple-
round differential trails and low maximum correlation of multiple-round linear
trails." This strategy is used to parameterise the cipher’s resistance against dif-
ferential and linear cryptanalytic attacks. In the design of Rijndael [4], Daemen
and Rijmen look at four rounds of Rijndael-128. By using properties of the lin-
ear layers, they argue that for any input there will always be at least 25 active
S-Boxes (S-boxes with nonzero input difference or mask).
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Next, they argue cryptanalytic properties of an S-Box considering differen-
tial and linear cryptanalysis, namely the difference propagation probability and
the maximum absolute correlation. The difference propagation probability δ of
an n bit Boolean function f is defined as

δ = 2−nmax
i,j
|{x | f (x)⊕ f (x⊕ i) = j}|.

The maximum absolute correlation between any pair of linear combination of
n input bits and linear combinations of n output bits λ over f is defined as

λ= max
α,β∈Fn2

(
2 Pr
a∈F2n

[αa⊕ βf (a) = 0]− 1
)

.

The cryptanalytic properties of the inversion function in the S-Box of Rijndael
are due to Nyberg [5], where it is stated that for F28 we have δ = 2−6 and
λ= 2−3.

As there are at least 25 active S-Boxes in four rounds and every S-Box has a
difference propagation probability of at most δ = 2−6 and a maximum absolute
correlation |λ| = 2−3, a four round differential trail will have a maximal prob-
ability of 2−150 and a maximal absolute correlation of 2−75. This means that an
eight round trail has a maximal probability of 2−300 and maximum absolute
correlation 2−150 which the designers deem sufficient to resist differential and
linear attacks.

3 Jarvis

We now take the Rijndael cipher and generalise it to the general field F2n where
we aim for n bits of security working with an n-bit state and an n-bit key. Incid-
entally, this greatly improves the STARK-friendliness of the design compared
to Rijndael.

The most significant change in the new construction is that it works with
larger S-Boxes hence reducing their overall number. We bundle the S-Boxes of
one round thus creating a nonlinear function over the whole state rather than
over individual bytes. In other words, each round now operates over one big
S-box. As the multiplicative inverse can be represented in a single low-degree
constraint for ZK-STARKs, we opt for the adapted inversion function over the
whole state F2n . By Fermat’s little theorem we get

f : F2n → F2n : x 7→ x2n−2,

or in rational form

f (x) =

1
x , if x , 0.
0, otherwise.

This function is especially well performing over ZK-STARKs as its transition
constraint is x2f (x) + x = 0 which has degree two.
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Similar to the S-Box of Rijndael, we compose the multiplicative inverse op-
eration with an affine polynomial. In the sequel we go through design choices
and discuss their efficiency and security. Recall, a F2 linearised polynomial is
of the form

L(x) =
n−1∑
i=0

cix
2i ∈ F2n [x].

We know that such a polynomial is a permutation over F2n if and only if the
circulant matrix representing the coefficients of the polynomial is non-singular,
i.e., ∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c2
n−1 c

4
n−2 . . . c

2n−1

1
c1 c2

0 c4
n−1 . . . c

2n−1

2
...

...
...

. . .
...

cn−1 c
2
n−2 c

4
n−3 . . . c

2n−1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
, 0.

Finally we add a constant to this linearised polynomial, creating an affine poly-
nomial

A(x) = c−1 +
n−1∑
i=0

cix
2i ∈ F2n [x].

Concerning the security of the block cipher, the important features for this
affine layer are that its algebraic complexity should be high enough, i.e., the
affine polynomial and its inverse need to be of high degree, dense and such that
not all the ci are elements of a subfield of F2n to avoid invariant subfield attacks.
Apart from these features we are free to make changes to this affine layer. We
thus add extra structure to make the layer more STARK-Friendly. We recall that
a STARK efficient polynomial is of low rational degree or its inverse is of low
degree. The latter means that the polynomial A−1(x), such that A−1(A(x)) = x,
is of low degree. But as mentioned above, for a secure block cipher the rational
degree of this layer needs to be high. In order to increase the efficiency we split
up the affine layer in two steps B(x) and C(x), such that A(x) = C ◦ B−1(x)
and both B and C are STARK efficient but A(x) has the security properties
mentioned above. Thus we take B(x) and C(x) as affine polynomials of low
degree, e.g., a quartic polynomial, but such that their compositional inverse
is of high degree. We then take the inverse of one and compose them, thus
A(x) = C ◦ B−1(x). We note again that A(x) and A−1(x) needs to be of high
degree, dense and such that the polynomial is resistant against possible subfield
attacks. When evaluated using STARKs, the layers B(x) and C(x) are evaluated
separately using their low degree variants.

Finally, since the S-Box now works over the entire state, we can remove both
the ShiftRows and the MixColumns operations from the round function. The
overall round function is depicted in Figure 2 and the full description of Jarvis
is listed in Algorithm 1.



6 Tomer Ashur and Siemen Dhooghe

x
−1 A(x)

Ki+1

(x)B
−1 C(x)

Si Si+1

Figure 2. One round of Jarvis.

Algorithm 1: Jarvis
Input: Plaintext M, round keys Ki for 0 ≤ i ≤Nb
Output: Ciphertext Jarvis(K ,M)

State0 =M +K0
for r = 1 to Nb do

Stater = (Stater−1)
−1

Stater = B−1(Stater )
Stater = C(Stater )
Stater = Stater +Kr

end
return StateNb
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3.1 Jarvis Key Schedule

We adapt the key schedule from Rijndael to make it STARK-Friendly. We again
change the S-Boxes in the key schedule to work over the entire key, instead
of over bytes. This again allows to remove the RotWords and AddWords steps,
however we retain the SubWords and AddConstants steps. We adapt the former
step by taking an inversion function over the whole key. The resulting key ex-
pansion algorithm is depicted in Figure 3 and in Algorithm 2. Note that in
contrast with the S-Box in the round function, we do not require an affine layer
after the inversion operation. Combined with the addition of different round
constants we introduce diffusion in the key schedule and remove any possible
symmetries as specified in [4]. We note that the number of rounds needed in
the key schedule is the same as the number of rounds in the cipher.

x
−1Ki Ki+1

Ci+1

Figure 3. One round of the key schedule of Jarvis.

Algorithm 2: Jarvis Key Expansion
Input: Master key K , round constants rconi for 0 ≤ i ≤Nb − 1
Output: Round keys Ki

K0 = K
for r = 1 to Nb do

Kr = (Kr−1)
−1 + rconr−1

end
return [K0, ...,KNb ]

4 Design Rationale – Jarvis

In this section we explain the design rationale of Jarvis. We begin with explain-
ing what security we expect the algorithm to retain, then discuss its efficiency
for certain applications.
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4.1 The Wide Trail Strategy

In order to argue the security of Jarvis, we follow the same line of reasoning
as was done for Rijndael and apply the wide trail strategy to our construction.
From Nyberg [5] we take the differential and linear properties of the inversion
function over arbitrary binary fields. I.e., for the field F2n we have δ = 2−n+2

and |λ| = 2−dn/2e+1. This leaves us to determine the number of active S-Boxes
in a trail.

Since our construction has but one S-Box, which is a permutation, per round
it is evident that we have one active S-Box in every round. We know that over
the field F2n we have that the inversion function has δ = 2−n+2 and |λ| =
2−dn/2e+1. Thus a three round trail has a maximal differential probability of

2−3n+6 < 2−2n

and maximum correlation
2−3dn/2e+3 < 2−n

which is sufficient to argue that the algorithm is secure against differential and
linear attacks.

4.2 Saturation Attacks

Saturation attacks [6] are the optimised and generalised version of the Square
attack [3] which is a dedicated attack on the block cipher Square. Currently
some of the most advanced attacks on the Rijndael ciphers are versions of sat-
uration attacks, resulting in the cipher needing extra rounds. We however note
that due to our construction having one S-Box per round, these attacks do not
work as in short the attack consists of activating separate input bytes per plain-
text/ciphertext pair. From the construction of the S-Box we see that we have
exactly one active S-Box per round, thus saturation attacks do not reduce the
security of our construction.

4.3 Algebraic Degree

The algebraic degree of a function f is defined as the degree of the largest
monomial in the algebraic normal form of f . Ciphers which achieve a low al-
gebraic degree are potentially vulnerable against higher order differential at-
tacks introduced by Knudsen [7]. For our construction, the S-Box has algebraic
degree n − 1. The maximal algebraic degree that can be reached by a polyno-
mial in F2n is n−1, thus this is achieved already in one round as per our design
strategy and Nyberg [5].

4.4 Polynomial Expressions

Jakobsen and Knudsen introduced in [8] the interpolation attack. Here the at-
tacker constructs polynomials using input/output pairs of the cipher. Due to
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the complexity of calculating GCD’s or Lagrange interpolation being linear in
the degree of the polynomial, one needs the monovariate polynomial represent-
ation of the cipher to have a high degree. Recall that the inversion composed
with an affine mapping over F2n can be expressed as the polynomial

c−1 +
n−1∑
i=0

cix
2n−2i−1, for ci ∈ F2n .

For our construction the polynomial expression of one round is of degree close
to the maximum (2n − 1). Due to the inversion function after two rounds, the
polynomial expression would also be dense.

4.5 Rational Expressions

We define the rational degree as the maximum of the degree of the numerator
and denominator of the cipher’s representation. Denote the rational expression
of the S-Box as p(x)/q(x) such that the degree of the rational polynomial d
is minimal. We see that Nb iterations of the S-Box then create a rational poly-
nomial of maximal degree dNb . The S-Box consisting of the inversion function
with the affine layer looks as follows

S-Box(x) = w−1 +
n−1∑
i=0

wi
x2i

,

where each wi is the coefficient of the polynomial representation of the affine
layer. We see that the degree of the rational representation of the S-Box is equal
to 2` for the maximal ` such that w` , 0. Thus the maximal rational degree of
the cipher using Nb rounds is 2Nb`, where the maximal degree is equal to 2n−1.
Because of the combination between the affine layer and the inversion function
we expect the rational expression to be dense, as such we expect around 2Nb`

rational terms after Nb rounds.

4.6 Invariant Subfield Attacks

Finally, we consider attacks which make use of an invariant subfield, i.e., for
F2n , any field F2m where m is a divisor of n is a subfield. An adversary might
be able to attack the cipher by making it work over one of the subfields. This
would involve the adversary inputing a value of a subfield and receiving an
output which is again in the same subfield. When looking at the polynomial
representation of a round in Jarvis, we see that it is the affine polynomial which
gives protection against these attacks. We thus require that the affine polyno-
mial has several coefficients which do not lie in any subfield of F2n .



10 Tomer Ashur and Siemen Dhooghe

4.7 Choosing the Number of Rounds

In this section we analyse how many rounds are required for the cipher to be
secure. Evidently, this part requires special attention as it affects both its se-
curity and efficiency of the algorithm. We denote the minimal rational degree
of the affine layer by d. We note that for a randomly chosen affine polynomial,
the minimal rational degree d is near maximal. The number of rounds is then
determined by the desired security which in turn is affected by the feasibil-
ity of the attacks described above. The quality of such attacks is quantified by
the wide trail strategy and by the maximal degree and number of terms of the
polynomial and rational expressions of the cipher.

For our construction over F2n , we see that we need at least three rounds to
get the same differential and linear properties of trails as in eight round AES.
Since three rounds already create a complex algebraic normal form (ANF) and
polynomial expressions over F2n , we do not need to worry about these attacks.
However, the rational expression might still be too simple after three rounds.
In order to ensure the security of the cipher, we need the rational degree of the
affine layer d and the number of rounds Nb to be high enough. The maximal
rational degree an expression over F2n can reach is 2n − 1 and the maximum
rational degree our construction can reach is dNb . We consider meet-in-the-
middle attack variants of the interpolation attack [8], thus we demand that
dNb/2 ≥ 2n−1. Specific instantiations for n= 128,160,192 and 256 can be found
in Appendices A-D for which we set the number of rounds equal to Rijndael’s
for the respective key size.

5 From Encryption to Hashing

So far we have made a STARK-friendly block cipher, but secure integrity veri-
fication requires a secure hash function. A generic way to construct a hash func-
tions is by converting a block cipher into a one-way function, then using it as
a compression function in the Merkle-Damgård scheme [9, 10]. In this section
we go through the basic building blocks required for this scheme.

5.1 Miyaguchi-Preneel

The first step in building a secure hash function is transforming a block cipher
into a compression function. To do so, we use Jarvis in the Miyaguchi-Preneel
mode of operation thus turning it from an n-bit permutation with a fixed n-
bit key into a compression function taking 2n bits of input and returning an
n-bit output in such a way that the transformation is collision, preimage and
second preimage resistant. Several such transformations exist, see [11], but for
brevity we use specifically the Miyaguchi-Preneel hash scheme [12, algorithm
9.43] which is depicted in Figure 4. This scheme makes use of a black box block
cipher E, where the chaining value is injected via the key interface, and the
messages to be hashed via the plaintext interface. The chaining value is then fed
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forward and XORed to the output of the block cipher and so does the message.
The n-bit output of this function is then a one-way message digest. We refer
to [13] for the security of this scheme.

Hi−1

E Hi

mi

Figure 4. The Miyaguchi-Preneel hash scheme given a block cipher E.

5.2 Merkle-Damgård

A hash function is a function taking an arbitrary length input and returning a
fixed length output. The Merkle-Damgård Scheme does so by iterating a one-
way compression function like the one we described before. Since the under-
lying one-way function takes input of fixed length, and for security purposes,
the message M needs to be padded before being given as an input to the hash
function. Let M be the message to be padded and let |M | be the length of M
in an r-bit encoding. We start by appending a 1 at the end of M such that the
message is now M ||1. Then, the necessary number of trailing zeros is appended
(possibly none) with the r-bit length encoding such that M ′ =M || 1 || 0∗ || |M |
and the length in bits of |M ′ | is an integral divisor of n.

The new message M ′ is partitioned into t blocks m1, ...,mt , each of length
n. The blocks are then given one by one as inputs to the Miyaguchi-Preneel
construction with block cipher E of state size n where

H0 = IV , (1)

Hi = EHi−1
(mi)⊕Hi−1 ⊕mi , 1 ≤ i ≤ t, (2)

where IV (Initialisation Vector) is the string 0n (i.e., n times the value 0). The
n-bit output of the hash function is simply the final state value Ht .

5.3 Friday

In order to implement our hash function, Friday, we substitute Jarvis in for
the block cipher E in the previous construction. The full design is depicted on
Figure 5 and detailed in Algorithm 3 .
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IV

m1 m2 mt

Jarvis H2

H1

m2

Ht

Figure 5. The Friday hash function based on the Jarvis block cipher.

Algorithm 3: Friday
Input: The message M, initialisation vector IV and the Jarvis(K ,M) block cipher
Output: n-bit message digest Friday(M)

M′ = Pad(M)
t = |M′ |/n
H0 = IV
for i = 1 to t do

mi =M′ [n(i − 1),ni − 1]
Hi =Jarvis(mi ,Hi−1)⊕Hi−1 ⊕mi

end
return Ht
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6 Design Rationale – Friday

In Section 4 we considered possible attacks against the block cipher Jarvis. In
this section we do the same for the hash function Friday, i.e., when using Jarvis

in Merkle-Dåmgard mode.

6.1 Related Key Attacks

Related key attacks consist of using differences in both the key and plaintext
to get predictable differences in the resulting ciphertexts. When using a block
cipher in a hash mode, these attacks are a significant threat as the attacker can
influence both the plaintext as the key. We take a careful look at the secur-
ity of Jarvis against these attacks as AES-192 and AES-256 are vulnerable to
them [14, 15].

To argue the resistance of Jarvis in this attack model, we look at possible
differential trails over both the key schedule as the round function. This ap-
proach is parallel to the wide trail strategy which we investigated previously
for the round function.

Thus we look at the sponge-like construction where a round of the sponge
consists of the Jarvis round function and key schedule. We now consider dif-
ferential trails in this new construction where we assume the rounds are in-
dependent of each other. We recall that the difference propagation probability
of the inversion function is δ = 2−n+2. The affine polynomial A(x) and the
addition of the round constants rconi do not change these probabilities. It is
clear that we have at least one active S-Box, i.e., inversion mapping, per round.
Thus after three rounds of both the Jarvis round function and key schedule,
the probability of a difference propagation in the key and/or plaintext is equal
to 2−3n+6 < 2−2n which is sufficient for security against differential trails in the
related key model.

x
−1 A(x)

x
−1Ki Ki+1

Si Si+1

Ci+1

Figure 6. One round of both the key schedule and the round function of Jarvis.
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6.2 Rebound Attacks

We consider possible rebound attacks as introduced by Mendel et al. [16]. The
attack is divided in two phases. The first phase, called the inbound phase, is a
meet-in-the-middle phase aided by the degrees of freedom introduced by the
key. The second phase is an outbound phase where truncated differentials are
used in both forward and backward directions to obtain collisions or near col-
lisions.

Due to the excessively low probability of a difference propagation in one
round, i.e., 2−n+2 with n the state size, rebound attacks would quickly become
infeasible. Nevertheless, for security reasons we added a highly conservative
safety margin in the number of rounds to avoid possible differentials over the
cipher.

7 Implementing Friday

We implement Friday with a version of Jarvis giving security up to the birthday
bound and a key-size digest. Finally, we set the maximum input length 2r to
r = 64 and take the initialisation vector IV equal to all zero.
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A Jarvis-128

We have n = 128. We take the irreducible polynomial p(y) = y128 + y7 + y2 +
y + 1 thus F2128 = F2[y]/p(y). We instantiate Jarvis-128 with 10 rounds. The
first round constant is randomly created where the next round constants are
given by the linear relation rconi = a ∗ rconi−1 + b ∈ F2128 . The constants a, b
and the first round constant (in that order) are randomly created in sage using
the seed "tomerashur" and are given as follows in hexadecimal notation.

a= 0x5AE9667C3B88E3AE1E6624620FB82AB3

b = 0xAF0646A28CFEF44DC1F30203CEFDD653

rcon0 = 0x23FBFF5E251E0083AC2133B13D4BB89A
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We construct quartic polynomials which define a permutation over F2128 .
This is done by taking an irreducible cubic polynomial p(x) ∈ F2128 [x], we then
know from [17, Theorem 7.9] that the quartic polynomial q(x) = p(x)x+ c is a
permutation polynomial. We generate random monic cubic polynomials, using
"siemendhooghe" as seed, until we find two irreducible polynomials. The affine
polynomials for Jarvis-128 are given as follows.

B(x) = x4 + 0xAD53D03A769E1E3DB3615228005A2801 ∗ x2

+ 0xBA2B131EACF25DC226CD48704D3F3E02 ∗ x
+ 0x51924180CF428FD976A274D281501728

C(x) = x4 + 0x23D0CD47667C2DCA7223EB8770622986 ∗ x2

+ 0xF3824667AE2E4C7284D03307820FE544 ∗ x
+ 0x8407C112CF73CE33E07690CD74617EDB

We note that A(x) = C ◦ B−1(x) is not particularly susceptible to subfield
attacks as none of the coefficients of its polynomial representation are part of
any subfield of F2128 . This can be checked by taking each coefficient of its poly-
nomial representation α and check if α2m = α for each divisor m of 128.

B Jarvis-160

We have n = 160. We take the irreducible polynomial p(y) = y160 + y5 + y3 +
y2 + 1 thus F2160 = F2[y]/p(y). We instantiate Jarvis-160 with 11 rounds. The
first round constant is randomly created where the next round constants are
given by the linear relation rconi = a ∗ rconi−1 + b ∈ F2160 . The constants a, b
and the first round constant (in that order) are randomly created in sage using
the seed "tomerashur" and are given as follows in hexadecimal notation.

a= 0xCEFDD6535AE9667C3B88E3AE1E6624620FB82AB3

b = 0xAC2133B13D4BB89AAF0646A28CFEF44DC1F30203

rcon0 = 0xCDDAE80FDC92FFE48B555BAA23FBFF5E251E0083

We again generate random monic cubic polynomials, using "siemendhooghe"
as seed, until we find an two irreducible polynomials. The quartic affine poly-
nomials for Jarvis-160 are given as follows.

B(x) = x4 + 0xFD571330901C1B14A6CF7DDF8819AC258926986D ∗ x2

+ 0x5D795261803F07BB368CB54F08862CB997C46EC4 ∗ x
+ 0x2F9B57A351924180CF428FD976A274D281501728

C(x) = x4 + 0x034DCE34B50A63D7D915ADD14FF446A8F308BC9A ∗ x2

+ 0x82FAA0420A3DCB35C16039E3E44D8A60E1E3E322 ∗ x
+ 0xF29E27FDCF74033074C3041A98119BF95480BF5F
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We again note that none of the coefficients of A(x) = C◦B−1(x) are in a subfield
of F2160 .

C Jarvis-192

We have n = 192. We take the irreducible polynomial p(y) = y192 + y7 + y2 +
y + 1 thus F2192 = F2[y]/p(y). We instantiate Jarvis-192 with 12 rounds. The
first round constant is randomly created where the next round constants are
given by the linear relation rconi = a ∗ rconi−1 + b ∈ F2192 . The constants a, b
and the first round constant (in that order) are randomly created in sage using
the seed "tomerashur" and are given as follows in hexadecimal notation.

a= 0xC1F30203CEFDD6535AE9667C3B88E3AE1E6624620FB82AB3

b = 0x23FBFF5E251E0083AC2133B13D4BB89AAF0646A28CFEF44D

rcon0 = 0x3C74E457B5B75ED68E4E2C8DCDDAE80FDC92FFE48B555BAA

We again generate random monic cubic polynomials, using "siemendhooghe"
as seed, until we find an two irreducible polynomials. The quartic affine poly-
nomials for Jarvis-192 are given as follows.

B(x) = x4 + 0x74C3041A98119BF95480BF5F5D795261803F07BB368CB54F ∗ x2

+ 0xA6C786E28A60ACF71A7BD90FB93C8B11F29E27FDCF740330 ∗ x
+ 0xF1747ECB2F9B57A351924180CF428FD976A274D281501728

C(x) = x4 +0xF0C3B62EE4BB2B6549DE4AFBBBA682F51C2CC06A40A0848B ∗x2

+ 0x2552E01AECB31518995C58A805D7525A91E6CF201475B5C0 ∗ x
+ 0x17E7B8E60948E52ADBE25714B6225EA35F2F9074735E8746

We again note that none of the coefficients of A(x) = C◦B−1(x) are in a subfield
of F2192 .

D Jarvis-256

We have n= 256. We take the irreducible polynomial p(y) = y256 + y10 + y5 +
y2 + 1 thus F2256 = F2[y]/p(y). We instantiate Jarvis-256 with 14 rounds. The
first round constant is randomly created where the next round constants are
given by the linear relation rconi = a ∗ rconi−1 + b ∈ F2256 . The constants a, b
and the first round constant (in that order) are randomly created in sage using
the seed "tomerashur" and are given as follows in hexadecimal notation.

a= 0xF231C7AE8DDAF4B15B246A96E42F36F214E92B67948316BD3C74E457B5B75ED6

b = 0x8E4E2C8DCDDAE80FDC92FFE48B555BAA23FBFF5E251E0083AC2133B13D4BB89A

rcon0 = 0xF231C7AE8DDAF4B15B246A96E42F36F214E92B67948316BD3C74E457B5B75ED6
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We again generate random monic cubic polynomials, using "siemendhooghe"
as seed, until we find an two irreducible polynomials. The quartic affine poly-
nomials for Jarvis-256 are given as follows.

B(x) = x4

+0xF3824667AE2E4C7284D03307820FE54423D0CD47667C2DCA7223EB8770622986∗x2

+0xFD571330901C1B14A6CF7DDF8819AC258926986D23200064ED759786C1B1183A∗x
+0x96DB13EB246D2D8BF1747ECB2F9B57A351924180CF428FD976A274D281501728

C(x) = x4

+0x5F2F9074735E8746A6C786E28A60ACF71A7BD90FB93C8B11F29E27FDCF740330∗x2

+0x49DE4AFBBBA682F51C2CC06A40A0848B17E7B8E60948E52ADBE25714B6225EA3∗x
+0x74C3041A98119BF95480BF5F5D795261803F07BB368CB54F08862CB997C46EC4

We again note that none of the coefficients of A(x) = C ◦ B−1(x) are in a
subfield of F2256 .


