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Abstract. SIMON and SPECK families of block ciphers are well-known lightweight
ciphers designed by NSA. In this note, based on the previous investigations on
SIMON, a closed formula for the squared correlations and differential probabilities
of the mapping φ(x) = x � S1(x) on Fn

2 is given. From the aspects of linear and
differential cryptanalysis, this mapping is equivalent to the core quadratic mapping
of SIMON via rearrangement of coordinates and EA-equivalence. Based upon the
proposed explicit formula, a full description of DDT and LAT of φ is provided. In the
case of SPECK, as the only nonlinear operation in this family of ciphers is, addition
mod 2n, after reformulating the formula for linear and differential probabilities of
addition mod 2n, straightforward algorithms for finding the output masks with
maximum squared correlation, given the input masks as well as the output differences
with maximum differential probability, given the input differences, are presented.
Keywords: SIMON · SPECK · DDT · LAT · Pseudo-octal representation · Gaps and
blocks representation · Modular addition mod 2n

1 Introduction
SIMON and SPECK are two families of block ciphers which were designed by NSA [6].
These lightweight ciphers have widely attracted the attention of researchers. In this note,
based upon the previous studies, nonlinear components of these ciphers are examined,
from the linear and differential viewpoints.

The only nonlinear component of SIMON family of block ciphers is the quadratic
mapping

f : Fn2 → Fn2 ,

f(x) = S1(x)� S8(x)⊕ S2(x),

for n = 16, 24, 32, 48, 64. The mapping f is equivalent to φ below, through a permutation
of coordinates and EA-equivalence:

φ : Fn2 → Fn2 ,

φ(x) = x� S1(x).

Based on the previous researches on linear and differential properties of SIMON [1, 2, 3, 4, 5],
simple explicit formula for differential probabilities and squared correlations of φ is given.
Besides, a full description of DDT and LAT of φ is provided, in this paper.

The only nonlinear operation in SPECK family of block ciphers is, addition mod 2n,
with n = 16, 24, 32, 48, 64. Based upon the previous studies on linear and differential
properties of this operation [7, 8, 9, 10], closed formula for differential probabilities and
squared correlations of modular addition mod 2n along with straightforward algorithms
for finding the output masks with maximum squared correlation, given the input masks
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and the output differences with the maximum differential probability, given the input
differences, are presented.

Section 2 gives the preliminary notations and definitions. Section 3 is devoted to the
examination of linear and differential properties of SIMON. Section 4 discusses linear and
differential properties of SPECK and Section 5 is the conclusion.

2 Preliminary Notations and Definitions
In the sequel i, j, m, n, t, r and s are natural numbers. The n-dimensional space over
F2, the finite field with 2 elements, is denoted by Fn2 . Left rotation by t times on x is
denoted by St(x). The operations of AND, OR and XOR are denoted by �, ∨ and ⊕,
respectively. The Hamming weight of a binary number or vector x is represented by w(x)
and the complement of x by x̄. The standard dot product in Fn2 is denoted by ·. The all 1
and the all 0 vectors are represented by 1 and 0, respectively.

Let f : Fn2 → Fn2 . Define

Df (a, b) = |{x ∈ Fn2 : f(x)⊕ f(x⊕ a) = b}|.

The matrix or table [Df (a, b)], a, b ∈ Fn2 , is called the Difference Distribution Table or
DDT of f . The normalized DDT of f is defined as

Df = [Df (a, b)] = [Df (a, b)/2n].

Not that for every a ∈ Fn2 , we have ∑
x∈Fn

2

Df (a, x) = 1.

If we have Df (a, x) 6= 0 for some x ∈ Fn2 , then x is called an admissible output difference
for a, in this paper.

The Walsh coefficient of f on a and b is defined as

Wf (a, b) =
∑
x∈Fn

2

(−1)a·x⊕b·f(x).

The matrix or table [Wf (a, b)], a, b ∈ Fn2 , is called the Linear Approximation Table or LAT
of f . The normalized LAT of f is defined as

Lf = [Lf (a, b)] = [W 2
f (a, b)/22n].

Not that for every b ∈ Fn2 , we have ∑
x∈Fn

2

Lf (x, b) = 1.

If we have Lf (x, b) 6= 0 for some x ∈ Fn2 , then x is called an admissible input mask for b,
in the current paper.

Let a = (an−1, . . . , a1, a0) ∈ Fn2 . Put α = (αn−1, . . . , α1, α0) with αi = (ai, ai−1, ai−2),
0 ≤ i < n: the indices are calculated mod n. In this paper, this representation is called
the pseudo-octal representation of a. It is obvious that every binary number a has a
unique pseudo-octal representation; but a sequence of octal symbols is not necessarily
the pseudo-octal representation of a binary number. If a sequence of octal symbols is
the pseudo-octal representation of a binary number, then it is called admissible, in this



S. M. Dehnavi 3

paper. For an α to be admissible, the consecutive appearance of octal symbols should be
as follows

{0, 1} → {0, 4}, {2, 3} → {1, 5}, {4, 5} → {2, 6}, {6, 7} → {3, 7}. (1)

For example 110010 has the pseudo-octal representation 641253. This representation is
used in Section 3.

Another representation for binary numbers which is used in Section 3, is as follows: any
binary number could be represented by consecutive gaps and blocks. A gap is a series of 0’s
and a block is a series of 1’s. Any number, except the all 1 and all 0 vectors, up to a rotation,
consists of some m many gaps and blocks 1bi

0ai
, with ai, bi ≥ 1, 1 ≤ i ≤ m. For example,

the number 0011010110, rotated two times to the left, is of the form 120111011203.

3 Linear and differential properties of SIMON
Linear and differential properties of the core quadratic mapping of SIMON family of block
ciphers is studied in [1, 2, 3, 4, 5]. The mapping

φ : Fn2 → Fn2 ,

φ(x) = x→ x� S1(x),

is equivalent to the core quadratic mapping of SIMON, through a permutation of coordinates
and EA-equivalence [1, 2]. In this section, based upon the previous examinations, simple
closed formula for differential probabilities and squared correlations of φ is given. Besides,
a full description of DDT and LAT of φ is provided. Firstly, a theorem from [1, 2] is
recalled:

Theorem 1. The differential probability of φ on α and β is

Dφ(α, β) =


21−n α = 1, w(β) = 0 mod 2,
2−s α 6= 1, β � varibits = 0, (β ⊕ S1(β))� doublebits = 0,
0 o.w.

where
s = w(varibits⊕ doublebits),

varibits = S1(α) ∨ α,

doublebits = α� S1(α)� S2(α).

Theorem 2. Let α 6= 0,1 consist of gaps and blocks of the form 1bi0ai , 1 ≤ i ≤ m,
according to the notations presented in Section 1. Then, for any admissible output
difference x ∈ Fn2 , we have

Dφ(α, x) = 2−(w(α)+s),

where s = |{1 ≤ i ≤ m : ai 6= 1}|; i.e. s is the number of gaps of length greater than 1.

Proof. Firstly, note that w(α) + s = w(α) +m− t, where

t = |{1 ≤ i ≤ m : ai = 1}|.

According to Table 1 and (1), the theorem is proved via case by case analysis. The blocks
of length 1 and the blocks of length greater than 1 should be treated, separately. Also,
the gaps before and after this block should be analyzed separately, according to their
lengths: again, the gaps of length 1 and the gaps of length greater than 1 should be
verified, separately. All the cases could also be examined by programming. For instance,
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Table 1: The Pseudo-octal representation of the input difference

x varibits doublebits varibits⊕ doublebits adjacentparity : x⊕ S1(x)
0 0 0 0 0
1 0 0 0 0
2 1 0 1 1
3 1 0 1 1
4 1 0 1 1
5 1 1 0 1
6 1 0 1 0
7 1 0 1 0

consider the pattern ?101100? with the pseudo-octal representation ?5364?. Either the
pattern is of the form ?0101100? or ?25364? in pseudo-octal representation, in which, the
symbols 2, 3, 6 and 4 each add one to the absolute value of the exponent of differential
probability, according to Table 1; or the leftmost block in the pattern is of length grater
than 1. For the sake of simplicity, suppose that the pattern is of the form ?01101100?
which corresponds to ?365364?, where 4, 6, 3, 6, and 3 each have a contribution of one. So,
for the presented pattern, differential probability equals to the weight, plus the number of
blocks, minus the number of gaps of length 1.

In spite of the fact that, the core mapping of SIMON does not inherit all the visual
properties of φ, but, regarding the equivalence between the core quadratic mapping of
SIMON and φ, Theorem 5 in [4] is a direct result of Theorem 2.

Before stating the next theorem, some notations are explained. In the following
theorems, At denotes an arbitrary t-bit number, or equivalently, the set off all t-bit
numbers and A1/2

t stands for the set of t-bit words with a half-rate. For example

A1A2 = {000, 001, 010, 011, 100, 101, 110, 111},

A1/2
1 A2 = {000, 001, 110, 111}.

Theorem 3. Let α 6= 0,1 consist of gaps and blocks of the form 1bi0ai , 1 ≤ i ≤ m. Then,
all the admissible output differences for α could be represented by gaps and blocks of the
following forms. Note that, rotating α by a suitable number, we could start from the first
block: {

0ai+1−1Abi+1 ai+1 6= 1,
0ai+2−1A1/2

bi+1+1Abi+1 ai+1 = 1.

Proof. Regarding Table 1, for x to be admissible, αi → xi (in which the symbols are in
pseudo-octal representation) should follow the next patterns

{0, 1} → {0, 1, 2, 3},

{5} → {0, 1, 6, 7},
{2, 3, 4, 6, 7} → {0, 1, 2, 3, 4, 5, 6, 7}.

For example, for the symbol 5, only for 0, 1, 6 and 7, both

β � varibits, (β ⊕ S1(β))� doublebits,

are 0. Since ∑
x∈Fn

2

Dφ(α, x) = 1,
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and for any x ∈ Fn2 , we have Dφ(α, x) = 2−(w(α)+s), so there are exactly 2w(α)+s admissible
output differences. Thus, it only suffices to show that all the presented output differences
are admissible. Again, according to Table 1, it is straightforward to prove that every
presented output difference is admissible: the case by case analysis or programming could
be applied to prove the theorem. For instance, consider the input pattern ?001100?
with pseudo-octal representation ?1364?. The output admissible patterns could be of the
following forms:

?00124?, ?01240?, ?01364?, ?12400?, ?12524?, ?13640?, ?13764?,

considering Table 1. Note that the number of these patterns is 8 = 22+1. Therefore, the
theorem is proved in this case.

As an example, let n = 8 and α = 00101100. Since w(α) = 3 and α has one gap of
length greater than 1, so for any x ∈ F8

2, we have

Dφ(α, x) = 2−4,

by Theorem 2. Rotating α 2 times to the right, gives 00001011. Now, by Theorem 3, the
admissible output differences are of the form 03A1/2

2 A3; i.e.

00000000, 00000001, 00000010, 00000011, 00001100, 00001101, 00001110, 00001111,

00010000, 00010001, 00010010, 00010011, 00011100, 00011101, 00011110, 00011111.

The actual differences are the above numbers, rotated 2 times to the left.

Theorem 4. Let β 6= 0,1 consist of gaps and blocks of the form 1bi0ai , 1 ≤ i ≤ m. Then,
for any admissible input mask x ∈ Fn2 , we have

Lφ(x, β) = 2−(w(β)+t),

where t = |{1 ≤ i ≤ m : bi mod 2 = 1|; i.e. t is the number of blocks of odd length.
Furthermore, all the admissible input masks consist of gaps and blocks of the form{

Abi+10ai−1 bi mod 2 = 1,
Ebi+10ai−1 bi mod 2 = 0,

where E2t+1 denotes all the (2t+ 1)-bit patterns (a2t, . . . , a1, a0) with

t⊕
i=0

a2i = 0.

Proof. The theorem could be proved either directly, using Theorem 5 in [1, 2], or considering
the comments in Appendix A (A.2) in [1]. In fact, Lφ(x, β) is equal to

2−
∑m

i=1
2dbi/2e.

Now, if bi is even, the contribution of this block in the absolute value of the exponent is
only its length, and if bi is odd, the contribution is equal to its length, plus 1. So, the
presented formula is correct. For the admissible input masks, note that similar to the
case of differential probability, since we have Lφ(x, β) = 2−(w(α)+t), for any admissible
x ∈ Fn2 , and

∑
x∈Fn

2
Lφ(x, β) = 1, so there are exactly 2w(β)+t admissible input masks.

Again, either by Theorem 5 in [1, 2], or considering the comments of Appendix A (A.2) in
[1], the admissibility of the presented input masks is proved.
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Table 2: Values of Nl and Nd for n = 16

r 1 2 3 4 5 6 7 8
Nd(r) 0 16 32 152 432 1216 2960 6318
Nl(r) 0 32 416 2816 10560 21504 21504 8192

Table 3: Table 2, continued

r 9 10 11 12 13 14 15
Nd(r) 411472 16320 15344 8344 2496 400 32
Nl(r) 510 0 0 0 0 0 0

Regarding the equivalence between the core quadratic mapping of SIMON and φ,
Theorem 5 in [5] is a direct result of Theorem 4.

Let n = 8 and β = 00101100. Since w(β) = 3 and β has one block of odd length, so
for any x ∈ F8

2, we have
Lφ(x, β) = 2−4,

by Theorem 4. Rotating β 2 times to the left, gives 10110000. Now, by Theorem 4, the
admissible output masks are of the form A2E303; i.e.

00000000, 00101000, 00010000, 00111000, 01000000, 01101000, 01010000, 01111000,

10000000, 10101000, 10010000, 10111000, 11000000, 11101000, 11010000, 11111000.

The actual masks are the above numbers, rotated 2 times to the right.
Defining Nd(s) as the number of α ∈ Fn2 such that Dφ(α, x) = 2−s for any x ∈ Fn2 , and

Nl(t) as the number of β ∈ Fn2 such that Lφ(x, β) = 22−2t for any x ∈ Fn2 , we have the
following propositions.

Proposition 1. Let n > 4. We have

Nd(1) = 0, Nd(2) = n, Nd(n− 1) = 2n.

Proof. The least absolute value for the exponent is 2, which corresponds to n numbers of
Hamming weight 1. There are n numbers with only one block of length 2, whose absolute
value for the exponent equals 3, and n numbers with only one pattern of 101, whose
absolute value for the exponent is also equal to 3. The n numbers with weight n− 2 have
absolute value for the exponent equal to n, as well as, the n numbers with weight n−1.

The proof of next preposition is straightforward.

Proposition 2. Let n > 4. We have

Nl(1) = 0, Nl(2) = 2n.

Nl(r) = 0, r > n+ 2
2 .

Table 2 and Table 3 present Nl and Nd for n = 16.
On one hand, the discussions of this section, combined with other techniques and using

suitable data structures, could improve linear and differential attacks on SIMON family
of block ciphers. On the other hand, these studies show that, why this family of ciphers
are resistant to (classical?) linear and differential cryptanalysis: in fact, regarding Table
2 and Table 3, we see that the number of input differences and output masks with large
differential probability or large squared correlation, is small, compared to 2n.
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Figure 1: Linear biases of modular addition mod 2n

4 Linear and differential properties of SPECK
In this section, based on the previous studies on linear and differential properties of the
operation of addition mod 2n, explicit formula for differential probabilities and linear
biases of modular addition mod 2n along with straightforward algorithms for finding the
output masks with maximum squared correlation, given the input masks and the output
differences with the maximum differential probability, given the input differences, are
presented.

Let a = (an−1, . . . , a1, a0), b = (bn−1, . . . , b1, b0), and c = (cn−1, . . . , c1, c0), be the two
input masks and the output mask for the operation of addition mod 2n, respectively. We
wish to find |P(a · x⊕ b · y = c · z)− 1

2 |, where z = x+ y mod 2n. Put

γi = 4cn−i−1 + 2bn−i−1 + an−i−1, 0 ≤ i < n.

The sequence γi could be represented as a series of blocks Bi, 1 ≤ i ≤ m, for some m,
where each Bi is an e-block (a block of symbols 3,5 and 6) an o-block (a block of symbols
1,2 and 4) a 0-block or a 7-block. The number of symbols in a block B is denoted by |B|,
in the current paper. The following theorem, whose proof is illustrated in Picture 1, is
proved in [10]. Start from START state and traverse the diagram in Picture 1. If we are
in state 0 and we see a symbol in {1, 2, 3, 4, 5, 6}, then the correlation iz zero. Otherwise,
the absolute exponent for the bias is, the number of times we see w = w + 1. Note that if
this bias equals 2−t, then the squared correlation is equal to 22−2t.

Theorem 5. Notations as above, we have

|P(a · x⊕ b · y = c · z)− 1
2 | =


2s ρ = 1,

0 ρ = 0,

where
s =

∑
Bi∈E∪O

|Bi|+
∑
Bi∈1

b |Bi|2 c+
∑
Bi∈0

ρi|Bi|,

and ρ1 = 0, and for 1 < i ≤ m,

ρi = |{j : 0 ≤ j < i,Bj ∈ O}|+ |{j : 0 ≤ j < i,Bj ∈ 1, |Bj | = 1 mod 2}| mod 2.

Here, E stands for the set of all e-blocks, O stands for the set of all o-blocks, 1 denotes
the set of all 7-blocks and 0 represents the set of all 0-blocks.
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Figure 2: Differential probabilities of modular addition mod 2n

We have ρ = 0 if and only if there exists 1 ≤ i ≤ m such that ρi = 0 and Bi ∈ E ∪O,
and ρ = 1, otherwise. Note that, in any case, the absolute value for the exponent of any
nonzero linear bias, is grater than or equal to

∑
Bi∈E∪O |Bi|+

∑
Bi∈1 b

|Bi|
2 c.

Suppose that a = (an−1, . . . , a1, a0), and b = (bn−1, . . . , b1, b0), are the two input masks.
Put

γi = 2bn−i−1 + an−i−1, 0 ≤ i < n.

Clearly, γi consists of 0-blocks, 3-blocks and {1, 2}-blocks, i.e. blocks of symbols 1 and 2.
Now, regarding the diagram in Picture 1, we have the following straightforward algorithm
for finding output masks with maximum correlation:

"Firstly, put ci = 0 for every symbol in every 0-block, and ci = 1, otherwise. So, we
have 0-blocks, 7-blocks, and e-blocks. Now, starting from the first block, for each series of
consecutive 0-blocks and 7-blocks, put ci = 0 for the last symbol in each 7-block of odd
length, to make it of even length. For the last 7-block in this series of blocks, if it is of
even length, make it of odd length by setting ci = 0, for the last symbol in this 7-block.
For each e-block, make the last symbol, an o-block, by setting ci = 0 for its corresponding
symbol. Note that, if the first block which is always a 7-block, is of length 1, it could not
be rendered an even block; so, if there is a series of 0-blocks and 7-blocks after this 7-block,
then the first appearing 7-block should be made of odd length."

As an example, Let n = 16,

a = (1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1),

b = (0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1).

Then, an optimum output mask is c = (1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1).
Let a = (an−1, . . . , a1, a0), b = (bn−1, . . . , b1, b0), and c = (cn−1, . . . , c1, c0), be the two

input differences and the output difference, respectively. We want to find

P((x+ y)⊕ ((x⊕ a) + (y ⊕ b)) = c).
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Here, + stands for addition mod 2n. Put

γi = 4cn−1−i + 2bn−i−1 + an−i−1, 0 ≤ i < n.

The sequence γi could be represented as a series of blocks Bi, 1 ≤ i ≤ m, for some m,
where each Bi is an e-block, an o-block, a 0-block or a 7-block. The next theorem is proved
considering Picture 2. This picture is due to [3].

Theorem 6. Notations as before, we have

P((x+ y)⊕ ((x⊕ a) + (y ⊕ b)) = c) =


2t α = 1,

0 α = 0,

where
t =

∑
Bi∈E∪O

|Bi|,

and α = 0 if and only if there exists an 0 ≤ i < m, such that Bi ∈ 1 ∪O and Bi+1 ∈ 1, or
Bi ∈ 1 ∪ E and Bi+1 ∈ 0, or when Bm ∈ O ∪ 1; and α = 1, otherwise.

The correctness of the following algorithm is justified considering Picture 2: note that,
the differential probability is zero if we end at states (1,0) or (0,0). The absolute value for
the exponent is equal to the number of times we see w = w + 1.

Suppose that a = (an−1, . . . , a1, a0), and b = (bn−1, . . . , b1, b0), are the two input
differences. Put

γi = 2bn−i−1 + an−i−1, 0 ≤ i < n.

Obviously, γi consists of 0-blocks, 3-blocks and {1, 2}-blocks. Now, regarding the diagram
in Picture 2, we have the following straightforward algorithm for finding output differences
with maximum differential probability:

"If Bt is a 0-block and Bt+1 is a {1, 2}-block, for some t, then make this {1, 2}-block,
an e-block, by setting ci = 1 for all the symbols in this block. If Bt is a 0-block and Bt+1
is a 3-block, then make an o-block of length 1, by setting ci = 0 for the last symbol in
this 0-block. If Bt is a 3-block and Bt+1 is a {1, 2}-block, then make this {1, 2}-block, an
o-block, by setting ci = 0 for all the symbols in this block. If Bt is a 3-block and Bt+1
is a 0-block, then make an e-block of length 1, by setting ci = 1 for the last symbol in
this 3-block. If Bt is an o-block and Bt+1 is a 0-block, then make an e-block of length
1, by setting ci = 1 for the last symbol in this o-block. If Bt is an e-block and Bt+1 is a
3-block, then make an o-block of length 1, by setting ci = 0 for the last symbol in this
0-block. Finally, if the last block is an o-block or a 3-block, make an e-block of length 1,
by setting ci = 1 for the last symbol in the o-block, or setting ci = 0 for the last symbol in
the 3-block."

As an example, Let n = 16,

a = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0),

b = (0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0).
Then, an optimum output difference is c = (1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0).

On one hand, the studies of this section, combined with other methods and using
suitable data structures, could reduce the complexity of linear and differential attacks on
SPECK family of block ciphers and speed up the search for finding the optimal differences.
On the other hand, they somehow show that why this family of ciphers are resistant to
(classic?) linear and differential cryptanalysis: Theorem 5 and Theorem 6 show that,
whatever the two input masks and differences are, the absolute value in the exponent of
nonzero differential probabilities and squared correlations could not be smaller than some
lower bounds.
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5 Conclusion
SIMON and SPECK families of block ciphers are well-known lightweight ciphers, which
have widely attracted the attention of researchers. In this note, based on the previous
studies on SIMON, an explicit formula for the linear and differential probabilities of this
family of ciphers is investigated. In the case of SPECK, as the only nonlinear operation
in this family of ciphers is addition mod 2n, after reformulating the formula for squared
correlations and differential probabilities of addition mod 2n, straightforward algorithms
for finding the output masks with maximum squared correlation, given the input masks as
well as the output differences with the maximum differential probability, given the input
differences, are presented.

The studies of the current paper, combined with other methods and using suitable
data structures, could improve linear and differential cryptanalysis on SIMON and SPECK
families of block ciphers. Besides, the investigations of this paper, somehow show that why
these families of ciphers are resistant to classic linear and differential cryptanalysis.

References
[1] S. Kölbl, G. Leander, and T. Tiessen. Observations on the SIMON block cipher family.

IACR Cryptology ePrint Archive 2015: 145 (2015).

[2] S. Kölbl, G. Leander, and T. Tiessen. Observations on the SIMON block cipher family.
CRYPTO (1) 2015: 161-185.

[3] T. Ashur, and Y. Liu. On Rotational Cryptanalysis in the Presence of Constants.
IACR Trans. Symmetric Cryptol. 2016(1): 57-70 (2016).

[4] Z. Liu, Y. Li, and M. Wang. Optimal Differential Trails in SIMON-like Ciphers.
IACR Trans. Symmetric Cryptol. 2017(1): 358-379 (2017).

[5] Z. Liu, Y. Li, and M. Wang. The Security of SIMON-like Ciphers Against Linear
Cryptanalysis. IACR Cryptology ePrint Archive 2017: 576 (2017).

[6] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The
SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology ePrint
Archive 2013: 404 (2013).

[7] J. Wallén. Linear Approximations of Addition Modulo 2n. FSE 2003: 261-273.

[8] K. Nyberg, and J. Wallén. Improved Linear Distinguishers for SNOW 2. FSE 2006:
144-162.

[9] E. Schulte-Geers. On CCZ-equivalence of addition mod 2n. Des. Codes Cryptography
66(1-3): 111-127 (2013).

[10] S. M. Dehnavi, A. Mahmoodi Rishakani, M. R. Mirzaee Shamsabad. A More Explicit
Formula for Linear Probabilities of Modular Addition Modulo a Power of Two. IACR
Cryptology ePrint Archive 2015: 26 (2015).


	Introduction
	Preliminary Notations and Definitions
	Linear and differential properties of SIMON
	Linear and differential properties of SPECK
	Conclusion

