
Covert Security with Public Verifiability:
Faster, Leaner, and Simpler

Cheng Hong
Alibaba Group

vince.hc@alibaba-inc.com

Jonathan Katz
University of Maryland

jkatz@cs.umd.edu

Vladimir Kolesnikov
Georgia Tech

kolesnikov@gatech.edu

Wen-jie Lu
University of Tsukuba

riku@mdl.cs.tsukuba.ac.jp

Xiao Wang
MIT and Boston University

wangxiao@northwestern.edu

November 14, 2018

Abstract

The notion of covert security for secure two-party computation serves as a compromise
between the traditional semi-honest and malicious security definitions. Roughly, covert security
ensures that cheating behavior is detected by the honest party with reasonable probability
(say, 1/2). It provides more realistic guarantees than semi-honest security with significantly less
overhead than is required by malicious security.

The rationale for covert security is that it dissuades cheating by parties that care about their
reputation and do not want to risk being caught. Further thought, however, shows that a much
stronger disincentive is obtained if the honest party can generate a publicly verifiable certificate
of misbehavior when cheating is detected. While the corresponding notion of publicly verifiable
covert (PVC) security has been explored, existing PVC protocols are complex and less efficient
than the best-known covert protocols, and have impractically large certificates.

We propose a novel PVC protocol that significantly improves on prior work. Our protocol
uses only “off-the-shelf” primitives (in particular, it avoids signed oblivious transfer) and, for
deterrence factor 1/2, has only 20–40% overhead (depending on the circuit size and network
bandwidth) compared to state-of-the-art semi-honest protocols. Our protocol also has, for the
first time, constant-size certificates of cheating (e.g., 354 bytes long at the 128-bit security level).

As our protocol offers strong security guarantees with low overhead, we suggest that it is the
best choice for many practical applications of secure two-party computation.

1 Introduction

Secure two-party computation allows two mutually distrusting parties PA and PB to evaluate a
function of their inputs without requiring either party to reveal their input to the other. Tradi-
tionally, two security notions have been considered [8]. Protocols with semi-honest security can be
quite efficient, but only protect against passive attackers who do not deviate from the prescribed
protocol. Malicious security, in contrast, categorically prevents an attacker from gaining any ad-
vantage by deviating from the protocol; unfortunately, despite many advances over the past few
years, protocols achieving malicious security are still noticeably less efficient than protocols with
semi-honest security.

1

The notion of covert security [3] was proposed as a compromise between semi-honest and ma-
licious security. Roughly, covert security ensures that while a cheating attacker may be successful
with some small probability, the attempted cheating will fail and be detected by the other party
with the remaining probability. The rationale for covert security is that it dissuades cheating by
parties that care about their reputation and do not want to risk being caught. Covert security
thus provides stronger guarantees than semi-honest security. It can also be achieved with better
efficiency than malicious security [3, 10, 6, 18].

Nevertheless, the guarantee of covert security is not fully satisfactory. Covert security only
ensures that when cheating is unsuccessful, the honest party detects the fact that cheating took
place—but it provides no mechanism for the honest party to prove this fact to anyone else (e.g.,
a judge or the public) and, indeed, existing covert protocols do not provide any such mechanism.
Thus, a cheating attacker only risks harming its reputation with one other party; even if the honest
party publicly announces that it caught the other party cheating, the cheating party can simply
counter that it is being falsely accused.

Motivated by this limitation of covert security, Asharov and Orlandi [2] proposed the stronger
notion of publicly verifiable covert (PVC) security. As in the covert model, any attempted cheating
is detected with some probability; now, however, when cheating is detected the honest party can
generate a publicly verifiable certificate of that fact. This small change would have a significant
impact in practice, as a cheating attacker now risks having its reputation publicly and permanently
damaged if it is caught. Alternatively (or additionally), the cheating party can be brought to court
and fined for its misbehavior; the parties may even sign a contract in advance that describes the
penalties to be paid if either party is caught. Going further, the parties could execute a “smart
contract” in advance of the protocol execution that would automatically pay out if a valid certificate
of cheating is posted on a blockchain. All these consequences are infeasible in the original covert
model and, overall, the PVC model seems to come closer to the original goal of covert security.

Asharov and Orlandi [2] mainly focus on feasibility; although their protocol is implementable,
it is not competitive with state-of-the-art semi-honest protocols since, in particular, it requires a
stronger variant of oblivious transfer (OT) called signed OT and thus is not directly compatible with
OT extension. Subsequent work by Kolesnikov and Malozemoff [14] shows various efficiency im-
provements to the Asharov-Orlandi protocol, with the primary gain resulting from a new, dedicated
protocol for signed-OT extension. (Importantly, signed-OT extension does not follow generically
from standard OT extension, and so cannot take advantage of the most-efficient recent constructions
of the latter.)

Unfortunately, existing PVC protocols [2, 14] seem not to have attracted much attention; for
example, to the best of our knowledge, they have never been implemented. We suggest this is due
to a number of considerations:

• High overhead. State-of-the-art PVC protocols still incur a significant overhead compared
to known semi-honest protocols, and even existing covert protocols. (See Section 6.)

• Large certificates. Existing PVC protocols have certificates of size at least κ·|C| bits, where
κ is the (computational) security parameter and |C| is the circuit size.1 Certificates this large
are prohibitively expensive to propagate and are incompatible with some of the applications
mentioned above (e.g., posting a certificate on a blockchain).

1We observe that the certificate size in [14] can be improved to O(κ ·n) bits (where n is the parties’ input lengths)
by carefully applying ideas from the literature. In many cases, this is still unacceptably large.

2

• Complexity. Existing PVC protocols rely on signed OT, a non-standard primitive that is
less efficient than standard OT, is not available in existing secure-computation libraries, and
is somewhat complicated to realize (especially for signed-OT extension).

1.1 Our Contributions

In this work we put forward a new PVC protocol that addresses the issues mentioned above.
Specifically:

• Low overhead. We improve on the efficiency of prior work by roughly a factor of 3× for
deterrence factor 1/2, and even more for larger deterrence. (An exact comparison depends
on a number of factors; we refer to Section 6 for a detailed discussion.) Strikingly, our PVC
protocol (with deterrence factor 1/2) incurs only 20–40% overhead compared to state-of-the-
art semi-honest protocols based on garbled circuits.

• Small certificates. We achieve, for the first time, constant-size certificates (i.e., independent
of the circuit size or the lengths of the parties’ inputs). Concretely, our certificates are small:
at the 128-bit security level, they are only 354 bytes long.

• Simplicity. Our protocol avoids entirely the need for signed OT, and relies only on standard
building blocks such as (standard) OT and circuit garbling. We also dispense with the XOR-
tree technique for preventing selective-failure attacks; this allows us to avoid increasing the
number of effective OT inputs. This reduction in complexity allowed us to produce a simple
and efficient (and, to our knowledge, the first) implementation of a PVC protocol.

Overview of the paper. In Section 2 we provide an overview of prior PVC protocols and explain
the intuition behind the construction of our protocol. After some background in Section 3, we
present the description of our protocol in Section 4 and prove security in Section 5. Section 6 gives
an experimental evaluation of our protocol and a comparison to prior work.

2 Technical Overview

We begin by providing an overview of the approach taken in prior work designing PVC protocols.
Then we discuss the intuition behind our improved protocol.

2.1 Overview of Prior Work

At a high level, both previous works constructing PVC protocols [2, 14] rely on the standard
cut-and-choose paradigm [19] using a small number of garbled circuits, with some additional com-
plications to achieve public verifiability. Both works rely crucially on a primitive called signed
OT ; this is a functionality similar to OT but where the receiver additionally learns the sender’s
signatures on all the values it obtains. Roughly, prior protocols proceed as follows:

1. Let λ be a parameter that determines the deterrence factor (i.e., the probability of de-
tecting misbehavior). PA picks random seeds {seedj}λj=1 and PB chooses a random index
̂ ∈ {1, . . . , λ} that will serve as the “evaluation index” while the j 6= ̂ will be “check in-
dices.” The parties run signed OT using these inputs, which allows PB to learn {seedj}j 6=̂
along with signatures of PA on all those values.

3

2. PA generates λ garbled circuits, and then sends signed commitments to those garbled circuits
(along with the input-wire labels corresponding to PA’s input wires). Importantly, seedj is
used to derive the (pseudo)randomness for the jth garbling as well as the jth commitment.

The parties also use signed OT so that PB can obtain the input-wire labels for its inputs
across all the circuits.

3. For all j 6= ̂, party PB checks that the commitment to the jth garbled circuit is computed
correctly based on seedj and that the input-wire labels it received are correct; if this is not
the case, then PB can generate a certificate of cheating that consists of the inconsistent values
plus their signatures.

4. Assuming no cheating was detected, PB reveals ̂ to PA, who then sends the ̂th garbled
circuit and the input-wire labels corresponding to its own inputs for that circuit. PB can then
evaluate the garbled circuit as usual.

Informally, we refer to the jth garbled circuit and commitment as the jth instance of the protocol.
If PA cheats in the jth instance of the protocol, then it is caught with probability at least 1 − 1

λ
(i.e., if j is a check index). Moreover, if PA is caught, then PB has a signed seed (which defines
what PA was supposed to do in the jth instance) and also a signed commitment to an incorrect
garbled circuit or incorrect input-wire labels. These values allow PB to generate a publicly verifiable
certificate that PA cheated.

As described, the protocol still allows PA to carry out a selective-failure attack when transferring
garbled labels for PB’s input wires. Specifically, it may happen that a malicious PA corrupts a
single input-wire label (used as input to the OT protocol) for the ̂th garbled circuit—say, the label
corresponding to a ‘1’ input on some wire. If PB aborts, then PA learns that PB’s input on that wire
was equal to 1. Such selective-failure attacks can be prevented using the XOR-tree approach [19].2

This approach introduces significant overhead because it increases the number of effective inputs,
which in turn requires additional signed OTs. The analysis in prior work [3, 2, 14] shows that
to achieve deterrence factor (i.e., probability of being caught cheating) 1/2, a replication factor
of λ = 3 is needed. More generally, the deterrence factor as a function of λ and the XOR-tree
expansion factor ν is (1− 1

λ) · (1− 2−ν+1).

Practical performance. Several aspects of the above protocol are relatively inefficient. First,
the dependence of the deterrence factor on the replication factor λ is not optimal due to the XOR
tree, e.g., to achieve deterrence factor 1/2 at least λ = 3 garbled circuits are needed (unless ν
is impractically large); the issue becomes even more significant when a larger deterrence factor is
desired. In addition, the XOR-tree approach used in prior work increases the effective input length
by at least a factor of 3, which necessitates 3×more signed OTs; recall these are relatively expensive
since signed-OT extension is. Finally, prior protocols have large certificates. This seems inherent
in the more efficient protocol of [14] due to the way they do signed-OT extension. (Avoiding
signed-OT extension would result in a much less efficient protocol overall.)

2.2 Our Solution

The reliance of prior protocols on signed OT and their approach to preventing selective-failure
attacks affect both their efficiency as well as the size of their certificates. We address both these

2For reasonable values of the parameters, the XOR-tree approach will be more efficient than a coding-theoretic
approach [19].

4

issues in the protocol we design.
As in prior work, we use the cut-and-choose approach and have PB evaluate one garbled circuit

while checking the rest, and we realize this by having PA choose seeds for each of λ executions
and then allowing PB to obliviously learn all-but-one of those seeds. One key difference in our
protocol is that we utilize the seeds chosen by PA not only to “derandomize” the garbled-circuit
generation and commitments, but also to derandomize the entire remainder of PA’s execution, and
in particular its execution of the OT protocol used to transfer PB’s input-wire labels to PB. This
means that after PB obliviously learns all-but-one of the seeds of PA, the rest of PA’s execution
is entirely deterministic; thus, PB can verify correct execution of PA during the entire rest of the
protocol for all-but-one of the seeds. Not only does this eliminate the need for signed OT for the
input-wire labels, but it also defends against the selective-failure attack described earlier without
the need to increase the effective input length at all.

As described, the above allows PB to detect cheating by PA but does not yet achieve public
verifiability. For this, we additionally require PA to sign its protocol messages; if PA cheats, PB can
generate a certificate of cheating from the seed and the corresponding signed inconsistent transcript.

Thus far we have focused on the case where PA is malicious. We must also consider the case of
a malicious PB attempting to frame an honest PA. We address this by also having PB commit in
advance to its randomness3 for each of the λ protocol instances. The resulting commitments will
be included in PA’s signature, and will ensure that a certificate will be rejected if it corresponds to
an instance in which PB deviated from the protocol.

Having PB commit to its randomness also allows us to avoid the need for signed OT in the first
step, when PB learns all-but-one of PA’s seeds. This is because those seeds can be reconstructed
from PB’s view of the protocol, i.e., from the transcript of the (standard) OT protocol used to
transfer those seeds plus PB’s randomness. Having PA sign the transcripts of those OT executions
serves as publicly verifiable evidence of the seeds used by PA.

We refer to Section 4 for further intuition behind our protocol, as well as its formal specification.

3 Covert Security with Public Verifiability

Before defining the notion of PVC security, we review the (plain) covert model [3] it extends. We
focus on the strongest formulation of covert security, namely the strong explicit cheat formulation.
This notion is formalized via an ideal functionality that explicitly allows an adversary to specify
an attempt at cheating; in that case, the ideal functionality allows the attacker to successfully
cheat with probability 1 − ε, but the attacker is caught by the other party with probability ε; see
Figure 1. (As in [2], we also allow an attacker to “blatantly cheat,” which guarantees that it will
be caught.) For simplicity, we adapt the functionality such that only a malicious PA can possibly
cheat, as this is what is achieved by our protocol. For conciseness, we refer to a protocol realizing
this functionality (against malicious adversaries) as having covert security with deterrence ε.

The PVC model extends the above to consider a setting wherein, before execution of the pro-
tocol, PA has generated keys (pk, sk) for a digital-signature scheme, with the public key pk known
to PB. We do not require that (pk, sk) is honestly generated, or that PA gives any proof of knowledge
of the secret key sk corresponding to the public key pk. In addition, the protocol is augmented with
two additional algorithms, Blame and Judge. The Blame algorithm is run by PB when it outputs

3As an optimization, we have PB commit to seeds, just like PA, and then use those seeds to generate the
(pseudo)randomness to use in each instance. (This optimization is critical for realizing constant-size certificates.)

5

Functionality F

PA sends x ∈ {0, 1}n1 ∪ {⊥, blatantCheat, cheat} and PB sends y ∈ {0, 1}n2 .

1. If x ∈ {0, 1}n1 then compute f(x, y) and send it to PB.

2. If x =⊥ then send ⊥ to both parties.

3. If x = blatantCheat, then send corrupted to both parties.

4. If x = cheat then:

• With probability ε, send corrupted to both parties.

• With probability 1 − ε, send (undetected, y) to PA. Then wait to receive z ∈ {0, 1}n3 from
PA, and send z to PB.

Figure 1: Functionality F for covert security with deterrence ε for two-party computation of a
function f .

corrupted. This algorithm takes as input PB’s view of the protocol execution thus far, and outputs
a certificate cert which is then sent to PA. The Judge algorithm takes as input PA’s public key pk,
(a description of) the circuit C being evaluated, and a certificate cert, and outputs 0 or 1.

A protocol Π along with algorithms Blame, Judge is said to be publicly verifiable covert with
deterrence ε for computing a circuit C if the following hold:

Covert security: The protocol Π has covert security with deterrence ε. (Since the protocol in-
cludes the step of possibly sending cert to PA if PB outputs corrupted, this ensures that cert
itself does not violate privacy of PB.)

Public verifiability: If the honest PB outputs cert in an execution of the protocol, then we know
Judge(pk, C, cert) = 1, except with negligible probability.

Defamation freeness: If PA is honest, then the probability that a malicious PB generates a
certificate cert for which Judge(pk, C, cert) = 1 is negligible.4

Remark: As in prior work on the PVC model, we assume the Judge algorithm learns the circuit C
through some “out-of-band” mechanism; in particular, we do not include C as part of the certificate.

In some applications (such as the smart-contract example), it may indeed be the case that the
party running the Judge algorithm is aware of the circuit being computed in advance. When this
is not the case, a description of C must be included as part of the certificate. However, we stress
that the description of a circuit may be much shorter than the full circuit; for example, specifying
a circuit for computing the Hamming distance between two 106-bit vectors requires only a few lines
of high-level code in modern secure-computation platforms even though the circuit itself may have
millions of gates. Alternately, there may be a small set of commonly used “reference circuits” that
can be identified by ID number rather than by their complete wiring diagram.

4Note that defamation freeness implies that the protocol is also non-halting detection accurate [3].

6

4 Our PVC Protocol

4.1 Preliminaries

We let [n] = {1, . . . , n}. We use κ for the (computational) security parameter, but for compactness
in the protocol description we let κ be an implicit input to our algorithms. For a boolean string y,
we let y[i] denote the ith bit of y.

We let Com denote a commitment scheme. We assume for simplicity that it is non-interactive,
but this restriction can easily be removed. The decommitment decom is simply the random coins
used during commitment. H is a hash function with 2κ-bit output length.

We say a party “uses randomness derived from seed” to mean that the party uses a pseudoran-
dom function (with seed as the key) in CTR mode to obtain sufficiently many pseudorandom values
that it then uses as its random coins. If m1,m2, . . . is a transcript of an execution of a two-party
protocol (where the parties alternate sending the messages), the transcript hash of the execution is
defined to be H = (H(m1), H(m2), . . .).

We let ΠOT be an OT protocol realizing a parallel version of the OT functionality, as in Figure 2.

Functionality FOT

Private inputs: PA has input {(Bi,0, Bi,1)}n2
i=1 and PB has input y ∈ {0, 1}n2 .

1. Upon receiving {(Bi,0, Bi,1)}n2
i=1 from PA and y from PB, send {Bi,y[i]}n2

i=1 to PB.

Figure 2: Functionality FOT for parallel oblivious transfer.

Garbling. Our protocol relies on a (circuit) garbling scheme. For our purposes, a garbling scheme
is defined by algorithms (Gb,Eval) having the following syntax:

• Gb takes as input the security parameter 1κ and a circuit C with n = n1 + n2 input wires
and n3 output wires. It outputs input-wire labels {Xi,0, Xi,1}ni=1, a garbled circuit GC, and
output-wire labels {Zi,0, Zi,1}n3

i=1.

• Eval is a deterministic algorithm that takes as input a set of input-wire labels {Xi}ni=1 and a
garbled circuit GC. It outputs a set of output-wire labels {Zi}n3

i=1.

Correctness is defined as follows: For any circuit C as above and any input w ∈ {0, 1}n, consider
the experiment in which we first run ({Xi,0, Xi,1}ni=1,GC, {Zi,0, Zi,1}n3

i=1) ← Gb(1κ, C) followed by
{Zi} := Eval({Xi,w[i]},GC). Then, except with negligible probability, it holds that Zi = Zi,y[i] and
Zi 6= Zi,1−y[i] for all i, where y = C(w).

A garbling scheme can be used by (honest) parties PA and PB to compute C in the following way:
first, PA computes ({Xi,0, Xi,1}ni=1,GC, {Zi,0, Zi,1}n3

i=1) ← Gb(1κ, C) and sends GC, {Zi,0, Zi,1}n3
i=1

to PB. Next, PB learns the input-wire labels {Xi,w[i]} corresponding to some input w. (In a secure-
computation protocol, PA would send PB the input-wire labels corresponding to its own portion of
the input, while the parties would use OT to enable PB to learn the input-wire labels corresponding
to PB’s portion of the input.) Then PB computes {Zi} := Eval({Xi,w[i]},GC). Finally, PB sets y[i],
for all i, to be the (unique) bit for which Zi = Zi,y[i]; the output is y.

7

We assume the garbling scheme satisfies the standard security definition [11, 16]. That is,
we assume there is a simulator SGb such that for all C, w, the distribution

{
SGb(1κ, C, C(w))

}
is

computationally indistinguishable from{
({Xi,0, Xi,1}ni=1,GC, {Zi,0, Zi,1}n3

i=1)← Gb(1κ, C) : ({Xi,w[i]},GC, {Zi,0, Zi,1}n3
i=1)

}
.

As this is the “minimal” security notion for garbling, it is satisfied by garbling schemes including
all state-of-the-art optimizations [15, 4, 21].

4.2 Our Scheme

We give a high-level description of our protocol below; a formal definition of the protocol is provided
in Figure 3. The Blame algorithm is included as part of the protocol description (cf. Step 6) for
simplicity. The Judge algorithm is specified in Figure 4.

We use a signature scheme (Gen,Sign,Vrfy). Before executing the protocol, PA runs Gen to
obtain public key pk and private key sk; we assume that PB knows pk before running the protocol.
As noted earlier, if PA is malicious then it may choose pk arbitrarily.

The main idea of the protocol is to run λ parallel instances of a “basic” garbled-circuit protocol
that is secure against a semi-honest PA and a malicious PB. Of these instances, λ− 1 will be checked
by PB, while a random one (the ̂th) will be evaluated by PB to learn its output. To give PB the
ability to verify honest behavior in the check instances, we make all the executions deterministic
by having PA use (pseudo)randomness derived from corresponding seeds {seedAj }j∈[λ]. That is,

PA will uniformly sample each seed seedAj and use it to generate (pseudo)randomness for its jth
instance. Then PA and PB run an OT protocol ΠOT (with malicious security) that allows PB to
learn λ− 1 of those seeds. Since PA’s behavior in those λ− 1 instances is completely determined
by PB’s messages and those seeds, it is possible for PB to check PA’s behavior in those instances.

The above idea allows PB to catch a cheating PA, but not to generate a publicly verifiable
certificate that PA has cheated. To add this feature, we have PA sign the transcripts of each
instance, including the transcript of the execution of the OT protocol by which PB learned the
corresponding seed. If PA cheats in, say, the jth instance (j 6= ̂) and is caught, then PB can output
a certificate that includes PB’s view (including its randomness) in the execution of the jth OT
protocol (from which seedAj can be recomputed) and the transcript of the jth instance, along with
PA’s signature on the transcripts. Note that, given the randomness of both PA and PB, the entire
transcript of the instance can be recomputed and anyone can then check whether it is consistent
with seedAj . We remark that nothing about PB’s inputs is revealed by a certificate since PB uses a
dummy input in all the check instances.

There still remains the potential issue of defamation. Indeed, an honest PA’s messages might
be deemed inconsistent if PB includes in the certificate fake messages different from those sent by
PB in the real execution. We prevent this by having PB commit to its randomness for each instance
at the beginning of the protocol, and having PA sign those commitments. Consistency of PB’s
randomness and the given transcript can then be checked as part of verification of the certificate.

As described, the above would result in a certificate that is linear in the length of PB’s inputs,
since there are that many OT executions (in each instance) for which PB must generate randomness.
We compress this to a constant-size certificate by having PB also generate its (pseudo)randomness
from a short seed.

The above description conveys the main ideas of the protocol, though various other modifications
are needed for the proof of security. We refer the reader to Figures 3 and 4 for the details.

8

Protocol Πpvc

Private inputs: PA has input x ∈ {0, 1}n1 and keys (pk, sk) for a signature scheme. PB has input
y ∈ {0, 1}n2 and knows pk.
Public inputs: Both parties also agree on a circuit C and parameters κ, λ.

Protocol:

1. PB chooses uniform κ-bit strings {seedBj }j∈[λ], sets hj ← Com(seedBj) for all j, and sends {hj}j∈[λ]

to PA.

2. PA chooses uniform κ-bit strings {seedAj ,witnessj}j∈[λ], while PB chooses uniform ̂ ∈ [λ] and sets
b̂ := 1 and bj := 0 for j 6= ̂.

PA and PB run λ executions of ΠOT, where in the jth execution PA uses (seedAj ,witnessj) as

input, and PB uses bj as input and randomness derived from seedBj . Upon completion, PB obtains

{seedAj }j 6=̂ and witness̂. Let transj be the transcript of the jth execution of ΠOT.

3. For each j ∈ [λ], PA garbles C using randomness derived from seedAj . Denote the jth garbled
circuit by GCj , the input-wire labels of PA by {Aj,i,b}i∈[n1],b∈{0,1} , the input-wire labels of PB by
{Bj,i,b}i∈[n2],b∈{0,1} , and the output-wire labels by {Zj,i,b}i∈[n3],b∈{0,1} .

PA and PB then run λ executions of ΠOT, where in the jth execution PA uses {(Bj,i,0, Bj,i,1)}n2
i=1 as

input, and PB uses y as input if j = ̂ and 0n2 otherwise. The parties use seedAj and seedBj , respec-
tively, to derive all their randomness in the jth execution. In this way, PB obtains {B̂,i,y[i]}i∈[n2].
We let Hj denote the transcript hash for the jth execution of ΠOT.

4. PA computes commitments hAj,i,b ← Com(Aj,i,b) for all j, i, b, and then computes the commitments

cj ← Com
(
GCj , {hAj,i,b}i∈[n1],b∈{0,1} , {Zj,i,b}i∈[n3],b∈{0,1}

)
for all j, where each pair (hAj,i,0, h

A
j,i,1)

is randomly permuted. All randomness in the jth instance is derived from seedAj . Finally, PA

sends {cj}j∈[λ] to PB.

5. For each j ∈ [λ], PA computes σj ← Signsk(C, j, hj , transj ,Hj , cj) and sends σj to PB. Then PB

checks that σj is a valid signature for all j, and aborts with output ⊥ if not.

6. For each j 6= ̂, PB uses seedAj and the messages it sent to simulate PA’s computation in

steps 3 and 4, and in particular computes Ĥj , ĉj . It then checks that (Ĥj , ĉj) = (Hj , cj). If
the check fails for some j 6= ̂, then PB chooses a uniform such j, outputs corrupted, sends
cert := (j, transj ,Hj , cj , σj , seedBj , decomB

j) to PA, and halts.

7. PB sends (̂, {seedAj }j 6=̂,witness̂) to PA, who checks that {seedAj }j 6=̂,witness̂ are all correct and
aborts if not.

8. PA sends GC̂, {A̂,i,x[i]}i∈[n1], {hA̂,i,b}i∈[n1],b∈{0,1} (in the same permuted order as before),

and {Z̂,i,b}i∈[n3],b∈{0,1} to PB, along with decommitments decom̂ and {decomA
̂,i,x[i]}. If

Com(GC̂, {hA̂,i,b}, {Z̂,i,b}; decom̂) 6= c̂ or Com(A̂,i,x[i]; decom
A
̂,i,x[i]) 6∈ {hA̂,i,b}b∈{0,1} for some i,

then PB aborts with output ⊥.

Otherwise, PB evaluates GC̂ using {A̂,i,x[i]}i∈[n1] and {B̂,i,y[i]}i∈[n2] to obtain output-wire labels
{Zi}i∈[n3]. For each i ∈ [n3], if Zi = Z̂,i,0, set z[i] := 0; if Zi = Z̂,i,1, set z[i] := 1. (If
Zi 6∈ {Z̂,i,0, Z̂,i,1} for some i, then abort with output ⊥.) Output z.

Figure 3: Full description of our PVC protocol.

9

Algorithm Judge

Inputs: A public key pk, a circuit C, and a certificate cert.

1. Parse cert as (j, transj ,Hj , cj , σj , seed
B
j , decom

B
j). Compute hj := Com(seedBj ; decomB

j).

2. If Vrfypk((C, j, hj , transj ,Hj , cj), σj) = 0, output 0.

3. Simulate an execution of ΠOT by PB, where PB’s input is 0, its randomness is derived from seedBj , and
PA’s messages are those included in transj . Check that all of PB’s messages generated in this simulation
are consistent with transj ; terminate with output 0 if not. Otherwise, let seedAj denote the output of PB

from the simulated execution of ΠOT.

4. Use seedAj and seedBj to simulate an honest execution of steps 3 and 4 of the protocol, and in particular

compute Ĥj , ĉj .

5. Do:

(a) If (Ĥj , ĉj) = (Hj , cj) then output 0.

(b) If ĉj 6= cj then output 1.

(c) Find the first message for which Ĥj 6= Hj . If this corresponds to a message sent by PA, output 1;
otherwise, output 0.

Figure 4: The Judge algorithm.

4.3 Optimizations

Our main protocol is already quite efficient, but we briefly discuss some additional optimizations
that can be applied.

Commitments in the random-oracle model. When standard garbling schemes are used, all
the values committed during the course of the protocol have high entropy; thus, commitment to
a string r can be done by simply computing H(r) (if H is modeled as a random oracle) and
decommitment requires only sending r.

Free Hash. Fan et al. [7] introduced a garbled-circuit optimization called Free Hash that provides
a way to generate a hashed garbled circuit at lower cost than garbling followed by hashing. We can
use this as part of generating PA’s commitment to a garbled circuit.

One technical note is that Free Hash by itself does not provide a way to equivocate the hash
value, which is needed for a simulation-based proof of security against a malicious PB. However,
we observe that in the random-oracle model such equivocation is easy to achieve by applying the
random oracle H to the Free-Hash output.

Using correlated oblivious transfer. One optimization introduced by Asharov et al. [1] is using
correlated OT for transferring PB’s input-wire labels when garbling is done using the free-XOR
approach [15]. This optimization is compatible with our protocol in a straightforward manner.

Avoiding committing to the input-wire labels. In our protocol, we have PA commit to its
input-wire labels (along with the rest of the garbled circuit). This is done to prevent PA from
sending incorrect input-wire labels in the final step. We observe that this is unnecessary if the
garbling scheme has the additional property that it is infeasible to generate a garbled circuit along
with incorrect input-wire labels that result in a valid output when evaluated. (We omit a formal
definition.) Many standard garbling schemes have this property.

10

5 Proof of Security

The remainder of this section is devoted to a proof of the following result:

Theorem 1. Assume Com is computationally hiding/binding, H is collision-resistant, the garbling
scheme is secure, ΠOT UC-realizes FOT, and the signature scheme is existentially unforgeable under
a chosen-message attack. Then protocol Πpvc along with Blame as in step 6 and Judge as in Figure 4
is publicly verifiable covert with deterrence ε = 1− 1

λ .

Since our most efficient implementation relies on the random-oracle model anyway, we can use a
universally composable OT protocol designed in the random-oracle model such as the Chou-Orlandi
protocol [5]. Alternately, it suffices for the OT protocol to be secure under bounded parallel self
composition.

Proof. We separately prove covert security with ε-deterrence (handling the cases where either PA

or PB is corrupted), public verifiability, and defamation freeness.

Covert Security—Malicious PA

Let A be an adversary corrupting PA. We construct the following simulator S that holds pk and
runs A as a subroutine, while playing the role of PA in the ideal world interacting with F:

1. Choose uniform κ-bit strings {seedBj }j∈[λ], set hj ← Com(seedBj) for all j, and send {hj}j∈[λ]
to A.

2. For all j ∈ [λ], run ΠOT with A, using input 0 and randomness derived from seedBj . In this

way, S obtains {seedAj }j∈[λ]. Let transj denote the transcript of the jth execution.

3. For j ∈ [λ], run an execution of ΠOT with A, using input 0n2 and randomness derived from
seedBj . Let Hj denote the transcript hash of the jth execution.

4. Receive {cj}j∈[λ] from A.

5. Receive {σj} from A. If any of the signatures are invalid, send ⊥ to F and halt.

6. For all j ∈ [λ], use seedAj and the messages sent previously to simulate the computation of an

honest PA in steps 3 and 4, and in particular compute Ĥj , ĉj . Let J be the set of indices for
which (Ĥj , ĉj) 6= (Hj , cj).
There are now three cases:

• If |J | ≥ 2 then send blatantCheat to F, send cert := (j, transj ,Hj , cj , σj , seedBj , decomB
j)

to A (for uniform j ∈ J), and halt.

• If |J | = 1 then send cheat to F. If F returns corrupted then set caught := true; if F
returns (undetected, y), set caught := false. In either case, continue below.

• If |J | = 0 then set caught :=⊥ and continue below.

0′. Rewind A and run steps 1′–6′ below until5 |J ′| = |J | and caught′ = caught.

5We use standard techniques [9, 17] to ensure that S runs in expected polynomial time; details are omitted for
the sake of the exposition.

11

1′. Choose uniform ̂ ∈ [λ]. For j 6= ̂, choose uniform κ-bit strings {seedBj } and set

hj ← Com(seedBj). Set h̂ ← Com(0κ). Send {hj}j∈[λ] to A.

2′. For all j 6= ̂, run ΠOT with A, using input 0 and randomness derived from seedBj .

In this way, S obtains {seedAj }j 6=̂. For the ̂th execution, use the simulator SOT for

protocol ΠOT, thus extracting both seedA̂ and witness̂. Let transj denote the transcript
of the jth execution.

3′. For all j 6= ̂, run ΠOT with A, using input 0n2 and randomness derived from seedBj . For
j = ̂, use the simulator SOT for protocol ΠOT, thus extracting {B̂,i,b}i∈[n2],b∈{0,1} . Let
Hj denote the transcript hash of the jth execution.

4′. Receive {cj}j∈[λ] from A.

5′. Receive {σj} from A. If any of the signatures are invalid, then return to step 1′.

6′. For all j ∈ [λ], use seedAj and the messages sent previously to simulate the computation

of an honest PA in steps 3′ and 4′, and in particular compute Ĥj , ĉj . Let J ′ be the set
of indices for which (Ĥj , ĉj) 6= (Hj , cj).
If |J ′| = 1 and ̂ 6∈ J ′ then set caught′ := true. If |J ′| = 1 and ̂ ∈ J ′ then set
caught′ := false. If |J ′| = 0 then set caught′ :=⊥.

7. If |J ′| = 1 and caught′ = true, then send cert := (j, transj ,Hj , cj , σj , seedBj) to A (where j is
the unique index in J ′) and halt.

Otherwise, send (̂, {seedAj }j 6=̂,witness̂) to A.

8. Receive GC, {Ai}i∈[n1], {hAi,b}i∈[n1],b∈{0,1} , {Zi,b}i∈[n3],b∈{0,1} , and the corresponding decom-
mitments from A. If any of the decommitments are incorrect, send ⊥ to F and halt.

Otherwise, there are two possibilities:

• If |J ′| = 1 and caught′ = false, then use {B̂,i,b}i∈[n2],b∈{0,1} and the value y received from
F to compute an output z exactly as an honest PB would. Send z to F and halt.

• If |J ′| = 0, then compute an effective input x ∈ {0, 1}n1 using seedA̂ and the input-wire
labels {Ai}i∈[n1]. Send x to F and halt.

We now show that the joint distribution of the view of A and the output of PB in the ideal
world is computationally indistinguishable from the joint distribution of the view of A and the
output of PB in a real protocol execution. We prove this by considering a sequence of experiments,
where the output of each is defined to be the view of A and the output of PB, and showing that
the output of each is computationally indistinguishable from the output of the next one.

Expt0. This is the ideal-world execution between S (as described above) and the honest PB holding
some input y, both interacting with functionality F.

By inlining the actions of S,F, and PB, we may rewrite the experiment as follows:

1. Choose uniform κ-bit strings {seedBj }j∈[λ], set hj ← Com(seedBj) for all j, and send {hj}j∈[λ]
to A.

2. For all j ∈ [λ], run ΠOT with A, using input 0 and randomness derived from seedBj . Obtain

{seedAj }j∈[λ] as the outputs. Let transj denote the transcript of the jth execution.

12

3. For j ∈ [λ], run an execution of ΠOT with A, using input 0n2 and randomness derived from
seedBj . Let Hj denote the transcript hash of the jth execution.

4. Receive {cj}j∈[λ] from A.

5. Receive {σj} from A. If any of the signatures are invalid, then PB outputs ⊥ and the
experiment halts.

6. For all j ∈ [λ], use seedAj and the messages sent previously to A to simulate the computation

of an honest PA in steps 3 and 4, and in particular compute Ĥj , ĉj . Let J be the set of indices
for which (Ĥj , ĉj) 6= (Hj , cj).
There are now three cases:

• If |J | ≥ 2, send cert := (j, transj ,Hj , cj , σj , seedBj) to A (for uniform j ∈ J). Then PB

outputs corrupted and the experiment halts.

• If |J | = 1 then with probability ε set caught := true and with the remaining probability
set caught := false. If caught = true then PB outputs corrupted (but the experiment
continues below in either case).

• If |J | = 0 then set caught :=⊥ and continue below.

0′. Rewind A and run steps 1′–6′ below until |J ′| = |J | and caught′ = caught (using standard
techniques [9, 17] to ensure the experiment runs in expected polynomial time).

1′. Choose uniform ̂ ∈ [λ]. For j 6= ̂, choose uniform κ-bit strings {seedBj } and set

hj ← Com(seedBj). Set h̂ ← Com(0κ). Send {hj}j∈[λ] to A.

2′. For all j 6= ̂, run ΠOT with A, using input 0 and randomness derived from seedBj . Obtain

{seedAj }j 6=̂ as the outputs of these executions. For the ̂th execution, use the simulator

SOT for protocol ΠOT, thus extracting both seedA̂ and witness̂. Let transj denote the
transcript of the jth execution.

3′. For j 6= ̂, run an execution of ΠOT with A using input 0n2 and randomness derived
from seedBj . For j = ̂, use the simulator SOT for protocol ΠOT, thus extracting
{B̂,i,b}i∈[n2],b∈{0,1} . Let Hj denote the transcript hash of the jth execution.

4′. Receive {cj}j∈[λ] from A.

5′. Receive {σj} from A. If any of the signatures are invalid, then return to step 1′.

6′. For all j ∈ [λ], use seedAj and the messages sent previously to simulate the computation

of an honest PA in steps 3′ and 4′, and in particular compute Ĥj , ĉj . Let J ′ be the set
of indices for which (Ĥj , ĉj) 6= (Hj , cj).
If |J ′| = 1 and ̂ 6∈ J ′ then set caught′ := true. If |J ′| = 1 and ̂ ∈ J ′ then set
caught′ := false. If |J ′| = 0 then set caught′ :=⊥.

7. If |J ′| = 1 and caught′ = true, then send cert := (j, transj ,Hj , cj , σj , seedBj) to A (where j is
the unique index in J ′) and halt.

Otherwise, send (̂, {seedAj }j 6=̂,witness̂) to A.

13

8. Receive GC, {Ai}i∈[n1], {hAi,b}i∈[n1],b∈{0,1} , {Zi,b}i∈[n3],b∈{0,1} , and the corresponding decom-
mitments from A. If any of the decommitments are incorrect, then PB outputs ⊥ and the
experiment halts.

Otherwise, there are two possibilities:

• If |J ′| = 1 and caught′ = false then use {B̂,i,b}i∈[n2],b∈{0,1} and y to compute z exactly
as in the protocol. PB outputs z and the experiment halts.

• If |J ′| = |J | = 0, compute an effective input x ∈ {0, 1}n1 using seedA̂ and the input-wire
labels {Ai}i∈[n1]. Then PB outputs f(x, y) and the experiment halts.

Expt1. Here we modify the previous experiment in the following way: Choose a uniform ̂ ∈ [λ] at
the outset of the experiment. Then in step 6:

• If |J | ≥ 2 then send cert := (j, transj ,Hj , cj , σj , seedBj) to A for uniform j ∈ J \ {̂}. Then PB

outputs corrupted and the experiment halts.

• if |J | = 1 set caught := true if ̂ 6∈ J and set caught := false if ̂ ∈ J .

Since ̂ 6∈ J with probability ε when |J | = 1, the outputs of Expt1 and Expt0 are identically
distributed.

Expt2. The previous experiment is modified as follows: In step 1, do not choose seedB̂ . Instead,
in step 1 set h̂ ← Com(0κ), and in steps 2 and 4 use true randomness in the ̂th execution of ΠOT.

It is immediate that the distribution of the output of Expt2 is computationally indistinguishable
from the distribution of the output of Expt1.

Expt3. We change the previous experiment in the following way: In steps 2 and 4, use SOT to run
the ̂th instances of ΠOT. In doing so, extract all of A’s inputs in those executions.

It follows from security of ΠOT that the distribution of the output of Expt3 is computationally
indistinguishable from the distribution of the output of Expt2.

Expt3a. Because steps 1′–4′ in Expt3 are identical to steps 1–4, we can “collapse” the rewinding
and thus obtain the following experiment Expt3a that is statistically indistinguishable from Expt3
(with the only difference occurring in case of an aborted rewinding in the latter):

1. Choose uniform ̂ ∈ [λ]. For j 6= ̂, choose uniform κ-bit strings {seedBj } and set hj ←
Com(seedBj). Set h̂ ← Com(0κ). Send {hj}j∈[λ] to A.

2. For all j 6= ̂, run ΠOT with A, using input 0 and randomness derived from seedBj . Obtain

{seedAj }j 6=̂ as the outputs of these executions. For the ̂th execution, use the simulator SOT

for protocol ΠOT, thus extracting both seedA̂ and witness̂. Let transj denote the transcript
of the jth execution.

3. For all j 6= ̂, run ΠOT with A using input 0n2 and randomness derived from seedBj . For j = ̂,
use the simulator SOT for protocol ΠOT, thus extracting {B̂,i,b}i∈[n2],b∈{0,1} . Let Hj denote
the transcript hash of the jth execution.

4. Receive {cj}j∈[λ] from A.

14

5. Receive {σj} from A. If any of the signatures are invalid, then PB outputs ⊥ and the
experiment halts.

6. For all j ∈ [λ], use seedAj and the messages sent previously to A to simulate the computation

of an honest PA in steps 3 and 4, and in particular compute Ĥj , ĉj . Let J be the set of indices
for which (Ĥj , ĉj) 6= (Hj , cj).
There are now two cases:

• If |J | ≥ 2, or if |J | = 1 and ̂ 6∈ J , then choose uniform j ∈ J \ {̂} and send cert :=
(j, transj ,Hj , cj , σj , seedBj) to A. Then PB outputs corrupted and the experiment halts.

• If |J | = 1 and ̂ ∈ J , or if |J | = 0, then continue below.

7. Send (̂, {seedAj }j 6=̂,witness̂) to A.

8. Receive GC, {Ai}i∈[n1], {hAi,b}i∈[n1],b∈{0,1} , {Zi,b}i∈[n3],b∈{0,1} , and the corresponding decom-
mitments from A. If any of the decommitments are incorrect, then PB outputs ⊥ and the
experiment halts.

Otherwise, there are two possibilities:

• If |J | = 1 then PB uses {B̂,i,b}i∈[n2],b∈{0,1} and y to compute z exactly as in the protocol.
PB outputs z and the experiment halts.

• If |J | = 0, then compute an effective input x ∈ {0, 1}n1 using seedA̂ and the input-wire
labels {Ai}i∈[n1]. Then PB outputs f(x, y) and the experiment halts.

Expt4. We modify the previous experiment as follows: In step 8, if |J | = 0 (and PB has not already
output ⊥ in that step), use y to compute z exactly as in the protocol. Then PB outputs z and the
experiment halts.

Since |J | = 0, we know that c̂ is a commitment to a correctly computed garbled circuit along
with commitments to (correctly permuted) input-wire labels {A̂,i,b} and output-wire labels. Thus—
unless A has managed to violate the commitment property of Com—if PB does not output ⊥ in this
step it must be the case that the values GC, {Ai}i∈[n1], {hAi,b}i∈[n1],b∈{0,1} , and {Zi,b}i∈[n3],b∈{0,1}
sent by A in step 8 are correct. Moreover, since |J | = 0 the execution of ΠOT in step 4 was run
honestly by A using correct input-wire labels {B̂,i,b}. Thus, evaluating GC using {Ai}i∈[n1] and
{B̂,i,y[i]} yields a result that is equal to f(x, y) as computed in Expt3.

Since Com is computationally binding, this means that the distribution of the output of Expt4
is computationally indistinguishable from the distribution of the output of Expt3a.

Expt5. Here we change the previous experiment in the following way: The computation in step 6
is done only for j ∈ [λ] \ {̂}; let Ĵ ⊆ [λ] \ {̂} be the set of indices for which (Ĥj , ĉj) 6= (Hj , cj).
Then:

• If Ĵ 6= ∅ choose uniform j ∈ Ĵ and send cert := (j, transj ,Hj , cj , σj , seedBj) to A. Then PB

outputs corrupted and the experiment halts.

• If Ĵ = ∅ then run steps 7 and 8 as in Expt4.

15

Letting J be defined as in Expt4, note that

|J | ≥ 2 or |J | = 1; ̂ 6∈ J ⇐⇒ Ĵ 6= ∅

and
|J | = 1, ̂ ∈ J or |J | = 0⇐⇒ Ĵ = ∅.

Thus, the outputs of Expt4 and Expt5 are identically distributed.

Expt6. We now modify the previous experiment by running the ̂th instances of ΠOT honestly in
steps 2 and 4, using input 1 in step 2 and input y in step 4.

It follows from security of ΠOT that the distribution of the output of Expt6 is computationally
indistinguishable from the distribution of the output of Expt5.

Expt7. Finally, we modify the previous experiment so the ̂th instance of ΠOT in steps 2 and 4
uses pseudorandomness derived from a uniform seed seedB̂ , and we compute h̂ ← Com(seedB̂).

It is immediate that the distribution of the output of Expt7 is computationally indistinguishable
from the distribution of the output of Expt6.

Since Expt7 corresponds to a real-world execution of the protocol between A and PB holding
input y, this completes the proof.

Covert Security—Malicious PB

Let A be an adversary corrupting PB. We construct the following simulator S that runs A as a
subroutine while playing the role of PB in the ideal world interacting with F:

0. Run Gen to generate keys (pk, sk), and send pk to A.

1. Receive {hj}j∈[λ] from A.

2. Use the simulator SOT for protocol ΠOT to interact with A. In this way, S extracts A’s
inputs {bj}j∈[λ]; let J := {j : bj = 1}. As part of the simulation, return uniform κ-bit strings

{seedAj }j /∈J and {witnessj}j∈J as output to A.

3. For each j /∈ J , run this step exactly as an honest PA would. For each j ∈ J do:

• If |J | = 1 then let ̂ be the unique index in J . Use SOT to interact with A in the ̂th
execution of ΠOT. In this way, S extracts A’s input y for that execution. Send y to F,
and receive in return a value z. Compute

({A̂,i}, {B̂,i},GC̂, {Z̂,i,b})← SGb(1κ, C, z),

where we let {A̂,i} correspond to input wires of PA and {B̂,i} correspond to input wires
of PB. Return {B̂,i} as output to A from this execution of ΠOT.

• If |J | > 1 then act as an honest PA would but using true randomness.

4. For each j /∈ J , compute cj exactly as an honest PA would. For each j ∈ J do:

• If |J | = 1 then compute hA̂,i,0 ← Com(A̂,i) and let hA̂,i,1 be a commitment to the 0-

string. Compute c̂ ← Com(GC̂, {hA̂,i,b}, {Z̂,i,b}), where each pair (hA̂,i,0, h
A
̂,i,1} is in

random permuted order.

16

• If |J | > 1 then compute cj exactly as an honest PA would but using true randomness.

Send {cj}j∈[λ] to A.

5–6. Compute signatures {σj} as an honest PA would, and send them to A.

7. If |J | 6= 1 then abort. Otherwise, receive (̂, {seedj}j 6=̂,witness̂) from A and verify these as
an honest PA would. (If verification fails, then abort.)

8. Send GC̂, {A̂,i}, {hA̂,i,b} (in the same permuted order as before), and {Z̂,i,b} to A, along
with the corresponding decommitments. Then halt.

We show that the distribution of the view of A in the ideal world is computationally indistin-
guishable from its view in a real protocol execution. (Note that PA has no output.) Let Expt0 be
the ideal-world execution between S (as described above) and the honest PA holding some input x,
both interacting with functionality F.

Expt1. Here we modify the previous experiment when |J | = 1 as follows. In step 3, compute

({A̂,i,b}, {B̂,i,b},GC̂, {Z̂,i,b})← Gb(1κ, C),

and return the values {B̂,i,y[i]} as output to A from the simulated execution of ΠOT in that step.
In steps 4 and 8, the values A̂,i,x[i] are used in place of A̂,i.

It follows from security of the garbling scheme that the view of A in Expt1 is computationally
indistinguishable from its view in Expt0.

Expt2. Now we change the previous experiment when |J | = 1 as follows: In step 3, compute
hA̂,i,b ← Com(A̂,i,b) for all i, b. It follows from the hiding property of the commitment scheme that
the view of A in Expt2 is computationally indistinguishable from its view in Expt1.

Expt3. This time, the previous experiment is modified by executing protocol ΠOT with A when
|J | = 1 in step 3. Security of ΠOT implies that the view of A in Expt3 is computationally
indistinguishable from its view in Expt2.

Expt4. The previous experiment is now modified in the following way. In step 2, also choose
uniform {seedAj }j∈J and {witnessAj }j 6∈J , and use pseudorandomness derived from {seedAj }j∈J in
steps 3 and 4 in place of true randomness. Also, in step 7 continue to run the protocol as an honest
PA would even in the case that |J | 6= 1.

It is not hard to show that when |J | 6= 1 then PA aborts in Expt4 with all but negligible
probability. Computational indistinguishability of A’s view in Expt4 and Expt3 follows.

Expt5. Finally, we change the last experiment by executing protocol ΠOT in step 2. It follows
from the security of ΠOT that the view of A in Expt5 is computationally indistinguishable from
its view in Expt4.

Since Expt5 corresponds to a real-world execution of the protocol, this completes the proof.

Public Verifiability and Defamation Freeness

It is easy to check (by inspecting the protocol) that whenever an honest PB outputs corrupted then
it also outputs a valid certificate. Thus our protocol satisfies public verifiability. It is similarly easy
to verify defamation freeness under the assumptions of the theorem.

17

6 Implementation and Evaluation

We implemented our PVC protocol using the optimizations from Section 4.3 and state-of-the-art
techniques for garbling [4, 21], oblivious transfer [5], and OT extension [13]. Our implementation
uses SHA-256 for the hash function (modeled as a random oracle) and the standard ECDSA imple-
mentation provided by openssl as the signature scheme. We target κ = 128 in our implementation.

We evaluate our protocol in both LAN and WAN settings using the Alibaba Cloud. In the LAN
setting, the network bandwidth is 1 Gbps and the latency is less than 1 ms; in the WAN setting,
the bandwidth is 200 Mbps and the latency is 75 ms. In either setting, the machines running the
protocol have 8 cores, each running at 2.5GHz. Due to pipelining, we never observe any issues with
memory usage. All reported timing results are computed as the average of 10 executions.

6.1 Certificate Size

The size of the certificate in our protocol is independent of the circuit size or the lengths of the
parties’ inputs. The following figure gives a graphical decomposition of the certificate. (Note that
since we instantiate Com by a random oracle as discussed in Section 4.3, we do not need to include
an extra decommitment in the certificate.) In total, a certificate requires 354 bytes.

σjcj seedBjtransj Hj

72 B32 B32*4 B 16 B105 B1 B

j

Hj contains 4 hash values, corresponding to a 4-round OT protocol obtained by piggybacking
a 2-round OT-extension protocol with a 3-round base-OT protocol. The signature size varies from
70–72 bytes; we allocate 72 bytes for the signature so the total length of a certificate is fixed.

6.2 Comparison to Prior PVC Protocols

Because it enables signed-OT extension, the PVC protocol by Kolesnikov and Malozemoff [14] (the
KM15 protocol) would be strictly more efficient than the original PVC protocol by Asharov and
Orlandi [2]. We therefore focus our attention on the KM15 protocol. We compare our protocol to
theirs in three respects.

Parameters. We briefly discuss the overhead needed to achieve deterrence factors larger than 1
2 for

each protocol. Recall that in the KM15 protocol the overall deterrence factor ε depends on both the
garbled-circuit replication factor λ and the XOR-tree expansion factor ν as ε = (1− 1

λ) ·(1−2−ν+1).
For deterrence ε ≈ 1 − 1

2k
, setting λ = 2k+1, ν = k + 2 gives the best efficiency. In contrast, our

protocol achieves this deterrence with λ = 2k, ν = 1, which means garbling half as many circuits
and avoiding the XOR-tree approach altogether. For example, to achieve deterrence ε = 7/8, our
protocol garbles 8 circuits, whereas prior work would need to garble 16 circuits. Additionally, prior
work would need to execute 5× as many OTs. (Plus, in prior work each OT is actually a signed OT,
which is more expensive than standard OT; see next.)

Signed OT vs. standard OT. Signed OT induces higher costs than standard OT in terms of both
communication and computation. As an illustration, fix the deterrence factor to 1/2. In that case
our protocol runs OT extension twice, where each is used for n2 OTs on κ-bit strings. Compared
to this, the KM15 protocol needs to run 3n2 OTs on 2κ-bit strings. The total communication

18

complexity of the OT step (for the input-wire labels) is 4κn2 bits in our protocol, while in the
KM15 protocol it is 3 ∗ 2 ∗ 3κn2 + 3 ∗ 2.6κn2 = 25.8κn2 bits, more than 6× higher.

Moreover, signed OT also has a very high computational overhead:

• Signed-OT extension needs to use a wider matrix (by a factor of roughly 2.6×) compared to
standard OT extension. Besides the direct penalty this incurs, a wider matrix means that
the correlation-robust hash H cannot be based on fixed-key AES but must instead be based
on a hash function like SHA-256. This impacts performance significantly.

• As part of signed-OT extension, PB needs to reveal κ random columns in the matrix. Even
with AVX operations, this incurs significant computational overhead.

Signed-OT extension [14] is complex, and we did not implement it in its entirety. However, we
modified an existing (standard) OT-extension protocol to match the matrix width required by
signed-OT extension; this can be used to give a conservative lower bound on the performance of
signed-OT extension. Our results indicate that signed-OT extension requires roughly 5× more
computation than state-of-the-art OT extension.

Certificate size. In the KM15 protocol, the certificate size is at least 2κ · n2 bits. Even for AES
(with only 128-bit input length), this gives a certificate roughly 10× larger than ours.

6.3 Comparing to Semi-Honest and Malicious Protocols

We believe our PVC protocol provides an excellent performance/security tradeoff that makes it the
best choice for many applications of secure computation.

Performance. Our protocol is not much less efficient that the best known semi-honest protocols,
and is significantly faster than the best known malicious protocols.

Security. The PVC model provides much more meaningful guarantees than the notion of semi-
honest security, and may be appropriate for many (even if not all) applications of secure
computation where full malicious security is overkill.

To support the first point, we compare the performance of our PVC protocol against state-of-the-
art two-party computation protocols. The semi-honest protocol we compare against is a garbled-
circuit protocol including all existing optimizations; for the malicious protocol we use the recent
implementation of Wang et al. [20]. Our comparison uses the circuits listed in Table 1.

Circuit n1 n2 n3 |C|
AES-128 128 128 128 6800
SHA-128 256 256 160 37300
SHA-256 256 256 256 90825

Sorting 131072 131072 131072 10223K
Integer mult. 2048 2048 2048 4192K

Hamming dist. 1048K 1048K 22 2097K

Table 1: Circuits used in our evaluation. The parties’ input lengths are n1 and n2, and the output
length is n3. The number of AND gates in the circuit is denoted by |C|.

19

Running time. In Table 2 we compare the running time of our protocol to that of a semi-honest
protocol. From the table, we see that over a LAN our protocol adds at most 36% overhead except
in two cases: AES and Hamming-distance computation. For AES, the reason is that the circuit
is small and so the overall time is dominated by the base OTs. For Hamming distance, the total
input size is equal to the number of AND gates in the circuit; therefore, the cost of processing the
inputs becomes more significant.

In the WAN setting, our PVC protocol incurs only 17% overhead except for the Hamming-
distance example (for a similar reason as above).

Circuit
LAN setting WAN setting

Our PVC Semi-honest Slowdown Our PVC Semi-honest Slowdown

AES-128 24.53 ms 15.31 ms 1.60× 960.4 ms 820.8 ms 1.17×
SHA-128 33.67 ms 24.69 ms 1.36× 1146 ms 976.8 ms 1.17×
SHA-256 48.43 ms 38.04 ms 1.27× 1252 ms 1080 ms 1.16×

Sort. 3468 ms 2715 ms 1.28× 13130 ms 12270 ms 1.07×
Mult. 1285 ms 1110 ms 1.16× 5707 ms 5462 ms 1.04×

Hamming 2585 ms 1550 ms 1.67× 11850 ms 6317 ms 1.69×

Table 2: Comparing the running times of our protocol and a semi-honest protocol in the LAN and
WAN settings.

The comparison between our PVC protocol and the malicious protocol is shown in Table 3. As
expected, our PVC protocol achieves much better performance, by a factor of 4–18×.

Circuit
LAN setting WAN setting

Our PVC Malicious [20] Speedup Our PVC Malicious [20] Speedup

AES-128 24.53 ms 157.3 ms 6.41× 960.4 ms 11170 ms 11.6×
SHA-128 33.67 ms 318.8 ms 9.47× 1146 ms 13860 ms 12.1×
SHA-256 48.43 ms 611.7 ms 12.6× 1252 ms 17300 ms 13.8×

Sort. 3468 ms 45130 ms 13.0× 13130 ms 197900 ms 15.1×
Mult. 1285 ms 17860 ms 13.9× 5707 ms 99930 ms 17.5×

Hamming 2586ms 11380 ms 4.40× 11850 ms 76280 ms 6.44×

Table 3: Comparing the running times of our protocol and a malicious protocol in the LAN and
WAN settings.

Communication complexity. We also compare the communication complexity of our protocol to
other protocols in a similar way; see Table 4. In this comparison we use the same semi-honest proto-
col as above, but use the more communication-efficient protocol by Katz et al. [12] as the malicious
protocol. We see that, with the exception of the Hamming-distance example, the communication
in our protocol is very close to the communication in the semi-honest case.

20

AES-128 SHA-128 SHA-256 Sort. Mult. Hamming

Semi-honest 0.2218 MB 1.165 MB 2.800 MB 313.1 MB 128.0 MB 96.01 MB
Malicious [12] 3.545 MB 17.69 MB 42.95 MB 2953 MB 1228 MB 662.7 MB

Our PVC 0.2427 MB 1.205 MB 2.844 MB 325.1 MB 128.2 MB 144.2 MB

Table 4: Communication complexity of our protocol and other protocols.

6.4 Higher Deterrence Factors

Another important aspect of our protocol is how the performance is affected by the deterrence
factor. Recall that the deterrence factor ε is the probability that a cheating party is caught, and
in our protocol ε = 1− 1

λ where λ is the garbled-circuit replication factor. The performance of our
protocol as a function of ε is shown in Table 5. We see that when doubling the value of λ, the
running time of the protocol increases by only ≈ 20% unless the circuit is very small (in which case
the cost of the base OTs dominates the total running time). The running time when ε = 3/4 (i.e.,
λ = 4) is still less than twice the running time of a semi-honest protocol.

AES-128 SHA-128 SHA-256 Sort. Mult. Hamming

LAN
ε = 1/2, λ = 2 24.53 ms 33.67 ms 48.43 ms 3468 ms 1285 ms 2586 ms
ε = 3/4, λ = 4 35.63 ms 45.92 ms 59.25 ms 3554 ms 1308 ms 3156 ms
ε = 7/8, λ = 8 46.62 ms 57.25 ms 71.31 ms 3954 ms 1396 ms 4856 ms

WAN
ε = 1/2, λ = 2 960.4 ms 1146 ms 1252 ms 13130 ms 5707 ms 11850 ms
ε = 3/4, λ = 4 1112 ms 1375 ms 1700 ms 14400 ms 5952 ms 12899 ms
ε = 7/8, λ = 8 1424 ms 1912 ms 2436 ms 16130 ms 6167 ms 19840 ms

Table 5: Running time of our protocol for different ε, λ.

6.5 Scalability

Our protocol scales linearly in all parameters, and so can easily handle large circuits. To demon-
strate this, we benchmarked our protocol with different input lengths, output lengths, and circuit
sizes. The results are summarized in Figure 6.

n1 (µs/bit) n2 (µs/bit) n3 (µs/bit) |C| (µs/gate)

LAN 0.20 0.88 0.23 0.29
WAN 0.61 3.13 0.62 1.10

Table 6: Scalability of our protocol. Initially, the input and output lengths are all 128 bits, and
the circuit size is 1024 AND gates. We then gradually increase one of the input/output lengths
or circuit size (while holding everything else constant) and record the running time. Since the
dependence is linear in all cases, we report only the marginal cost (i.e., the slope) above.

21

References

[1] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient obliv-
ious transfer and extensions for faster secure computation. In 20th ACM Conf. on Computer
and Communications Security (CCS), pages 535–548. ACM Press, 2013.

[2] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public veri-
fiability. In Advances in Cryptology—Asiacrypt 2012, volume 7658 of LNCS, pages 681–698.
Springer, 2012.

[3] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. Journal of Cryptology, 23(2):281–343, 2010.

[4] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling
from a fixed-key blockcipher. In 2013 IEEE Symposium on Security & Privacy, pages 478–492.
IEEE, 2013.

[5] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In Progress in
Cryptology—Latincrypt 2015, volume 9230 of LNCS, pages 40–58. Springer, 2015.

[6] Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen. From passive to covert security at
low cost. In 7th Theory of Cryptography Conference—TCC 2010, volume 5978 of LNCS, pages
128–145. Springer, 2010.

[7] Xiong Fan, Chaya Ganesh, and Vladimir Kolesnikov. Hashing garbled circuits for free. In
Advances in Cryptology—Eurocrypt 2017, Part III, volume 10212 of LNCS, pages 456–485.
Springer, 2017.

[8] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge University
Press, Cambridge, UK, 2004.

[9] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof
systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[10] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi party com-
putation against covert adversaries. In Advances in Cryptology—Eurocrypt 2008, volume 4965
of LNCS, pages 289–306. Springer, 2008.

[11] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Ad-
vances in Cryptology—Crypto 2004, volume 3152 of LNCS, pages 335–354. Springer, 2004.

[12] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated
garbling for faster secure two-party computation. In Advances in Cryptology—Crypto 2018,
Part III, volume 10993 of LNCS, pages 365–391. Springer, 2018.

[13] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In Advances in Cryptology—Crypto 2015, Part I, volume 9215 of LNCS, pages 724–
741. Springer, 2015.

22

[14] Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the covert model (almost)
for free. In Advances in Cryptology—Asiacrypt 2015, Part II, volume 9453 of LNCS, pages
210–235. Springer, 2015.

[15] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In 35th Intl. Colloquium on Automata, Languages, and Programming (ICALP),
Part II, volume 5126 of LNCS, pages 486–498. Springer, 2008.

[16] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, 2009.

[17] Yehuda Lindell. A note on constant-round zero-knowledge proofs of knowledge. Journal of
Cryptology, 26(4):638–654, 2013.

[18] Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and covert adversaries.
Journal of Cryptology, 29(2):456–490, 2016.

[19] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In Advances in Cryptology—Eurocrypt 2007, volume
4515 of LNCS, pages 52–78. Springer, 2007.

[20] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient mali-
ciously secure two-party computation. In 24th ACM Conf. on Computer and Communications
Security (CCS), pages 21–37. ACM Press, 2017.

[21] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Advances in Cryptology—Eurocrypt 2015, Part
II, volume 9057 of LNCS, pages 220–250. Springer, 2015.

23

	Introduction
	Our Contributions

	Technical Overview
	Overview of Prior Work
	Our Solution

	Covert Security with Public Verifiability
	Our PVC Protocol
	Preliminaries
	Our Scheme
	Optimizations

	Proof of Security
	Implementation and Evaluation
	Certificate Size
	Comparison to Prior PVC Protocols
	Comparing to Semi-Honest and Malicious Protocols
	Higher Deterrence Factors
	Scalability

