
1

Improvements of Blockchain’s Block Broadcasting:
An Incentive Approach

Abstract—In order to achieve a truthful distributed ledger,
homogeneous nodes in Blockchain systems will propagate mes-
sages on a P2P network so that they can synchronize the status
of the ledger. Currently, blockchain systems target on achieving
better scalability and higher throughput to support divergent
applications which will lead to heavier message propagation,
especially the broadcasting of blocks. The heavier traffic on the
P2P network will cause longer latency of block synchronization,
which may damage system consistency and expose the system
to potential attacks. Even worse, when heavy communication
consumes a lot of network capacity, nodes in the P2P network
may not relay blocks to save their bandwidth. This may damage
the efficiency of network synchronization.

In order to alleviate the problems, we propose an improved
block broadcasting protocol which elaborates block data sharding
and financial incentive mechanisms. In the proposed scheme, a
block is sliced into pieces in order to keep the network traffic
smooth and speed up content delivery. Any node which relays
a piece of the block will get benefits with financial rewards. By
applying data sharding, our proposed scheme speed up the block
broadcasting and therefore shorten the synchronization time by
90%, which is shown in our simulation experiments. In addition,
we carry out game theoretical analysis to prove that nodes are
efficiently incentivized to relay blocks honestly and actively.

I. INTRODUCTION

In 2008, Nakamoto published his celebrated paper [1] in
which introduced a practical blockchain consensus protocol
and later was known as Bitcoin protocol. Bitcoin protocol is a
novel scheme to maintain a distributed ledger which is safe-
guarded by all peers in a decentralized system [2]. The advan-
tages of blockchain, such as decentralization, irreversibility,
and undeniableness, provide an approach to leverage verifiable
interactions among non-trust peers in decentralized systems.
As a trade-off, such decentralized consensus is expensive to
achieve. Bitcoin, for instance, consumes enormous mining
power but only generate a block about every 10 minutes which
will provide about 7 Transaction Per Second (TPS) on average.
Therefore, the urgent need for fast and cheap transaction
processing in blockchain attracts lots of researches. A new
version of Bitcoin is proposed which will increase block
size [3] and use the lightning network to process frequent
small transactions more efficiently [4]. Other works try to
integrate DAG [5, 6] and network sharding [7, 8] into Bitcoin
scheme and improve the throughput of blockchain using clever
consensus design. Above improvements on throughput mainly
have two effects: larger block size [3] and higher frequency
of block generation [9].

However, we observe that the bottleneck of blockchain
will also come to the network layer even if the consensus
makes a breakthrough to provide high throughput. A simple
calculation can illustrate this concern. The size of a basic
transaction with one input and two outputs in Bitcoin is

about 250 bytes [10]. If we want to achieve 10000 TPS
(Visa achieves about 24000 TPS) in blockchain, the overall
throughput is at least 2.5 MB/s, which is a nonnegligible
bandwidth cost. In fact, the size of transactions for smart
contracts will be even much larger. In current blockchain
consensuses, nodes with verification capability (aka full node)
are usually required to synchronize all chain data. Blockchain
systems are robust only with a significant number of full nodes.
As a result, as long as the chain data is generated faster and
a large number of full nodes are in function, the message
propagation in blockchain P2P network should be much faster
to maintain in-time synchronization. The overloaded P2P net-
work layer can cause long synchronization latency and absence
of incentive for broadcasting challenges. We analyze the above
two challenges and improve the block broadcasting scheme to
solve them.

Synchronization latency means the latency from the gen-
eration of a message to confirmation of the same message by
all honest nodes. [11] addresses the strong correlation between
the size of message and synchronization latency. Since there
is the trend of larger blocks, we conduct that synchroniza-
tion latency will significantly grow in future blockchain net-
work. Slow synchronization can damage security properties
of blockchain systems [12, 13], waste mining power [14],
cause blockchain forks [11] and even expose the vulnerability
of adversary attacks like selfish mining [15, 16]. In order
to shorten synchronization latency, we divide each block
into pieces and the piece is the basic unit of data transfer.
Similar to P2P content delivery applications, transfer in pieces
makes the most of each node’s communication bandwidth
and make the broadcast more efficient [17]. In our simulation
in Section VII-A, block sharding shorten the synchronization
latency by about 90%.

We also analyze block broadcasting in an incentive way.
In the former analysis on blockchain P2P network, it is
assumed that honest nodes will correctly perform block veri-
fication and broadcasting. However, in P2P broadcast network
with heavy workloads, the broadcast consumes significant
network bandwidth. As a result, rational nodes may refuse to
relay new blocks to others or reduce the number of neighbors
in network topology, which also damage the efficiency of
block broadcasting. In order to incentivize nodes to verify
and broadcast blocks, we introduce blockchain-based financial
incentive [18, 19, 20] into block broadcasting. We notice that
cryptocurrencies, as the initial application of blockchain, can
be an effective, compatible financial resource. We name the
nodes who send out block data as uploader and nodes who
download the block data as the downloader. If uploaders earn
money and downloaders bear a financial cost in the broadcast
process, it is the simplest prototype of blockchain-based pecu-

2

niary incentive. In intuition, nodes are intended to download
blocks because of the requirement of synchronization and
meanwhile uploading is incentivized by the financial rewards.
We formally analyze the incentive mechanism through game
theoretical models in Section VI. From our simulation in
Section VII, the blockchain-based incentive is sound and
effective. The system will converge to the equilibrium of
honest behavior as long as there is a sufficient initial fraction
of honest nodes.

As for considerations of scalability, we keep the inter-
action between uploaders and downloaders simple. Since the
transfer of cryptocurrency requires extra transactions, we also
minimize the number of such transaction calls using micro-
payment channels [21]. Since micro-payments require the
submission of only one transaction after a large number of
payments between two nodes, the number of extra transactions
will not significantly increase in a long period, therefore the
extra cost will not significantly influence the original perfor-
mance of system scalability. We demonstrate our proposed
block broadcasting protocol in Bitcoin environment and the
protocol is suitable for other blockchain systems with block-
based consensus.

Our contributions. First, we introduce a novel block
broadcasting scheme with blockchain-based incentive mech-
anism. The scheme is a generic approach for block-based
blockchain systems to further improve the efficiency of block
propagation. Section V elaborately depicts the protocol design,
including interactions during block broadcasting.

Also, we use game theoretical model to analyze incentive
for broadcasting and discuss the fairness of data transfer. We
introduce an evolutionary game model to analyze the pro-
posed incentive mechanism formally, which shows the stable
equilibrium of active cooperation (Section VI-A). Besides, we
use a repeated game model and learning model to analyze
the fairness and cooperative behavior in the process of data
transfer by pieces (Section VI-B).

At last, we carry out simulations and experiments in
Section VII, which prove that proposed scheme speeds up
synchronization and the incentive is sound and practical.

II. BACKGROUND

In this section, we introduce backgrounds of some related
conceptions and technologies.

Bitcoin and blockchain. Blockchain is a distributed
digital ledger over a peer-to-peer network that achieves de-
centralized agreements between nodes with only minimal
trust [2]. The ledger is organized in a special chain-like data
structure which is maintained by all participants (i.e. nodes)
in the system. The blockchain supports offline-verification but
adversary parties cannot reverse the ledger once it is admitted
by consensus, given the consumption that the majority of
participants is honest.

In this paper, we use Bitcoin as an example of typical
blockchain system to illustrate our proposed block broadcast-
ing scheme. Bitcoin is the first application built on blockchain,
also the first cryptocurrency, which is proposed in 2008 [1].
Therefore, Bitcoin presents all the nature of blockchain and

the soundness of Bitcoin is proved both practically and theo-
retically.

Block broadcasting in Bitcoin. Blockchain P2P network
is homogeneous and all full nodes (i.e. nodes who are able to
perform verification on the ledger) keep a complete replica of
the necessary information for verification, including blocks. A
node who finds a new block take three methods, unsolicited
block push, standard block relay and direct headers announce-
ment, to broadcast it [10]. Unsolicited block push usually
happens when the node is exactly the generator of the found
block. In this way, the node knows that no neighbor possesses
this newly generated block so he directly sends the block data
to neighbors. Except for the special situation that the node is
the block generator, nodes execute standard block relay. We
focus on improving standard block relay in this work. To be
detailed, a typical standard block relay broadcast from node
A to B contains following steps: 1) After A discovers a new
block, A sends an inv message to its neighbor B, telling him
the existence of the new block. 2) B checks whether the block
has already been included in its local storage. If not, B request
the header from A. 3) B checks the integrity of headers and
request full block data.

Optionally, nodes can skip step 1 to directly broadcast
headers to neighbors, and this method is called direct headers
announcement.

Micropayment channel. Micropayment channel in Bit-
coin allows users to make multiple blockchain transactions
without committing all those transactions to the ledger. Light-
ning network [4] implement the Hashed Time-Locked Contract
(HTLC), which is an implementation of two-party micro-
payment channel, to leverage fast off-chain transactions. The
two parties can repeatedly update the state of the contract to
perform transactions on small amounts, rather than publish
each transaction on the ledger. In our design, we also apply
HTLC to leverage frequent interactions between uploaders and
downloaders.

III. RELATED WORK

Bitcoin P2P network. Blockchain systems have spe-
cial P2P protocols to leverage message propagation, which
has been analyzed through real-world data [14, 11]. [14]
performs thorough data collection and analysis on Bitcoin’s
P2P network in 2014 and provides lots of interesting statistic
results related to block propagation. The authors observed the
significant propagation latency which may cause miners to
mine dated blocks and waste computing power. [11] analyzed
the Bitcoin broadcast protocol in details and proved that
propagation latency is the main cause of chain forks. Also, the
paper proposed some modifications on the broadcast protocol
to speed up block propagation.

Our work not only further improve the efficiency of block
broadcasting but also integrate an incentive mechanism for
block relaying.

Incentive for P2P content delivery. When P2P digital
content flows faster as the scale of systems grows, the content
providers face the limitation of bandwidth and therefore have
lower motivation to provide data. To overcome the lack of

3

incentive for providing data in P2P systems, [20] integrates
financial rewards into data transfer.

Also, blockchain provides a practical tool leveraging
distributed financial exchange and blockchain-based incentive
in decentralized applications is explored by several works [18,
19, 22, 23, 24, 25]. In the above systems, Blockchain plays the
role as a transparent and reliable ledger which confirms the
truthfulness of incentive mechanisms in a decentralized envi-
ronment. Most of those systems also use the cryptocurrency
or other blockchain-based tokens as the direct incentive.

In our work, we address block broadcasting in blockchain
systems as a specific case of P2P content delivery and inte-
grates a blockchain-based incentive model.

IV. MODEL FORMULATION

In this section, we present a formulated model of
blockchain’s block broadcasting in Section IV-A. We also
address two main challenges in Section IV-B and specify
our design goals as potential solutions to challenges in Sec-
tion IV-C.

A. Model of Block Broadcasting

First, we introduce some conceptions in the process of
block broadcasting. We then define a formulated model of
blockchain message propagation.

Node. The node is the basic unit of synchronization
in blockchain systems. Each node manages a local state of
chain and tries to keep updating the state to the latest. Each
node possesses multiple blockchain identities (aka address).
Especially, only full nodes are able to generate new blocks.
Our model focuses on full nodes.

Block. The block is one of basic data structures in
blockchain. Blocks are generated by miners in the system,
containing a set of transactions. The block usually has a hard-
coded limitation of size, such as 1MB for Bitcoin in 2010.
Each block has a header, which is a serialized piece of data
containing crucial properties of a block, such as previous block
hash, the nonce and the Merkle root. For block b, we denote
by b.header as header part and b.body as the main body
containing transactions.

P2P network. Blockchain’s P2P network is consist of
homogeneous nodes. Each node has a few neighbors with
whom the node exchange messages to achieve synchroniza-
tion. Nodes are supposed to keep as few neighbors as possible
to save communication bandwidth, as long as successful
synchronization is guaranteed.

Next, we introduce some notations to formally model
blockchain’s message propagation. We denote by G = 〈P, E〉
as the topology of blockchain P2P network where P is the
set of nodes and E(p), p ∈ P presents the set of neighbors
of the node p. For any e ∈ E(p), e ∈ P . In addition, we
denote by R = 〈G, p,m,R〉 as one blockchain message
propagation process, in which G denotes the topology of a
blockchain P2P network, p ∈ G.P presents the generator
of the message m and R denotes a broadcast protocol. In
real-world blockchain applications like Bitcoin, the message
m should be transactions or blocks, which is required to be

propagated to all nodes. Since the data of blocks is in a
much larger size than single transactions, which can affect
the throughput of P2P propagation more significantly, our
proposed broadcast protocol focuses on the propagation of
newly generated blocks.

Using the above notations, we formally describe the
process of blockchain’s block broadcasting. We assume the
P2P network G is set up and all nodes in G.P reach a
consensus on a broadcast protocol R before a broadcast B
starts. Note that the topology G must be a connected graph,
which means each node must have at least one neighbor
in function to exchange messages, or formally declared as
p ∈ G.P , E(p) 6= ∅. Once a node, denoted by p0, successfully
generate a new block b, a blockchain message propagation R
takes place with R.p = p0 and R.m = b. Broadcast protocol
R defines the behavior of broadcast, which is triggered by the
arrival of a message, for all nodes. The typical behavior has
three parts:
• Checks on the message. First, the node checks whether

the message is already available in his local storage.
If so, there is no need to process the message further.
Otherwise, the node verifies the integrity of the message.
If the message is a block, for example, the node checks
the validity of block header and transactions.

• Process the message. After verification passes, the node
updates the status of his local chain according to the
message. For example, add new blocks onto the chain
graph or put new transactions into the transaction pool.

• Propagate the message. The node propagates the original
message to all neighbors, except for the message source,
so that invokes the same behavior of his neighbors.
A synchronization starts at the generation of m and it

is successful when all honest nodes have processed m. Espe-
cially, the message m refers to a block in block broadcasting.

B. Challenges

According to the trend of higher throughput and scala-
bility of Blockchain systems, we conduct that the Blockchain
P2P network will be overloaded as mentioned in Section I. The
overloaded P2P network causes two challenges: long synchro-
nization latency and absence of incentive for broadcasting.

Long synchronization latency. Long synchronization
latency, which means a long time for the network to reach a
consensus on one message. In a typical Blockchain system like
Bitcoin, long synchronization latency may be caused by: 1)
Larger block size. As an empirical experiment [11] shows, the
larger the blocks are, the longer time a point-to-point transfer
takes so that the synchronization takes longer. 2) Number of
full nodes. If the scale of the P2P network is large, a message
takes longer to reach all nodes.

Unfortunately, in order to improve blockchain’s through-
put and scalability, current blockchain systems trend to support
larger blocks and more nodes and that is why long syn-
chronization latency will emerge as a problem. The problem
causes several unsatisfying results and potentially corrupts
blockchain’s liveness and consistency. For example: 1) Waste
of mining power. Miners are supposed to mine after the best

4

chain (longest chain in Bitcoin). If a new block is late to
be observed and synchronized, the miner waste more time
mining on the previous block without contributing to the
best chain. 2) Soft forks. When more miners are mining on
previous blocks because the message of the latest block does
not arrive, there will be more soft forks on the previous blocks.
3) Selfish mining attack. The basic idea of selfish mining is to
develop a private chain containing more than one block and
broadcast multiple blocks at one time [16]. Different from
normal miners, selfish miner avoids synchronization latency.
As a result, selfish miner develops his private chain faster and
demonstrates more mining power as he should have.

Absence of incentive for broadcasting. The com-
munication cost of block broadcasting will be significant
as Blockchain’s throughput increases. but in conventional
Blockchain P2P network layer, there is no direct incentive
to incentivize nodes propagate the messages they received.
As a result, rational nodes have the motivation to refuse to
relay blocks so that the efficiency of synchronization is further
damaged.

C. Design Goals

To address two challenges of Blockchain P2P network,
we declare design goals of the block broadcasting scheme from
three aspects: fast synchronization, incentive for broadcasting
as well as fairness in propagation process.

1) Fast synchronization. The new block broadcasting
scheme should have better synchronization efficiency.
In other words, it requires less time to broadcast a new
block to honest nodes in the system. The system should
be feasible to implement and stable to use on large scale.

2) Incentive for broadcasting. Under the incentive mech-
anism, nodes are encouraged to relay blocks they re-
ceived. The system should have a stable equilibrium on
which a majority of system participants would like to
follow broadcast protocol honestly and actively.

3) Fairness in propagation process. It is hard to guarantee
strict fairness of interactions between nodes without
Trusted Third Party (TTP) but the unfairness remained
in the system should be minimized by incentive. Also,
the unfairness should not affect the normal execution of
system protocol and incentive mechanism.

V. BLOCK BROADCASTING PROTOCOL

In this section, we elaborately illustrate our proposed
protocol of block broadcasting. The key idea of our protocol
is slicing blocks into pieces which are transferred and verified
independently. Along with the transfer of each piece, payments
are also processed through micro-payment channels.

The illustration of the protocol is based on Bitcoin but the
protocol is suitable for other block-based blockchain systems
and fits in the model of blockchain’s block broadcasting
mentioned in Section IV-A. When a block flows between two
nodes, we name the sender and the receiver of the block data
as uploader and downloader, respectively.

We introduce related data structures and tools in Sec-
tion V-A, the block sharding method in Section V-B, P2P

messages in Section V-C and the overall workflow in Sec-
tion V-D.

A. Related Tools

We first introduce some tools used in protocol design,
including micro-payment channel, Merkle Tree and bloom
filter.

Micro-payment channel. We define the functions of
micro-payment channel [10] between two parties, which is
a crucial application for our protocol to leverage financial
incentive practically.
• C ← Setup(A,B, s): Two parties A and B setup the

channel and allocate an initial distribution of funds s.
For example, initially A and B each owns 0.5 BTC and
the total of fund is 1 BTC;

• C′ ← Transfer(C, s′): When a transfer of fund happens,
both parties perform a serial of interactions to update the
state of the channel to assign a new fund distribution. For
example, the new fund distribution s′ = (A : 0.4, B : 0.6)
is assigned when A transfer 0.1 BTC to B.

• Terminate(C): Terminate the micro-payment channel by
submitting the final fund distribution to the ledger through
one transaction.
Transfer method can be called by each side and

for multiple times as long as the channel is in function,
without changing the status of blockchain ledger. Therefore,
Transfer is cheap to perform so that the micro-payment
channel makes the frequent transfer of cryptocurrency scal-
able.

Merkle Tree. Merkle Tree provides an approach of
effective and secure verification on a large data structure. Note
that Hash is a predefined safe hashing function. We adopt
Merkle Tree to perform the verification on a single data piece,
described in Section V-B.
• (r,P) ← GenMerkle(X): Generate a Merkle Tree

taking a set of inputs X as leaves and return Merkle
root r and a mapping function P . P(x), x ∈ X presents
the corresponding path of the Merkle Tree from root r to
the leave x.

• {0, 1} ← V rfyMerkle(x, r, p): Verify x is a valid leave
in the Merkle Tree given Merkle root r and the path of
x as p (p← P(x)).
Bloom filter. Suppose there is a large set with a size of

M . Bloom filter is used to test whether an element is among
the M elements in the set, but the bloom filter here is a M ′-
length vector of bits and M ′ could be much smaller than M .
• f ′ ← Add(f, x): Use an element x to update bloom filter
f ;

• {0, 1} ← Test(f, x): Test whether x has been used as
an input to update f .
Similarly, if the blocks are sliced to M pieces at most,

uploaders can use the data structure of the bloom filter
to inform downloaders which pieces are available. In our
protocol, x is the index of a specific piece. Note that Test
has false positives, whose probability depends on the ratio of
M and M ′, but false negatives are impossible. We name the
vector f as vector of possession in our protocol.

5

B. Block Sharding
In our block broadcasting protocol, for each block b,

b.body is sliced to multiple pieces. Given a sharding method
S, the set of pieces is formally expressed as S(b) =
{b0, b1, . . . , bn}. The benefits of the sharding are straight-
forward. Similar to P2P content delivery or file sharing,
transferring data in pieces is much faster in the P2P network,
especially for large files. In the P2P environment, the multiple
pieces can have various sources to download so that the
method bypasses the limitation of uploaders’ bandwidth.

But different from most P2P applications, data in broad-
casting, such as transactions and blocks, is crucial for
blockchain consensus and therefore requires more strict veri-
fication. We intend to make the transfer of each piece inde-
pendently verifiable with the minimum communication cost.
To achieve this, we adopt a Merkle Tree proof on the pieces.

We add another block property named as piece root into
the block headers. The piece root, as the name indicates, is a
Merkle root from a Merkle Tree where each leaf is the hash
of one piece. For a block b, the piece root b.header.pr is
generated by (b.header.pr,P) ← GenMerkle({Hash(pi) |
pi ∈ S(b)}). Before the uploader transfers any piece of
b to the downloader, downloader should have received and
verified b.header and therefore possess a valid piece root, as
Section V-D depicts. When transferring a piece pt ∈ S(b),
the uploader offers a Merkle path pathpt ← P(Hash(pt))
along with the piece data to the downloader. After receving pt
and pathpt , the downloader runs V rfyMerkle to verify pt’s
validity.

Since the block header, in Bitcoin, directly participants in
mining process (i.e. block generation), under the assumption
that Hash performs safe hashing, attackers cannot modify in-
header piece root at any case. Meanwhile, given a verified
piece root, the attacker cannot produce any malicious p′t 6= pt
that passes either the verification of Merkle Tree of pieces.

C. P2P Messages
We define some important P2P messages used in our

block broadcasting protocol. Our protocol inherits some mes-
sages used in Bitcoin, such as inv indicating the discovery
of a new item; getHeaders requesting block headers; headers
transferring the data of block headers.

Similar to getHeaders and headers, we have getPieces
and pieces for requesting and transferring piece data. In details,
message getPieces contains one block hash (Hash(b.header)
for block b) and at least one piece index x (0 ≤ x < |S(b)|).
Message pieces contains at least one piece data px ∈ S(b) and
correlated Merkle path pathpx .

Besides, we define message getPossession and possession
to leverage fast queries on vector of possession from down-
loaders to uploaders. Message getPossession simply contains
one block hash and message possession responses the corre-
lated vector of possession.

D. Workflow of Block Broadcasting
Given defined tools and P2P messages, we describe the

whole workflow of our block broadcasting protocol, focusing
on interactions between one uploader and one downloader.

Uploader

Downloader

Header Transfer Piece Transfer

C
ryp

to
cu

rren
cy

M
icro

p
aym

en
t

C
h

an
n

el

Block Hash
Broadcast

Fig. 1: Standard workflow of block broadcasting protocol.
The arrows denote messages between the uploader and the
downloader.

As Figure 1 depicts, block broadcasting process between
one uploader and one downloader has several interactions.
We denote by A as the uploader and B as the downloader
for simplicity. We assume all nodes agree on a set of global
configurations, such as the size of pieces and the format of
messages. To simplify the presentation of the global config-
uration, we suppose all honest nodes are homogeneous and
each piece of block data is in the same size. Also, the size of
blocks is limited so that each block is only sliced to a finite
number of pieces.

Setup. A and B initialize their micro-payment channel C
through Setup and configure their broadcast strategy.

Block hash broadcast. After A receives or generates a
valid block header b.header, A sends B an inv message con-
taining block hash h ← HASH(b.header), which declares
the identity of block b.

Header transfer. B receives message inv and checks
whether the block header b.header is valid and does not exist
in his storage. If so, B sends back a getHeaders message
to request the header. In response of getHeaders message, A
sends back the headers message containing complete data of
b.header. A can optionally send possession message to inform
b which pieces are available for requesting.

Repeated piece transfer. B randomly selects a piece
through Test method on the latest A’s possession vector f .
If B does not have any vector of possession, he can send a
getPossession message to request one from A. Then B sends
a getPieces message which announces the block hash h and
the index of a specific piece x.

A sends back pieces message containing block hash h,
piece data p and Merkle path pathp. Also, A can respond to
another possession message if A wants to update his posses-
sion status. Note that A may receive pieces of b simultaneously
during interactions with B and A should use new obtained
pieces to update the possession vector through Add.

Received expected piece data p and its path pathp, B
first locally calls MerkleV rfy(Hash(p), b.header.r, pathp)
to verify the piece. After a successful verification, B starts
a payment to A by calling micropayment channel’s function
Transfer. The function of Transfer requires several times
of interactions between the two sides. After both sides achieve
agreement on the payment, B is supposed to start another piece

6

transfer if he wants.
Termination The repeated piece transfer can be termi-

nated from any side by sending a special message or just
waiting for the timeout. Assuming both sides are honest and
follow the protocol, the termination is likely to happen when
the downloader has no other pieces to request.

VI. ANALYSIS

In this section, we use game theoretical models to analyze
our incentive mechanism. We first deploy an evolutionary
model to analyze the efficiency of incentive in broadcasting.
The peers should have incentive to become active honest
uploaders and downloaders.

However, in the process of piece transfer, both sides
have the possibility to cheat the other side, for instance
terminating protocol in advance. The downloader, especially,
has the chance to refuse paying the uploader. For this potential
unfairness, we use a repeated game model to demonstrate how
cooperation can take place and whether the threat can affect
overall system performance.

A. Evolutionary Model of Incentive

We consider an evolutionary game model of block trans-
fer process. One block transfer means the whole interactions
between two nodes during processing one specific block,
including header transfer and repeated piece transfer. Each
node can act as downloader and uploader simultaneously, and
we assume that nodes are strategic for the most profit. Each
uploader or downloader has two strategies: cooperate (C) and
defect (D), and the transfer is successful only when both
sides take strategy C. Also, we assume one successful block
transfer produces benefit α for downloader and costs β for the
uploader. Meanwhile, the downloader pays π to the uploader.

Cost and payoff. In one single block transfer process,
the downloader bears a cost of communication bandwidth and
computation power but obtains necessary data for synchroniza-
tion. So α should be data value minus the costs. In the same
way, uploader’s cost β includes bandwidth cost and computa-
tion cost. Meanwhile, if the opposite side unexpectedly aborts
the block transfer process, both downloader and uploader
have an extra cost. Downloader must find another uploader
while uploader may lose the last payment as described in
Section VI-B. The extra costs for downloader and uploader
are respectively denoted by td and tu.

P =

 C D
C α− π,−β + π −td, 0
D 0,−tu 0, 0

 (1)

Matrix P in Equation 1 shows the payoff matrix for
one block transfer (Pij denotes payoff when downloader uses
strategy i and uploader uses strategy j). In one generation
of the evolutionary model, each node plays games with his
neighbors, so the distribution of strategy C and D has an
important influence on average payoff in one generation. We
use xd denotes the fraction of strategy C among downloaders
while xu denotes the fraction of strategy C in uploaders.
Equation 2 shows expected payoff in one generation for each

TABLE I: Analysis of equilibrium points

Equilibrium point det(J) tr(J) result
xd = 0 xu = 0 + - ESS
xd = 0 xu = 1 + + Not stable
xd = 1 xu = 0 + + Not stable
xd = 1 xu = 1 + - ESS
xd = tu

π−β+tu
xu = td

α−π+td
+ 0 Saddle point

role and each strategy, in which PSi denotes payoff for role i
(downloader or uploader) with strategy S. Therefore, the total
payoff in one generation with for a strategy set S = (Sd, Su)
is PS = PSd

d + PSu
u .
PCd = xu(α− π + td)− td
PDd = 0
PCu = xd(−β + π + tu)− tu
PDu = 0

(2)

Equilibrium Points. From the payoff we list above,
we found: 1) When xu is small, which indicates restricted
resource, nodes trend to shift to strategy D as downloader since
PCd may below 0. Otherwise, cooperation is a better choice. 2)
When xd is small, which indicates inactive downloader group
and few profits for uploaders, nodes trend to shift to strategy D
as uploader since PCd may below 0. Otherwise, continuously
providing download service earns more.

To further analyze this model, we use replicate dy-
namic equations [26]: ẋi = xi[f(xi) − Φ(x)], Φ(x) =∑n
j=1 xjf(xj). xi denotes proportion of a strategy. f is fitness

of a strategy, which equals to payoff analyzed in our model.{
ẋd = xd(1− xd)PCd
ẋu = xu(1− xu)PCu

(3)

To find an Evolutionary Stable Strategy (ESS), the repli-
cator dynamics equation should be equal to 0. Strategy C for
uploader is stable only if xu = 0, 1 or PCu = 0. In the same
way, strategy C for downloader is stable when xd = 0, 1 or
PCd = 0. We can use Jacobian matrix 4 to investigate ESS
in evolutionary game model. Possible equilibrium points are
listed in Table I.

J =

(1− 2xd)[xu(α− π + td)− td],
xd(1− xd)(α− π − td);
xu(1− xu)(−β + λπ + tu),
(1− 2xu)[xd(−β + λπ + tu)− tu]

 (4)

We paint five equilibrium points O(0, 0), A(0, 1),
B(1, 0), C(1, 1), D(xd0, xu0) in one coordinate plate (Fig-
ure 2). From above analysis, the evolutionary game model
has two ESS point: (0,0) and (1,1). Point (tu

π−β+tu ,
td

α−π+td),
denoted by (xd0, xu0), is the saddle point. If initial state
of system locates inside area OADB, system is more likely
to converge to O. Otherwise, system has larger probability
to evolve to C, which indicates cooperation equilibrium. We
notice that free riding (point A) is unstable equilibrium point.

Simulation of evolutionary game. We design a simu-
lation of the evolutionary game (see Algorithm 1), we first
initialize parameters and the original topology of the network.
Each node plays block transfer games with its neighbors. Then

7

sdownloader C of Proportion/dx

up
lo
ad
er
s

 C
of

Pr
op
or
ti
on

/
u

x

O

A

B

)1,1(C

),(00 ud xxD

Fig. 2: Diagram of equilibrium points in evolutionary model.
Points O, A, B, C and D denotes various possible equilibriums
while arrows denotes the path of revolution.

Algorithm 1 Process of evolutionary model

1: Initialize simulation parameters.
2: Initialize topology graph G = 〈P, E〉.
3: Initialize strategy distribution (xd, xu).
4: loop
5: for i ∈ P do
6: for j ∈ E(i) do
7: node i plays game (block transfer process) with

node j.
8: end for
9: end for

10: for i ∈ N do
11: Randomly select node j ∈ E(i).
12: Compute probability of learning process pi→j .
13: end for
14: Update strategy of nodes with probability matrix pi→j .
15: end loop

calculate the payoff for each node, run learning process and
shift strategies for the next generation.

When nodes learn another node’s strategy with a specific
probability at the end of each generation, we apply Fermi
function [27, 28] as evolutionary updating rule. At the end
of each generation, node i learns to follow another node j’s
strategy with probability pi→j :

pi→j =
1

1 + eω(Pi−Pj)

Pi denotes payoff of node i. ω is a selection intensity factor.
The larger the ω is, the faster the system evolves.

In conclusion, if parameters are properly set to make
(xd0, xu0) close to (0, 0) and make sure there are enough
proportion of cooperators at the beginning of the system, the
whole system will converge to overall cooperation and keep
stable in the end. In other words, honest nodes are incentivized
to relay blocks honestly and actively. The simulation of
Algorithm 1 (Section VII-B) proves this analysis.

B. Repeated Game Model for Piece Transfer

Downloader requests a sequence of pieces from one
uploader once the block header is obtained. This procedure
is named as repeated piece transfer. The procedure can be
regarded as a repeated game and one piece is transferred in
each stage. The repeated game is finite but the number of
stages is not common knowledge for both sides.

One stage consists of at least three steps: piece request,
piece response and payment. Both sides take the trigger
strategy: quit protocol in the next stage if the other side
misbehaves. It accords with the reality that rational nodes will
not be cheated twice. In intuition, a greedy downloader can
skip payment step to get a free piece. Note that downloaders
request piece in a randomized order and uploaders cannot
predict at which stage the downloader will quit. Therefore the
repeated game will satisfy the following conditions (denote by
n as the maximum stage of the repeated game):
• In the first t stages, both sides cooperate. t ∈ [0, n].
• At stage t+ 1, either side quits.
• After stage t + 1, both sides quit and the protocol is

terminated.
Cooperation behavior. In classic game theory, similar

to finite repeated prisoner dilemma, such finite repeated game
has Subgame Perfect Equilibrium (SPNE) where both sides
will not cooperate from the beginning. However, participants
are not completely rational. They usually have a belief that
the other side will cooperate at the beginning. With the belief,
nodes are greedy to take the risk to cooperate longer for better
profits. As a result, both sides incline to deviate before the
other side but intend to cooperate as much as they can.

There is a classical learning model which models coop-
eration behavior in finite repeated prisoner dilemma observed
in experiments [29]. Above this classic model, we define our
learning model of repeated piece transfer game, in which
one downloader and one uploader repeatedly play the finite
repeated game (piece transfer game), once in one round.
Downloader has a random demand λ for each round. Both
sides respectively have an intended deviation stage td and tu.
Note that if λ < td, downloader deviates in advance. The
learning process goes as follows:
• If one side observes that the opponent deviated before he

intended to deviate, he has a probability p1 to shift his
intended deviation from t to t− 1.

• If one side observes that the opponent deviated in the
same period as he intended to, he has a probability p2 to
shift his intended deviation from t to t− 1.

• If one side observes that the opponent hadn’t deviate
when he intended to deviate, he has a probability p3 to
shift his intended deviation from t to t+ 1.
From this model, we notice that if td = tu = n, they

all incline to deviate earlier, which represents that downloader
wants to cheat for one free piece and uploader want to avoid
this. When td < tu downloader terminates the protocol so
early that misses more pieces to download. It is same for
uploader when td > tu is observed. If they have the belief
that the other side wants to cooperate longer, intend to shift
their deviation later.

8

Algorithm 2 Process of repeated game model with learning

1: Initialize maximum piece count n, topology graph G =
〈P, E〉 and probability parameters.

2: for i ∈ P do
3: Randomly initialize expected deviations for node i.
4: end for
5: loop
6: for i ∈ P do
7: Randomly initialize a demand of piece within [1, n].
8: Randomly select j from E(i)
9: node i plays game (piece transfer process) as down-

loader with node j.
10: Node i and j updates expected deviation as down-

loader and uploader, respectively.
11: end for
12: end loop

Repeated game with learning. In each round of the
repeated game (see Algorithm 2), each node plays repeated
piece transfer game as a downloader with a random neighbor,
executes learning algorithm and update expected deviation of
the node and the neighbor. In this way, end behavior evolves
through games between the nodes round by round.

According to our simulation results (Section VII-C),
though exchange protocol without TTP can hardly be defi-
nitely fair, the attractive rewards for cooperating makes the
cooperation possible. The learning model shows an evolu-
tion of end behavior, and as a result, nodes can perform
stable cooperation, which means their expected deviation is
dynamically stable around a not small number, after a period
of evolution. Besides, the damage of betraying and fraud is
limited in only one piece. So the potential unfairness in piece
transfer process cannot affect system incentive and overall
performance.

VII. EXPERIMENTS

We have three parts of the experiments. First, we develop
a network simulating environment to evaluate how much
our proposed protocol can speed up block synchronization.
The second experiment is the simulation of the revolution-
ary model, which proves that blockchain-based incentive is
efficient to encourage active and honest block broadcasting.
The third experiment is a simulation of the learning model
introduced by Section VI-B, aiming to see whether nodes can
achieve cooperation in repeated piece transfer.

A. Simulation on Synchronization Efficiency

We simulate a typical P2P network using Network Sim-
ulator 3 (NS3). The network contains 1000 nodes and 5000
links among nodes (10 neighbors for each node on average).
Each link is assigned a predefined link delay randomly with an
average of 100 ms. Also, we set the packet error rate to 0.001%
and bandwidth to 70 Mbps, according to an investigation [30].
We simulate both Bitcoin’s standard block broadcasting and
our proposed block broadcasting. In each execution of the
simulation, we use different size of pieces, generate a 4 MB

0 0.2 0.4 0.6 0.8 1

Proportion of synchronized nodes

0

50

100

150

S
y
c
h
ro

n
iz

a
ti
o
n
 t
im

e
 (

s
)

512 KB

256 KB

128 KB

64 KB

32 KB

16 KB

Fig. 3: Synchronization time with various piece size.

TABLE II: Parameters for simulation of system incentive

Parameter Description Value
|N | Count of nodes 1000
ω Learning coefficient 0.1
α Benefit for downloader 1.6
β Cost for uploader 1
π Payment from downloader to uploader 1.4
td Downloader cost 0.05
tu Uploader cost 0.10

block on one node, propagate the block to the whole network
and record the latency of synchronization.

Figure 3 shows a strong correlation between synchroniza-
tion efficiency and piece size. We use Bitcoin’s standard block
broadcast as the baseline, which spends 571s, 653s, 729s, 930s
to broadcast a 4MB block to 25%, 50%, 75% and 100% nodes,
respectively. Compared with the baseline, block sharding can
speed up the synchronization for 30 times and shorten the time
cost by over 90%. From the simulation, the piece size of 16KB
or 32KB is a wise choice for 4MB block broadcasting.

B. Simulation of System Incentive

We simulate the evolutionary model defined in Sec-
tion VI-A using Algorithm 1. We use the same configures
about network topology as that in Section VII-A.

Simulation parameters. The values of parameter α, β,
td and tu depend on reality. First, we set β = 1 as a standard.
We estimated β much higher than tu and td because one
single failed block transfer will not hurt synchronization when
the network topology is dense. Payment π should be larger
than β and lower than α. We list the parameters in Table II.
Assuming blockchain network is homogeneous, we apply the
same parameters for all nodes.

Results. The simulation results are consistent with the
analysis in Section VI-A. Figure 4 shows that the larger xd and
xu are, the easier convergence to successful All-C equilibrium
is. Also, we can conduct the saddle point showing about 50 %
successful convergence to be around (0.2, 0.2), which is close
to the prediction given by Table I. Under our parameter setting,
if the system has a significant proportion of cooperative nodes,
0.3 for instance, it has over 95% probability to evolve to the
status where all nodes are cooperative for block broadcasting.

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Initial proportion of C downloaders

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
c
o

n
v
e

rg
e

n
c
e

 t
o

 A
ll-

C

x
u
=0.1

x
u
=0.2

x
u
=0.3

x
u
=0.4

x
u
=0.5

x
u
=0.6

(a) Relationship between probability of successful con-
vergence and xd.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Initial proportion of C uploaders

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
c
o

n
v
e

rg
e

n
c
e

 t
o

 A
ll-

C

x
d
=0.1

x
d
=0.2

x
d
=0.3

x
d
=0.4

x
d
=0.5

x
d
=0.6

(b) Relationship between probability of successful con-
vergence and xu.

Fig. 4: Simulation results of evolutionary model on block
transfer process.

TABLE III: Parameters for simulation of repeated piece trans-
fer

Parameter Description Value
n Maxinum number of pieces 100
p1d, p1u Probability parameter of learning model 0.3-0.5, 0.4-0.6
p2d, p2u Probability parameter of learning model 0.2-0.4, 0.1-0.3
p3d, p3u Probability parameter of learning model 0.6-0.8, 0.6-0.8

C. Simulation of Repeated Piece Transfer

We simulate the repeated piece transfer in Section VI-B
with learning process Algorithm 2. We still use the network
topology in Section VII-A.

Parameters. We use the parameters in table III for
learning algorithm described in Section VI-B. It is reasonable
to assume probability parameters p3 > p1 > p2 because nodes
are greedy for more profits and incline to last cooperation
longer. Respectively, p1d, p2d, p3d denotes the parameters for
downloaders and p1u, p2u, p3u is for uploaders. Since nodes
have various characteristics, we use different random values
within a range as the probability parameters for different
nodes. Also, the demand for pieces for each node is randomly
selected within the range of the maximum number of pieces.

Results. If both sides are greedy enough (p3d and p3u are
large enough), the finite repeated game will reach a dynamic
balance point. After 100 rounds of simulation, a significant

0 20 40 60 80 100

Expected deviation for downloaders

0

0.05

0.1

0.15

0.2

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Initial

20 rounds

50 rounds

100 rounds

(a) Probability density of expected deviation for down-
loaders.

0 20 40 60 80 100

Expected deviation for uploaders

0

0.05

0.1

0.15

0.2

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Initial

20 rounds

50 rounds

100 rounds

(b) Probability density of expected deviation for upload-
ers.

Fig. 5: Simulation results of repeated game model on piece
transfer process. The curves present the distribution of ex-
pected deviation after various number of rounds.

proportion of nodes have shifted their intended deviation closer
to a balance point (around 60). This result represents the
cooperation behavior of repeated games. Though the game
doesn’t have a theoretical equilibrium, cooperation exists when
nodes are not completely rational. For example, nodes have a
belief in others’ cooperation behaviors at the beginning. Also,
nodes are greedy for more profits so that the high payoff of co-
operation encourages them to cooperate. Therefore, unfairness
in piece transfer process will not destruct overall cooperation.

VIII. CONCLUSION

In this paper, we proposed an improved block broad-
casting scheme. We use game theoretical models to ana-
lyze the proposed incentive mechanism. Then we carry out
experiments to simulate the analysis. As the result shows,
the payment mechanism between downloaders and uploaders
incentives active broadcasting. Also, the data transfer protocol
is almost fair since the potential unfairness is limited in only
one piece of the file and this will not affect overall system
performance. What is more important, the simulation shows
that our proposed block broadcasting scheme can effectively
speed up synchronization by over 90% in typical Blockchain
P2P network.

10

REFERENCES

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Consulted, 2008.

[2] Marc Pilkington. Blockchain technology: Principles and
applications. Social Science Electronic Publishing, 2015.

[3] Bitcoin improvement proposals.
https://github.com/bitcoin/bips, .
Accessed December 10, 2018.

[4] Joseph Poon and Thaddeus Dryja. The bitcoin light-
ning network: Scalable off-chain instant payments. See
https://lightning. network/lightning-network-paper. pdf,
2016.

[5] Anton Churyumov. Byteball: A decentralized
system for storage and transfer of value, 2016.
https://byteball.org/Byteball.pdf.

[6] The zilliqa technical whitepaper, 2017.
https://docs.zilliqa.com/whitepaper.pdf.

[7] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal
Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 17–30. ACM, 2016.

[8] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 583–598. IEEE, 2018.

[9] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and
Robbert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In NSDI, pages 45–59, 2016.

[10] Bitcoin - open source p2p money.
https://bitcoin.org, . Accessed December
10, 2018.

[11] Christian Decker and Roger Wattenhofer. Information
propagation in the bitcoin network. In Peer-to-Peer
Computing (P2P), 2013 IEEE Thirteenth International
Conference on, pages 1–10. IEEE, 2013.

[12] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos.
The bitcoin backbone protocol: Analysis and applica-
tions. In Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II, pages
281–310, 2015.

[13] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos.
The bitcoin backbone protocol with chains of variable
difficulty. In Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part I, pages 291–323, 2017.

[14] Joan Antoni Donet Donet, Cristina Pérez-Sola, and Jordi
Herrera-Joancomartı́. The bitcoin p2p network. In
International Conference on Financial Cryptography and
Data Security, pages 87–102. Springer, 2014.

[15] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zo-
har. Optimal selfish mining strategies in bitcoin. In
International Conference on Financial Cryptography and

Data Security, pages 515–532. Springer, 2016.
[16] Ittay Eyal and Emin Gün Sirer. Majority is not enough:

Bitcoin mining is vulnerable. Communications of the
ACM, 61(7):95–102, 2018.

[17] Jin Li. On peer-to-peer (p2p) content delivery. Peer-to-
Peer Networking and Applications, 1(1):45–63, 2008.

[18] Yunhua He, Hong Li, Xiuzhen Cheng, Yan Liu, Chao
Yang, and Limin Sun. A blockchain based truthful
incentive mechanism for distributed p2p applications.
IEEE Access, 6:27324–27335, 2018.

[19] Jingzhong Wang, Mengru Li, Yunhua He, Hong Li,
Ke Xiao, and Chao Wang. A blockchain based privacy-
preserving incentive mechanism in crowdsensing appli-
cations. IEEE Access, 6:17545–17556, 2018.

[20] Srijith K Nair, Erik Zentveld, Bruno Crispo, and An-
drew S Tanenbaum. Floodgate: A micropayment in-
centivized p2p content delivery network. In 2008 Pro-
ceedings of 17th International Conference on Computer
Communications and Networks, pages 1–7. IEEE, 2008.

[21] Christian Decker and Roger Wattenhofer. A fast and scal-
able payment network with bitcoin duplex micropayment
channels. In Symposium on Self-Stabilizing Systems,
pages 3–18. Springer, 2015.

[22] Bing Jia, Tao Zhou, Wuyungerile Li, Zhenchang Liu, and
Jiantao Zhang. A blockchain-based location privacy pro-
tection incentive mechanism in crowd sensing networks.
Sensors, 18(11):3894, 2018.

[23] Qingsu He, Yu Xu, Yong Yan, Junsheng Wang, Qingzhi
Han, and Lili Li. A consensus and incentive program for
charging piles based on consortium blockchain. CSEE
Journal of Power and Energy Systems, 4(4):452–458,
2018.

[24] J Weng, Jian Weng, J Zhang, M Li, Y Zhang, and
W Luo. Deepchain: Auditable and privacy-preserving
deep learning with blockchain-based incentive. Techni-
cal report, Cryptology ePrint Archive, Report 2018/679.
2018. Available online: https . . . , 2018.

[25] Yongjun Ren, Yepeng Liu, Sai Ji, Arun Kumar Sangaiah,
and Jin Wang. Incentive mechanism of data storage based
on blockchain for wireless sensor networks. Mobile
Information Systems, 2018, 2018.

[26] Josef Hofbauer and Karl Sigmund. Evolutionary games
and population dynamics /. Cambridge University Press,,
1998.

[27] Arne Traulsen, Martin A Nowak, and Jorge M Pacheco.
Stochastic dynamics of invasion and fixation. Physical
Review E, 74(1):011909, 2006.

[28] Philipp M Altrock and Arne Traulsen. Deterministic evo-
lutionary game dynamics in finite populations. Physical
Review E, 80(1):011909, 2009.

[29] Reinhard Selten and Rolf Stoecker. End behavior in
sequences of finite prisoner’s dilemma supergames a
learning theory approach. Journal of Economic Behavior
& Organization, 7(1):47–70, 1986.

[30] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert Van
Renesse, and Emin Gün Sirer. Decentralization in bitcoin
and ethereum networks. 2018.

