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Abstract

We give the first positive results about instantiability of the widely implemented and standardized RSA-
OAEP encryption scheme of Bellare and Rogaway (EUROCRYPT 1994) and variants under chosen-ciphertext
attack. Recall that RSA-OAEP adds redundancy and randomness to a message before composing two rounds of
an underlying Feistel transform, whose round functions are modeled as random oracles (ROs), with RSA. First,
we show that either of the two oracles (while still modeling the other as a RO) can be instantiated in RSA-
OAEP under IND-CCA2 using mild standard model assumptions. Ours are the first “partial instantiation”
results for RSA-OAEP. We obtain them by exploiting (generalizations of) algebraic properties of RSA proven
by Barthe, Pointcheval, and Báguelin (CCS 2012). Second, we show that both oracles can be instantiated
simultaneously for two variants of RSA-OAEP, called “t-clear” and “s-clear” RSA-OAEP. In particular, we
are the first show positive results for s-clear RSA-OAEP, and our results for it yield the most efficient RSA-
based IND-CCA2 secure scheme (under plausible assumptions) in the standard model to date. We obtain
it by leveraging a new hierarchy of extractability-style assumptions in the sense of Canetti and Dakdouk
(TCC 2010) on the round functions, as well as novel yet plausible “XOR-type” assumptions on RSA. Notably,
our full instantiation results avoid impossibility results of Shoup (J. Cryptology 2002), Kiltz and Pietrzak
(EUROCRYPT 2009), and Bitansky et al. (STOC 2014).
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1 Introduction

In this paper, we show new partial and full instantiations under chosen-ciphertext attack (CCA) for the RSA-
OAEP encryption scheme [12] and some variants. This helps explain why the scheme, which so far has only been
shown to have such security in the random oracle (RO) model, has stood up to cryptanalysis despite the existence
of “uninstantiable” RO model schemes. It also leads to the fastest CCA-secure RSA-based public-key encryption
scheme in the standard model to date. We now discuss some background and motivation before an overview of
our results.

1.1 Background and Motivation

In the random oracle (RO) model of Bellare and Rogaway [11], every algorithm has oracle access to the same truly
random functions. It has been enormously impactful in enabling the design of practical protocols for various goals;
examples include public-key encryption [11, 12], digital signatures [11, 13], and identity-based encryption [26].
In practice, one “instantiates” the oracles, that is, replaces their invocations with invocations of functions with
publicly-available code, resulting in a particular “instantiated” version of protocol. The idea is that in practice
such functions could be appropriately built out of cryptographic hash functions. The RO model thesis is that the
protocol instantiated in that way remains secure in the standard (RO devoid) sense.

The RO model is often thought of as simply a heuristic. However, note that a security model always abstracts
away some details of the system. For example, the standard model abstracts away side-effects of physical com-
putation [55]. In particular, a proof in the RO model does guarantee absence of attacks treating the functions as
black-boxes. But it does not rule out attacks taking advantage of their code in an instantiation of the scheme.
This has been exploited in many works demonstrating complete failure of the RO model thesis, starting with
that of Canetti et al. [33]. That is, these works construct RO model schemes for which any instantiation yields
a scheme that can be broken efficiently in the standard model.

However, the consensus of the community is that such schemes always seem contrived or artificial in some
way. Indeed, RO model schemes that have been standardized and implemented have stood up to tens of years of
cryptanalysis. If the RO model thesis is false, what explains this? This leads to what may be called the practical
RO model thesis: For a “practical” RO model scheme, instantiating it appropriately via a cryptographic hash
function results in a secure scheme in the standard model. However, from a scientific standpoint this thesis is
unsatisfactory because it lacks a definition of “practical.” This shortcoming is the starting point for our work.

1.2 Thesis and Approach

Our thesis. A way to approach this shortcoming is to try to identify what makes schemes like RSA-OAEP [12]
or RSA-PSS [13] “practical” and fall into a class of schemes to which we believe the RO thesis applies. We propose
a functional definition of “practical” and a reformulated practical RO model thesis:

A “practical” RO model scheme is one for which there exist plausible standard model properties of the
constituent functions that suffice to prove security. For these schemes the RO model thesis applies.

According to this thesis, after one proposes what one believes to be a “practical” RO model scheme to which
the RO model thesis applies, one should search for such standard model properties to justify this belief. One may
think that this simply replaces the undefined term “practical” for a scheme with the undefined term “plausible” for
an assumption. But we believe assessing plausibility is more tractable. For example, there may exist a theoretical
construction meeting it under standard assumptions, unlike for a RO (which has no standard-model definition).
Ultimately, plausibility may just amount to being much simpler than just assuming the scheme itself is secure,
and withstanding the test of time. Indeed, this basically describes the “standard” assumptions we have today,
and we believe this set should (and must) grow to include more complex assumptions.

It also seems more likely to obtain plausible assumptions if one sticks to developing standard model notions
tailored to a specific scheme, rather than trying the develop standard model notions that apply to a whole range
of them. Note that the most general forms of assumptions such as correlation intractability (CI) [33] and universal
computational extraction (UCE) [8, 28] have been shown (likely) impossible. But special cases of CI and UCE
which suffice for the schemes considered remain plausible [8, 28, 30]. It is also worth mentioning that there are
impossibility results in the standard model for RSA-OAEP [53] and RSA-FDH, RSA-PSS [39, 38]. However,
these are black-box impossibility results that demonstrate that a proof treating the functions as a black-boxes
cannot suffice. As in other areas of cryptography [3] this motivates looking at non-blackbox assumptions. We
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also emphasize that such proofs can moreover exploit novel properties of functions like RSA that have significant
algebraic structure. We do both in our work and also avoid further impossibility results explained below.

1.3 RSA-OAEP and Ways to Validate its Security

Our goal. In light of the above, we focus our study on a specific scheme, namely RSA-OAEP [12] and try to
justify that it “practical” in the above sense class. Recall that RSA-OAEP encrypts a message as f(s‖t) where
f is the RSA function, where for functions G and H (originally modeled as ROs) we have s = G(r)⊕m‖0ζ for
randomness r ∈ {0, 1}ρ and message m ∈ {0, 1}µ, t = H(s)⊕r. Thus, we ultimately seek plausible standard
model properties of RSA, G, and H that suffice to prove IND-CCA or similar in the standard model (which we
just refer to “security” below). While we ultimately fall short of this goal, we outline two ways in which we make
(what we believe is) substantial progress, these ways having been initiated by prior work (see Section 1.8).

Partial instantiations. One way is to show “partial instantiations” that use a plausible standard model
property for one of G or H, while still modeling the other as a RO. One may wonder what the point of this is,
as security of the scheme is still proven in the RO model. We argue that the RO model is more nuanced, and
viewing a scheme as either proven secure in the RO model or not is selling the scientific value of the model short.
Indeed, ROs are used in different ways in a scheme, and instantiating one them isolates a property it relies on. In
particular, suppose one has partial instantiation results for each of the ROs, as we show for RSA-OAEP. Then an
attacker would need to exploit weakness in the interaction between these functions in order to break the scheme
in standard model. In our eyes this makes an attack much less plausible.

Considering variants. Another way is to prove standard model security of variants of the scheme that fall
“under the same framework.” Again, one may wonder what the point of this, as the schemes differ. We have
a couple answers to this. One is that it can be seen as validating the framework more than simply proving the
original scheme secure in the RO model.It also may lead to new efforts in standardization. Note, however, that
our results for the different variants are incomparable, and t-clear and s-clear RSA-OAEP have longer ciphertext
length than standard RSA-OAEP. So we do not see any reason to move to another scheme at this time. (Maybe
it would be warranted in the future, as our understand of the framework progresses.) Another upshot is that our
results for one of our variants, namely, namely s-clear RSA-OAEP, leads to the most efficient IND-CCA secure
scheme in the standard model (under arguably plausible assumptions). This is of theoretical interest and well
as practical interest. Finally, one can try to reduce instantiating the original scheme to instantiating one of the
variants, following e.g. [1]. We leave an investigation of this matter for future work.

1.4 Using PA + IND-CPA

Using PA + IND-CPA. A common thread running through our analyses is the use of plaintext awareness
(PA) [12, 6, 10]. PA captures the intuition that an adversary who produces a ciphertext must “know” the
corresponding plaintext. It is not itself a notion of privacy, but, at a high level, combined with IND-CPA it
implies IND-CCA. We use this approach to obtain modularity in proofs, isolate assumptions needed, and make
overall analyses more tractable.

Flavors and implications. PA comes in various flavors: PA-RO [6], and PA0, PA1, and PA2 [10]. PA-RO
refers to a notion in the RO model, while PA0, PA1, and PA2 refer to standard model notions that differ in
what extent the adversary can query its decryption or encryption oracles. (In particular, in PA2 the adversary
can query for encryptions of unknown plaintexts.) Similarly, IND-CCA comes in flavors [61, 6]: IND-CCA0,
IND-CCA1, and IND-CCA2. We use that [6, 10] show that IND-CPA + PA-RO implies IND-CCA2 in the RO
model, IND-CPA + PA0 implies IND-CCA1 with one decryption query, IND-CPA + PA1 implies IND-CCA1,
and IND-CPA + PA2 implies IND-CCA2.

1.5 Partial Instantiation Results

High-level approach. We first give partial instantiation results of RSA-OAEP under IND-CCA2. Such results
have been sought after in prior work [29, 20, 21] but have proven negative results or settled for weaker security
notions. The heroes for us here are new generalizations of the notions of “second-input extractability” (SIE)
and “common-input extractability” (CIE) proven by Barthe et al. [4], which we show hold for small-exponent
RSA. SIE says that an RSA image point can be inverted given a part of the preimage, whereas CIE says that
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two RSA images can be inverted if the preimages share a common part. They were used by [4] used these
assumptions to analyze a no-redundancy, one-round version of RSA-OAEP in the RO model. We show these are
useful for analyzing RSA-OAEP more generally. An interesting aspect of our results here is that while SIE and
CIE provably hold for small-exponent RSA, they may indeed hold for larger e; at least, we cannot disprove it. We
conjecture this is different from the case of “lossiness” [59] of RSA shown in [52], which requires large e. (That
is, we conjecture lossiness cannot hold for small e.)

Results and intuition. Namely, we show partial instantiations of both oracles G,H under very mild assump-
tions on the round functions — roughly, that G is a pseudorandom generator and H is a hardcore function for
RSA, respectively — in both cases assuming RSA is SIE and CIE. We first prove IND-CPA security in these
cases. Interestingly, the instantiation of G under IND-CPA uses that RSA is SIE while the instantiation of H
does not, the intuition being that in the latter case we assume H is a hardcore function so its output masks
r ∈ {0, 1}ρ used in the challenge ciphertext unconditionally. Now for PA-RO, in both cases we use SIE and CIE.
These notions fit in perfectly: SIE allows the extractor to decrypt a fresh ciphertext the adversary creates, while
CIE handles the case of a mauled version of a ciphertext received from the encryption oracle.

1.6 Full Instantiation Results

High-level approach. We next give full instantiation results for two variants of RSA-OAEP, called t-clear
and s-clear RSA-OAEP. Prior results on t-clear RSA-OAEP [21] showed only partial instantiations or relatively
weak security notions, and s-clear RSA-OAEP was only considered indirectly by Shoup [65] for negative results.
In t-clear RSA-OAEP, a message is encrypted as f(s1)‖s2‖t where f is the RSA function s1‖s2 = G(r)⊕m‖0ζ
for randomness r ∈ {0, 1}ρ and message m ∈ {0, 1}µ, t = H(s1‖s2)⊕r. Here we divide s into s1‖s2, where
s2 ∈ {0, 1}ζ , so the name “t-clear” while consistent with prior work [21], is somewhat of a misnomer. On the
other hand, in s-clear RSA OAEP a message is encrypted as s‖f(t). One of the heroes for us here is a hierarchy
of “extractability” notions we define and assume for the round functions, called EXT-RO, EXT0, EXT1, EXT2,
roughly paralleling PA-RO, PA0, PA1, PA2 respectively, and significantly generalizing prior work [31, 32]. Besides
this parallel, our generalizations consider adversaries that output only part of an image point or an image point
along with part of a pre-image. In the case of s-clear, another hero is a family of new“XOR-type” assumptions
we introduce, speaking to the fact that XOR “breaks” up the multiplicative structure of RSA. We make several
remarks about our results, particularly how they avoid known impossibility results, before detailing them:

• Extractability is a non-blackbox assumption (saying for every adversary there exists a non-blackbox “ex-
tractor”) so we avoid the impossibility result of Kiltz and Pietrzak [53].

• While extractability of H would prima facie be false, we use it only in a plausible way for a cryptographic
hash function. Namely, the adversary also outputs part of the preimage. Extractability assumptions we use
on G, even where the adversary outputs only part of an image point, remain plausible as it is an expanding
function with a sparse range (usually constructed something like G(x) = (H(0‖x)‖H(1‖x), . . .).

• For extractability we use only bounded key-independent auxiliary input (basically, the keys for the other
functions in the scheme), so we avoid the impossibility result of Bitansky et al. [17]. Moreover, the key-
dependent auxiliary information is just one image query (at least in the proof of IND-CCA2).

• Our “XOR-type” assumptions on RSA avoid a negative result of Shoup [65], showing that there is in attack
if the general trapdoor permutation is “XOR-malleable.”1

• We typically use the various forms of extractability in combination with (at least) collision-resistance,
so that the extractor returns the “right” preimage. The collision-resistant construction of [56] based on
knowledge assumptions, albeit where the adversary outputs the entire image point, is on the lowest level of
our hierarchy (EXT0); furthermore, it is not known to work when the adversary outputs part of the image
point. Any theoretical constructions for higher levels (EXT1, EXT2) are similarly open.

Results and intuition for t-clear. Our results for t-clear RSA-OAEP are weaker than those for s-clear
RSA-OAEP. First, for t-clear we prove IND-CPA for random, public key independent messages, under mild

1In more detail, note that for s-clear the “overall” TDP (including the part output in the clear) is not partial one-way [44] so
their security proof does not apply. In fact, Shoup [65] considers the scheme in his proof that RSA-OAEP is not IND-CCA2-secure
for general one-way TDPs, exhibiting the above-mentioned attack.
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assumptions on the round functions, namely that H is a hardcore function for RSA and G is a pseudorandom
generator. Intuitively, the high-entropy requirement come from the fact that the adversary attacking H needs
to know r to prepare its challenge ciphertext, so the randomness of the input to H needs to come from m. (We
could avoid it using the stronger assumption of UCE as per the result of [?].) Furthermore, m needs to be
public-key independent so as to not bias the output. Then we can prove PA0 based on forms of EXT0 for G and
H, the intuition being that the plaintext extractor first extracts from the part G(r) that is left in clear by the
redundancy to get r and then runs the extractor for H on t⊕r from which it can compute m, with the above part
of the pre-image to get s. Note that when running the extractor here and below we have to be careful that the
constructed extractor uses the same coins as the starting one for consistency (that is, otherwise we won’t end up
with the right extractor). We can also prove PA1, although we have to make an extractability directly on the
padding scheme.2 Interestingly, even this approach does not work for PA2, which we leave completely open for
t-clear (cf. Remark 7.6).

Results and intuition for s-clear. We find s-clear is much more friendly to a full instantiation by making
novel but plausible assumptions on RSA. One is XOR-nonmalleability (XOR-NM), saying that from F(x) it is
hard to find some F(x′) and z such that z = x⊕x′. Another is XOR-indistinguishability (XOR-IND), saying
for random x and adversarially-chosen z one cannot tell F(x) from F(x⊕z) given “hint” G(x). In our results, G
is a PRG, which we show also implies G is a HCF for F . So, the notion can be viewed as an extension of the
classical notion of HCF. In fact, we use XOR-IND just to show IND-CPA. The intuition is that allows breaking
the dependency of s in the input to OAEP with the input to RSA. The proofs of PA0 and PA1 are very similar,
and showcase one reason s-clear is much more friendly to a full instantiation, namely it heavily depends on the
extractability of G. That is, if G is suitably extractable, the plaintext extractor can simply recover r and then
compute the plaintext as s⊕G(r). For PA2, one has to be careful as when the adversary makes an encryption
query, the plaintext extractor should call the image oracle for G, where in addition to G(x) for random x it
receives the hint of RSA on x. We show that if RSA is XOR-IND then this implies the adversary can get the
whole ciphertext as a hint to simulate the encryption oracle. Then we also have the worry about the adverary
querying “mauled” ciphertexts to the extract oracle. Intuitively, if the r-part is the same then it cannot run the
extractor for G, but we show this violates XOR-NM of RSA. On the other hand, if the s-part is the same then
we cannot break XOR-NM but this creates a collision for G.

1.7 Discussion and Perspective

We summarize and compare our results to prior work in Figure 1. Note that we get a lot of mileage from
assuming the trapdoor permutation is specifically RSA, whereas prior work, which has mostly shown negative
results CCA-style security notions, went for a general approach. We also highlight that while our assumptions on
both RSA and the round functions for our full instantiability results are expectedly stronger than what we need
for partial instantiations, they still compare favorably to prior work. In particular, while our assumption of EXT2
for G in our s-clear result is already “PA2-flavored,” prior work such as [21] made CCA-style assumptions on
the round functions even to obtain relatively weak notions of non-malleability. Such “adaptive” security notions
on lower-level primitives have indeed been useful in other contexts [58, 51]. Plus, it is not clear how to get an
IND-CCA2 encryption scheme from EXT2 functions in a simpler way.

1.8 Related Work

RO model results. Results about security of f -OAEP for an abstract TDP f and RSA-OAEP in the RO
model were shown in [12, 65, 44]. Ultimately, these works showed RSA-OAEP is IND-CCA2 secure in the RO
model, but with a loose security reduction. Interestingly, Shoup [65] considers s-clear RSA-OAEP indirectly in a
negative result about RSA-OAEP with a general one-way TDP. Security of t-clear RSA-OAEP (under the name
“RSA-OAEP++‘’) has been analyzed in the RO model by Boldyreva, Imai and Kobara [22], who show tight
security in the multi-challenge setting.

Partial instantiation results. Canetti [29] conjectured that his notion of perfectly one-wayness sufficed to
instantiate one of the two oracles in F-OAEP. This was disproved in general by Boldyreva and Fischlin [20],
but their results do not contradict ours because they use a contrived TDP F . Subsequently, Boldyreva and
Fischlin [21] gave partial instantiations for t-clear F-OAEP under stronger assumptions on the round functions.

2At a very high level, we can prove EXT0 of G,H implies EXT0 for the padding scheme, but we do not know how to do this for
EXT1 because of an “extractor blow-up” problem.
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Scheme Assumptions on OAEP Assumptions on F Security Size Ref

RSA-OAEP G : PRG and H : RO OW, SIE and CIE IND-CCA2 n Section 3

RSA-OAEP G : RO and H : PHCF OW, SIE and CIE IND-CCA2 n Section 3

RSA-OAEP G : t-wise independent Lossy TDP IND-CPA n [52]

RSA-OAEP G,H : UCE OW IND-CPA-KI n [8]

RSA-OAEP G : PRG, EXT0 and NCR OW $IND-CCA0-KI 3n+ 3k Section 6

t-clear H : HCF, EXT0 and CR

RSA-OAEP OAEP : EXT1 and NCR OW $IND-CCA1-KI 3n+ 3k Section 6

t-clear G : PRG and H : HCF

RSA-OAEP G : PRG and NCR OW IND-CCA2 n+ k [21]

t-clear H : RO

RSA-OAEP G : RO OW IND-CCA2 n+ k [21]

t-clear H : NM PRG with hint

RSA-OAEP G : PRG and NCR OW $NM-CPA n+ k [21]

t-clear H : NM PRG with hint

RSA-OAEP G : PRG, EXT1 and NCR XOR-IND0 IND-CCA1 2n+ k + µ Section 7

s-clear

RSA-OAEP G : PRG, EXT2 and NCR XOR-IND1,2 IND-CCA2 2n+ k + µ Section 7

s-clear H : CR and XOR-NM0

Figure 1: Instantiability results for RSA-OAEP sorted by scheme variant, where n is modulus length, k is the
security parameter, and µ is message length. Typically n = 2048, k = 128, and µ = 128.

Full instantiation results. Brown [27] and Paillier and Villar [57] showed negative results for proving
RSA-OAEP is IND-CCA secure in restricted models, and Kiltz and Pietrzak [53] showed a general black-box
impossibility results. As mentioned above, their results do not contradict ours because we use non-blackbox
assumptions. Moving to weaker notions, Kiltz et al. [?] show IND-CPA security of RSA-OAEP using lossiness [59],
while Bellare, Hoang, and Keelveedhi [8] show RSA-OAEP is IND-CPA secure for public-key independent messages
assuming the round functions meet their notion of universal computational extraction. Boldyreva and Fischlin [21]
show a weak form of non-malleability for t-clear F-OAEP, again using very strong assumptions on the round
functions. Lewko et al. [54] show IND-CPA security of the RSA PKCS v1.5 scheme, with the bounds later being
corrected and improved by Smith and Zhang [66].

Candidate instantiability assumptions. General notions for function families geared towards instantiating
ROs that have been proposed include correlation intractability [33, 30], extractable hash functions [31, 32, 15, 17],
perfect one-wayness [29, 34, 42], seed incompressibility [48], non-malleability [19, 2], and universal computational
extraction (UCE) [8, 28, 9]. Again, note that the most general forms of several of these notions, namely correlation
intractability and extractable hash functions have been shown to be (likely) impossible. We avoid such general
impossibility results in our work by focusing on a specific scheme.

1.9 Organization

In Section 2, we give the preliminaries. In Section 3, we formalize the algebraic properties of RSA we use and our
partial instantiation results for RSA-OAEP. In Section 4, we give a new hierarchy of extractable functions. In
Section 5, we abstract out some properties of the OAEP padding scheme we use. Then, in Section 6 we give new
notions of high-entropy messages security for public-key randomized encryption and our full instantiation results
for t-clear RSA-OAEP. Finally, in Section 7 we give novel “XOR-type” assumptions on RSA and combine them
with the above to give our full instantiation result s-clear RSA-OAEP.

2 Preliminaries and Some Generalizations

We overview notations and definitions we use that are mostly from prior work.
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Game IND-ATKA
PKE(k)

b←$ {0, 1} ; (pk , sk)←$ Kg(1k)

(M0,M1, state)←$A
O1(·)
1 (1k, pk)

mb←$Mb(1
k, pk)

c←$ Enc(pk ,mb)

d←$A
O2(·)
2 (pk , c, state)

Return (b = d)

Figure 2: Game to define IND-ATK security.

2.1 Notation and Conventions

For a probabilistic algorithm A, by y←$A(x) we mean that A is executed on input x and the output is assigned
to y. We sometimes use y ← A(x; r) to make A’s random coins explicit. We denote by Pr

[
A(x) = y : x←$X

]
the

probability that A outputs y on input x when x is sampled according to X. We denote by [A(x)] the set of possible
outputs of A when run on input x. The security parameter is denoted k ∈ N. Unless otherwise specified, all
algorithms must run in probabilistic polynomial-time (PPT) in k, and an algorithm’s running-time includes that
of any overlying experiment as well as the size of its code. Integer parameters often implicitly depend on k. The
length of a string s is denoted |s|. We denote by s|ji the i-th least significant bits (LSB) to j-th least significant bits
of s (including the i-th and j-th bits), where 1 ≤ i ≤ j ≤ |s|. For convenience, we denote by s|` = s|`1 the ` least

significant bits of s and s|` = s||s||s|−` the ` most significant bits (MSB) of s, for 1 ≤ ` ≤ |s|. We write PX for the

distribution of random variable X and PX(x) for the probability that X puts on value x, i.e. PX(x) = Pr[X=x].
We denote by U` the uniform distribution on {0, 1}`. We write US for the uniform distribution on the set S.
Vectors are denoted in boldface, for example x. If x is a vector then |x| denotes the number of components of x
and x[i] denotes its i-th component, for 1 ≤ i ≤ |x|. For convenience, we extend algorithmic notation to operate
on each vector of inputs component-wise. For example, if A is an algorithm and x,y are vectors then z←$A(x,y)
denotes that z[i]←$A(x[i],y[i]) for all 1 ≤ i ≤ |x|. Let X be a random variable taking values on a common finite
domain. The min-entropy of a random variable X is H∞(X) = − log(maxx Pr [X = x ]).

2.2 Public-Key Encryption and its Security

Public-key encryption. A public-key encryption scheme PKE with message space Msg is a tuple of algorithms
(Kg,Enc,Dec). The key-generation algorithm Kg on input 1k outputs a public key pk and matching secret
key sk . The encryption algorithm Enc on inputs pk and a message m ∈ Msg(1k) outputs a ciphertext c. The
deterministic decryption algorithm Dec on inputs sk and ciphertext c outputs a message m or ⊥. We require that
for all (pk , sk) ∈ [Kg(1k)] and all m ∈ Msg(1k), Dec(sk , (Enc(pk ,m)) = m with probability 1.

Security of public-key encryption [46, 62]. Let PKE = (Kg,Enc,Dec) be a public key encryption scheme
and A = (A1, A2) be an adversary. LetM be a PPT algorithm that takes inputs 1k and a public key pk to return
a message m ∈ Msg(1k). For ATK ∈ {CPA, CCA1, CCA2 } we associate the experiment in Figure 2 for every
k ∈ N. Define the ind-atk advantage of A against PKE as

Advind-atk
PKE,A (k) = 2 · Pr

[
IND-ATKA

PKE(k)⇒ 1
]
− 1 .

If atk = cpa, then O1(·) = ε, and O2(·) = ε. We say PKE is secure under chosen-plaintext attack (IND-CPA) if

Advind-cpa
PKE,A (k) is negligible in k for all PPT A.

Similarly, if atk = cca1, then O1(·) = Dec(sk , ·), and O2(·) = ε; if atk = cca2, then O1(·) = Dec(sk , ·), and
O2(·) = Dec(sk , ·). In the case of cca2, A2 is not allowed to ask O2 to decrypt c. We say that PKE is secure under
non-adaptive chosen-ciphertext attack or IND-CCA1 (resp. adaptive chosen-ciphertext attack or IND-CCA2), if
Advind-cca1

PKE,A (k) (resp. Advind-cca2
PKE,A (k)) is negligible in k for all PPT A.

PA-RO security. We first define plaintext-awareness in the RO model following [7], which builds on the
definition in [12]. Note that PA-RO combined with IND-CPA security is strictly stronger than IND-CCA2
security in general. Let PKE = (Kg,Enc,Dec) be a public key encryption scheme and let M be a PPT algorithm
that takes as inputs 1k and a public key pk , and outputs a message m ∈ Msg(1k). To adversary A and extractor
Ext, we associate the experiment in Figure 3 for every k ∈ N. We say that PKE is PA-RO secure if for every PPT
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Game PA-ROA,Ext
PKE (k)

b←$ {0, 1} ; i← 1 ; j ← 1

(pk , sk)←$ Kg(1k)

b′←$ARO(·,1),Enc(pk,·),D(sk,·)(pk)

Return (b = b′)

Procedure RO(x, i)

If H[x] = ⊥ then H[x]←$ {0, 1}`

If i = 1 then

x[j]← x ; h[j]← H[x] ; j ← j + 1

Return H[x]

Procedure Enc(pk ,M)

m←$M(1k, pk)

c←$ EncRO(·,2)(pk ,m)

c[i]← c ; i← i+ 1

Return c

Procedure D(sk , c)

If c ∈ c then return ⊥
m0 ← Dec(sk , c)

m1←$ ExtRO(·,3)(x,h, c, c, pk)

Return mb

Figure 3: Game to define PA-RO security.

Game PA1A,ExtPKE (k)

b←$ {0, 1}
(pk , sk)←$ Kg(1k)

r←$ Coins(1k)

state ← (pk , r)

b′ ← AD(sk,·)(pk ; r)

Return (b = b′)

Procedure D(sk , c)

m0 ← Dec(sk , c)

(m1, state)←$ Ext(state, c)

Return mb

Figure 4: Games to define PA1 security.

adversary A there exists an extractor Ext such that

Advpa-ro
PKE,A,Ext(k) = 2 · Pr

[
PA-ROA,Ext

PKE (k)⇒ 1
]
− 1 .

is negligible in k.

Remark 2.1 Our definition of plaintext awareness in the random oracle model differs from the definition given
in [7] in the following way. In our definition, we are giving the extractor access to the random oracle. We observe
that the analogous result of [7, Theorem 4.2] that IND-CPA and PA-RO together imply IND-CCA2 still holds for
our modified definition, since in the proof the IND-CPA adversary could query its own random oracle to answer
to the random oracle queries of the extractor.

We now turn to definitions of plaintext awareness in the standard model, following [10].

PA1 security. Let PKE = (Kg,Enc,Dec) be a public key encryption scheme. To adversary A and extractor
Ext, we associate the experiment in Figure 4 for every k ∈ N. We say that PKE is PA1 secure if for every PPT
adversary A with coin space Coins there exists an extractor Ext such that,

Advpa1
PKE,A,Ext(k) = 2 · Pr

[
PA1A,ExtPKE (k)⇒ 1

]
− 1 .

is negligible in k.

PA0 security. We define PA0 similarly to PA1, except A is only allowed to make a single oracle query. Let
PA0 be the corresponding experiment, and define

Advpa0
PKE,A,Ext(k) = 2 · Pr

[
PA0A,ExtPKE (k)⇒ 1

]
− 1 .

We say PKE is PA0 secure if for every PPT adversary A there exists an extractor Ext such that Advpa0
PKE,A,Ext(k)

is negligible in k.

PA2 security. Let PKE = (Kg,Enc,Dec) be a public-key encryption scheme. To adversary A and extractor
Ext, we associate the experiment in Figure 5 for every k ∈ N. We say that PKE is PA2 secure if for every PPT
adversary A there exists an extractor Ext such that,

Advpa2
PKE,A,Ext(k) = 2 · Pr

[
PA2A,ExtPKE (k)⇒ 1

]
− 1 .
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Game PA2A,ExtPKE (k)

(pk , sk)←$ Kg(1k)

b←$ {0, 1} ; i← 1

r←$ Coins(k)

state ← (pk , r)

b′ ← AD(sk,·),Enc(pk,·)(pk ; r)

Return (b = b′)

Procedure D(sk , c)

If c ∈ c then return ⊥
m0 ← Dec(sk , c)

(m1, state)←$ Ext(state, c, c)

Return mb

Procedure Enc(pk ,M)

m←$M(1k, pk)

c←$ Enc(pk ,m)

c[i]← c ; i← i+ 1

Return c

Figure 5: Games to define PA2 security.

is negligible in k.

Remark 2.2 Our PA2 definition comes from [10]. Other than PA1 adversary, we will give PA2 adversary extra
access to encryption oracle. This models the ability IND-CCA2 adversary obtains ciphertext without knowing
the randomness.

2.3 Trapdoor Permutations and Their Security

Trapdoor permutations. A trapdoor permutation family with domain TDom is a tuple of algorithms F =
(Kg,Eval, Inv) that work as follows. Algorithm Kg on input a unary encoding of the security parameter 1k outputs
a pair (f, f−1), where f : TDom(k)→ TDom(k). Algorithm Eval on inputs a function f and x ∈ TDom(k) outputs
y ∈ TDom(k). We often write f(x) instead of Eval(f, x). Algorithm Inv on inputs a function f−1 and y ∈ TDom(k)
outputs x ∈ TDom(k). We often write f−1(y) instead of Inv(f−1, y). We require that for any (f, f−1) ∈ [Kg(1k)]
and any x ∈ TDom(k), f−1(f(x)) = x. We call F an n-bit trapdoor permutation family if TDom = {0, 1}n. We
will think of the RSA trapdoor permutation family [63] n-bit for simplicity, although its domain is Z∗N for an
n-bit integer N . Additionally, for convenience we define the following. For an ν-bit trapdoor permutation family
F and ` ∈ N, we define F|` = (Kg|`,Eval|`, Inv|`) as the (ν+ `)-bit trapdoor permutation families such that for all
k ∈ N, all (f |`, f−1|`) ∈ [Kg|`(1k)], and all x ∈ {0, 1}ν+`, we have f |`(x) = f(x|n−`)‖x|`, and analogously for F|`.

One-wayness. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain TDom. We say F is
one-way if for every PPT inverter I:

Advowf
F,I(k) = Pr

(f,f−1)←$ Kg(1k)
x←$ TDom(k)

[
x′ ← I(f, f(x))

x′ = x

]
.

is negligible in k.

Partial one-wayness. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain TDom. We say
F is ζ-partial one way if for every PPT inverter I:

Advpow
F,I (k) = Pr

(f,f−1)←$ Kg(1k)
x←$ TDom(k)

[
x′ ← I(f, f(x))

x′ = x|ζ
]
.

is negligible in k. It is shown in [43] that for RSA one-wayness implies partial one-wayness but the reduction is
lossy.

2.4 Function Families and Associated Security Notions

Function families. A function family with domain F.Dom and range F.Rng is a tuple of algorithms F = (KF , F )
that work as follows. Algorithm KF on input a unary encoding of the security parameter 1k outputs a key KF .
Deterministic algorithm F on inputs KF and x ∈ F.Dom(k) outputs y ∈ F.Rng(k). We alternatively write F as
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Game PRG-DISTAG (k)

b←$ {0, 1}
KG←$KG(1k) ; x←$ GDom(k)

r0 ← G(KG, x) ; r1←$ GRng(k)

b′←$A(KG, rb)

Return (b = b′)

Figure 6: Games to define PRG-DIST security.

a function F : KF × F.Dom → F.Rng. We call F an `-injective function if for all distinct x1, x2 ∈ F.Dom(k) and
KF ∈ [KF (1k)], we have F (KF , x1)|` 6= F (KF , x2)|`.

Collision resistance. Let H : KH ×HDom→ HRng be a function family. We say H is collision resistant (CR)
if for any PPT adversary A:

Advcr
H,A(k) = Pr

KH ←$KH(1k)

[
(x1, x2)← A(KH)
x1, x2 ∈ HDom(k)

∧ H(KH , x1) = H(KH , x2)
x1 6= x2

]
.

is negligible in k. Again, this is a standard notion that can be realized in a variety of ways, in particular it is one
of the basic properties believed for cryptographic hash function.

Near-collision resistance. Let H : KH × HDom → HRng be a function family. For ` ∈ N, we say H is
near-collision resistant with respect to `-least significant bits of the outputs (NCR`) if for any PPT adversary A:

Advn-cr`
H,A (k) = Pr

KH ←$KH(1k)

[
(x1, x2)← A(KH)
x1, x2 ∈ HDom(k)

∧ H(KH , x1)|` = H(KH , x2)|`
x1 6= x2

]
.

is negligible in k. We note that our definition differs slightly from [21] as both x1, x2 are adversarially chosen. In
terms of feasibility, the same construction based on one-way permutations given in [21] works in our case as well.
Similarly, we define NCR` where the adversary try to find collision on the `-most significant bits of the output.

Pseudorandom generators. Let G : KG×GDom→ GRng be a function family. To adversary A, we associate
the experiment in Figure 6 for every k ∈ N. We say that G is a pseudorandom generator if for every PPT
adversary A,

Advprg
G,A(k) = 2 · Pr

[
PRG-DISTAG (k)⇒ 1

]
− 1 .

is negligible in k. This is a standard notion in theory and can be heuristically constructed from a cryptographic
hash function in straightforward ways.

Pseudorandom generators with image verifier. Let G : KG × GDom → GRng be a function family.
Pseudorandom generators with `-bit image verifier is similar to pseudorandom generator except we will give
adversary A with oracle access to V`, where V` is an `-bit image verifier that on input y works as follows:

V`(y) =

{
1 if ∃x : y = G(KG, x)|`
0 otherwise

.

Note that adversary A is not allowed to query for the challenge to the image verifier oracle. We say that G is a
pseudorandom generator with `-bit image verifier (VPRG`) if for every PPT adversary A,

Adv
vprg`
G,A (k) = 2 · Pr

[
VPRG-DISTAG (k)⇒ 1

]
− 1 .

is negligible in k. In our results we do not require V` to be efficient, so they are (we believe) plausible for
constructions based on cryptographic hash functions. It is weaker than the “adaptivity” assumption made in [58].

Hardcore functions. We define a notion of hardcore functions for non-uniform, correlated distributions as
in [45], but we extend it to consider auxiliary input as well. Let F = (Kg,Eval, Inv) be a one-way trapdoor
permutation family with domain TDom. Let H : KH × TDom → HRng be a function family. For k ∈ N, let
X(k) be a distribution on input vector in TDom(k) and auxiliary information α ∈ {0, 1}∗. To attacker A and
distribution X(k), we associate the experiment in Figure 7 for every k ∈ N. We say that H is a hardcore function
for the trapdoor permutation family F on a family of such distributions X if for every X(k) ∈ X(k) and for every
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Game HCF-DISTA,XF,H(k)

b←$ {0, 1}
KH ←$KH(1k) ; (f, f−1)←$ Kg(1k)

(x, α)←$ X(k) ; h0 ← H(KH ,x)

h1←$ (HRng(k))×|x|

b′←$A(KH , f, f(x), α,hb)

Return (b = b′)

Figure 7: Games to define HCF-DIST security.

Game PHCF-DISTAF,H(k)

b←$ {0, 1}
KH ←$KH(1k) ; (f, f−1)←$ Kg(1k)

x←$ {0, 1}n ; h0 ← H(KH , x|`)
h1←$ HRng(k)

b′←$A(KH , f, f(x), x|n−`, hb)
Return (b = b′)

Figure 8: Games to define PHCF-DIST security.

PPT adversary A,

Advhcf
F,H,X,A(k) = 2 · Pr

[
HCF-DISTA,XF,H(k)⇒ 1

]
− 1 .

is negligible in k. For messages drawn from a block-source, if F is sufficiently lossy in the sense of [60] then a
universal hash function meets this notion. Additionally, a 2t-wise independent function meets this notion for t
arbitrarily correlated, high-entropy messages if F loses a 1− o(1) fraction of its input. It is an open problem to
construct such a hardcore function for an unbounded number of arbitrarily correlated, high-entropy messages.
However, we see it as plausible that a cryptographic hash function meets this definition.

Partial hardcore functions. For convenience, we also generalize the notion of hardcore function in the
following way. Let F = (Kg,Eval, Inv) be n-bit trapdoor permutation family. Let H : KH × {0, 1}n−` → HRng be
a function family, for some ` < n. To attacker A, we associate the experiment in Figure 8 for every k ∈ N. We
say that H is a `-partial hardcore function for the trapdoor permutation family F if for every PPT adversary A,

Advphcf
F,H,A(k) = 2 · Pr

[
PHCF-DISTAF,H(k)⇒ 1

]
− 1 .

is negligible in k. Note if (f(x), x|n−`) is a one-way function of x, then H is a `-partial hardcore function for F
when H is a computational randomness extractor [37]. This is plausible for the case that F is RSA when n − `
is small enough that Coppersmith’s techniques do not apply. This means n− ` ≤ n(e− 1)/e− log 1/ε such that
N ε ≥ 2k for security parameter k.

2.5 The OAEP Framework

Padding scheme. We define a general notion of padding scheme following [12, 53]. For ν, ρ, µ ∈ N, the associated
padding scheme is a triple of deterministic algorithms PAD = (Π,PAD,PAD−1) defined as follows. Algorithm Π
on input a unary encoding of the security parameter 1k outputs a pair (π, π̂) where π : {0, 1}µ+ρ → {0, 1}ν and
π̂ : {0, 1}ν → {0, 1}µ∪{⊥} such that π is injective and for all m ∈ {0, 1}µ and r ∈ {0, 1}ρ we have π̂(π(m‖r)) = m.
Algorithm PAD on inputs π and m ∈ {0, 1}µ outputs y ∈ {0, 1}ν . Algorithm PAD−1 on inputs a mapping π̂ and
y ∈ {0, 1}ν outputs m ∈ {0, 1}µ or ⊥.

Padding-based encryption. Let PAD be a padding transform from domain {0, 1}µ+ρ to range {0, 1}ν . Let
F be a TDP with domain {0, 1}ν . The associated padding-based encryption scheme is a triple of algorithms
PAD[F ] = (Kg,Enc,Dec) defined in Figure 9.

OAEP padding scheme. We recall the OAEP padding scheme [12]. Let message length µ, randomness length
ρ, and redundancy length ζ be integer parameters, and ν = µ + ρ + ζ. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ
and H : KH × {0, 1}µ+ζ → {0, 1}ρ be function families. The associated OAEP padding scheme is a triple of
algorithms OAEP[G,H] = (KOAEP,OAEP,OAEP

−1) defined as follows. On input 1k, KOAEP returns (KG,KH)
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Kg(1k)

(π, π̂)←$ Π

(f, f−1)←$ Kg(1k)

pk ← (π, f)

sk ← (π̂, f−1)

Return (pk , sk)

Enc(pk ,m||r)
(π, f)← pk

y←$ π(m||r)
c← f(y)

Return c

Dec(sk , c)

(π̂, f−1)← pk

y ← f−1(c)

m← π̂(y)

Return m

Figure 9: Padding based encryption scheme PAD[F ] = (Kg,Enc,Dec).

Algorithm OAEP(KG,KH )(m‖r)
s← (m‖0ζ)⊕G(KG, r)

t← r⊕H(KH , s)

x← s‖t
Return x

Algorithm OAEP−1
(KG,KH )(x)

s‖t← x

r ← t⊕H(KH , s)

m′ ← s⊕G(KG, r)

If m′|ζ = 0ζ return m′|µ

Else return ⊥

Figure 10: OAEP padding scheme OAEP[G,H].

where KG←$KG(1k) and KH ←$KH(1k), and OAEP,OAEP−1 are as defined in Figure 10.

OAEP encryption scheme and variants. Slightly abusing notation, we denote by OAEP[G,H,F ] the OAEP-
based encryption scheme F-OAEP with n = ν. We also consider two other OAEP-based encryption schemes,
called t-clear and s-clear F-OAEP, and denoted OAEPt-clear[G,H,F|ζ+ρ] and OAEPs-clear[G,H,F|µ+ζ ]. Here
n = µ and n = ρ, respectively. We often write OAEPt-clear and OAEPs-clear instead of OAEPt-clear[G,H,F|ζ+ρ] and
OAEPs-clear[G,H,F|µ+ζ ]. We typically think of F as RSA, and all our results apply to this case under suitable
assumptions. Note that, following prior work, despite its name t-clear F-OAEP we actually apply F to only the
µ most significant bits of the output of the underlying padding scheme, leaving the redundancy part of s in the
clear as well.

Remark 2.3 While [21, 23] consider OAEPt-clear, we are the first to think of OAEPs-clear. At first sight, it may
seem odd to consider this variant as the H-query used in creating a ciphertext is revealed in the clear, and the
result of [44] that the scheme is IND-CCA2 could not be applied because the “overall” trapdoor permutation (i.e.,
the trapdoor permutation that outputs part of the input directly) applied to the transform’s output is no longer
partial one-way. Surprisingly, we are able to show IND-CCA2 security in the standard model of this variant under
novel assumptions on F that are plausible for RSA.

3 Partial Instantiation Results for RSA-OAEP

In this section, we give partial instantiations of either G or H for RSA-OAEP under IND-CCA2. Our results use
only mild standard model properties of G or H. They also use (generalizations of) algebraic properties of RSA
proven by Barthe et al. [4] for small enough e. For example, using a 2048-bit modulus and encrypting a 128-bit
AES key, our results hold for e = 3. They may be true for larger e; at least, we do not know how they can be
disproved. Note that our results first necessitate a separate proof of IND-CPA — the standard model IND-CPA
results of Kiltz et al. [52] and Bellare et al. [8] are not suitable, the first requiring large e and the second holding
only for public-key independent messages.

3.1 Algebraic Properties of RSA

We first give the (generalizations of) algebraic properties of RSA from Barthe et al. [4] that we use and their
parameters. Note that they used these assumptions to analyze security of a zero-redudancy one-round version of
RSA-OAEP. We show these are useful for analyzing security of RSA-OAEP more generally.

Second-input extractability. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain {0, 1}n.
For 1 ≤ i ≤ j ≤ n, we say F is (blackbox) (i, j)-second-input-extractable (BB (i, j)-SIE) if there exists an efficient
extractor E such that for every k ∈ N, every f ∈ [Kg(1k)], and every x ∈ {0, 1}n, extractor E on inputs
f, f(x), x|ji+1 outputs x. We often write ζ-SIE instead of (n− ζ, n)-SIE.

Common-input extractability. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain
{0, 1}n. For 1 ≤ i ≤ j ≤ n, we say F is (blackbox) (i, j)-common-input-extractable if there exists an efficient
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extractor E such that for every k ∈ N, every f ∈ [Kg(1k)], and every x1, x2 ∈ TDom(k), extractor E on inputs
f, f(x1), f(x2) outputs (x1, x2) if x1|ji+1 = x2|ji+1. We often write ζ-CIE instead of (n− ζ, n)-CIE.

Comparison to Barthe et al. Compared to [4], we generalize the notions of SIE and CIE to consider arbitrary
runs of consecutive bits. That is, [4] only considers the most significant bits; i.e., ζ-SIE and ζ-CIE in our notation.
We also explicitly call the notions blackbox to emphasize the extractor does not make use of the code or random
coins of an adversary producing its input. Interestingly, we define analogous notions in Section 4 where this is
not the case.

Parameters. Barthe et al. [4] show via the Coppersmith algorithm [35] that RSA is ζ-SIE and ζ-CIE for
sufficiently large ζ. Specifically, they show RSA is ζ1-SIE for ζ1 > n(e−1)/e, and ζ2-CIE for ζ2 > n(e2−1)/e2. We
show that a generalization to runs of arbitrary consecutive bits holds in Appendix A. Specifically, in Appendix A
we show that RSA is (i, j)-SIE for (j − i) > n(e− 1)/e, and (i, j)-CIE for (j − i) > n(e2 − 1)/e2. In our partial
instantiation results for RSA-OAEP, j − i refers to the length of the redundancy ζ.

3.2 Main Results

Main results. We now give our main results, namely partial instantiations for RSA-OAEP of either oracle G
or H. These results refer to IND-CCA security for simplicity, whereas we actually prove PA-RO + IND-CPA.

Theorem 3.1 Let n, µ, ζ, ρ be integer parameters. Let G : KG×{0, 1}ρ → {0, 1}µ+ζ be a pseudorandom generator
and H : {0, 1}µ+ζ → {0, 1}ρ be a RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
n = µ + ζ + ρ. Suppose F is one-way, (µ + ζ)-second input and (µ + ζ)-common input extractable. Then
OAEP[G,H,F ] is IND-CCA2 secure. In particular, for any adversary A, there is an adversary D and an inverter
I such that

Advind-cca2
OAEP[G,H,F ],A(k) ≤ 2 ·Advowf

F,I(k) + 10 ·Advprg
G,D(k) +

2p

2µ+ζ
+

4q

2ζ
.

where q is the total number of the decryption queries and p is the total number of RO queries made by A.

Theorem 3.2 Let n, µ, ζ, ρ be integer parameters. Let H : KH × {0, 1}µ+ζ → {0, 1}ρ be a hash function family
and G : {0, 1}ρ → {0, 1}µ+ζ be a RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
n = µ+ ζ + ρ. Suppose F is (ρ, ρ+ ζ)-second input and (ρ, ρ+ ζ)-common input extractable. Suppose further H
is a (µ+ ζ)-partial hardcore function for F . Then OAEP[G,H,F ] is IND-CCA2. In particular, for any adversary
A = (A1, A2), there exists an adversary B such that

Advind-cca2
OAEP[G,H,F ],A(k) ≤ 2 ·Advphcf

F,H,B(k) +
2p

2ρ
+

4q

2ζ
.

where q the total number of the decryption queries and p is the total number of RO queries made by A.

The proofs of both theorems follow from below.

Parameters for RSA-OAEP. We discuss when our results support RSA-OAEP encryption of an AES key of
appropriate length, based on Subsection 3.1. The main requirement is encryption exponent e = 3. In this case,
with length 2048 bits we can use randomness and message length 128 bits, and for modulus length 4096 we can
use randomness length 256. The choice that e = 3 is sometimes used in practice but it is an interesting open
problem to extend our results to other common choices such as e = 216 + 1. In particular, it is a reasonable
conjecture that results for SIE and CIE hold in this case for the same parameters.

3.3 Partial Instantiation of G

We first show how to instantiate G when modeling H as a RO. In particular, we show OAEP[G,H,F ] is IND-CPA
+ PA-RO when G is a pseudorandom generator and F is one-way, (blackbox) (µ+ ζ)-SIE and (µ+ ζ)-CIE.

IND-CPA result. Under IND-CPA, we show a tight reduction when G is a pseudorandom generator and F is
one-way and (µ + ζ)-SIE. Alternatively, in Appendix B we give result where F is only partial one-way, but the
reduction is lossy. Notes that it is shown in [43] that one-wayness of RSA implies partial one-wayness, but the
reduction is even more lossy, while SIE and CIE unconditionally hold for appropriate parameters.

Theorem 3.3 Let n, µ, ζ, ρ be integer parameters. Let G : KG×{0, 1}ρ → {0, 1}µ+ζ be a pseudorandom generator
and H : {0, 1}µ+ζ → {0, 1}ρ be a RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
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Games G1(k), G2(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk)

r←$ {0, 1}ρ ; x← G(KG, r)

s← x⊕(mb||0ζ)
If H[s] 6= ⊥ then

bad1 ← true ; H[s]←$ {0, 1}ρ

Else H[s]←$ {0, 1}ρ

z ← H[s] ; t← z⊕r ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

Return RO(v)

Games G3(k), G4(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk)

r←$ {0, 1}ρ ; x← G(KG, r)

s← x⊕(mb||0ζ) ; t←$ {0, 1}ρ

z ← t⊕r ; H[s]← z ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

If v = s then

bad2 ← true ; return RO(v)

Return RO(v)

Figure 11: Games G1–G4 in the proof of Theorem 3.3.

Games G5(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk)

r←$ {0, 1}ρ ; x←$ {0, 1}µ+ζ

s← x⊕(mb||0ζ)
t←$ {0, 1}ρ ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

If v = s then return RO(v)

Return RO(v)

Games G6(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk)

r←$ {0, 1}ρ ; s←$ {0, 1}µ+ζ

x← s⊕(mb||0ζ)
t←$ {0, 1}ρ ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

If v = s then return RO(v)

Return RO(v)

Figure 12: Games G5, G6 in the proof of Theorem 3.3.

n = µ+ ζ + ρ. Suppose F is one-way and (µ+ ζ)-second input extractable. Then OAEP[G,H,F ] is IND-CPA. In
particular, for any adversary A = (A1, A2), there are an adversary D and an inverter I such that

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 ·Advowf

F,I(k) + 6 ·Advprg
G,D(k) +

2q

2µ+ζ
.

where q is the total number of RO queries made by A. Furthermore, the running time of D and I are about that
of A plus the time to run SIE extractor.

Proof: Consider games G1–G6 in Figures 11–12. Each game maintains two independent random oracles RO and
RO. Procedure RO maintains a local array H as follows:

Procedure RO(v)
If H[v] = ⊥ then H[v]←$ {0, 1}ρ
Return H[v]
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Algorithm B(KG, x)

(f, f−1)←$ Kg(1k) ; out← 0

pk ← (KG, f) ; b←$ {0, 1}
(M0,M1, state)←$A

ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

s← x⊕(mb||0ζ)
If H[s] 6= ⊥ then out← 1

Return out

Procedure ROSim1(v)

If H[v] = ⊥ then

H[v]←$ {0, 1}ρ

Return H[v]

Figure 13: Adversary B in the proof of Theorem 3.3.

Algorithm C(KG, x)

(f, f−1)←$ Kg(1k) ; out← 0

pk ← (KG, f) ; b←$ {0, 1}
(M0,M1, state)←$A

ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

s← x⊕(mb||0ζ) ; t←$ {0, 1}ρ

c← f(s||t)
Run A

ROSim2(·)
2 (c, state)

Return out

Procedure ROSim1(v)

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Procedure ROSim2(v)

If v = s then

out← 1 ; Halt run of A2

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Figure 14: Adversary C in the proof of Theorem 3.3.

For simplicity, we omit the code of RO,RO in the games. In each game, we use RO1 to denote the oracle interface
of adversary A1 and message samplers M0,M1, and we use RO2 to denote the oracle interface of adversary A2.
Game G1 corresponds to game IND-CPAOAEP[G,H,F ]. Then

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 · Pr[G1(k)⇒ 1]− 1 .

We now explain the game chain. Game G2 is identical to game G1, except in the encryption of message mb.
Namely, if either adversary A1 or message sampler Mb queries s to their random oracle RO1, it chooses a fresh
random value for H[s]. Games G1 and G2 are identical-until-bad1, and thus from the Fundamental Lemma of
Game-Playing [14],

Pr [G1(k)⇒ 1 ]− Pr [G2(k)⇒ 1 ] ≤ Pr [G2(k) sets bad1 ] .

Now, consider adversary B attacking the pseudorandom generator G in Figure 13. We know that Advprg
G,B(k) =

2 · Pr
[

PRG-DISTBG(k)⇒ 1
]
− 1. Let PRG-REALBG be the game identical to game PRG-DISTBG conditioned on

b = 1, and PRG-RANDB
G be the game identical to game PRG-DISTBG conditioned on b = 0. Then,

Advprg
G,B(k) = Pr

[
PRG-REALBG ⇒ 1

]
− Pr

[
PRG-RANDB

G ⇒ 1
]
.

Note that Pr
[

PRG-REALBG ⇒ 1
]

= Pr [G2(k) sets bad1 ]. Moreover, in the PRG-RANDB
G, the probability

that any given of adversary A to its RO equals s is 1/2µ+ζ . Taking a union bound over all queries we have
Pr[PRG-RANDB

G ⇒ 1] ≤ q/2µ+ζ . Thus

Pr [G2(k) sets bad1 ] ≤ Advprg
G,B(k) +

q

2µ+ζ
.

In game G3, we reorder the code of game G2 producing t. The change is conservative, meaning that Pr[G2(k)⇒
1] = Pr[G3(k)⇒ 1]. Game G4 is identical to game G3, except in procedure RO2. Namely, if adversary A2 make
a query for s, then the oracle lies, calling RO instead. Game G3 and game G4 are identical-until-bad2, thus based
on Fundamental Lemma of Game-Playing [14]

Pr [G3(k)⇒ 1 ]− Pr [G4(k)⇒ 1 ] ≤ Pr [G4(k) sets bad2 ] .
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Algorithm I(f, c)

b←$ {0, 1} ; out← ⊥
KG←$KG(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

Run A
ROSim2(·)
2 (c, state)

Return out

Procedure ROSim1(v)

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Procedure ROSim2(v)

t←$ Ext(f, c, v)

If t 6= ⊥ then

out← t ; Halt run of A2

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Figure 15: Inverter I in the proof of Theorem 3.3.

Algorithm D(KG, x)

(f, f−1)←$ Kg(1k)

pk ← (KG, f) ; b←$ {0, 1}
(M0,M1, state)←$A

ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

s← x⊕(mb||0ζ) ; t←$ {0, 1}ρ

c← f(s||t)
b′←$A

ROSim2(·)
2 (c, state)

Return (b = b′)

Procedure ROSim1(v)

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Procedure ROSim2(v)

If v = s then H[v]←$ {0, 1}ρ

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Figure 16: Adversary D in the proof of Theorem 3.3.

Consider the adversary C attacking the pseudorandom generator G in Figure 14. Let PRG-REALCG be the game
identical to game PRG-DISTCG condition on b = 1, and PRG-RANDC

G be the game identical to game PRG-DISTCG
condition on b = 0. Then,

Advprg
G,C(k) = Pr

[
PRG-REALCG ⇒ 1

]
− Pr

[
PRG-RANDC

G ⇒ 1
]
.

Note that Pr
[

PRG-REALCG ⇒ 1
]

= Pr [G4(k) sets bad2 ]. Let Ext be the second-input extractor for F . To

bound the probability that PRG-RANDC
G outputs 1, we construct an inverter I attacking F in Figure 15.

Note that if adversary A2 queries s then inverter I can invert challenge c using extractor Ext. Hence, we have
Pr
[

PRG-RANDC
G ⇒ 1

]
≤ Advowf

F,I(k). Thus,

Pr [G4(k) sets bad2 ] = Advprg
G,C(k) + Advowf

F,I(k) .

Next, game G5 is identical to game G4, except it uses a uniformly random x in the encryption phase instead of
a pseudorandom value G(K, r). Consider adversary D as shown in Figure 16. We have

Pr[G4(k)⇒ 1]− Pr[G5(k)⇒ 1] ≤ Advprg
G,D(k) .

In game G6, we reorder the code of game G5 producing s. The change is conservative, meaning that Pr[G5(k)⇒
1] = Pr[G6(k)⇒ 1]. Note that Pr[G6(k)⇒ 1] = 1/2, since the ciphertexts are independent of the bit b. Assuming
that the advantage of adversary D is greater than the advantage of B and C, we have

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 ·Advowf

F,I(k) + 6 ·Advprg
G,D(k) +

2q

2µ+ζ
.

This completes the proof.

PA-RO result. We show RSA-OAEP is PA-RO when modeling H as a RO if G is a pseudorandom generator
and F is both second-input extractable and common-input extractable.

Theorem 3.4 Let n, µ, ζ, ρ be integer parameters. Let G : KG×{0, 1}ρ → {0, 1}µ+ζ be a pseudorandom generator
and H : {0, 1}µ+ζ → {0, 1}ρ be a RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
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Algorithm ExtH(x,h, c, ci, pk)

(f,K)← pk

For j = 1 to |x| do

si‖ti←$ Ext1(f, ci,x[j])

If ti 6= ⊥ then

ri ← h[j]⊕ti ;mi ← x[j]⊕G(K, ri)

If mi|ζ = 0ζ then return mi|µ

For j = 1 to |c| do

(si‖ti, si‖t′i)←$ Ext2(f, ci, c[j])

If si 6= ⊥ then

ri ← H(si)⊕ti ;mi ← si⊕G(K, ri)

If mi|ζ = 0ζ then return mi|µ

Return ⊥

Figure 17: PA-RO extractor Ext in the proof of Theorem 3.4.

n = µ+ ζ + ρ. Suppose F is (µ+ ζ)-second input and (µ+ ζ)-common input extractable. Then OAEP[G,H,F ]
is PA-RO secure. In particular, for any adversary A, there exists an adversary D and an extractor Ext such that

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2 ·Advprg

G,D(k) +
2q

2ζ
.

where q is the total number of the extraction queries made by A. Furthermore, the running time of D is about
that of A and the running time of Ext is about that of SIE and CIE extractors.

Proof: Let Ext1 be the second-input extractor and Ext2 be the common-input extractor for F . For any adver-
sary A, we define the extractor Ext as shown in Figure 17. Now, we bound the advantage of adversary A in
distinguishing between the decryption algorithm and the extractor Ext.

Assume adversary A makes q extract queries. Let ci be the i-th such query. Let’s denote by si and ti the last
(µ+ ζ)-bits and first ρ-bits of f−1(ci), respectively. We define S to be the event that game PA-ROA,Ext

OAEP[G,H,F ](k)

outputs 1. We also define E to be the event that adversary A or the encryption oracle query for the value si to
random oracle H, for all i ∈ [q]. Then

Advpa-ro
OAEP[G,H,F ],A,Ext(k) = 2 · (Pr [S ∧ E ] + Pr

[
S ∧ E

]
)− 1 .

We know, if event E happens then extractor Ext can use the second-input extractor or the common-input extractor
to recover plaintext m. Therefore, we have Pr [S | E ] = 1/2. Thus,

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ Pr [E ] + 2 · Pr

[
S ∧ E

]
− 1 .

Next, we bound the probability that ciphertext ci with no prior random oracle query si, is valid. We know when
event E happens, there exists at least a ciphertext ci with no prior query si to random oracle H. Let C be the
set of such ciphertexts. Note that extractor Ext always outputs ⊥ on such ciphertexts. Let T be the event where
there exists at least a valid ciphertext ci ∈ C. Then

Pr
[
S ∧ E

]
= Pr

[
S ∧ E ∧ T

]
+ Pr

[
S ∧ E ∧ T

]
≤ Pr

[
E ∧ T

]
+ Pr

[
E ∧ T

]
· Pr

[
S | E ∧ T

]
.

Note that Pr
[
S | E ∧ T

]
= 1/2, since the outputs of Ext and decryption algorithm Dec are always equal. More-

over, we have Pr
[
E ∧ T

]
≤ Pr

[
E
]
. Therefore,

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2 · Pr

[
E ∧ T

]
.

We know the challenge ciphertext ci is valid if and only if there exists a plaintext mi such that G(K, ri)⊕si =
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Adversary D(K,x)

out← 0 ; Dom← ⊥
i← 1 ; j ← 1 ; b←$ {0, 1}
(f, f−1)←$ Kg(1k)

pk ← (K, f) ; sk ← (K, f−1)

b′←$AROSim(·,1),Enc(pk,·),D(sk,·)(pk)

Return out

Procedure ROSim(s, i)

If i 6= 3 then Dom← Dom ∪ {s}
If H[x] = ⊥ then H[x]←$ {0, 1}`

If i = 1 then

x[j]← x; h[j]← H[x]; j ← j+1

Return H[x]

Procedure Enc(pk ,M)

m←$M(1k, pk)

c←$ EncROSim(·,2)(pk ,m)

c[i]← c ; i← i+ 1

Return c

Procedure D(sk , c)

(s, t)← f−1(c)

If s /∈ Dom then

If x|ζ = s|ζ then out← 1

If c ∈ c then return ⊥
m0 ← Dec(sk , c)

m1←$ ExtROSim(·,3)(x,h, c, c, pk)

Return mb

Figure 18: Adversary D in the proof of Theorem 3.4.

mi‖0ζ , where ri = H(si)⊕ti. Moreover, when there is no prior random oracle query si, ri looks uniformly
random to adversary A. Therefore, if event T | E happens then there exists a ciphertext ci such that the first
ζ-bits of G(K, ri) and si are equal, where ri is chosen uniformly at random. Consider adversary D attacking the
pseudorandom generator G in Figure 18. Note that when adversary D is in the real game then it simulates the
PA-RO game for the adversary A. On the other hand, when adversary D is in the ideal game then the first ζ-bits
of si and x are equal with probability 1/2ζ . Taking a union bound, we get

Advprg
G,D(k) ≥ Pr

[
T ∧ E

]
− q

2ζ
.

Hence, we have Pr
[
T ∧ E

]
≤ Advprg

G,D(k) + q · 2−ζ . Summing up,

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2 ·Advprg

G,D(k) +
2q

2ζ
.

This completes the proof.

3.4 Partial Instantiation of H

Now, we instantiate the hash function H when modeling G as a RO. In particular, we show OAEP[G,H,F ] is
IND-CPA + PA-RO when H is a special type of hardcore function and F is one-way, second-input and common-
input extractable. Note that Boneh [24] previously showed a simplified RSA-OAEP with one Feistel round G is
IND-CCA2 secure and Barthe et al. [4] showed such a scheme does not even need redundancy, but these proofs
can not applied to the case of H as a cryptographic hash function.

IND-CPA result. Under IND-CPA, we show a tight reduction when H is a (µ + ζ)-partial hardcore function
for F . In particular, it is plausible for H as a computational randomness extractor [37] and that F is RSA in the
common setting ρ = k (e.g., ρ = 128 for modulus length n = 2048), since Coppersmith’s technique fails.

Theorem 3.5 Let n, µ, ζ, ρ be integer parameters. Let H : KH × {0, 1}µ+ζ → {0, 1}ρ be a hash function family
and G : {0, 1}ρ → {0, 1}µ+ζ be a RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
n = µ + ζ + ρ. Suppose H is a (µ + ζ)-partial hardcore function for F . Then OAEP[G,H,F ] is IND-CPA. In
particular, for any adversary A = (A1, A2), there exists an adversary B such that

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 ·Advphcf

F,H,B(k) +
2q

2ρ
,

where q is the total number of RO queries made by A. The running time of B is about that of A.

Proof: Consider games G1–G4 in Figure 19. Each game maintains two independent random oracles RO and
RO. Procedure RO maintains a local array G as follows:
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Games G1(k), G2(k)

b←$ {0, 1} ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KH , f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk) ; r←$ {0, 1}ρ

If G[r] 6= ⊥ then

bad1 ← true ; G[r]←$ {0, 1}µ+ζ

Else G[r]←$ {0, 1}µ+ζ

s← G[r]⊕(mb||0ζ) ; z ← H(KH , s)

t← z⊕r ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

Return RO(v)

Games G3(k), G4(k)

b←$ {0, 1} ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KH , f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk)

r←$ {0, 1}ρ ; s←$ {0, 1}µ+ζ

G[r]← s⊕(mb||0ζ) ; z ← H(KH , s)

t← z⊕r ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

If v = r then

bad2 ← true ; return RO(v)

Return RO(v)

Figure 19: Games G1–G4 in the proof of Theorem 3.5.

Procedure RO(v)
If G[v] = ⊥ then G[v]←$ {0, 1}µ+ζ
Return G[v]

For simplicity, we omit the code of RO,RO in the games. In each game, we use RO1 to denote the oracle interface
of adversary A1 and message samplers M0,M1, and we use RO2 to denote the oracle interface of adversary A2.
Game G1 corresponds to game IND-CPAA

OAEP[G,H,F ]. Then

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 · Pr[G1(k)⇒ 1]− 1 .

We now explain the game chain. Game G2 is identical to game G1, except in the encryption of message mb,
if either adversary A1 or message sampler Mb queried r to their random oracle RO1, then it chooses a fresh
random value for G[r]. Games G1 and G2 are identical-until-bad1, and thus from the Fundamental Lemma of
Game-Playing [14],

Pr [G1(k)⇒ 1 ]− Pr [G2(k)⇒ 1 ] ≤ Pr [G2(k) sets bad1 ] .

Moreover, the probability is 1/2ρ that any given RO query of A1 or message samplers M0,M1 equals r . Let
q1 be the number of random oracle query that A1 and M0,M1 make. Taking a union bound over all queries,
we have Pr [G2(k) sets bad1 ] ≤ q1/2

ρ. In game G3, we reorder the code of game G2 producing s. The change
is conservative, meaning that Pr[G2(k) ⇒ 1] = Pr[G3(k) ⇒ 1]. Game G4 is identical to game G3, except in
procedure RO2, if adversary A2 queries r, then the oracle lies, calling RO instead. Game G3 and game G4 are
identical-until-bad2, and based on Fundamental Lemma of Game-Playing [14],

Pr [G3(k)⇒ 1 ]− Pr [G4(k)⇒ 1 ] ≤ Pr [G4(k) sets bad2 ] .

Now, consider adversary B attacking partial hardcore function H in Figure 20. We know that

Advphcf
F,H,B(k) = 2 · Pr

[
PHCF-DISTBF,H(k)⇒ 1

]
− 1 .

Let PHCF-REAL be the game identical to game PHCF-DIST conditioned on b = 1, and PHCF-RAND be the
game identical to game PHCF-DIST conditioned on b = 0. Then,

Advphcf
F,H,B(k) = Pr

[
PHCF-REALBF,H ⇒ 1

]
− Pr

[
PHCF-RANDB

F,H ⇒ 1
]
.
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Algorithm B(KH , f, c, t, z)

pk ← (KH , f) ; b←$ {0, 1}
(M0,M1, state)←$A

ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

r ← t⊕z ; out← ⊥
Run A

ROSim2(·)
2 (c, state)

Return out

Procedure ROSim1(v)

If G[v] = ⊥ then G[v]←$ {0, 1}ρ

Return G[v]

Procedure ROSim2(v)

If v = r

out← 1 ; Halt A

If G[v] = ⊥ then G[v]←$ {0, 1}ρ

Return G[v]

Figure 20: Adversary B in the proof of Theorem 3.5.

Note that Pr
[

PHCF-REALBF,H ⇒ 1
]

= Pr [G4(k) sets bad1 ]. Moreover, in game PHCF-RAND, the probability
is 1/2ρ that any given RO queried by adversary A2 equals r . Let q2 be the number of queries that A2 makes.
Taking a union bound we have Pr[PHCF-RANDB

F,H ⇒ 1] ≤ q2/2ρ. Thus

Pr [G4(k) sets bad1 ] ≤ Advphcf
F,H,B(k) +

q2
2ρ

.

Note that, Pr[G4(k) ⇒ 1] = 1/2, since the distribution of the ciphertexts are completely independent of b.
Summing up,

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2 ·Advphcf

F,H,B(k) +
2q

2ρ
.

This completes the proof.

PA-RO result. We show another partial instantiation result modeling G as a RO. Namely, we show RSA-OAEP
is PA-RO if F is second-input extractable, and common-input extractable. Note that this does not require any
assumption on H.

Theorem 3.6 Let n, µ, ζ, ρ be integer parameters. Let H : {0, 1}µ+ζ → {0, 1}ρ be a hash function family and
G : KG × {0, 1}ρ → {0, 1}µ+ζ be a RO. Let F be a family of trapdoor permutations with domain {0, 1}n, where
n = µ+ζ+ρ. Suppose F is (ρ, ρ+ζ)-second input and (ρ, ρ+ζ)-common input extractable. Then OAEP[G,H,F ]
is PA-RO secure. In particular, for any adversary A, there exists an extractor Ext such that,

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2q

2ζ
.

where q is the total number of the extract queries made by A. The running time of Ext is about that of SIE and
CIE extractors.

Proof: Let Ext1 be the second-input extractor and Ext2 be the common-input extractor for F . For any adver-
sary A, we define the extractor Ext as shown in Figure 21. Now, we bound the advantage of adversary A in
distinguishing between the decryption algorithm and the extractor Ext.

Assume A makes q extract queries. Let ci be the i-th such query. Let ri be the randomness used in creating
ciphertext ci. We define S to be the event that game PA-ROA,Ext

OAEP[G,H,F ](k) outputs 1. We also define E as the

event where A or the encryption oracle query ri to G, for all i ∈ [q]. Then,

Advpa-ro
OAEP[G,H,F ],A,Ext(k) = 2 · (Pr [S ∧ E ] + Pr

[
S ∧ E

]
)− 1 .

We know when the event E happens Ext can use the second-input extractor or the common-input extractor to
recover plaintext m. Therefore, we have Pr [S | E ] = 1/2. Thus,

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ Pr [E ] + 2 · Pr

[
S ∧ E

]
− 1 .

Next, we bound the probability that ciphertexts ci with no prior random oracle query query ri is valid. We know
when event E happens, there exists at least one ciphertext ci with no prior query ri to random oracle G. Let C
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Algorithm ExtH(r,g, c, ci, pk)

(f,K)← pk

For j = 1 to |r| do

yi←$ Ext1(f, ci,g[j]|ζ)
If yi 6= ⊥ then

mi ← yi|µ+ζ⊕g[j]

If mi|ζ = 0ζ then return mi|µ

For j = 1 to |c| do

(yi, y
′
i)←$ Ext2(f, ci, c[j])

si ← yi|µ+ζ ; ti ← yi|ρ
If yi 6= ⊥ then

ri ← H(K, si)⊕ti ;mi ← si⊕G(ri)

If mi|ζ = 0ζ then return mi|µ

Return ⊥

Figure 21: PA-RO extractor Ext in the proof of Theorem 3.6.

be the set of such ciphertexts. Note that extractor Ext always output ⊥ on such ciphertexts. Let T be the event
where there exists at least a valid ciphertext ci ∈ C. Then,

Pr
[
S ∧ E

]
= Pr

[
S ∧ E ∧ T

]
+ Pr

[
S ∧ E ∧ T

]
≤ Pr

[
E ∧ T

]
+ Pr

[
E ∧ T

]
· Pr

[
S | E ∧ T

]
.

Note that Pr
[
S | E ∧ T

]
= 1/2, since the outputs of extractor Ext and decryption algorithm Dec are always

equal. Moreover, we have Pr
[
E ∧ T

]
≤ Pr

[
E
]
. Therefore,

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2 · Pr

[
E ∧ T

]
.

We know the challenge ciphertext ci is valid if and only if there exists a plaintext mi such that G(ri)⊕si = mi‖0ζ .
In other words, the challenge ciphertext ci is a valid ciphertext when G(ri)|ζ⊕si|ζ = 0ζ . Since ri was not queried,
the ciphertext ci is valid with probability 2−ζ . Taking a union bound over all extract queries, we get

Advpa-ro
OAEP[G,H,F ],A,Ext(k) ≤ 2q

2ζ
.

This completes the proof.

4 A Hierarchy of Extractability Notions

Intuitively, extractability of a function formalizes the idea that an adversary that produces an image point must
“know” a corresponding preimage, as there being a non-blackbox extractor that recovers the preimage. Previous
work on extractability starting with [31, 32] considers a “one-shot” adversary. Inspired by PA for encryption
schemes [6, 10], we define a hierarchy of EXT for function families, namely EXT0, EXT1, EXT2, and EXT-RO,
which will in particular be useful for our full instantiation results. (Even our notion of EXT0 generalizes prior
work, as explained below.) However, there are some important differences from PA. First, for EXT the extractor
should return the entire preimage whereas in PA the extractor need not return the randomness. Second, PA asks
the adversary to distinguish between the answers of the decryption and extraction oracles, while EXT asks the
adversary to make the extractor fail to return a preimage.

EXT0 functions. We first give a “one-time” definition of extractability. Let η, ζ, µ be integer parameters. A
function family H : KH × HDom → HRng is (η, µ)-EXT0ζ if for any PPT adversary A with coin space Coins,
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Game EXT1A,E,zH (KH , r)

i← 1 ; state ← ε

x← ε ; y← ε

Run AO(·,·)(KH , z; r)

Return (x,y)

Procedure O(x2, y)

(state, x1)← E(state,KH , z, x2, y; r)

x[i]← x1‖x2 ; y[i]← y

i← i+ 1

Return x1

Figure 22: Game to define EXT1 security.

there exists a PPT extractor E such that, for any key independent auxiliary input z ∈ {0, 1}η:

Adv
(η,µ)-ext0ζ
H,A,E,z (k) = Pr

KH ←$KH(1k)
r←$ Coins(k)

[
(x2, y)← A(KH , z; r)

∃x : H(KH , x)|ζ = y ∧ x2 = x|µ
∧ x1 ← E(KH , z, x2, y; r)

H(KH , x1‖x2)|ζ 6= y

]
.

is negligible in k. We define advantage of A to be Adv
(η,µ)-ext0ζ
H,A,E (k) = maxz∈{0,1}η Adv

(η,µ)-ext0ζ
H,A,E,z (k).

In other words, the extractor should work when the adversary outputs ζ least significant bits of an image point
and µ bits of a preimage, given η bits of auxiliary information. Previous work considered ζ = log |HRng| and
µ = 0. Interestingly, considering µ > 0 gives a non-blackbox second-input extractability (SIE) notion compared
to Section 3.1, which has a black-box notion of SIE. Our non-blackbox notion applies to general function families
rather than trapdoor permutations. We also retain the generality afforded by η, ζ, µ below.

Similarly, we define the analogous notion (η, µ)-EXT0ζ where the adversary outputs the ζ most significant bits
of the image point. We often write η-EXT0ζ and η-EXT0ζ instead of (η, 0)-EXT0ζ and (η, 0)-EXT0ζ , respectively.
We also often write (η, µ)-EXT0 instead of (η, µ)-EXT0ζ when ζ = log |HRng|.

EXT1 functions. Next, we give a definition of “many-times” extractability. We note that a central open
problem in the theory of extractable functions to construct a “many-times” extractable function from a “one-
time” extractable function, see e.g. [47]; the obvious approach suffers an extractor “blow-up” issue. For practical
purposes, we find simply formalizing and assuming this property to be reasonable.

Let η, ζ, µ be integer parameters. Let H : KH ×HDom→ HRng be a hash function family. To an adversary A
and extractor E , we associate the experiment in Figure 22, for every k ∈ N. We say H is (η, µ)-EXT1ζ if for any
PPT adversary A with coin space Coins, there exists a stateful extractor E such that, for any key independent
auxiliary input z ∈ {0, 1}η:

Adv
(η,µ)-ext1ζ
H,A,E,z (k) = Pr

KH ←$KH(1k)
r←$ Coins(k)

[
(x,y)← EXT1A,E,zH (KH , r)

∃i,∃x : H(KH , x)|ζ = y[i] ∧ x[i]|µ = x|µ ∧H(KH ,x[i])|ζ 6= y[i]

]
.

is negligible in k. We define advantage of A to be Adv
(η,µ)-ext1ζ
H,A,E (k) = maxz∈{0,1}η Adv

(η,µ)-ext1ζ
H,A,E,z (k). Similarly,

we define (η, µ)-EXT1ζ where the adversary output ζ most significant bits of the output to be extracted. We
often write η-EXT1ζ and η-EXT1ζ instead of (η, 0)-EXT1ζ and (η, 0)-EXT1ζ , respectively.

EXT2 functions. We now extend the definition to give the adversary access to an oracle I that on input a
unary encoding of the security parameter 1k, outputs a random image along with an uninvertible hint of the
corresponding preimage. In other words, this is a form of extractability with key dependent auxiliary information
that parallels PA2 for encryption schemes.

Let η, ζ, µ be integer parameters. Let H : KH × HDom → HRng be a hash function family and F =
(Kg,Eval, Inv) be a trapdoor permutation family with domain HDom. To adversary A and extractor E , we
associate the experiment in Figure 23, for every k ∈ N. We say H is (η, µ)-EXT2ζ with respect to trapdoor
permutation family F if for any PPT adversary A with coin space Coins, there exists a stateful extractor E such
that, for any key independent auxiliary input z ∈ {0, 1}η:

Adv
(η,µ)-ext2ζ
H,F,A,E,z (k) = Pr

KH ←$KH(1k)
r←$ Coins(k)

[
(x,y)← EXT2A,E,zH,F (KH , r)

∃i,∃x : H(KH , x)|ζ = y[i] ∧ x[i]|µ = x|µ ∧H(KH ,x[i])|ζ 6= y[i]

]
.

is negligible in k. The adversary is not allowed to query y ∈ h1 for extract oracle O. We define advantage of A

to be Adv
(η,µ)-ext2ζ
H,F,A,E (k) = maxz∈{0,1}η Adv

(η,µ)-ext2ζ
H,F,A,E,z (k). Similarly, we define (η, µ)-EXT2ζ where the adversary

output ζ most significant bits of the output to be extracted. We often write η-EXT2ζ and η-EXT2ζ instead of
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Game EXT2A,E,zH,F (KH , r)

i← 1 ; j ← 1

state ← ε

x← ε ; y← ε

h← ε ; h1 ← ε ; w← ε

(f, f−1)←$ Kg(1k)

Run AO(·,·),I(·)(KH , f, z; r)

Return (x,y)

Procedure O(x2, y)

If y ∈ h1 then return ⊥
(state, x1)← E(state,KH , f, z,h,w, x2, y; r)

x[i]← x1‖x2 ; y[i]← y ; i← i+ 1

Return x1

Procedure I(1k)

v←$ HDom(k) ; h← H(KH , v)

h[j]← h ; w[j]← f(v) ; h1[j]← h|ζ
j ← j + 1

Return (h, f(v))

Figure 23: Game to define EXT2 security.

Game EXT-ROA,E
F (KF )

i← 1 ; j ← 1 ; p← 1

f ← ε ; v← ε ; h← ε

x← ε ; y← ε

Run AO(·),RO(·,1),F(·)(KF )

Return (x,y)

Procedure F(M)

m←$M(1k)

f ← FRO(·,2)(KF ,m)

f [p]← f |ζ ; p← p+ 1

Return f |ζ

Procedure O(y)

If y ∈ f then return ⊥
x← ERO(·,3)(KF , f ,v,h, y)

x[i]← x ; y[i]← y

i← i+ 1

Return x

Procedure RO(v, i)

If H[v] = ⊥ then H[v]←$ {0, 1}∗

If i = 1 then

v[j]← v ; h[j]← H[v] ; j ← j + 1

Return H[v]

Figure 24: Game to define EXT-RO security.

(η, 0)-EXT2ζ and (η, 0)-EXT2ζ , respectively.

EXT-RO functions. Finally, we give a notion of extractability in the RO model, inspired by PA-RO for
encryption schemes. In particular, here the adversary has access to an oracle F to which it queries a sampling
algorithm, the oracle returning the image of a point in the domain sampled accordingly. Moreover, instead of the
adversary’s random coins the extractor gets a transcript of its RO queries and responses, but not those made by
F .

Let ζ be an integer parameter. Let RO : {0, 1}∗ → {0, 1}∗ be a random oracle and F : KF × F.Dom→ F.Rng
be a function family. To adversary A and extractor E , we associate the experiment in Figure 22, for every k ∈ N.
We say F is ζ-EXT-RO if for any PPT adversary A, there exists a PPT extractor E such that,

Advζ-ext-roF,A,E (k) = Pr
KF ←$KF (1k)

[
(x,y)← EXT-ROA,E

F (KF )
∃i,∃x : F (KF , x)|ζ = y[i] ∧ F (KF ,x[i])|ζ 6= y[i]

]
.

is negligible in k. The adversary is not allowed to query y ∈ f for extract oracle O. Note that above, the parameter
ζ controls not only what part of the output the adversary queries to its extract oracle, but also what part of the
output the image oracle returns. This stems from how we use EXT-RO. Namely, we only apply it to the OAEP
padding scheme (in Theorem 5.5), which is invertible. As a consequence, in the RO model EXT-RO does not
imply EXT2.

Plausibility. We typically use EXT notions in tandem with other properties such as collision-resistance. In
terms of feasibility, there are several constructions proposed for EXT0 with ζ = log |HRng| and µ = 0 and collision-
resistance in [56] based on knowledge assumptions. (In the weaker case of EXT0 with only one-wayness, which
does not suffice for us, the notion is actually achievable for these parameters under standard assumptions [16].)
However, for our generalizations and notions of EXT1, EXT2, we are not aware of any constructions in the
standard model and leave this for future work. Regarding EXT-RO, in terms of feasibility it is easy to construct
an EXT-RO function by simply fixing the first bits of the input to the RO. More interestingly, we show in
Theorem 5.5 that the OAEP padding transform meets EXT-RO for “s-clear” parameters.
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5 Results for Padding Schemes and OAEP

For increased modularity and understanding, we abstract properties of the OAEP padding scheme we need and
give some results about how to achieve them based on assumptions on the round functions. That is, at a very
high level we would like to show that if G is xxx-secure and H is yyy-secure then the OAEP padding scheme is
zzz secure. For example, xxx = yyy = zzz = EXT0. Naturally, the actual results, while retaining this flavor, are
much more nuanced.

5.1 Scope and Perspective

Parameters and properties. In all properties of the OAEP padding scheme we consider, the adversary
produces part of the output. In particular, there are two parameter regimes we consider, one where the adversary
produces the least-significant (ζ + ρ)-bits of the output (corresponding to t-clear OAEP), and one where the
adversary produces the most-significant (µ+ ρ)-bits of the output (corresponding to s-clear OAEP). In terms of
properties, we consider near-collision resistance, EXT0, EXT1, and EXT-RO. We do not consider EXT2 of the
OAEP padding scheme at all.

Plausibility. If we prove a security notion for the OAEP padding scheme based on corresponding assumptions
on the round functions, its plausibility reduces to plausibility of the assumptions on the round functions. A case
in which we do not know how to do this is that of EXT1 for the “t-clear” parameter regime. In this case, we lend
some plausibility to this assumption by showing EXT-RO, which implies EXT1, holds in the RO model. Similar
justification was made for assuming a hash function is UCE in [8, Section 6.1].

5.2 Our Results

Near-collision resistance. We first show that the OAEP padding transform is near-collision resistant wrt. its
least-significant bits (i.e., for “t-clear” parameters) if G is near-collision resistant wrt. its least-significant bits and
H is collision-resistant.

Theorem 5.1 Let µ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ and H : KH × {0, 1}µ+ζ →
{0, 1}ρ be function families. Suppose G is NCRζ and H is collision resistant. Then OAEP[G,H] is NCRζ+ρ. In
particular, for any adversary A, there exists adversaries B,C such that

Adv
n-crζ+ρ
OAEP[G,H],A(k) ≤ Adv

n-crζ
G,B (k) + Advcr

H,C(k) .

The running time of B and C are about that of A.

Proof: Consider near-collision resistance adversary B and collision resistance adversary C in Figure 25. Let
v1, v2 be the outputs of A. Let S be the event where v1 6= v2 are not equal and OAEPKG,KH (v1)|ζ+ρ =
OAEPKG,KH (v2)|ζ+ρ. Let E be the event where the ρ least significant bits of v1 and v2 are not equal. Thus,

Adv
n-crζ+ρ
OAEP[G,H],A(k) = Pr [S ∧ E ] + Pr

[
S ∧ E

]
.

Note that if the event S and E happens the adversary B finds a collision. Thus,

Pr [S ∧ E ] ≤ Adv
n-crζ
G,B (k) .

On the other hand, if E happens then the ρ least significant bits of v1 and v2 are equal. Moreover, we know
v1 and v2 are not equal, thus when the event E happens the µ most significant bits of v1 and v2 are not equal.
Therefore, if the event S and E happens adversary C finds a collision. Then

Pr
[
S ∧ E

]
≤ Advcr

H,C(k) .

Summing up,
Adv

n-crζ+ρ
OAEP[G,H],A(k) ≤ Adv

n-crζ
G,B (k) + Advcr

H,C(k) .

This completes the proof.
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Adversary B(KG)

KH ←$KH(1k)

v1, v2 ← A(KH ,KG)

r1 ← v1|ρ ; r2 ← v2|ρ
If r1 6= r2

Return (r1, r2)

Return ⊥

Adversary C(KH)

KG←$KG(1k)

v1, v2 ← A(KH ,KG)

m1 ← v1|µ ; m2 ← v2|µ

r1 ← v1|ρ ; r2 ← v2|ρ
If r1 6= r2 then return ⊥
s1 ← m1‖0ζ⊕G(KG, r1)

s2 ← m2‖0ζ⊕G(KG, r2)

Return (s1, s2)

Figure 25: Adversaries B and C in the proof of Theorem 5.1.

Adversary B(KG)

KH ←$KH(1k)

v1, v2 ← A(KH ,KG)

r1 ← v1|ρ ; r2 ← v2|ρ
Return (r1, r2)

Figure 26: Adversary B in the proof of Theorem 5.2.

Theorem 5.2 Let µ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ and H : KH × {0, 1}µ+ζ →
{0, 1}ρ be function families. Suppose G is NCRζ . Then OAEP[G,H] is NCRµ+ζ . In particular, for any adversary
A, there exists adversary B such that

Advn-crµ+ζ
OAEP[G,H],A(k) ≤ Adv

n-crζ
G,B (k) .

The running time of B is about that of A.

Proof: Let v1, v2 be the outputs of A. Let S be the event where v1 6= v2 are not equal and OAEPKG,KH (v1)|µ+ζ =

OAEPKG,KH (v2)|µ+ζ . Then, we have Advn-crµ+ζ
OAEP[G,H],A(k) = Pr [S ].

Note that when OAEPKG,KH (v1)|µ+ζ = OAEPKG,KH (v2)|µ+ζ , we have G(KG, v1|ρ)|ζ = G(KG, v2|ρ)|ζ . Moreover,
since OAEPKG,KH (v1)|µ+ζ = OAEPKG,KH (v2)|µ+ζ , if v1|ρ equals to v2|ρ, v1 will be equal to v2. Consider near-
collision resistance adversary B in Figure 26. When adversary A finds a near collision, B also finds a near collision.
Therefore we have Pr [S ] ≤ Adv

n-crζ
G,B (k). Summing up,

Advn-crµ+ζ
OAEP[G,H],A(k) ≤ Adv

n-crζ
G,B (k) .

This completes the proof.

EXT0 result. In more detail, we show that the OAEP padding transform is EXT0 wrt. its least-significant
bits (i.e., for “t-clear” parameters) if G is EXT0 wrt. its least significant bits and injective, and H is also suitably
EXT0. Namely, for H the extractor gets the image point and ζ-bits of preimage, so since H maps {0, 1}ζ+µ to ρ,
if µ� ρ this assumption would be reasonable.

Theorem 5.3 Let η, δ, λ, µ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ and H : KH ×
{0, 1}µ+ζ → {0, 1}ρ be function families. Let η = |[KH(1k)]|+ λ and δ = |[KG(1k)]|+ λ. Suppose G is η-EXT0ζ ,
ζ-injective and H is (δ, ζ)-EXT0. Then, OAEP[G,H] is λ-EXT0ζ+ρ. In particular, for any EXT0 adversary A,
there exist EXT0 adversaries AG, AH and an extractor Ext such that for all extractors ExtG,ExtH

Adv
λ-ext0ζ+ρ
OAEP,A,Ext(k) ≤ Adv

η-ext0ζ
G,AG,ExtG(k) + Adv

(δ,ζ)-ext0
H,AH ,ExtH (k) .

The running time of AG is about that of A. The running time of AH is about that of A plus the time to run
ExtG. The running time of Ext is the time to run ExtG and ExtH .

Proof: Let w be the randomness of adversary A, and let aux ∈ {0, 1}λ be the key-independent auxiliary input to
the adversary A in the game EXT0. Let KG and KH be the keys for function families G and H respectively. Let

26



Adversary AH(KH , u;w)

out← ⊥ ; (KG, aux )← u

Run AOSim(·)((KG,KH), aux ;w)

Return (s2, out)

Procedure OSim(y)

(s2, t)← y ; v ← (KH , aux )

r ← ExtG(KG, v,⊥, s2;w)

out← r⊕t
Halt A

Adversary AG(KG, v;w)

out← ⊥ ; (KH , aux )← v

Run AOSim(·)((KG,KH), aux ;w)

Return (⊥, out)

Procedure OSim(y)

(s2, t)← y

out← s2

Halt A

Figure 27: Adversaries AH , AG in the proof of Theorem 5.3.

Algorithm Ext((KG,KH), aux ,⊥, y;w)

(s2, t)← y ; v ← (KH , aux ) ; u← (KG, aux )

r ← ExtG(KG, v,⊥, s2;w) ; z ← r⊕t
s1 ← ExtH(KH , u, s2, z;w) ; s← s1‖s2
m∗ ← s⊕G(KG, r) ; m← m∗|µ

If m∗|ζ 6= 0ζ then return ⊥
If y 6= OAEP(KG,KH )(m‖r)|ζ+ρ then return ⊥
Return m‖r

Figure 28: EXT0 extractor Ext in the proof of Theorem 5.3.

v = (KH , aux ) be the key-independent auxiliary input to AG in the game EXT0, and let u = (KG, aux ) be the
key-independent auxiliary input to AH in the game EXT0. Note that auxiliary input v and u are independent of
keys KG and KH , respectively. We define adversaries AG, AH with random coins w in Figure 27. Let ExtG and
ExtH be the corresponding extractor for AG and AH , respectively. We define EXT0 extractor Ext as shown in
Figure 28.

Note that for the extract query y that A makes, if y is not a valid image point then extractor Ext outputs ⊥. Thus,
adversary A does not win by making an invalid image query. Hence, we assume wlog that A only queries a valid
image point y. Let my‖ry be the corresponding input for y and sy = G(KG, ry)⊕(my‖0ζ) be the intermediate
value. Let r be the output of ExtG and s1 be the output of ExtH . Wlog, we can assume when extractors ExtG
and ExtH output a non-empty string, they were successful in finding preimages.

Consider EXT0 adversaries AG, AH in Figure 27. We know A always makes a valid image query. Thus, A wins if
extractor Ext outputs ⊥. On the other hand, Ext outputs ⊥ only if either ExtG or ExtH fails. Moreover, we know
if ExtG outputs a non-empty string, then it will return r = ry, since G is ζ-injective. Therefore,

Adv
λ-ext0ζ+ρ
OAEP,A,Ext(k) ≤ Adv

η-ext0ζ
G,AG,ExtG(k) + Adv

(δ,ζ)-ext0
H,AH ,ExtH (k) .

This completes the proof.

EXT1 result. We next show that the OAEP padding transform is EXT1 wrt. its most-significant bits (i.e.,
“s-clear” parameters) when G is EXT1 wrt. its least-significant bits. Note this does not use any assumption on
H.

Theorem 5.4 Let η, λ, µ, ζ, ρ be integer parameters. Let G : KG×{0, 1}ρ → {0, 1}µ+ζ and H : KH×{0, 1}µ+ζ →
{0, 1}ρ be function families. Let η = |[KH(1k)]| + λ. Suppose G is η-EXT1ζ . Then, OAEP[G,H] is λ-EXT1µ+ζ .
In particular, for any EXT1 adversary A, there exists an EXT1 adversary AG and an extractor Ext such that for
all extractor ExtG

Advλ-ext1
µ+ζ

OAEP,A,Ext(k) ≤ Adv
η-ext1ζ
G,AG,ExtG(k) .

The running time of AG is about that of A and the running time of Ext is about that of ExtG.

Proof: Let w be the randomness of adversary A, aux ∈ {0, 1}λ be the key independent auxiliary input to
adversary A in the game EXT1. Let KG and KH be the key for the function family G and H respectively. Let
v = (KH , aux ) be the key independent auxiliary input to AG in the game EXT1. We define adversary AG with
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Adversary A
OG(·)
G (KG, v;w)

(KH , aux)← v

Run AOOAEPSim(·)(KG,KH , aux;w)

Procedure OOAEPSim(y)

r ← OG(y|ζ)
x← G(KG, r)

m∗ ← y⊕x ; m← m∗|µ

Return m‖r

Figure 29: EXT1 adversary AG in the proof of Theorem 5.4.

Algorithm Ext(state, (KG,KH), aux ,⊥, y;w)

v ← (KH , aux)

(st, r)← ExtG(st,KG, v,⊥, y|ζ ;w)

state ← st ; x← G(KG, r)

m∗ ← y⊕x ; m← m∗|µ

If m∗|ζ 6= 0ζ then return (state,⊥)

If y 6= OAEP(KG,KH )(m‖r)|µ+ζ then return (state,⊥)

Return (state,m‖r)

Figure 30: EXT1 extractor Ext in the proof of Theorem 5.4.

the randomness w in Figure 29. Let ExtG be the corresponding extractor for AG. We also define EXT1 extractor
Ext as shown in Figure 30.

Note that for every extract query y that A makes, if y is not valid then extractor Ext outputs ⊥. Thus, adversary
A does not win by making an invalid image query. Hence, we assume wlog that the adversary A only queries for
the valid images.

We define S to be the event that extractor Ext outputs empty string on at least one of the extract queries.

Note that, since we assume that A queries only for the valid images then Advλ-ext1
µ+ζ

OAEP,A,Ext(k) = Pr [S ]. Moreover,
we know Ext output empty string only if ExtG outputs empty string on valid image query. Thus, we have
Pr [S ] ≤ Adv

η-ext1ζ
G,AG,ExtG(k).

Summing up,

Advλ-ext1
µ+ζ

OAEP,A,Ext(k) ≤ Adv
η-ext1ζ
G,AG,ExtG(k) .

This completes the proof.

EXT-RO result. We would also like to show that the OAEP padding transform is EXT1 wrt. its least-significant
bits (i.e., “t-clear” parameters) but we are unable to do so. (The straightforward approach has an “extractor
blow-up” problem.) To lend plausibility to this assumption, we instead turn to the RO model and show that the
OAEP padding transform is EXT-RO (which implies EXT1) if G and H are modeled as ROs.

Theorem 5.5 Let G : {0, 1}ρ → {0, 1}µ+ζ and H : {0, 1}µ+ζ → {0, 1}ρ be ROs. Then OAEP[G,H] is (ζ + ρ)-
EXT-RO. In particular, for any adversary A, there exists an extractor Ext such that,

Adv
(ζ+ρ)-ext-ro
OAEP[G,H],A,Ext(k) ≤ q1 · 2µ−ρ + q1 · 2µ−ζ +

q1(q2 + q3)

2ζ
+
q1(q2 + q3)2

2ζ
.

where q1 is the total number of extract queries, q2 is the total number of image oracle queries and q3 is the total
number of random oracle queries made by A.

Proof: For any adversary A, we define the extractor Ext as shown in Figure 31. Now, we bound the probability
that extractor Ext fails on at least one of the extract queries made by adversary A. We define RI and SI to be
the set of queries made by image oracle to G and H, respectively. We also define RA and SA to be the set of
queries made by A to G and H, respectively. Let R = RI ∪ RA and S = SI ∪ SA. We define C to be the event
where there exists r1, r2 ∈ R such that G(r1)|ζ = G(r2)|ζ . Note that we have Pr [C ] ≤ (q2 + q3)2/2ζ . Let yi be
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Algorithm ExtG,H(⊥,y, (r, s), (x, z), y)

r ← ⊥ ; s← ⊥
For i = 1 to |r| do

If y|ζ = G(r[i])|ζ
For j = 1 to |s| do

If H(s[j]) = r[i]⊕y|ρ
s← s[j] ; r ← r[i]

If (r = ⊥ ∨ s = ⊥) then return ⊥
m∗ ← s⊕G(r) ; m← m∗|µ

Return m‖r

Figure 31: EXT-RO extractor Ext in the proof of Theorem 5.5.

i-th extract query made by A, for all i ∈ [q1]. For all i ∈ [q1], we define Si to be the event where yi is a valid
image and extractor Ext outputs ⊥ on input yi. Then,

Adv
(ζ+ρ)-ext-ro
OAEP[G,H],A,Ext(k) ≤ Pr [C ] +

∑
i

Pr
[
Si ∧ C

]
.

We define R′ to be the set of all r ∈ R where G(r)|ζ = yi|ζ . Note that when C happens, there are no collision on
set R and we get that |R′| ≤ 1. We define E to be the event where |R′| = 0. Note that when E happens, challenge
yi is a valid image if there exist s ∈ S such that s|ζ = yi|ζ and G(H(s)⊕yi|ρ)|ζ = yi|ζ or if there exist s /∈ S such
that s|ζ = yi|ζ and G(H(s)⊕yi|ρ)|ζ = yi|ζ . Therefore, we obtain that Pr

[
S ∧ C ∧ E

]
≤ 2µ−ζ + (q2 + q3)/2ζ .

Let Z = {z = r⊕yi|ρ : ∀r ∈ R′}. We know when C and E happens, size of the set Z is equal to 1. Let z be such
a element in Z. Let S′ = {s ∈ S : H(s) = z ∧ s|ζ = yi|ζ}. We define T to be the event where S′ is empty. Note
that when C, E and T happens, challenge yi is a valid image if there exist s such that H(s) = z. Therefore, we
obtain that Pr

[
S ∧ C ∧ E ∧ T

]
≤ 2µ−ρ.

Note that when T happens, we have two cases. First, we have that SA∩S′ is non-empty. Note that when SA∩S′
is non-empty, extractor Ext can extract the correct preimage. Next, we have that SA ∩ S′ is empty. Then, we
know that SI ∩ S′ is non-empty. Note that when SI ∩ S′ is non-empty, we get collision on G if challenge yi is
valid image. Thus, we obtain that Pr

[
S ∧ C ∧ E ∧ T

]
= 0.

Summing up,

Adv
(ζ+ρ)-ext-ro
OAEP[G,H],A,Ext(k) ≤ q1 · 2µ−ρ + q1 · 2µ−ζ +

q1(q2 + q3)

2ζ
+
q1(q2 + q3)2

2ζ
.

This completes the proof.

6 Full Instantiation Results for t-Clear RSA-OAEP

In this section, we give full instantiation results for t-clear RSA-OAEP.

6.1 Notions of High-Entropy-Message Security

We define notions of security for encryption high-entropy messages. Previously, security for high entropy messages
has been considered for deterministic encryption (i.e., where the encryption algorithm is deterministic) [5], but it
makes sense for (public-key) randomized encryption as well. Indeed in the symmetric-key, information theoretic
setting such security was considered by [40]. We show an analogous equivalence of indistinguishability and
semantic security in this setting. As for deterministic encryption [5] and prior full instantiations of t-clear RSA-
OAEP [21], we consider messages independent of the public key. However, unlike for deterministic encryption, this
independence is not inherent for randomized encryption. We also note that we could avoid the high min-entropy
requirement by using the assumption that H and G are UCE and applying the result of [8], but we prefer to stick
with our milder assumptions.
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Game $SIM-CPA-KI-REALA,MPKE (k)

param←$A.pg(1k)

(pk , sk)←$ Kg(1k)

m←$M(1k,param)

c← Enc(pk ,m)

ω←$A.g(pk , c, param)

Return (ω = A.f(m,param))

Game $SIM-CPA-KI-IDEALA,S,MPKE (k)

param←$A.pg(1k)

(pk , sk)←$ Kg(1k)

m←$M(1k, param)

ω←$ S(pk , |m|,param)

Return (ω = A.f(m,param))

Figure 32: Games to define $SIM-CPA-KI security.

Game $IND-CPA-KIA,M0,M1
PKE (k)

b←$ {0, 1} ; param←$A.pg(1k)

(pk , sk)←$ Kg(1k)

m←$Mb(1
k, param)

c← Enc(pk ,m)

b′←$A.g(pk , c, param)

Return (b = b′)

Figure 33: Games to define $IND-CPA-KI security.

Induced distributions. Let X,X ′ be distributions (or random variables) on the same domain. For α ∈ N, we
say that X ′ is an α-induced distribution [45] of X if X ′ is a conditional distribution and X ′ = X|E for an event E
such that Pr [E ] ≥ 2−α. We call E the corresponding event to X ′. We require that the joint distribution (X,E)
is efficiently sampleable where we view event E as a binary random variable.

High-entropic message samplers. A message sampler M is a PPT algorithm that takes as input 1k and
a string param ∈ {0, 1}∗, and outputs a vector m of messages. A message sampler M is (`, v)-entropic if for
any k ∈ N, any param ∈ {0, 1}∗, and m←$M(1k,param), we have |m| = v and each message m[i] (with
i ∈ {1, . . . , v}) must have min-entropy at least `. We require that M be associated with function n(·) such that
for any param ∈ {0, 1}∗, for any k ∈ N, and any m ∈ [M(1k,param)], we have |m[i]| = n(k), for every i ≤ |m|.

$SIM-CPA-KI security. Let PKE = (Kg,Enc,Dec) be a PKE scheme. To a message sampler M and an
adversary A and simulator S, we associate the experiment in Figure 32, for every k ∈ N. We say that PKE is
$SIM-CPA-KI secure for a class M of message samplers if for every M∈M and any adversary A there exists a
simulator S,

Adv$sim-cpa-ki
PKE,A,S,M(k) = Pr

[
$SIM-CPA-KI-REAL

A,M
PKE (k)⇒ 1

]
− Pr

[
$SIM-CPA-KI-IDEAL

A,S,M
PKE (k)⇒ 1

]
.

is negligible in k.

CCA1 extension. To add a CCA1 flavor to $SIM-CPA-KI, a notion which we call $SIM-CCA1-KI, one
would allow adversary A.pg and message sampler M oracle access to Dec(sk , ·). Let $SIM-CCA1-KI-REAL
and $SIM-CCA1-KI-IDEAL be the corresponding experiments, and define

Adv$sim-cca1-ki
PKE,A,S,M (k) = Pr

[
$SIM-CCA1-KI-REAL

A,M
PKE (k)⇒ 1

]
− Pr

[
$SIM-CCA1-KI-IDEAL

A,S,M
PKE (k)⇒ 1

]
.

We say that PKE is $SIM-CCA1-KI secure for a class M of message samplers if for every M ∈ M and any
adversary A there exists a simulator S, such that Adv$sim-cca1-ki

PKE,A,S,M (k) is negligible in k.

$IND-CPA-KI security. Let PKE = (Kg,Enc,Dec) be a PKE scheme. To message samplers M0,M1 and an
adversary A, we associate the experiment in Figure 33, for every k ∈ N. We say that PKE is $IND-CPA-KI secure
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for a class M of message samplers if for every M0,M1 ∈M and any adversary A,

Adv$ind-cpa-ki
PKE,A,M0,M1

(k) = 2 · Pr
[

$IND-CPA-KI
A,M0,M1

PKE (k)⇒ 1
]
− 1 .

is negligible in k.

CCA1 extension. To add a CCA1 flavor to $IND-CPA-KI, a notion which we call $IND-CCA1-KI, one would
allow adversary A.pg and message samplers M0,M1 oracle access to Dec(sk , ·). Let $IND-CCA1-KI be the
corresponding experiment, and define

Adv$ind-cca1-ki
PKE,A,M0,M1

(k) = 2 · Pr
[

$IND-CCA1-KI
A,M0,M1

PKE (k)⇒ 1
]
− 1 .

We say that PKE is $IND-CCA1-KI secure for a class M of message samplers if for everyM0,M1 ∈M and any
adversary A, Adv$ind-cca1-ki

PKE,A,M0,M1
(k) is negligible in k.

Other definitions. We replace CCA1 with CCA0 above when the adversary makes only one decryption query.
We do not extend the definition to CCA2 because we do not use it, but this can be done in the natural way.

Definitional equivalence. We show in the Appendix C that $IND-CPA-KI implies $SIM-CPA-KI. The proof
is similar to the proof of Theorem 3.1 from [45]. Similarly, we have that $IND-CCA1-KI implies $SIM-CCA1-KI.
Therefore we use the former in our results. We omit the reverse implication for simplicity.

Single versus multi-message security. We note that the $IND-CPA-KI security for a single message does
not imply $IND-CPA-KI security for multiple messages in general. The proof is similar to that in [5]. Thus, in
our results, we explicitly use multiple messages.

6.2 Main Results

We show that t-clear RSA-OAEP is $IND-CCA0-KI and $IND-CCA1-KI under respective suitable assumptions.
As in Section 3 we actually prove corresponding notions of IND-CPA + PA, yielding stronger results. The results
in follow from those below combined.

$IND-CCA0-KI result. Interestingly, for $IND-CCA0-KI we use milder assumptions on G by performing a
direct analysis of OAEP rather than abstracting a property of the underlying the padding scheme and applying
the results of Section 5. Namely, we avoid the assumption that G is ζ-injective.

Theorem 6.1 Let η, δ, µ, ζ, ρ be integer parameters. Let F be a family of one-way trapdoor permutations
with domain {0, 1}µ. Let M be a class of (`, v)-entropic message samplers, G : KG × {0, 1}ρ → {0, 1}µ+ζ and
H : KH ×{0, 1}µ+ζ → {0, 1}ρ be function families. Let η = |[Kg(1k)]|+ |[KH(1k)]| and δ = |[Kg(1k)]|+ |[KG(1k)]|.
Suppose G is η-EXT0ζ and NCRζ , H is (δ, ζ)-EXT0 and CR. Also suppose G is a pseudorandom generator and H
is a hardcore function for F|ζ on class M . Then OAEPt-clear[G,H,F|ζ+ρ] is $IND-CCA0-KI secure. In particular,
for every M0,M1 ∈M and any adversary A, there exists adversaries AG, AH , BG, BH , B,C and a distribution
X(k) ∈M such that for all extractors ExtG,ExtH

Adv$ind-cca0-ki
OAEPt-clear,A,M0,M1

(k) ≤ 2 ·Adv
η-ext0ζ
G,AG,ExtG(k) + 2 ·Adv

(δ,ζ)-ext0
H,AH ,ExtH (k)

+2 ·Adv
n-crζ
G,BG(k) + 2 ·Advcr

H,BH (k) + 2 ·Advhcf
F|ζ ,H,X,B(k) + 2v ·Advprg

G,C(k) .

$IND-CCA1-KI result. To prove $IND-CCA1-KI, we use EXT1 and near-collision resistance of the overall
OAEP padding scheme (which follows from corresponding assumptions on the round functions as per Section 5),
as well as the assumption that G is a pseudorandom generator and H is an appropriate hardcore function.

Theorem 6.2 Let η, µ, ζ, ρ be integer parameters. Let F be a family of one-way trapdoor permutations with
domain {0, 1}µ. Let M be a class of (`, v)-entropic message samplers and η = |[Kg(1k)]|. Let G : KG × {0, 1}ρ →
{0, 1}µ+ζ and H : KH × {0, 1}µ+ζ → {0, 1}ρ be function families. Suppose G is a pseudorandom generator, and
let H be a hardcore function for F|ζ on class M . Also suppose OAEP[G,H] is η-EXT1ζ+ρ and NCRζ+ρ. Then
OAEPt-clear[G,H,F|ζ+ρ] is $IND-CCA1-KI secure. In particular, for every M0,M1 ∈ M and any adversary A,
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there exists adversaries B,C,D,E and a distribution X(k) ∈M such that for all extractors Ext

Adv$ind-cca1-ki
OAEPt-clear,A,M0,M1

(k) ≤ 2 ·Adv
η-ext1ζ+ρ
OAEP[G,H],B,Ext(k) + 2 ·Adv

n-crζ+ρ
OAEP[G,H],C(k)

+2 ·Advhcf
F|ζ ,H,X,D(k) + 2v ·Advprg

G,E(k) .

Efficiency. The ciphertext length in the above instantiations is 3n + 3k where n is the length of the RSA
modulus and k is the security parameter. The scheme has message length n. For example, if n = 2048 and
k = 128 then the ciphertext length is 6528 bits. The time to run the encryption and decryption algorithms is
basically that of standard RSA-OAEP.

Remark 6.3 We note that while the restriction to public-key independent messages is inherent for deterministic
encryption, for randomized encryption it is not and we leave it as an interesting open problem to extend the result
to public-key dependent messages. Additionally, the high-entropy requirement on messages can be avoided by
assuming G and H are “universal computational extractors” (UCE) in the sense of [8], which follows from their
results but we omit this for simplicity.

6.3 $IND-CPA-KI result

We first show that t-clear RSA-OAEP is $IND-CPA-KI for messages independent of the public key. Note that
the prior result on full instantiability of t-clear RSA-OAEP by Boldyreva and Fischlin [21] also apply to public-
key-independent messages. Intuitively, we require additional high min-entropy message sampler because the
randomness for the distribution on which H is hardcore for F|ζ comes from message m, with coins r fixed. Again,
we note that we could avoid the high min-entropy requirement by using the result in [8] that RSA-OAEP if RSA
is one-way and G,H are UCE. We prefer to stick with our more mild assumptions as our result is novel with a
non-trivial proof and probably sufficient in practice. (The UCE result could be seen as a hedge.)

Theorem 6.4 Let µ, ζ, ρ be integer parameters. Let F be a family of one-way trapdoor permutations with
domain {0, 1}µ. Let M be a class of (`, v)-entropic message samplers. Suppose G : KG × {0, 1}ρ → {0, 1}µ+ζ is
a pseudorandom generator and H : KH × {0, 1}µ+ζ → {0, 1}ρ is a hardcore function for F|ζ on class M . Then
OAEPt-clear[G,H,F|ζ+ρ] is $IND-CPA-KI secure. In particular, for every M0,M1 ∈ M and any adversary A,
there are adversaries B,C and distribution X(k) ∈M such that

Adv$ind-cpa-ki
OAEPt-clear,A,M0,M1

(k) ≤ 2 ·Advhcf
F|ζ ,H,X,B(k) + 2v ·Advprg

G,C(k) .

The running time of B is up to that of A. The running time of X(k) and C is the time to run A plus the running
time of M.

Proof: Consider games G1–G4 in Figure 34. Game G1 corresponds to game $IND-CPA-KI
A,M0,M1

OAEPt-clear . We now
explain the game chain. Game G2 is identical to game G1, except we are using completely random z in the
encryption phase instead of using the hash value. Consider distribution X and adversary B in Figure 35. Note
that X(k) ∈ M . Distribution X and adversary B collaborate to simulate game G1. Adversary B returns 0 if
adversary A can correctly guess simulated challenge bit b, and returns 1 otherwise. Then

Pr[G1(k)⇒ 1]− Pr[G2(k)⇒ 1] ≤ Advhcf
F|ζ ,H,X,B(k) .

In game G3, we reorder the code of game G2 producing z. The change is conservative, meaning that Pr[G2(k)⇒
1] = Pr[G3(k) ⇒ 1]. Next, game G4 is identical to game G3, except we are using completely random x instead
of pseudorandom value G(KG, r) in the encryption phase. For i ∈ [v], we define the adversary Ci as shown in
Figure 36. Hence,

Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1] ≤
v∑
i=1

Advprg
G,Ci(k) .

Assume there exists adversary C such that for all i ∈ [v], we have Advprg
G,Ci(k) ≤ Advprg

G,C(k). Note that
Pr[G4(k)⇒ 1] = 1/2, since the distribution of the ciphertexts is completely independent of bit b. Summing up,

Adv$ind-cpa-ki
OAEPt-clear,A,M0,M1

(k) ≤ 2 ·Advhcf
F|ζ ,H,X,B(k) + 2v ·Advprg

G,C(k) .
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Games G1(k), G2(k)

b←$ {0, 1} ; param←$A.pg(1k)

KG←$KG(1k) ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k)

pk ← (KG,KH , f)

m←$Mb(1
k, param)

For i = 1 to |m| do

r←$ {0, 1}ρ ; x← G(KG, r)

s←m[i]‖0ζ⊕x ; s1 ← s|µ ; s2 ← s|ζ
z ← H(KH , s) ; z←$ {0, 1}ρ

t← r⊕z ; y ← f(s1)

c[i]← (y, s2, t)

b′←$A.g(pk , c, param)

Return (b = b′)

Games G3(k), G4(k)

b←$ {0, 1} ; param←$A.pg(1k)

KG←$KG(1k) ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k)

pk ← (KG,KH , f)

m←$Mb(1
k, param)

For i = 1 to |m| do

r←$ {0, 1}ρ

x← G(KG, r) ; x←$ {0, 1}µ+ζ

s←m[i]‖0ζ⊕x ; s1 ← s|µ ; s2 ← s|ζ
t←$ {0, 1}ρ ; z ← r⊕t
y ← f(s1) ; c[i]← (y, s2, t)

b′←$A.g(pk , c,param)

Return (b = b′)

Figure 34: Games G1–G4 in the proof of Theorem 6.4.

Algorithm X(k)

b←$ {0, 1} ; param←$A.pg(1k)

KG←$KG(1k)

m←$Mb(1
k, param)

For i = 1 to |m| do

r[i]←$ {0, 1}ρ ; x← G(KG, r[i])

s←m[i]‖0ζ⊕x ; s1[i]← s|µ ; s2[i]← s|ζ
α← (r, s2,KG, b, param)

Return (s1, α)

Algorithm B(KH , f,y, α, z)

(r, s2,KG, b, param)← α

pk ← (KG,KH , f)

For i = 1 to |z| do

t← r[i]⊕z[i]

c[i]← (y[i], s2[i], t)

b′←$A.g(pk , c,param)

Return (b 6= b′)

Figure 35: Distribution X (left) and adversary B (right) in the proof of Theorem 6.4.

This completes the proof.

6.4 PA0 and PA1 results

PA0 result. We show PA0 of t-clear RSA-OAEP. As mentioned above, here we obtain a better result by using
properties of the round functions of OAEP directly, rather than properties of the overall padding scheme.

Theorem 6.5 Let η, δ, µ, ζ, ρ be integer parameters. Let F be a family of one-way trapdoor permutations with
domain {0, 1}µ. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ and H : KH × {0, 1}µ+ζ → {0, 1}ρ be function families. Let
η = |[Kg(1k)]|+ |[KH(1k)]| and δ = |[Kg(1k)]|+ |[KG(1k)]|. Suppose G is η-EXT0ζ and NCRζ , H is (δ, ζ)-EXT0
and CR. Then OAEPt-clear[G,H,F|ζ+ρ] is PA0 secure. In particular, for any adversary A, there exist adversaries
AG, AH , BG, BH and an extractor Ext such that for all extractors ExtG,ExtH

Advpa0
OAEPt-clear,A,Ext(k) ≤ Adv

η-ext0ζ
G,AG,ExtG(k) + Adv

(δ,ζ)-ext0
H,AH ,ExtH (k)

+Adv
n-crζ
G,BG(k) + Advcr

H,BH (k) .

The running time of AG is about that of A and the running time of AH is about that of A plus the time to run
ExtG. The running time of BG is the time to run A and ExtG. The running time of BH is the running time of A,
ExtH and ExtG. The running time of Ext is the time to run ExtG and ExtH .

Proof: Let w be the randomness of adversary A in the game PA0. Let KG be the key for the function family
G, KH be the key for the function family H and f be the evaluation key for the trapdoor permutation family
F in the game PA0. We define EXT0 adversaries AG, AH with randomness w in Figure 37. Let v = (KH , f)
be the key independent auxiliary input to AG and u = (KG, f) be the key independent auxiliary input to AH .
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Adversary Ci(KG, x)

b←$ {0, 1} ; param←$A.pg(1k)

KH ←$KH(1k) ; (f, f−1)←$ Kg(1k)

pk ← (KG,KH , f) ; m←$Mb(1
k, param)

For j = 1 to |m| do

If j < i then x[j]←$ {0, 1}µ+ζ

If j = i then x[j]←$ x

If j > i then

r←$ {0, 1}ρ ; x[j]←$G(KG, r)

s←m[j]‖0ζ⊕x[j] ; s1[j]← s|µ ; s2[j]← s|ζ
y[j]← f(s1[j]) ; t[j]←$ {0, 1}ρ

c[j]← (y[j], s2[j], t[j])

b′←$A.g(pk , c, param)

Return (b = b′)

Figure 36: Adversary Ci in the proof of Theorem 6.4.

Adversary AH(KH , u;w)

out← ⊥ ; (KG, f)← u

pk ← (KG,KH , f)

Run ADSim(·)(pk;w)

Return (s2, out)

Procedure DSim(c)

(y, s2, t)← c ; v ← (KH , f)

r ← ExtG(KG, v,⊥, s2;w)

out← r⊕t
Halt A

Adversary AG(KG, v;w)

out← ⊥ ; (KH , f)← v

pk ← (KG,KH , f)

Run ADSim(·)(pk;w)

Return (⊥, out)

Procedure DSim(c)

(y, s2, t)← c

out← s2

Halt A

Figure 37: Adversaries AH , AG in the proof of Theorem 6.5.

Note that auxiliary input v and u are independent of key KG and KH , respectively. Let ExtG and ExtH be the
corresponding extractor for AG and AH , respectively. We define PA0 extractor Ext as shown in Figure 38.

Note that for decryption query c that A makes, if ciphertext c is not valid then extractor Ext outputs ⊥. Thus,
adversary A does not gain any information about b by making an invalid decryption query. Hence, we assume
wlog that adversary A queries only valid ciphertexts. Let c be the decryption query that A makes and rc and sc
be the corresponding middle values in the computation of the ciphertext c. Let r be the output of ExtG and s1 be
the output of ExtH . Wlog, we can assume when ExtG and ExtH output a non-empty string, they were successful
in finding the preimages. Let W1 be the event that r is a non-empty string and r 6= rc and W2 be the event that
s is a non-empty string and s1 6= sc|µ. Let W = W1 ∨W2. Let S be the event that game PA0A,ExtOAEPt-clear(k) outputs
1. Note that all of the following probabilities are over the choice of public key pk and randomness w. Then

Advpa0
OAEPt-clear,A,Ext(k) = 2 ·

(
Pr [S ∧W ] + Pr

[
S ∧W

])
− 1 .

Now consider near collision resistance adversary BG in Figure 39 and collision resistance adversary BH in Fig-
ure 40. If event W happens, then either BG or BH finds a collision. Thus, we have Pr [W ] ≤ Adv

n-crζ
G,BG(k) +

Advcr
H,BH (k). Then

Pr [S ∧W ] ≤ Adv
n-crζ
G,BG(k) + Advcr

H,BH (k) .

Let E be the event such that for decryption query c adversary A makes, the outputs of decryption algorithm Dec
and extractor Ext are equal. Then,

Pr
[
S ∧W

]
= Pr

[
S ∧W ∧ E

]
+ Pr

[
S ∧W ∧ E

]
.

Note that W and E are mutually exclusive and when event W happens the output of Ext is incorrect. Thus, we
have Pr

[
S ∧W ∧ E

]
= Pr [S ∧ E ]. Moreover, we have Pr [S | E ] = 1/2 since for the query made by A the
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Algorithm Ext(pk , w, c)

(y, s2, t)← c ; (KG,KH , f)← pk

v ← (KH , f) ; u← (KG, f)

r ← ExtG(KG, v,⊥, s2;w) ; z ← r⊕t
s1 ← ExtH(KH , u, s2, z;w) ; s← s1‖s2
m∗ ← s⊕G(KG, r) ; m← m∗|µ

If m∗|ζ 6= 0ζ then return ⊥
If c 6= Enc(pk ,m; r) then return ⊥
Return m

Figure 38: PA0 extractor Ext in the proof of Theorem 6.5.

Adversary BG(KG)

out1 ← ε ; out2 ← ε

w←$ Coins(k)

(f, f−1)←$ Kg(1k)

KH ←$KH(1k)

v ← (KH , f)

pk ← (KG,KH , f)

Run ADSim(·)(pk;w)

Return (out1, out2)

Procedure DSim(c)

(y, s2, t)← c ; s← f−1(y)‖s2
out1 ← ExtG(KG, v,⊥, s2;w)

out2 ← t⊕H(KH , s)

Halt A

Figure 39: CR adversary BG in the proof of Theorem 6.5.

outputs of Dec and Ext are equal. Hence,

Pr [S ∧ E ] =
1

2
· Pr [E ] .

Consider adversaries AG, AH in Figure 37. We know adversary A always makes valid decryption query. Thus,
when event E happens extractor Ext outputs ⊥. This implies that either r 6= rc where r is the output of ExtG or
s1 6= sc|µ where s1 is the output of ExtH . We also know when event W happens, extractor ExtG either outputs
⊥ or rc, and extractor ExtH outputs either ⊥ or sc|µ. Therefore when events E and W happen, either ExtG or
ExtH fails. Thus,

Pr
[
W ∧ E

]
≤ Adv

η-ext0ζ
G,AG,ExtG(k) + Adv

(δ,ζ)-ext0
H,AH ,ExtH (k) .

On the other hand, we know that E and W mutually exclusive. Hence, we get Pr [E ] = Pr [W ∨ E ]− Pr [W ].
Summing up,

Advpa0
OAEPt-clear,A,Ext(k) ≤ 2 · Pr [W ] + (Pr [W ∨ E ]− Pr [W ]) + 2 · Pr

[
W ∧ E

]
− 1

≤ Adv
η-ext0ζ
G,AG,ExtG(k) + Adv

(δ,ζ)-ext0
H,AH ,ExtH (k) + Adv

n-crζ
G,BG(k) + Advcr

H,BH (k) .

This completes the proof

PA1 result. We now show that t-clear RSA-OAEP “inherits” the extractability of the underlying padding
transform, in the form of PA1 and EXT1, as long as the latter is also near-collision resistant. Here we state the
result for an abstract padding scheme rather than specifically for OAEP. Interestingly, this approach does not
seem to work for PA2 and EXT2. We leave PA2 of the encryption scheme as an open problem.

Theorem 6.6 Let δ, µ, ζ, ρ be integer parameters. Let F be a family of one-way trapdoor permutations with
domain {0, 1}µ and δ = |[Kg(1k)]|. Let PAD be a padding transform from domain {0, 1}µ+ρ to range {0, 1}µ+ζ+ρ.
Suppose PAD is NCRζ+ρ and δ-EXT1ζ+ρ. Then the padding-based encryption scheme PAD[F|ζ+ρ] is PA1 secure.
In particular, for any PA1 adversary A that makes q queries, there exist an EXT1 adversary APAD that makes q
queries, an NCRζ+ρ adversary B and an extractor Ext such that for all extractors ExtPAD

Advpa1
PAD[F|ζ+ρ],A,Ext(k) ≤ Adv

δ-ext1ζ+ρ
PAD,APAD,ExtPAD

(k) + Adv
n-crζ+ρ
PAD,B (k) .
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Adversary BH(KH)

out1 ← ε ; out2 ← ε

w←$ Coins(k)

(f, f−1)←$ Kg(1k)

KG←$KG(1k)

v ← (KH , f)

u← (KG, f)

pk ← (KG,KH , f)

Run ADSim(·)(pk;w)

Return (out1, out2)

Procedure DSim(c)

(y, s2, t)← c ; out1 ← f−1(y)‖s2
r ← ExtG(KG, v,⊥, s2;w)

z ← t⊕r
s1 ← ExtH(KH , u, s2, z;w)

out2 ← s1‖s2
Halt A

Figure 40: CR adversary BH in the proof of Theorem 6.5.

Adversary A
OPAD(·)
PAD (π, f ;w)

pk ← (π, f)

Run ADSim(·)(pk;w)

Procedure DSim(c)

v ← OPAD(⊥, c|ζ+ρ)
Return v|µ

Figure 41: EXT1 adversary APAD in the proof of Theorem 6.6.

The running time of APAD is that of A. The running time of B is about the time to run A, ExtPAD and Ext. The
running time of Ext is about that of ExtPAD.

Proof: Let w be the randomness of PA1 adversary A. We define EXT1 adversary APAD with randomness w in
Figure 41. Note that auxiliary input f is independent of the key π. Let ExtPAD be the corresponding extractor
for APAD. We define PA1 extractor Ext as shown in Figure 42.

Note that for any decryption query c adversary A makes, if c is not valid then extractor Ext outputs ⊥. Thus,
A does not gain any information about b by making invalid decryption queries. Hence, we assume wlog that
adversary A only makes queries for valid ciphertext c. Assume A makes q extract queries. Let ci be the i-th
query A makes to the extract oracle and vi be the output of extractor ExtPAD on input ci|ζ+ρ. Let W be the
event where there exists a valid ciphertext ci such that vi is non-empty and extractor Ext outputs ⊥ on input ci.
Let S be the event that game PA1A,ExtPAD[F|ζ+ρ](k) outputs 1. Note that all of the following probabilities are over the

choice of public key pk and randomness w. Then,

Advpa1
PAD[F|ζ+ρ],A,Ext(k) = 2 ·

(
Pr [S ∧W ] + Pr

[
S ∧W

])
− 1 .

Note that extractor ExtPAD either outputs the correct value or ⊥. Now consider near-collision resistance adversary
B in Figure 43. If event W happens, then B finds a collision. Thus, we have Pr [W ] ≤ Adv

n-crζ+ρ
PAD,B (k). Then

Pr [S ∧W ] ≤ Adv
n-crζ+ρ
PAD,B (k) .

Let E be the event such that for each decryption query ci that adversary A makes, the output of decryption
algorithm Dec and extractor Ext are equal. Then,

Pr
[
S ∧W

]
= Pr

[
S ∧W ∧ E

]
+ Pr

[
S ∧W ∧ E

]
.

Note that W and E are mutually exclusive since when event W happens the output of the extractor Ext would
be incorrect for at least one of the extract queries. Thus, we have Pr

[
S ∧W ∧ E

]
= Pr [S ∧ E ]. Moreover, we

have Pr [S | E ] = 1/2, since for all queries made by A the output of decryption oracle Dec and extractor Ext are
equal. Hence,

Pr [S ∧ E ] =
1

2
· Pr [E ] .

Consider the adversary APAD in Figure 41. We know adversary A always makes valid decryption query. Thus,
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Algorithm Ext(state, c)

(pk , w, st)← state ; (π, f)← pk

(v, st)← ExtPAD(st, π, f,⊥, c|ζ+ρ;w)

state ← (pk , w, st)

m← v|µ ; r ← v|ρ
If c 6= Enc(pk ,m; r) then return (⊥, state)

Return (m, state)

Figure 42: PA1 extractor Ext in the proof of Theorem 6.6.

Adversary B(π, π̂)

out1 ← ε ; out2 ← ε

w←$ Coins(k) ; b←$ {0, 1}
(f, f−1)←$ Kg(1k)

pk ← (π, f) ; sk ← (π̂, f−1)

st← (π,w) ; state ← (pk , w)

Run ADSim(·)(pk;w)

Return (out1, out2)

Procedure DSim(c)

y2 ← c|ζ+ρ ; y1 ← f−1(c|µ)

y ← y1‖y2 ; out1 ← π̂(y)

(out2, st)← ExtPAD(st, π, f,⊥, c|ζ+ρ;w)

If
(
π(out1)|ζ+ρ = π(out2)|ζ+ρ ∧ out1 6= out2

)
Halt A

m0 ← Dec(sk , c)

(m1, state)←$ Ext(state, c)

Return mb

Figure 43: NCR adversary B in the proof of Theorem 6.6.

when event E happens extractor Ext outputs ⊥ for at least one of the extract queries. Moreover, if W happens
then for all extract queries either ExtPAD outputs ⊥ or Ext outputs non-empty string. Therefore, when E and W
happen, extractor ExtPAD fails and outputs ⊥ for at least one of the extract queries. Thus,

Pr
[
W ∧ E

]
≤ Adv

δ-ext1ζ+ρ
PAD,APAD,ExtPAD

(k) .

On the other hand, we know that E and W mutually exclusive. Hence, we get Pr [E ] = Pr [W ∨ E ]− Pr [W ].
Summing up,

Advpa1
PAD[F|ζ+ρ],A,Ext(k) ≤ Adv

δ-ext1ζ+ρ
PAD,APAD,ExtPAD

(k) + Adv
n-crζ+ρ
PAD,B (k) .

This completes the proof.

7 Full Instantiation Results for s-Clear RSA-OAEP

In this section, we give full instantiation results for s-clear RSA-OAEP. Note that we are the first to consider
this variant. We show that s-clear is IND-CCA2 if G is a pseudorandom generator, near-collision resistant,
and “many-times” extractable with dependent auxiliary information, H is collision-resistant, and F meets novel
“XOR-nonmalleability” and “XOR-indistinguishability” notions that seem plausible for RSA. Also note that we
avoid the several impossibility results here. First, we avoid the impossibility result of [64] by using XOR-non-
malleability of F . Second, we avoid the impossibility result of [16] since the dependent auxiliary information is
bounded.

7.1 XOR Assumptions on Trapdoor Permutations and RSA

Here, we give novel assumptions, which are stronger than one-wayness and needed for RSA-OAEP s-clear. They
speak to the fact that addition, or XOR operation in this case, “breaks up” the multiplicative structure of RSA.
Indeed, in a related context of arithmetic progressions on ZN we have seen formal evidence of this [54, 66]. It is
interesting for future work to give formal evidence in our case as well.

XOR-IND. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain TDom. Let G : KG×TDom→
GRng be a function family. For ATK ∈ {IND0, IND1, IND2}, we associate the experiment in Figure 44, for every
k ∈ N. Define the xor-atk advantage of A against F with the hint function family G

Advxor-atk
F,G,A (k) = 2 · Pr

[
XOR-ATKA

F,G(k)⇒ 1
]
− 1 .
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Game XOR-ATKA
F,G(k)

b←$ {0, 1} ; (f, f−1)← Kg(1k)

KG ← KG(1k) ; x←$ TDom(k)

(state, z)←$A1(f,KG, G(KG, x))

y0 ← f(x) ; y1 ← f(x⊕z)
b′←$AO2 (state, yb)

Return (b = b′)

Figure 44: Games to define XOR-ATK security.

If atk = ind0, then O = ε. We say that F is XOR-IND0 with respect to hint function family G if for every
PPT attacker A, Advxor-ind0

F,G,A (k) is negligible in k. Similarly, if atk = ind1, then O = C, where C is a relation
checker oracle that on input y1, y2 and ω work as follows:

C(y1, y2, ω) =

{
1 if ω = f−1(y1)⊕f−1(y2)

0 otherwise
.

Similarly, if atk = ind2`, then O = V`, where V` is an `-bit image verifier oracle that on input y works as follows:

V`(y) =

{
1 if ∃x : y = G(KG, x)|`
0 otherwise

.

Note that adversary A is not allowed to query for the challenge to the image verifier oracle V`. We say
that F is XOR-IND1 (resp. XOR-IND2`) with respect to hint function family G if for every PPT attacker A,
Advxor-ind1

F,G,A (k) (resp. Advxor-ind2`
F,G,A (k)) is negligible in k.

Observe that the hint is crucial, as otherwise the assumption would trivially hold. In our results, G is a PRG.
In this case, we show that G is also a HCF function for F . In other words, the assumption in our use-case can
be viewed an extension of the classical notion of HCF — G is “robust” not in the sense of [45], but in the sense
that the view of the adversary is also indistinguishable given F applied to either the real input or related one.
Note that not all hardcore functions have this property, even when F is partial one-way. For example, consider
a hardcore function G that reveals first bit of its input x. Then if a partial one-way function F also reveals the
first bit of x, XOR-indistinguishability clearly does not hold.

Theorem 7.1 Let F be a family of one-way trapdoor permutations with domain TDom. Suppose G : KG ×
TDom→ GRng is a pseudorandom generator and F is XOR-IND0 with respect to hint function family G. Then G
is a hardcore function for F on the uniform distribution. In particular, for any adversary A, there are adversaries
B,C such that

Advhcf
F,G,U,A(k) ≤ 2 ·Advxor-ind0

F,G,B (k) + 2 ·Advprg
G,C(k) .

The running time of B and C are about that of A.

Proof: Consider games G1–G3 in Figure 45. Game G1 corresponds to game HCF-DISTA,UF,G (k). We now explain
the game chain. Game G2 is identical to game G1, except we are using completely random y instead of using the
pseudorandom value f(x). Consider adversary B as shown in Figure 46. Note that adversary B simulate games
G1, G2 with respect to its inputs. It returns 1 if adversary A can correctly guess the simulated challenge bit b,
and returns 0 otherwise. Hence,

Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1] ≤ Advxor-ind0
F,G,B (k) .

Next, game G3 is identical to game G2, except we are using completely random g0 instead of using the pseudo-
random value G(KG, x). Consider adversary C as shown in Figure 46. Note that adversary C simulate games
G2, G3 with respect to its inputs. It returns 1 if adversary A can correctly guess the simulated challenge bit b,
and returns 0 otherwise. Hence,

Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1] ≤ Advprg
G,C(k) .
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Games G1(k), G2(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)← Kg(1k)

x←$ TDom(k)

g0 ← G(KG, x) ; g1←$ GRng(k)

y ← f(x) ; y←$ TDom(k)

b′←$A(KG, f, y, gb)

Return (b = b′)

Games G3(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)← Kg(1k)

x←$ TDom(k)

g0←$ GRng(k) ; g1←$ GRng(k)

y←$ TDom(k)

b′←$A(KG, f, y, gb)

Return (b = b′)

Figure 45: Games G1–G3 in the proof of Theorem 7.1.

Algorithm B1(f,KG, G(KG, x))

state ← (f,KG, G(KG, x))

z←$ TDom(k)

Return (state, z)

Algorithm B2(state, y)

b←$ {0, 1}
(f,KG, G(KG, x))← state

g0 ← G(KG, x)

g1←$ GRng(k)

b′←$A(KG, f, y, gb)

Return (b = b′)

Algorithm C(KG, g0)

b←$ {0, 1}
(f, f−1)← Kg(1k)

g1←$ GRng(k)

y←$ TDom(k)

b′←$A(KG, f, y, gb)

Return (b = b′)

Figure 46: Adversary B (left) and adversary C (right) in the proof of Theorem 7.1.

Note that Pr[G3(k)⇒ 1] = 1/2, since y, g0 and g1 are uniformly random. Summing up,

Advhcf
F,G,U,A(k) ≤ 2 ·Advxor-ind0

F,G,B (k) + 2 ·Advprg
G,C(k) .

This completes the proof.

XOR-NM0. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain TDom. To adversary A, we
associate the experiment in Figure 47 for every k ∈ N. We say that F is XOR-NM0 if for every PPT attacker A,

Advxor-nm0
F,A (k) = Pr

[
XOR-NM0AF (k)⇒ 1

]
.

is negligible in k.

XOR-NM1. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain TDom. Let G : KG×TDom→
GRng be a hash function family. To adversary A, we associate the experiment in Figure 47 for every k ∈ N. We
say that F is XOR-NM1 with respect to G if for every PPT adversary A,

Advxor-nm1
F,G,A (k) = Pr

[
XOR-NM1AF,G(k)⇒ 1

]
.

is negligible in k.

Relations between definitions. Interestingly, we show XOR-NM0 and XOR-IND1 together imply XOR-
NM1.

Theorem 7.2 Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain TDom. Let G : KG ×
TDom → GRng be a function family. Suppose F is XOR-NM0 and XOR-IND1 with respect to G. Then, F is
XOR-NM1 with respect to G. In particular, for any adversary A, there are adversaries B,C such that

Advxor-nm1
F,G,A (k) ≤ Advxor-nm0

F,G,B (k) + 2 ·Advxor-ind1
F,G,C (k) .

The running time of B and C are about that of A.

Proof: Consider games G1–G4 in Figure 48. Game G1 corresponds to the game XOR-NM1AF,G(k). We now
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Game XOR-NM0AF (k)

(f, f−1)← Kg(1k)

x←$ TDom(k)

(ω, y′)←$A(f, f(x))

x′ ← f−1(y′)

If (ω = x⊕x′) ∧ (ω 6= 0)

Return 1

Else return 0

Game XOR-NM1AF,G(k)

(f, f−1)← Kg(1k) ; KG ← KG(1k)

x←$ TDom(k) ; z ← G(KG, x)

(α, state)←$A1(f,KG, z)

(ω, y′)←$A2(state, f(x⊕α))

x′ ← f−1(y′)

If (ω⊕α = x⊕x′) ∧ (ω 6= 0)

Return 1

Else return 0

Figure 47: Games to define XOR-NM security.

Games G1(k), G2(k)

(f, f−1)← Kg(1k)

KG ← KG(1k) ; x←$ TDom(k)

(z, state)←$A1(KG, f,G(KG, x))

y ← f(x⊕z) ; y ← f(x)

(ω, y′)←$A2(state, y) ; x′ ← f−1(y′)

out← (ω⊕z = x⊕x′) ∧ (ω 6= 0)

out← (ω = x⊕x′) ∧ (ω 6= 0)

Return out

Games G3(k), G4(k)

(f, f−1)← Kg(1k) ; KG ← KG(1k)

x←$ TDom(k) ; x′←$ TDom(k)

w ← G(KG, x) ; w ← G(KG, x
′)

(ω, y′)←$A(KG, f, f(x), w)

x′ ← f−1(y′)

Return ((ω = x⊕x′) ∧ (ω 6= 0))

Figure 48: Games G1–G4 in the proof of Theorem 7.2.

Algorithm C1(f,KG, G(KG, x))

(z, state)←$A1(KG, f,G(KG, x))

Return (z, state)

Algorithm C
C(·,·,·)
2 (state, yb)

(ω, y′)←$A2(state, yb)

b′ ← C(y′, yb, ω)

Return b′

Algorithm D1(f,KG, G(KG, x))

z←$ TDom(k)

state ← (f,KG, G(KG, x), z)

Return (z, state)

Algorithm D
C(·,·,·)
2 (state, yb)

(ω, y′)←$A(state, yb)

b′ ← C(y′, yb, ω)

Return b′

Figure 49: Adversaries C and D in the proof of Theorem 7.2.

explain the game chain. Game G2 is identical to game G1, except instead of giving f(x⊕z) as an input to the
adversary A2 we are using the value f(x). Consider adversary C as shown in Figure 49. Note that adversary C
simulate games G1, G2 with respect to it’s inputs. Hence,

Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1] ≤ Advxor-ind1
F,G,C (k) .

In game G3, we merge the adversaries A1, A2 of game G2. The change is conservative, meaning that Pr[G2(k)⇒
1] = Pr[G3(k)⇒ 1]. Game G4 is identical to game G3, except instead of giving G(KG, x) as an input to adversary
A2 we are using G(KG, x

′) for uniformly random x′. Consider adversary D as shown in Figure 49. Note that
adversary D simulate games G3, G4 with respect to it’s inputs. Hence,

Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1] ≤ Advxor-ind1
F,G,D (k) .

Note that Game G4 corresponds to the game XOR-NM0AF,G(k). Thus,

Advxor-nm1
F,G,A (k) ≤ Advxor-nm0

F,G,B (k) + 2 ·Advxor-ind1
F,G,C (k) .

This completes the proof.

Discussion. We caution that these are new assumptions and must be treated with care. It would be interesting
for future work to establish theoretical constructions meeting them or show that RSA meets them under more
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well-studied assumptions.

7.2 Main Results

First, we establish the security of s-clear RSA-OAEP in the RO model. Then, we show that it is IND-CCA1
and IND-CCA2 secure under respective suitable assumptions. As in Section 3 we actually prove corresponding
notions of IND-CPA + PA, yielding stronger results. We refer to Appendix D for the proof in the random oracle
model.

IND-CCA2 result in RO model. First, note that the partial one-wayness result of [44] does not apply to
this variant, and in fact the negative result of [65] does apply, demonstrating that one-wayness of the trapdoor
permutation is not enough for the scheme to achieve IND-CCA2 security even in the RO model. We show that
XOR-nonmalleability is sufficient.

Theorem 7.3 Let µ, ζ, ρ be integer parameters. Let F be a XOR-NM0 family of one-way trapdoor permutations
with domain {0, 1}ρ. Suppose G : KG×{0, 1}ρ → {0, 1}µ+ζ is a RO and H : KH×{0, 1}µ+ζ → {0, 1}ρ is collision-
resistant. Then OAEPs-clear[G,H,F|µ+ζ ] is IND-CCA2 secure in the random oracle model. In particular, for any
adversary A, there are adversaries B,C such that

Advind-cca2
OAEPs-clear,A(k) ≤ 2q

2ρ
+

4p

2ζ
+ 2 ·Advcr

H,C(k) + 4 ·Advxor-nm0
F,B (k) .

where p is the number of decryption-oracle queries of A and q is the total number of random-oracle queries A and
M make. Adversary B and C make at most q random-oracle queries. The running time of B and C are about
that of A.

IND-CCA1 result. To prove IND-CCA1, we use EXT1 and near-collision resistance of the overall OAEP
padding scheme (which follows from assumptions on the round functions as per Section 5), as well as the assump-
tion that G is a pseudorandom generator and F is XOR-IND (as defined in Section 7.1).

Theorem 7.4 Let η, µ, ζ, ρ be integer parameters. Let F be a family of trapdoor permutations with domain
{0, 1}µ, and let η = |[Kg(1k)]|. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ and H : KH × {0, 1}µ+ζ → {0, 1}ρ be function
families. Suppose G is a pseudorandom generator, and let F is XOR-IND0 with respect to hint function G (as
defined in Section 7.1). Also suppose OAEP[G,H] is η-EXT1µ+ζ and NCRµ+ζ . Then OAEPs-clear[G,H,F|µ+ζ ] is
IND-CCA1 secure. In particular, for any adversary A that makes q decryption queries, there exist adversaries
C,D,E, and EXT1 adversary B that makes q extract queries such that for all extractors Ext,

Advind-cca1
OAEPs-clear,A(k) ≤ 2 ·Advη-ext1

µ+ζ

OAEP[G,H],B,Ext(k) + 2 ·Advn-crµ+ζ
OAEP[G,H],C(k)

+6 ·Advxor-ind0
F,G,D (k) + 4 ·Advprg

G,E(k) .

IND-CCA2 result. To prove IND-CCA2, we use EXT2 and near-collision resistance of G, as well as the
assumptions that G is a pseudorandom generator, H is collision-resistant and F is XOR-IND and XOR-NM (as
defined in Section 7.1). Note that, EXT2 adversary only makes one image query. Thus, the dependent auxiliary
information is bounded by the size of the image.

Theorem 7.5 Let η, µ, ζ, ρ be integer parameters. Let F be a family of trapdoor permutations with domain
{0, 1}µ and η = |[Kg(1k)]| + |[KH(1k)]|. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ and H : KH × {0, 1}µ+ζ → {0, 1}ρ
be function families. Suppose G is VPRGζ , NCRζ and η-EXT2ζ with respect to F , and H is collision-resistant.
Suppose F is XOR-NM0, XOR-IND1 and XOR-IND2ζ with respect to G. Then OAEPs-clear[G,H,F|µ+ζ ] is
IND-CCA2 secure. In particular, for any adversary A that makes q decryption queries, there exists adversaries
CH , CG, D1, D2, D3, E, and adversary B that makes q extract queries such that for all extractors Ext,

Advind-cca2
OAEPs-clear,A(k) ≤ 6 ·Adv

η-ext2ζ
G,F,B,Ext(k) + 18 ·Adv

xor-ind2ζ
F,G,D1

(k)

+10 ·Adv
n-crζ
G,CG(k) + 4 ·Advcr

H,CH (k) + 4 ·Advxor-nm0
F,G,D3

(k)

+14 ·Advxor-ind1
F,G,D2

(k) + 16 ·Adv
vprgζ
G,E (k) .
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Games G1(k), G2(k)

b←$ {0, 1}
KG←$KG(1k) ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k)

pk ← (KG,KH , f)

(M0,M1, state)←$A1(1k, pk)

mb←$Mb(1
k, pk) ; r←$ {0, 1}ρ

x← G(KG, r) ; s← x⊕(mb||0ζ)
z ← H(KH , s) ; t← z⊕r
y ← f(t) ; y ← f(r)

c← (s, y) ; b′←$A2(state, c)

Return (b = b′)

Games G3(k)

b←$ {0, 1}
KG←$KG(1k) ; KH ←$KH(1k)

f ←$ Kg(1k)

pk ← (KG,KH , f)

(M0,M1, state)←$A1(1k, pk)

mb←$Mb(1
k, pk) ; r←$ {0, 1}ρ

x← {0, 1}µ+ζ ; s← x⊕(mb||0ζ)
y ← f(r) ; c← (s, y)

b′←$A2(state, c)

Return (b = b′)

Figure 50: Games G1–G3 in the proof of Theorem 7.7.

Efficiency. The ciphertext length is 2n + k + µ where n is the length of the RSA modulus, k is the security
parameter, and µ is the message length. For example, if n = 2048, k = 128, and we encrypt an AES key
with µ = 128 (i.e., we use RSA-OAEP as a key encapsulation mechanism, which is typical in practice then
the ciphertext length is 4352. It is interesting to compare this with the standard model IND-CCA2 secure key
encapsulation mechanism of [49], which has only ciphertext length 2n but requires one exponentiation modulo
N with RSA encryption exponent e and one full exponentiation modulo N , so is much more computationally
expensive than our scheme, which is dominated by the cost of one exponentiation modulo N with encryption
exponent e, so again is basically that of standard RSA-OAEP.

Remark 7.6 It is worth mentioning why we are able to get IND-CCA2 (i.e., adaptive) security for s-clear RSA-
OAEP but not t-clear. The point is that, in the t-clear setting, it is not even clear how to define EXT2 of OAEP in
a useful way. Since OAEP is invertible, the image oracle should output only part of the image point. But then it is
not clear how the EXT2 adversary against OAEP can simulate the encryption oracle for the PA2 adversary against
t-clear RSA-OAEP. On the other hand, for EXT2 of G, the image oracle can output the full image point since
G is not invertible. This then allows proving that s-clear RSA-OAEP is PA2 directly (without using monolithic
assumptions on the padding scheme not known to follow from assumptions on the round functions).

7.3 IND-CPA Result

We first show that s-clear RSA-OAEP is IND-CPA secure under suitable assumptions. Then, we show PA0, PA1
and PA2 security depend on the strength of assumptions on G,H and F . Interestingly, our IND-CPA result uses
an XOR-based assumption on the trapdoor permutation. We also refer the reader to Remark 2.3.

Theorem 7.7 Let µ, ζ, ρ be integer parameters. Let F be a family of trapdoor permutations with domain {0, 1}ρ.
Suppose G : KG×{0, 1}ρ → {0, 1}µ+ζ is a pseudorandom generator and H : KH ×{0, 1}µ+ζ → {0, 1}ρ is a family
of hash function. Suppose F is XOR-IND0 with respect to hint function family G. Then OAEPs-clear[G,H,F|µ+ζ ]
is IND-CPA secure. In particular, for any adversary A, there are adversaries B,D such that

Advind-cpa
OAEPs-clear,A(k) ≤ 6 ·Advxor-ind0

F,G,B (k) + 4 ·Advprg
G,D(k) .

The running time of B and D are about that of A.

Proof: Consider games G1–G3 in Figure 50. Game G1 corresponds to game IND-CPAA
OAEPs-clear . We now explain

the game chain. Game G2 is identical to game G1, except that instead of evaluating trapdoor permutation f on
input t, we are evaluating it on input r. Consider adversary B as shown in Figure 51. Note that adversary B
simulates game G1, G2 with respect to it’s inputs. It returns 1 if adversary A can correctly guess the simulated
challenge bit b, and returns 0 otherwise. Hence,

Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1] ≤ Advxor-ind0
F,G,B (k) .
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Algorithm B1(f,KG, G(KG, r))

b←$ {0, 1} ; KH ←$KH(1k)

pk ← (KG,KH , f)

(M0,M1, state)←$A1(1k, pk)

mb←$Mb(1
k, pk)

s← G(KG, r)⊕(mb||0ζ)
z ← H(KH , s) ; state ← (b, pk, s)

Return (state, z)

Algorithm B2(state, yb)

(b, pk, s)← state

c← (s, yb)

b′←$A2(state, c)

Return (b = b′)

Figure 51: Adversary B in the proof of Theorem 7.7.

Algorithm C(KG, f, f(r), x)

b←$ {0, 1} ; KH ←$KH(1k)

pk ← (KG,KH , f)

(M0,M1, state)←$A1(1k, pk)

mb←$Mb(1
k, pk)

s← x⊕(mb||0ζ) ; c← (s, f(r))

b′←$A2(state, c)

Return (b = b′)

Figure 52: Adversary C in the proof of Theorem 7.7.

Next, game G3 is identical to game G2, except we are using completely random x in the encryption phase instead
of using pseudorandom value G(KG, r). Consider adversary C as shown in Figure 52. Hence,

Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1] ≤ Advhcf
F,G,Uρ,C(k) .

From Theorem 7.1, there are adversaries D,E such that

Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1] ≤ 2 ·Advxor-ind0
F,G,E (k) + 2 ·Advprg

G,D(k) .

We assume wlog that advantage of adversary B is greater than adversary E. Note that Pr[G3(k) ⇒ 1] = 1/2,
since the distribution of the ciphertexts is completely independent of bit b. Summing up,

Advind-cpa
OAEPs-clear,A(k) ≤ 6 ·Advxor-ind0

F,G,B (k) + 4 ·Advprg
G,D(k) .

This completes the proof.

7.4 PA0 and PA1 Results

We give a full instantiation result for s-clear RSA-OAEP and show that it is PA0 and PA1 under suitable
assumptions. We show that s-clear RSA-OAEP inherits the extractability of the underlying padding transform,
in the form of PA0 and PA1, as long as the latter is also near-collision resistant. Here we state the result for
an abstract padding scheme rather than specifically for OAEP. Note that results for OAEP then follow from the
round functions in Section 5.

Theorem 7.8 Let η, µ, ζ, ρ be integer parameters. Let F be a family of one-way trapdoor permutations with
domain {0, 1}ρ and η = |[Kg(1k)]|. Let PAD be a padding transform from domain {0, 1}µ+ρ to range {0, 1}µ+ζ+ρ.
Suppose PAD is NCRµ+ζ and η-EXT0µ+ζ . Then PAD[F|µ+ζ ] is PA0 secure. In particular, for any PA0 adversary
A, there are adversaries APAD, B and extractor Ext such that for all extractors ExtPAD

Advpa0
PAD[F|µ+ζ ],A,Ext(k) ≤ Advη-ext0

µ+ζ

PAD,APAD,ExtPAD
(k) + Advn-crµ+ζ

PAD,B (k) .

The running time of APAD and Ext are about that of A and ExtPAD, respectively. Furthermore, the running time
of B is about that of A plus the time to run ExtPAD.

The proof of Theorem 7.8 is very similar to the proof of Theorem 7.9.
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Adversary A
OPAD(·)
PAD (π, f ;w)

pk ← (π, f)

Run ADSim(·)(pk;w)

Procedure DSim(c)

v ← OPAD(⊥, c|µ+ζ)
Return v|µ

Figure 53: EXT1 adversary APAD in the proof of Theorem 7.9.

Algorithm Ext(state, c)

(pk , w, st)← state

(v, st)← ExtPAD(st, π, f, c|µ+ζ ;w)

state ← (pk , w, st)

m← v|µ ; r ← v|ρ
If c 6= Enc(pk ,m; r) then return (state,⊥)

Return (state,m)

Figure 54: PA1 extractor Ext in the proof of Theorem 7.9.

Theorem 7.9 Let η, µ, ζ, ρ be integer parameters. Let F be a family of one-way trapdoor permutations with
domain {0, 1}ρ and η = |[Kg(1k)]|. Let PAD be a padding transform from domain {0, 1}µ+ρ to range {0, 1}µ+ζ+ρ.
Suppose PAD is NCRµ+ζ and η-EXT1µ+ζ . Then PAD[F|µ+ζ ] is PA1 secure. In particular, for any PA1 adversary
A that makes at most q decryption queries, there are adversaries B, APAD that makes at most q extract queries
and extractor Ext such that for all extractors ExtPAD

Advpa1
PAD[F|µ+ζ ],A,Ext(k) ≤ Advη-ext1

µ+ζ

PAD,APAD,ExtPAD
(k) + Advn-crµ+ζ

PAD,B (k) .

The running time of APAD and Ext are about that of A and ExtPAD, respectively. Furthermore, the running time
of B is about that of A plus the time to run ExtPAD.

Proof: Let w be the randomness of PA1 adversary A. We define EXT1 adversary APAD with randomness w
in Figure 53. Note that the auxiliary input f is independent of the key π. Let ExtPAD be the corresponding
extractor for APAD. We define PA1 extractor Ext as shown in Figure 54.

Note that for any decryption query c that adversary A makes, if c is not a valid ciphertext then extractor Ext
outputs ⊥. Thus, adversary A does not gain any information about b by making invalid decryption queries.
Hence, we assume wlog that adversary A only makes queries for valid ciphertext c.

Assume A makes q extract queries. Let ci be the i-th query A makes to the extract oracle and vi be the output
of extractor ExtPAD on input ci|µ+ζ . Let W be the event where there exists a valid ciphertext ci such that vi is

non-empty and extractor Ext outputs ⊥ on input ci. Let S be the event that game PA1A,Ext
PAD[F|µ+ζ ](k) outputs 1.

Note that all of the following probabilities are over the choice of public key pk and randomness w. Then,

Advpa1
PAD[F|µ+ζ ],A,Ext(k) = 2 ·

(
Pr [S ∧W ] + Pr

[
S ∧W

])
− 1 .

Note that extractor ExtPAD either outputs the correct value or ⊥. Now consider near-collision resistance adversary

B in Figure 55. If event W happens, then B finds a collision. Thus, we have Pr [W ] = Advn-crµ+ζ
PAD,B (k). Then

Pr [S ∧W ] ≤ Advn-crµ+ζ
PAD,B (k) .

Let E be the event such that for each decryption query ci that adversary A makes, the output of decryption
algorithm Dec and extractor Ext are equal. Then, we obtain Pr

[
S ∧W

]
= Pr

[
S ∧W ∧ E

]
+ Pr

[
S ∧W ∧ E

]
.

Note that W and E are mutually exclusive since when W happens the output of extractor Ext would be incorrect
for at least one of the extract queries. Thus, we have Pr

[
S ∧W ∧ E

]
= Pr [S ∧ E ]. Moreover, we have

Pr [S | E ] = 1/2, since for all queries made by A, the outputs of decryption oracle Dec and extractor Ext are
equal. Hence, we obtain Pr [S ∧ E ] = 1/2 · Pr [E ].
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Adversary B(π, π̂)

out1 ← ε ; out2 ← ε

w←$ Coins(k) ; b←$ {0, 1}
(f, f−1)←$ Kg(1k)

pk ← (π, f) ; sk ← (π̂, f−1)

st← (π,w) ; state ← (pk , w)

Run ADSim(·)(pk;w)

Return (out1, out2)

Procedure DSim(c)

y1 ← c|µ+ζ ; y2 ← f−1(c|ρ)
y ← y1‖y2 ; out1 ← π̂(y)

(st, out2)← ExtPAD(st, π, f,⊥, c|µ+ζ ;w)

If
(
π(out1)|µ+ζ = π(out2)|µ+ζ ∧ out1 6= out2

)
Halt A

m0 ← Dec(sk , c)

(state,m1)←$ Ext(state, c)

Return mb

Figure 55: NCR adversary B in the proof of Theorem 7.9.

Consider EXT1 adversary APAD in Figure 53. We know A always makes valid decryption query. Thus, when event
E happens Ext outputs ⊥ for at least one of the extract queries. Moreover, if W happens then for all extract
queries either ExtPAD ⊥ or Ext outputs non-empty string. Therefore, when E and W happen, extractor ExtPAD
fails and outputs ⊥ for at least one of the extract queries. Thus,

Pr
[
W ∧ E

]
≤ Advη-ext1

µ+ζ

PAD,APAD,ExtPAD
(k) .

On the other hand, we know that E and W mutually exclusive. Hence, we get Pr [E ] = Pr [W ∨ E ]− Pr [W ].
Summing up,

Advpa1
PAD[F|µ+ζ ],A,Ext(k) ≤ Advη-ext1

µ+ζ

PAD,APAD,ExtPAD
(k) + Advn-crµ+ζ

PAD,B (k) .

This completes the proof.

7.5 PA2 Result

We give a full instantiation result for s-clear RSA-OAEP and show that it is PA2 under stronger assumptions on
G,H and F . We note that we can reduce assumptions as per Theorem 7.2.

Theorem 7.10 Let η, µ, ζ, ρ be integer parameters. Let F be a family of trapdoor permutations with domain
{0, 1}ρ. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ and H : KH × {0, 1}µ+ζ → {0, 1}ρ be hash function families. Let
η = |[Kg(1k)]| + |[KH(1k)]|. Suppose G is VPRGζ , NCRζ and η-EXT2ζ with respect to F and H is collision-
resistant. Suppose F is XOR-NM1 and XOR-IND2ζ with respect to G. Then OAEPs-clear[G,H,F|µ+ζ ] is PA2
secure. In particular, for any adversary A that makes at most q decryption queries and p encryption queries,
there are extractor Ext, adversaries BF , BG, BH , C,D, adversary AG that makes at most q extract queries and p
image queries such that for all extractor ExtG

Advpa2
OAEPs-clear,A,Ext(k) ≤ 3 ·Adv

η-ext2ζ
G,F,AG,ExtG(k) + 9p ·Adv

xor-ind2ζ
F,G,C (k) + 6p ·Adv

vprgζ
G,D (k)

+5 ·Adv
n-crζ
G,BG(k) + 2 ·Advcr

H,BH (k) + 2p ·Advxor-nm1
F,G,BF (k)

The running time of AG is about that of A. The running time of Ext is about that of ExtG. The running time of
C and D are about that of A plus the time to run ExtG. The running time of BF , BG and BH are about that of
A plus the time to run Ext.

Proof: We will need Lemma 7.11 in our proof. We refer to Appendix E for the proof of Lemma 7.11.

Lemma 7.11 Let η, δ, ζ be integer parameters. Let G : KG × GDom → GRng and H : KH × GRng → GDom
be a hash function family. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain GDom and
δ = η + |[KH(1k)]|. Suppose G is VPRGζ and δ-EXT2ζ function with respect to F . Suppose F is XOR-IND2ζ
with respect to G. Then G is a η-EXT2ζ with respect to OAEPs-clear[G,H,F|µ+ζ ]. In particular, for any adversary
A that makes at most q extract queries and p image queries, there are adversaries C,D and adversary B that
makes at most q extract queries and p image queries such that for all extractor Ext

Adv
η-ext2ζ
G,OAEPs-clear,A,Ext(k) ≤ Adv

δ-ext2ζ
G,F,B,Ext(k) + 3p ·Adv

xor-ind2ζ
F,G,C (k) + 2p ·Adv

vprgζ
G,D (k) .
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Adversary A
OG(·),I(·)
G (KG, v;w)

(KH , f)← v ; pk ← (KG,KH , f)

Run ADSim(·),EncSim(·)(pk;w)

Procedure EncSim(M)

(x, c)← I(M)

Return c

Procedure DSim(c)

(s, y)← c ; r ← OG(s|ζ)
x← G(KG, r)

m∗ ← s⊕x ; m← m∗|µ

Return m

Figure 56: EXT2 adversary AG in the proof of Theorem 7.10.

Algorithm Ext(state, c, c)

(pk , w, st)← state

For i = 1 to |c| do

(s[i],y[i])← c[i] ; s2[i]← s[i]|ζ
(s, y)← c ; (KG,KH , f)← pk

v ← (KH , f)

(st, r)← ExtG(st,KG, v, s2, c, s|ζ ;w)

state ← (pk , w, st) ; x← G(KG, r)

m∗ ← s⊕x ; m← m∗|µ

If m∗|ζ 6= 0ζ then return (⊥, state)

If c 6= Enc(pk ,m; r) then return (⊥, state)

Return (m, state)

Figure 57: PA2 extractor Ext in the proof of Theorem 7.10.

The running time of B is about that of A. The running time of C and D are about that of A plus the time to
run Ext.

Let w be the randomness of adversary A in the PA2 game. Let KH be the key for the hash function family
H and f be the evaluation key for the trapdoor permutation family F in the game PA2. We define EXT2
adversary AG with the hint function OAEPs-clear and randomness w in Figure 56. Let v = (KH , f) be the key
independent auxiliary input to adversary AG. Note that auxiliary input v is independent of key KG. Let ExtG be
the corresponding extractor for AG. We define PA2 extractor Ext as shown in Figure 57. Let ci = (si, yi) be the
i-th decryption query made by A and ri be the correspondence randomness. Note that when decryption query
ci is invalid Ext will always output ⊥. Hence, the output of Ext and decryption algorithm are always equal on
invalid decryption queries. Thus, we only consider valid queries ci made by A.

We define Ci to be the set of all ciphertext c produced by encryption oracle before adversary A makes the i-th
decryption query, for all i ∈ [q]. We also define Ci,1 to be the set of all c ∈ Ci such that si|ζ = s|ζ . Let S be the

event that game PA2A,ExtOAEPs-clear(k) outputs 1 and E be the event such that for all decryption query ci made by A,
Ci,1 is empty. Then

Advpa2
OAEPs-clear,A,Ext(k) = 2 ·

(
Pr [S ∧ E ] + Pr

[
S ∧ E

])
− 1 .

Note that using the same argument made in the proof of Theorem 7.9, there exists adversary B such that

Pr [S ∧ E ] ≤ 1

2
·
(
Adv

η-ext2ζ
G,OAEPs-clear,AG,ExtG(k) + Adv

n-crζ
G,B (k) + 1

)
.

Let W be the event such that for at least one decryption query ci, there exists c ∈ Ci,1 where ri 6= r. Then, we
obtain Pr

[
E
]
≤ Pr

[
E ∧W

]
+ Pr

[
E ∧W

]
. Consider near collision resistance adversary BG in Figure 58. Note

that, when W and E happen, adversary BG finds a collision. Thus,

Pr
[
E ∧W

]
≤ Adv

n-crζ
G,BG(k) .

Moreover, let Q be the event such that for at least one decryption query ci, there exists c ∈ Ci,1 where yi = y.
Then, we get that Pr

[
E ∧W

]
≤ Pr

[
E ∧W ∧Q

]
+ Pr

[
E ∧W ∧Q

]
. Consider collision resistance adversary
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Adversary BG(KG)

b← {0, 1} ; i← 1

r← ε ; c← ε ; s← ε

out1 ← ε ; out2 ← ε

st← ε ; w←$ Coins(k)

(f, f−1)←$ Kg(1k)

KH ←$KH(1k)

pk ← (KG,KH , f)

sk ← (KG,KH , f
−1)

state ← (pk , w)

Run ADSim(·),EncSim(·)(pk;w)

Return (out1, out2)

Procedure DSim(c)

(s, y)← c ; t← f−1(y)

out1 ← t⊕H(KH , s)

For i = 1 to |c| do

If s|ζ = s[i]|ζ ∧ out1 6= r[i]

out2 ← r[i] ; Halt A

m0 ← Dec(sk , c)

(m1, state)←$ Ext(state, c, c)

Return mb

Procedure EncSim(M)

m←M(1k, pk)

r[i]←$ {0, 1}ρ

c[i]← Enc(pk,m; r[i])

s[i]← c[i]|µ+ζ ; i← i+ 1

Return c[i]

Figure 58: NCR adversary BG in the proof of Theorem 7.10.

Adversary BH(KH)

b← {0, 1} ; i← 1

r← ε ; c← ε ; y← ε

out1 ← ε ; out2 ← ε

st← ε ; w←$ Coins(k)

(f, f−1)←$ Kg(1k)

KG←$KG(1k)

pk ← (KG,KH , f)

sk ← (KG,KH , f
−1)

state ← (pk , w)

Run ADSim(·),EncSim(·)(pk;w)

Return (out1, out2)

Procedure DSim(c)

(s, y)← c ; out1 ← s

t← f−1(y) ; r ← t⊕H(KH , s)

For i = 1 to |c| do

If r = r[i] ∧ y = y[i]

If out1 6= c[i]|µ+ζ

out2 ← c[i]|µ+ζ ; Halt A

m0 ← Dec(sk , c)

(m1, state)←$ Ext(state, c, c)

Return mb

Procedure EncSim(M)

m←M(1k, pk)

r[i]←$ {0, 1}ρ

c[i]← Enc(pk,m; r[i])

y[i]← c[i]|ρ ; i← i+ 1

Return c[i]

Figure 59: CR adversary BH in the proof of Theorem 7.10.

BH in Figure 59. Note that, when events E,W and Q happen, adversary BH finds a collision. Thus,

Pr
[
E ∧W ∧Q

]
≤ Advcr

H,BH (k) .

Note that when events E,W and Q happen, for all decryption query ci with non-empty Ci,1, we have that ri = r
and yi 6= y for all c = (s, y) ∈ Ci,1. Let cj be the first decryption query with non-empty Cj,1. Let R be the event
such that for all decryption query ci with i < j the output of Ext and decryption algorithm are equal. Therefore,
using the same argument made in the proof of Theorem 7.9, there exists adversary B such that

Pr
[
E ∧W ∧Q ∧R

]
≤ Adv

η-ext2ζ
G,OAEPs-clear,AG,ExtG(k) + Adv

n-crζ
G,B (k) .

Consider XOR-NM1 adversary BF in Figure 60. Note that, when events E,W Q and R happen, adversary BF
can win the XOR-NM1 game. Thus, we obtain Pr

[
E ∧W ∧Q ∧R

]
≤ p ·Advxor-nm1

F,G,BF (k). Summing up,

Advpa2
OAEPs-clear,A,Ext(k) ≤ 3 ·Adv

η-ext2ζ
G,OAEPs-clear,AG,ExtG(k) + 5 ·Adv

n-crζ
G,BG(k)

+2 ·Advcr
H,BH (k) + 2p ·Advxor-nm1

F,G,BF (k)

Using Lemma 7.11,

Advpa2
OAEPs-clear,A,Ext(k) ≤ 3 ·Adv

η-ext2ζ
G,F,AG,ExtG(k) + 9p ·Adv

xor-ind2ζ
F,G,C (k) + 6p ·Adv

vprgζ
G,D (k)

+5 ·Adv
n-crζ
G,BG(k) + 2 ·Advcr

H,BH (k) + 2p ·Advxor-nm1
F,G,BF (k)

This completes the proof.
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Algorithm BF,1(f,KG, x)

i← 1 ; j←$ [p]

s← ε ; c← ε

st← ε ; z ← ε

KH ←$KH(1k)

pk ← (KG,KH , f)

w←$ Coins(k)

state ← (pk , w)

Run ADSim(·),EncSim(·)(pk;w)

Return (z, st)

Procedure DSim(c)

(m, state)←$ Ext(state, c, c)

Return m

Procedure EncSim(M)

m←M(1k, pk)

If i = j then

s← m‖0ζ⊕x ; z ← H(KH , s)

st← (pk , s, w, j) ; Halt A

c[i]← Enc(pk,m)

s[i]← c[i]|µ+ζ ; i← i+ 1

Return c[i]

Algorithm BF,2(st, y)

out1 ← ε ; ω ← ε

i← 1 ; s← ε ; c← ε

(pk , s, w, j)← st

state ← (pk , w)

Run ADSim(·),EncSim(·)(pk;w)

Return (ω, y)

Procedure DSim(c)

(s, y)← c

If s 6= s[j]∧s|ζ = s[j]|ζ ∧y 6= c[j]|ρ
out1 ← y

ω ← H(KH , s)⊕H(KH , s[j])

Halt A

(m, state)←$ Ext(state, c, c)

Return m

Procedure EncSim(M)

m←M(1k, pk)

c[i]← Enc(pk,m)

If i = j then

c[i]← (s, y)

s[i]← c[i]|µ+ζ ; i← i+ 1

Return c[i]

Figure 60: XOR-NM1 adversary BF in the proof of Theorem 7.10.
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A Generalized SIE and CIE of RSA

In this section, we show black-box extractability properties of RSA, generalizing the work of Barthe at al. [4].
Namely, we show that RSA with small exponent is (i, j)-second input extractable and (i, j)-common input ex-
tractable for certain parameters i, j.

Coppersmith’s technique. Our proofs rely on Coppersmith’s technique [36] to find small integer roots of
univariate and bivariate polynomials modulo N with unknown factorization. Let us state the results we use.

Proposition A.1 (Univariate Coppersmith) There is an algorithm that on inputs a monic integer polyno-
mial p(X) of degree δ with integer coefficients, and a positive integer N , outputting all integer solutions x0 to
p(x0) = 0 mod N with |x0| < N1/δ in time polynomial in log(N) and δ.
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Proposition A.2 (Bivariate Coppersmith (Heuristic)) There is an algorithm that on inputs a polynomial
p(X,Y ) of total degree δ with a monic monomial XaY δ−a for some a, and a positive integer N , outputting all
integer solutions x0, y0 to p(x0, y0) = 0 mod N with |x0y0| < N1/δ in time polynomial in log(N) and δ.

Note while the bivariate Coppersmith algorithm is not know to provably run in polynomial-time, [50, 41, 25, 18]
shows it works well in practice. We consider that sufficient for our purposes.

Main results. We now give the main results of this section. We use tCop(N,δ) to denote the maximum running-
time of the univariate and bivariate Coppersmith algorithms on inputs as above. We also use tEuc(N,δ) to denote
the maximum running-time of the extended Euclidean algorithm on two univariate polynomials of at most degree
δ over Z∗N .3 Recall the RSA trapdoor permutation family, parameterized by N, e where n = dlogNe, is defined
as fN,e(x) = xe mod N for x ∈ Z∗N .

Theorem A.3 The RSA trapdoor permutation family is (i, j)-second input extractable for j − i > (1 − 1/e)n.
The extractor runs in time tCop(N,e).

Theorem A.4 The RSA trapdoor permutation family is (i, j)-common input extractable for j − i > (1− 1/e2)n.
The extractor runs in time tCop(N,e2) + tEuc(N,e).

Proofs of main results. We now give the proofs of the main results.

Proof: (of Theorem A.3)

Firstly, let’s recall the definition of (i, j)-second input extractable. Let F = (Kg,Eval, Inv) be a trapdoor per-
mutation family with domain TDom. For i, j ∈ N, we say F is (i, j)-second input extractable if there exists an
efficient extractor E such that for every f ∈ [Kg(1k)] and every x ∈ TDom(k), extractor E on inputs f, f(x), x|ji+1

outputs x.

For any element x ∈ Z∗N and i, j ∈ [0, n], i < j, x can be uniquely represented as x = s · 2j + r · 2i + t, where
s ∈ {0, 1}n−j , r ∈ {0, 1}j−i, and t ∈ {0, 1}i. Notice that if j = n or i = 0, we will remove s or t from the formula
respectively. Now, we can rewrite RSA as a function of three arguments:

fN,e(x) = fN,e(s, r, t) = (s · 2j + r · 2i + t)e mod N .

The high level idea for (i, j)-second input extractable is to solve the monic integer polynomial through coppersmith
algorithm. Specifically, we will construct the extractor E in several cases:

• i = 0. Then the item t will be removed from RSA function, we can represent it as:

fN,e(x) = fN,e(s, r) = (s · 2j + r)e mod N .

To construct an extractor E on inputs r = x|ji+1 and c = fN,e(x), we can consider the polynomial p(X) =
0 mod N for p(X) = (X · 2j + r)e − c. The Coppersmith univariate algorithm requires monic polynomial
to find the root s. However, p(X) is not monic polynomial. Notice that j and e are public, so we can
easily find the inverse of 2je ∈ Z∗N , and multiply p(X) to get a new monic polynomial. On the other
hand, the Coppersmith algorithm can find only roots s < N1/e, which means 2n−j < N1/e, or equivalently,
j > (1 − 1/e)n. The running time of extractor E can be bounded by the running time of Coppersmith
algorithm tCop(N,e).

• j = n. This work has been shown in section 5.1 of [4]. The requirement for i is i < n/e and the extractor
E runs within time tCop(N,e).

• i > 0 and j < n. This case will be slightly different from the first case. The extractor E on inputs r = x|ji+1

and c = fN,e(x) outputs s, t such that fN,e(s, r, t) = c. By using the same strategy, we construct polynomial
p(X,Y ) = (X ·2j+r ·2i+Y )e−c mod N with two variables X and Y . The bivariate Coppersmith algorithm
could find all integer solutions x0, y0 such that |x0y0| < N1/e, which equals to 2n−j · 2i < N1/e, or in other
words, such that j − i > (1− 1/e)n. The extractor E executes within time tCop(N,e).

3Although Z∗N is not a field, if the algorithm fails it can recover a non-trivial factor of N .
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Combining these 3 cases, we thus construct an efficient (i, j)-second input extractable algorithm E running within
time tCop(N,e) when j − i > (1− 1/e)n.

Proof: (of Theorem A.4)

Again, let’s recall the definition of (i, j)-common input extractable. Let F = (Kg,Eval, Inv) be a trapdoor per-
mutation family with domain TDom. For i, j ∈ N, we say F is (i, j)-common input extractable if there exists
an efficient extractor E such that for every f ∈ [Kg(1k)] and every x1, x2 ∈ TDom(k), extractor E on inputs
f, f(x1), f(x2) outputs x1, x2 if x1|ji+1 = x2|ji+1.

Given two different c1 = f(x1), c2 = f(x2), our goal is to find s1, r, t1 and s2, r, t2 such that c1 = (s1 · 2j + r · 2i +
t1)e mod N and c2 = (s2 · 2j + r · 2i + t2)e mod N . Let us consider several cases:

• i = 0. In this case, t1 and t2 will be removed in the formula. Consider following two polynomials

p1(X,Y ) = Xe − c1 mod N

p2(X,Y ) = (X + Y · 2j)e − c2 mod N

When x0 = s1 · 2j + r and y0 = s2 − s1, both polynomials equal to 0. Taking p1(X,Y ) and p2(X,Y ) as one
variable polynomial over X, the determinant of the 2e× 2e Sylvester Matrix is a polynomial in Y . On the
other hand, the resultant Res(p1, p2, X), which equals to the determinant of the Sylvester Matrix, has root
at point Y = y0 since at point Y = y0, p1(X, y0) and p2(X, y0) will share the same root x0. Therefore, once
we get get Res(p1, p2, X) by computing Sylvester Matrix, we can use univariate Coppersmith algorithm
solve polynomial Res(p1, p2, X). Notice the specific form of the Sylvester Matrix, a straightforward but

tedious calculation shows that the degree of Res(p1, p2, X) is e2 and the coefficient of Y e
2

is 2je
2

. We can

easily adjust the coefficient of Y e
2

to 1 by multiplying the inverse of 2je
2 ∈ Z∗N . Univariate Coppersmith

algorithm requires |y0| < N1/e2 , or equivalently, j > (1 − 1/e2)n. Once we work out y0, p1(X, y0) and
p2(X, y0) share the same and unique root x0. Hence, x − x0(or power of (x − x0)) is a common factor of
these two polynomials and can be found by extended Euclidean algorithm. The running time of extractor
E could be bounded by the running time of Coppersmith algorithm tCop(N,e2) and the running time of
extended Euclidean algorithm tEuc(N,e).

• j = n. This work has also been shown in section 5.1 of [4]. The requirement for i is i < n/e2 and the
extractor E runs within time tC(N,e2) + tEuc(N,e).

• i > 0 and j < n. The high level idea is almost the same as the first case, while the detail differs. Consider
following two polynomials:

p1(X,Y1.Y2) = Xe − c1 mod N

p2(X,Y1, Y2) = (X + Y1 · 2j + Y2)e − c2 mod N

Both polynomial should be equal to 0 at point (x0 = s1 ·2j +r ·2i+ t1, y1 = s2−s1, y2 = t2− t1). Hence, the
resultant polynomial Res(p1, p2, X) over X has roots y1 and y2, since p1(X, y1.y2) and p2(X, y1.y2) share
the same root x0. On the other hand, The determinant of the 2e × 2e Sylvester Matrix associated to the
polynomial p1 and p2 over X, which equal to the resultant polynomial Res(p1, p2, X), is a polynomial with

total degree e2 and has one monic monomial Y e
2

2 . Therefore, we can use bivariate Coppersmith algorithm
get the roots y1 and y2 for polynomial Res(p1, p2, X). Notice that bivariate Coppersmith algorithm requires

|y1y2| < N1/e2 , which implies j − i > (1 − 1/e2)n. The following part, including solving x0 and running
time will be same as the first case.

In summary, we have an efficient (i, j)-common input extractable algorithm for RSA if j − i > (1 − 1/e2)n, as
required.
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Games G1(k), G2(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk)

r←$ {0, 1}ρ ; x← G(KG, r)

s← x⊕(mb||0ζ)
If H[s] 6= ⊥ then

bad1 ← true ; H[s]←$ {0, 1}ρ

Else H[s]←$ {0, 1}ρ

z ← H[s] ; t← z⊕r ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

Return RO(v)

Games G3(k), G4(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk)

r←$ {0, 1}ρ ; x← G(KG, r)

s← x⊕(mb||0ζ) ; t←$ {0, 1}ρ

z ← t⊕r ; H[s]← z ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

If v = s then

bad2 ← true ; return RO(v)

Return RO(v)

Figure 61: Games G1–G4 in the proof of Theorem B.1.

B IND-CPA Result Under Partial One-Wayness

Theorem B.1 Let n, µ, ζ, ρ be integer parameters. Let G : KG × {0, 1}ρ → {0, 1}µ+ζ be a pseudorandom
generator and H : {0, 1}µ+ζ → {0, 1}ρ be a RO. Let F be a family of trapdoor permutations with domain {0, 1}n,
where n = µ+ ζ + ρ. Suppose F is (µ+ ζ)-partial one-way. Then OAEP[G,H,F ] is IND-CPA. In particular, for
any adversary A = (A1, A2), there are an adversary D and an inverter I such that,

Advind-cpa
OAEP[G,H,F ],A(k) ≤ 2q ·Advpow

F,I (k) + 6 ·Advprg
G,D(k) +

2q

2µ+ζ
.

where q is the total number of random-oracle queries of A. The running time of D and I are about that of A.

Proof: Consider games G1–G6 in Figures 61–62. Each game maintains two independent random oracles RO and
RO. Procedure RO maintains a local array H as follows:

Procedure RO(v)
If H[v] = ⊥ then H[v]←$ {0, 1}ρ
Return H[v]

For simplicity, we omit the code of RO,RO in the games. In each game, we use RO1 to denote the oracle interface
of adversary A1 and message samplers M0,M1 and we use RO2 to denote the oracle interface of adversary A2.
Game G1 corresponds to game IND-CPAA

OAEPn . Then

Advind-cpa
OAEPn,A(k) ≤ 2 · Pr[G1(k)⇒ 1]− 1 .

We now explain the game chain. Game G2 is identical to game G1, except in the encryption of message mb,
if either adversary A1 or message sampler Mb queried s to their random oracle RO1, then it chooses a fresh
random value for H[s]. Games G1 and G2 are identical-until-bad1, and thus from the Fundamental Lemma of
Game-playing [14],

Pr [G1(k)⇒ 1 ]− Pr [G2(k)⇒ 1 ] ≤ Pr [G2(k) sets bad1 ] .

Now, consider adversary B attacking the psudorandom genetator G in Figure 63. We know that, Advprg
G,B(k) =

2 · Pr
[

PRG-DISTBG(k)⇒ 1
]
− 1. Let PRG-REALBG be the game identical to game PRG-DISTBG condition on

b = 1, and PRG-RANDB
G be the game identical to game PRG-DISTBG condition on b = 0. Then,

Advprg
G,B(k) = Pr

[
PRG-REALBG ⇒ 1

]
− Pr

[
PRG-RANDB

G ⇒ 1
]
.
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Games G5(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk)

r←$ {0, 1}ρ ; x←$ {0, 1}µ+ζ

s← x⊕(mb||0ζ)
t←$ {0, 1}ρ ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

If v = s then return RO(v)

Return RO(v)

Games G6(k)

b←$ {0, 1} ; KG←$KG(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk)

r←$ {0, 1}ρ ; s←$ {0, 1}µ+ζ

x← s⊕(mb||0ζ)
t←$ {0, 1}ρ ; c← f(s||t)
d←$A

RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

If v = s then return RO(v)

Return RO(v)

Figure 62: Games G5, G6 in the proof of Theorem B.1.

Algorithm B(KG, x)

(f, f−1)←$ Kg(1k) ; out← 0

pk ← (KG, f) ; b←$ {0, 1}
(M0,M1, state)←$A

ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

s← x⊕(mb||0ζ)
If H[s] 6= ⊥ then out← 1

Return out

Procedure ROSim1(v)

If H[v] = ⊥ then

H[v]←$ {0, 1}ρ

Return H[v]

Figure 63: Adversary B in the proof of Theorem B.1.

Note that Pr
[

PRG-REALBG ⇒ 1
]

= Pr [G2(k) sets bad1 ]. Moreover, in the PRG-RANDB
G, the probability ad-

versary A queries for s is uniformly random. Multiplying for q random-oracle queries we have Pr[PRG-RANDB
G ⇒

1] ≤ q/2µ+ζ . Thus

Pr [G2(k) sets bad1 ] ≤ Advprg
G,B(k) +

q

2µ+ζ
.

In game G3, we reorder the code of game G2 in producing t. The change is conservative, meaning that Pr[G2(k)⇒
1] = Pr[G3(k) ⇒ 1]. Game G4 is identical to game G3, except in procedure RO2, if adversary A2 make a query
for s, then the oracle lies, calling RO instead. Game G3 and game G4 are identical-until-bad2, and based on
Fundamental Lemma of Game-playing [14],

Pr [G3(k)⇒ 1 ]− Pr [G4(k)⇒ 1 ] ≤ Pr [G4(k) sets bad2 ] .

Consider adversary C attacking the psudorandom genetator G in Figure 64. Let PRG-REALCG be the game
identical to game PRG-DISTCG condition on b = 1, and PRG-RANDC

G be the game identical to game PRG-DISTCG
condition on b = 0. Then,

Advprg
G,C(k) = Pr

[
PRG-REALCG ⇒ 1

]
− Pr

[
PRG-RANDC

G ⇒ 1
]
.

Note that Pr
[

PRG-REALCG ⇒ 1
]

= Pr [G4(k) sets bad2 ]. To bound the probability of game PRG-RANDC
G

outputs 1, we construct inverter I attacking the family of partial one-way trapdoor permutation F in Fig-
ure 65. Note that if adversary A2 queries for s then inverter I could invert challenge c. Hence, we have
Pr
[

PRG-RANDC
G ⇒ 1

]
≤ q ·Advpow

F,I (k). Thus,

Pr [G4(k) sets bad2 ] ≤ Advprg
G,C(k) + q ·Advpow

F,I (k) .
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Algorithm C(KG, x)

(f, f−1)←$ Kg(1k) ; out← 0

pk ← (KG, f) ; b←$ {0, 1}
(M0,M1, state)←$A

ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

s← x⊕(mb||0ζ) ; t←$ {0, 1}ρ

c← f(s||t)
Run A

ROSim2(·)
2 (c, state)

Return out

Procedure ROSim1(v)

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Procedure ROSim2(v)

If v = s then

out← 1 ; Halt run of A2

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Figure 64: Adversary C in the proof of Theorem B.1.

Algorithm I(f, c)

b←$ {0, 1} ; j ← 0 ; out← ⊥ ; i←$ [q]

KG←$KG(1k) ; pk ← (KG, f)

(M0,M1, state)←$A
ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

Run A
ROSim2(·)
2 (c, state)

Return out

Procedure ROSim1(v)

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Procedure ROSim2(v)

j ← j + 1

If j = i then

out← v ; Halt run of A2

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Figure 65: Inverter I in the proof of Theorem B.1.

Next, game G5 is identical to game G4, except we are using completely random x in the encryption phase instead
of using the psudorandom value G(K, r). Consider adversary D as shown in Figure 66. Then

Pr[G4(k)⇒ 1]− Pr[G5(k)⇒ 1] ≤ Advprg
G,D(k) .

In game G6, we reorder the code of game G5 in producing s. The change is conservative, meaning that Pr[G5(k)⇒
1] = Pr[G6(k) ⇒ 1]. Note that, Pr[G6(k) ⇒ 1] = 1/2, since the distribution of ciphertexts is completely
independent of bit b. Assuming that the advantage of adversary D is greater than the advantage of adversaries
B and C, we have

Advind-cpa
OAEPn,A(k) ≤ 2q ·Advpow

F,I (k) + 6 ·Advprg
G,D(k) +

2q

2µ+ζ
.

This completes the proof.

C $IND-CPA-KI implies $SIM-CPA-KI

Theorem C.1 Let PKE = (Kg,Enc,Dec) be a PKE scheme. Let A be a $SIM-CPA-KI adversary against PKE
with respect to message sampler M. Then, there exist a simulator S and an $IND-CPA-KI adversary B with
respect to message samplers M0,M1 such that for all k ∈ N

Adv$sim-cpa-ki
PKE,A,S,M(k) ≤ 81 ·Adv$ind-cpa-ki

PKE,B,M0,M1
(k) +

(3

4

)k
.

where M0,M1 are 2-induced distributions of M.

Proof: The proof is similar to the proof of Theorem 3.1 from [45]. We begin by showing that it is suffices to
consider $SIM-CPA-KI adversaries where the output of A.f is boolean.

Claim C.2 Let PKE = (Kg,Enc,Dec) be a R-PKE scheme. Let A be a $SIM-CPA-KI adversary against PKE
with respect to message samplerM. Then, there is a boolean $SIM-CPA-KI adversary B such that for all k ∈ N

Adv$sim-cpa-ki
PKE,A,SA,M(k) ≤ 2Adv$sim-cpa-ki

PKE,B,SB ,M(k) .
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Algorithm D(KG, x)

(f, f−1)←$ Kg(1k)

pk ← (KG, f) ; b←$ {0, 1}
(M0,M1, state)←$A

ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

s← x⊕(mb||0ζ) ; t←$ {0, 1}ρ

c← f(s||t)
b′←$A

ROSim2(·)
2 (c, state)

Return (b = b′)

Procedure ROSim1(v)

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Procedure ROSim2(v)

If v = s then H[v]←$ {0, 1}ρ

If H[v] = ⊥ then H[v]←$ {0, 1}ρ

Return H[v]

Figure 66: Adversary D in the proof of Theorem B.1.

Algorithm B.pg(1k)

param←$A.pg(1k)

r←$ {0, 1}A.f.rl(k)

pars ← (r, param)

Return pars

Algorithm B.g(pk , c, pars)

(r,param)← pars

ω←$A.g(pk , c, param)

Return 〈 r, ω〉

Algorithm B.f(m,pars)

(r, param)← pars

t←$A.f(m,param)

Return 〈 r, t〉

Simulator SB(pk , |m|, pars)
(r, param)← pars

ω←$ SA(pk , |m|,param)

Return 〈 r, ω〉

Figure 67: $SIM-CPA-KI adversary B and simulator SB in the proof of Theorem C.1.

where the running time of B is about that of A plus O(`).

Proof of Claim C.2. Let B be the adversary attacking PKE and SB be the corresponding simulator as specified
in Figure 67. Let EA and EB be the events that games $SIM-CPA-KI-REAL

A,M
PKE and $SIM-CPA-KI-REAL

B,M
PKE

output 1, respectively. Hence,

Pr [EB ] = Pr [EA ] +
1

2
(1− Pr [EA ])

=
1

2
Pr [EA ] +

1

2
.

Let TA and TB be the events that games $SIM-CPA-KI-IDEAL
A,SA,M
PKE and $SIM-CPA-KI-IDEAL

B,SB ,M
PKE output

1, respectively. Similarly, we have Pr [TB ] = Pr [TA ]/2+1/2. Thus, Adv$sim-cpa-ki
PKE,A,SA,M(k) ≤ 2 ·Adv$sim-cpa-ki

PKE,B,SB ,M(k).
This completes the proof of Claim C.2.

Next, we claim that it is suffices to consider balanced $SIM-CPA-KI adversaries meaning the probability the
partial information is 1 or 0 is approximately 1/2. We call A δ-balanced boolean $SIM-CPA-KI adversary if for
all b ∈ {0, 1} ∣∣∣Pr [ t = b : t←$A.f(m,param) ]− 1

2

∣∣∣ ≤ δ .

for all param and m output by A.pg and M, respectively.

Claim C.3 Let PKE = (Kg,Enc,Dec) be a R-PKE scheme. Let B be a boolean $SIM-CPA-KI adversary against
PKE with respect to the message sampler M. Then for any 0 ≤ δ < 1/2, there is a δ-balanced boolean
$SIM-CPA-KI adversary C such that for all k ∈ N

Adv$sim-cpa-ki
PKE,B,SB ,M(k) ≤

(2

δ
+ 1
)2
·Adv$sim-cpa-ki

PKE,C,SC ,M(k) .

where the running time of C is about that of B plus O(1/δ)

Proof of Claim C.3. For simplicity, we assume 1/δ is an integer. Let C be the adversary attacking PKE and
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Algorithm C.pg(1k)

param←$B.pg(1k)

Return param

Algorithm C.g(pk , c, param)

ω←$B.g(pk , c, param)

i←$ {1, · · · 2(1/δ) + 1}
If i ≤ 1/δ then return 0

Else if i ≤ 2(1/δ) return 1

Else return ω

Algorithm C.f(m,param)

t←$B.f(m, param)

j←$ {1, · · · 2(1/δ) + 1}
If j ≤ 1/δ then return 0

Else if j ≤ 2(1/δ) return 1

Else return t

Simulator SC(pk , |m|, param)

ω←$ SB(pk , |m|, param)

k←$ {1, · · · 2(1/δ) + 1}
If k ≤ 1/δ then return 0

Else if k ≤ 2(1/δ) return 1

Else return ω

Figure 68: $SIM-CPA-KI adversary C and simulator SC in the proof of Theorem C.1.

SC be the corresponding simulator as specified in Figure 68. It is easy to see that C is δ-balanced, since for all
b ∈ {0, 1} ∣∣∣Pr [ t = b : t←$ C.f(m,param) ]− 1

2

∣∣∣ ≤ 1

2/δ + 1
.

Let EB and EC be the events that games $SIM-CPA-KI-REAL
B,M
PKE and $SIM-CPA-KI-REAL

C,M
PKE output 1,

respectively. Let T be the event that i, j = 2/δ + 1. Thus,

Pr [EC ] = Pr [EC | T ] · Pr [T ] + Pr
[
EC | T

]
· Pr

[
T
]

=
( 1

2/δ + 1

)2
Pr [EB ] +

1

2
Pr
[
T
]
.

Let TC and TB be the events that games $SIM-CPA-KI-IDEAL
C,SC ,M
PKE and $SIM-CPA-KI-IDEAL

B,SB ,M
PKE output

1, respectively. Similarly, we have

Pr [TC ] =
( 1

2/δ + 1

)2
Pr [TB ] +

1

2
Pr
[
T
]
.

Thus, Adv$sim-cpa-ki
PKE,B,SB ,M(k) ≤

(
2/δ + 1

)2
·Adv$sim-cpa-ki

PKE,C,SC ,M(k). This completes the proof of Claim C.3.

Finally, we conclude the proof with following claim.

Claim C.4 Let PKE = (Kg,Enc,Dec) be a R-PKE scheme. Let C be a δ-balanced boolean $SIM-CPA-KI
adversary against PKE with respect to the message samplerM. Then there is a $IND-CPA-KI adversary D such
that for all k ∈ N

Adv$sim-cpa-ki
PKE,C,S,M(k) ≤ 1

2
Adv$ind-cpa-ki

PKE,D,M0,M1
(k) +

1

2

(1

2
+ δ
)k

.

whereM0,M1 are log(1/(1/2− δ))-induced distributions ofM and the running time of D is about that k-times
of C.

Proof of Claim C.4. We define ER,1D and EL,1D to be the events that game $IND-CPA-KI-LEFT
D,M0,M1

PKE and

$IND-CPA-KI-RIGHT
D,M0,M1

PKE output 1, respectively. We also define ER,0D and EL,0D to be the events that game

$IND-CPA-KI-LEFT
D,M0,M1

PKE and $IND-CPA-KI-RIGHT
D,M0,M1

PKE outputs 0, respectively. Consider adversary

D attacking PKE and message samplersM0,M1 shown in Figure 69. Therefore, we have Adv$ind-cpa-ki
PKE,D,M0,M1

(k) =

Pr
[
ER,1D

]
−Pr

[
EL,1D

]
. Let T to be the event that the final return statements ofM0 andM1 are executed and
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Algorithm D.pg(1k)

param←$ C.pg(1k)

Return param

AlgorithmM0(1k,param)

For i = 1 to k/2 do:

m←$M(1k,param)

If C.f(m, param) = 0 then

Return m

Return m

Algorithm D.g(pk , c, param)

b′←$ C.g(pk , c, param)

Return b′

AlgorithmM1(1k, param)

For i = 1 to k/2 do:

m←$M(1k, param)

If C.f(m,param) = 1 then

Return m

Return m

Figure 69: $IND-CPA-KI adversary D and constructed samplerM0,M1 in the proof of Theorem C.1.

Simulator SC(pk , param, |m|)
m′←$M(1k, param)

c′ ← Enc(pk ,m′)

ω←$A.g(pk , c′, param)

Return ω

Figure 70: Constructed simulator SC in the proof of Theorem C.1.

let X = Pr
[
ER,1D | T

]
+ Pr

[
EL,0D | T

]
. Hence,

Adv$ind-cpa-ki
PKE,D,M0,M1

(k) ≥
(

Pr
[
ER,1D | T

]
− Pr

[
EL,1D | T

])
· Pr

[
T
]

(1)

=
(

Pr
[
ER,1D | T

]
+ Pr

[
EL,0D | T

]
− 1
)
· Pr

[
T
]

(2)

=
(
X − 1

)
· Pr

[
T
]
. (3)

We define E1
C and E0

C to be the events that game $SIM-CCA-KI-REAL
C,M
PKE and $SIM-CCA-KI-IDEAL

C,S,M
PKE

outputs 1, respectively. Consider the simulator SC as shown in Figure 70. Note that,

Pr
[
E1
C

]
= Pr [C.f(m) = 1 ] · Pr

[
ER,1D | T

]
+ Pr [C.f(m) = 0 ] · Pr

[
EL,0D | T

]
.

Assume Pr [C.f(m) = 1 ] = 1/2−ε, for some ε ∈ [−1/2, 1/2] and let Y = Pr
[
ER,1D | T

]
−Pr

[
EL,0D | T

]
. Therefore,

we have Pr
[
E1
C

]
= X/2+ε ·Y . On the other hand, we have Pr

[
E0
C

]
=
∑
b Pr [C.f(m′) = b ] ·Pr [C.g(pk , c) = b ].

We also have,

Pr [C.g(pk , c) = 0 ] =

1∑
b=0

Pr [C.f(m) = b ] · Pr [C.g(pk , c) = 0 |C.f(m) = b ]

= Pr [C.f(m) = 0 ] · Pr
[
EL,0D | T

]
+ Pr [C.f(m) = 1 ] ·

(
1− Pr

[
ER,1D | T

])
=

1

2
(Y + 1) + (X − 1) · ε .

Similarly, we have Pr [C.g(pk , c) = 1 ] = 1/2(1− Y ) + (1−X) · ε. Thus,

Adv$sim-cpa-ki
PKE,C,S,M(k) = (

1

2
− 2ε2)(X − 1) (4)

≤ 1

2
(X − 1) . (5)

From equations 3 and 5, we obtain that Adv$ind-cpa-ki
PKE,D,M0,M1

(k) ≥ 2Adv$sim-cpa-ki
PKE,C,S,M(k) · Pr

[
T
]
. Moreover, we know
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that C is a δ-balanced adversary. Then,

Adv$ind-cpa-ki
PKE,D,M0,M1

(k) ≥ 2Adv$sim-cpa-ki
PKE,C,S,M(k)

(
1−

(1

2
+ δ
)k)

≥ 2Adv$sim-cpa-ki
PKE,C,S,M(k)−

(1

2
+ δ
)k

.

Setting δ = 1/4, will conclude the proof of Theorem C.1.

D Security of s-clear RSA-OAEP in the RO Model

We show that s-clear RSA-OAEP is IND-CCA2 secure in random oracle model. As a warm-up (which is useful
in the final result), we begin by showing that s-clear RSA-OAEP is IND-CPA secure.

Theorem D.1 Let µ, ζ, ρ be integer parameters. Let F be a family of one-way trapdoor permutations with
domain {0, 1}ρ. Let G : KG×{0, 1}ρ → {0, 1}µ+ζ be a RO and H : KH×{0, 1}µ+ζ → {0, 1}ρ be a function family.
Then OAEPs-clear[G,H,F ] is IND-CPA secure in the random oracle model. In particular, for any adversary A,
there is an adversary B such that

Advind-cpa
OAEPs-clear,A(k) ≤ 2q

2ρ
+ 2 ·Advowf

F,B(k) .

where q is the total number of random-oracle queries of A and M. Adversary B makes at most q random-oracle
queries. The running time of B is about that of A.

Proof: Consider games G1–G4 in Figure 71. Each game maintains two independent random oracles RO and

RO. Procedure RO maintains a local array G as follows:

Procedure RO(v)
If G[v] = ⊥ then G[v]←$ {0, 1}µ+ζ
Return G[v]

For simplicity, we omit the code of RO,RO in the games. In each game, we use RO1 to denote the oracle interface
of adversary A1 and message samplers M0,M1 and we use RO2 to denote the oracle interface of adversary A2.
Game G1 corresponds to game IND-CPAA

OAEPs-clear . Then

Advind-cpa
OAEPs-clear,A(k) = 2 · Pr[G1(k)⇒ 1]− 1 .

We now explain the game chain. Game G2 is identical to game G1, except in the encryption of message mb,
if either adversary A1 or message sampler Mb queried r to their random oracle RO1, then it chooses a fresh
random value for G[r]. Games G1 and G2 are identical-until-bad1, and thus from the Fundamental Lemma of
Game-playing [14],

Pr [G1(k)⇒ 1 ]− Pr [G2(k)⇒ 1 ] ≤ Pr [G2(k) sets bad1 ] ≤ q

2ρ
.

In game G3, we reorder the code of game G2 in producing s. The change is conservative, meaning that Pr[G2(k)⇒
1] = Pr[G3(k) ⇒ 1]. Game G4 is identical to game G3, except in procedure RO2, if adversary A2 make a query
for r, then the oracle lies, calling RO instead. Game G3 and game G4 are identical-until-bad2, and based on
Fundamental Lemma of Game-playing [14],

Pr [G3(k)⇒ 1 ]− Pr [G4(k)⇒ 1 ] ≤ Pr [G4(k) sets bad2 ] .

Consider adversary B attacking trapdoor permutation F in Figure 72. Then,

Pr [G4(k) sets bad2 ] ≤ Advowf
F,B(k) .

Note that Pr[G4(k)⇒ 1] = 1/2, since the distribution of the ciphertexts are completely independent of the bit b.
Summing up,

Advind-cpa
OAEPs-clear,A(k) ≤ 2q

2ρ
+ 2 ·Advowf

F,B(k)
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Games G1(k), G2(k)

b←$ {0, 1} ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KH , f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk) ; r←$ {0, 1}ρ

If G[r] 6= ⊥ then

bad1 ← true ; G[r]←$ {0, 1}µ+ζ

Else G[r]←$ {0, 1}µ+ζ

x← G[r] ; s← x⊕(mb||0ζ)
z ← H(KH , s) ; t← z⊕r
y ← f(t) ; c← (s, y)

d←$A
RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

Return RO(v)

Games G3(k), G4(k)

b←$ {0, 1} ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KH , f)

(M0,M1, state)←$A
RO1(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk); r←$ {0, 1}ρ

s←$ {0, 1}µ+ζ ; x← s⊕(mb||0ζ)
G[r]← x ; z ← H(KH , s) ; t← z⊕r
y ← f(t) ; c← (s, y)

d←$A
RO2(·)
2 (c, state)

Return (b = d)

Procedure RO1(v)

Return RO(v)

Procedure RO2(v)

If v = r then

bad2 ← true ; return RO(v)

Return RO(v)

Figure 71: Games G1–G4 in the proof of Theorem D.1.

Algorithm B(f, y)

KH ←$KH(1k) ; out← ⊥
pk ← (KH , f) ; b←$ {0, 1}
(M0,M1, state)←$A

ROSim1(·)
1 (1k, pk)

mb←$MROSim1(·)
b (1k, pk)

s← {0, 1}µ+ζ ; z ← H(KH , s)

c← (s, y)

Run A
ROSim2(·)
2 (c, state)

Return out

Procedure ROSim1(v)

IfG[v] = ⊥ thenG[v]←$ {0, 1}µ+ζ

Return G[v]

Procedure ROSim2(v)

If f(v⊕z) = y then

out← v ; Halt run of A2

IfG[v] = ⊥ thenG[v]←$ {0, 1}µ+ζ

Return G[v]

Figure 72: Adversary B in the proof of Theorem D.1.

This completes the proof.

To achieve IND-CCA2 security, we need additional assumptions on H and F . In particular, we need H to be
collision-resistant and trapdoor permutation family F to be XOR-non-malleable. (The latter is also necessary in
general due to [65].)

Theorem D.2 Let µ, ζ, ρ be integer parameters. Let F be a family of trapdoor permutations with domain
{0, 1}ρ. Suppose G : KG × {0, 1}ρ → {0, 1}µ+ζ is a RO and H : KH × {0, 1}µ+ζ → {0, 1}ρ is collision-resistant.
Suppose F is XOR-NM. Then OAEPs-clear[G,H,F ] is IND-CCA2 secure in the random oracle model. In particular,
for any adversary A, there are adversaries B,C and D such that

Advind-cca2
OAEPs-clear,A(k) ≤ 2q

2ρ
+

4p

2ζ
+ 2 ·Advowf

F,B(k) + 2 ·Advcr
H,C(k) + 2 ·Advxor-nm0

F,D (k) .

where p is the number of decryption-oracle queries of A and q is the total number of random-oracle queries of A
and M. Adversary B,C and D makes at most q random-oracle queries. The running time of B,C and D are
about that of A.

Proof: Consider games G1,G2 in Figures 73. Then

Advind-cca2
OAEPs-clear,A(k) = 2 · Pr[G1(k)⇒ 1]− 1 .

Game G2 is identical to game G1, except for the following. In procedure Dec(c), instead of using the decryption
of OAEP[G,H,F ] to decrypt c, we maintain the set Dom of random-oracle queries r that adversaries A1 and A2
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Games G1(k), G2(k)

b←$ {0, 1} ; Dom← ∅ ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k) ; pk ← (KH , f)

(M0,M1, state)←$A
Dec(·),ROSim(·)
1 (1k, pk)

mb←$MRO(·)
b (1k, pk) ; r←$ {0, 1}ρ

x← RO(r) ; s← x⊕(mb||0ζ)
z ← H(KH , s) ; t← z⊕r
y ← f(t) ; c← (s, y)

d←$A
Dec(·),ROSim(·)
2 (c, state)

Return (b = d)

Procedure ROSim(r)

Dom← Dom ∪ {r}
Return RO(r)

Procedure Dec(c′) // of game G1

sk ← (KH , f
−1)

m′ ← Dec(sk , c′)

Return m′

Procedure Dec(c′) // of game G2

(s′, y′)← c′

For r ∈ Dom do

If RO(r)|ζ = s′|ζ then

m∗ ← s′⊕RO(r) ; m′ ← m∗|µ

If c′ = Enc(pk ,m′; r) then

Return m′

Return ⊥

Figure 73: Games G1 and G2 of the proof of Theorem D.2.

Algorithm C(KH)

out1 ← ⊥ ; out2 ← ⊥ ; b←$ {0, 1}
(f, f−1)←$ Kg(1k) ; pk ← (KH , f)

(M0,M1, state)←$A
Dec(·),ROSim(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk) ; r←$ {0, 1}ρ

x← RO(r) ; s← x⊕(mb||0ζ)
z ← H(KH , s) ; t← z⊕r
out1 ← s ; y ← f(t) ; c← (s, y)

Run A
Dec(·),ROSim(·)
2 (c, state)

Return out1, out2

Procedure ROSim(r)

Dom← Dom ∪ {r}
Return RO(r)

Procedure Dec(c′)

(s′, y′)← c′

r′ ← f−1(y′)⊕H(KH , s
′)

If s 6= s′ and s|ζ = s′|ζ and y = y′ and r = r′

out2 ← s′ ; Halt A

For r ∈ Dom do

If RO(r)|ζ = s′|ζ then

m∗ ← s′⊕RO(r) ; m′ ← m∗|µ

If m∗|ζ = 0ζ and c′ = Enc(pk ,m′; r) then

Return m′

Return ⊥

Figure 74: Adversary C in the proof of Theorem D.2.

make. If there is r ∈ Dom and a message m such that c is the corresponding ciphertext of m under randomness
r, then we return m; otherwise return ⊥. Wlog, assume that A1 stores all random-oracle queries/answers in its
state; that is, both A1 and A2 also can track Dom and implement the Dec procedure of game G2 on their own,
without calling the decryption oracle. The adversaries can distinguish the games if and only if they can trigger
Dec of game G1 to produce non-⊥ output.

For i ∈ [p], let ci = (si, yi) be the i-th decryption queries made by A and ri = H(KH , si)⊕f−1(yi). Note that
in the game G2 when ri ∈ Dom, adversary A always get the correct plaintext. Therefore, adversary A can
distinguish the games if and only if there exist ci such that ci is a valid ciphertext and ri /∈ Dom. Let c = (s, y)
be the challenge ciphertext and r be the corresponding randomness. We define T to be the event that there exists
at least one decryption query ci such that the corresponding randomness ri /∈ Dom ∪ {r} and RO(ri)|ζ = si|ζ .
We also define R to be the event that there exists at least one decryption query ci such that the corresponding
randomness ri = r and s|ζ = si|ζ . Note that when T or R happen, adversary A can distinguish game G1 and
game G2. Then

Pr [G1(k)⇒ 1 ]− Pr [G2(k)⇒ 1 ] ≤ Pr [T ] + Pr
[
T ∧R

]
.

Moreover, we know for any decryption query ci, when there is no prior random-oracle query on ri, RO(ri)|ζ is
equal to si|ζ with probability 2−ζ . Multiplying for p decryption-oracle queries, we obtain Pr [T ] ≤ p/2ζ . Next,
we define E1 to be the event such that there exists at least one decryption query ci, where ri = r, s 6= si, s|ζ = si|ζ
and y = yi. We also define E2 to be the event such that there exists at least one decryption query ci where ri = r,
s 6= si, s|ζ = si|ζ and y 6= yi and E3 to be the event such that there exists at least one decryption query ci where the
corresponding ri = r, s = si and y 6= yi. Then, we obtain Pr

[
T ∧R

]
≤ Pr

[
T ∧ E1

]
+Pr

[
T ∧ E2

]
+Pr

[
T ∧ E3

]
.
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Algorithm D(f, y)

out1 ← ⊥ ; out2 ← ⊥ ; b←$ {0, 1}
KH ←$KH(1k) ; pk ← (KH , f)

(M0,M1, state)←$A
Dec(·),ROSim(·)
1 (1k, pk)

mb←$MRO1(·)
b (1k, pk) ; x←$ {0, 1}µ+ζ

s← x⊕(mb||0ζ) ; c← (s, y)

Run A
Dec(·),ROSim(·)
2 (c, state)

Return (out1, out2)

Procedure ROSim(r)

Dom← Dom ∪ {r}
Return RO(r)

Procedure Dec(c′)

(s′, y′)← c′

If s 6= s′ and s|ζ = s′|ζ and y 6= y′

out1 ← H(KH , s)⊕H(KH , s
′)

out2 ← y′ ; Halt A

For r ∈ Dom do

If RO(r)|ζ = s′|ζ then

m∗ ← s′⊕RO(r) ; m′ ← m∗|µ

If m∗|ζ = 0ζ and c′ = Enc(pk ,m′; r)

Return m′

Return ⊥

Figure 75: Adversary D in the proof of Theorem D.2.

Note that when E1 happens, there exists at least one decryption query ci such that ri = r, s 6= si, s|ζ = si|ζ and
y = yi. Consider adversary C attacking the hash function family H in Figure 74. Note that when adversary A2

makes such decryption query, adversary C is able to find a collision. Then, we obtain Pr [E1 ] ≤ Advcr
H,C(k).

Next, when E2 happen, there exists at least one decryption query ci such that ri = r, s 6= si, s|ζ = si|ζ
and y 6= yi. We define S to be the event such that there exists at least one decryption query ci where the
corresponding ri 6= r and s|ζ = RO(ri)|ζ . Thus, we obtain Pr

[
T ∧ E2

]
= Pr

[
T ∧ E2 ∧ S

]
+ Pr

[
T ∧ E2 ∧ S

]
.

Note that when event S happens, we get a collision on random oracle G. Multiplying for p decryption-oracle
queries, we get Pr

[
T ∧ E2 ∧ S

]
≤ p/2ζ . On the other hand, consider XOR-NM0 adversary D attacking the

trapdoor permutation family F in Figure 75. Note that when T ,E2 and S happen, XOR-NM0 adversary D is
able to successfully attack F . Then, we obtain Pr

[
T ∧ E2 ∧ S

]
≤ Advxor-nm0

F,D (k).

Moreover, when E3 happens, there exists at least one decryption query ci such that ri = r, s = si and y 6= yi.
Note that this is impossible to happen since when s = si and y 6= yi, the corresponding randomness ri 6= r. Now
in game G2, the decryption oracle always return correct answer whp. Thus wlog, assume that adversary A never
makes any decryption query, meaning that they only launch a IND-CPA attack. Hence

Pr [G2(k)⇒ 1 ] ≤ 1

2
+

1

2
Advind-cpa

OAEPs-clear,A(k) .

From Theorem D.1

Advind-cca2
OAEPs-clear,A(k) ≤ 2q

2ρ
+

4p

2ζ
+ 2 ·Advowf

F,B(k) + 2 ·Advcr
H,C(k) + 2 ·Advxor-nm0

F,D (k) .

This completes the proof.

E Proof of Lemma 7.11

Consider the games G1–G7 in Figure 76. Note that game G1 is identical to EXT2 game with hint function
OAEPs-clear[G,H,F|µ+ζ ]. Then,

Pr [G1(k)⇒ 1 ] = Adv
η-ext2ζ
G,OAEPs-clear,A,E(k) .

We now explain the game chain. Game G2 is identical to game G1, except in the image oracle, instead of using
value H(KH , s)⊕r as t, we use value r. Consider adversary C` for ` ∈ [p] in Figure 77. We have Pr [G1(k)⇒ 1 ]−
Pr [G2(k)⇒ 1 ] ≤

∑
` Adv

xor-ind2ζ
F,G,C` (k). Wlog, we can assume there exist adversary C such that for all ` ∈ [p], we

have Adv
xor-ind2ζ
F,G,C` (k) ≤ Adv

xor-ind2ζ
F,G,C (k). Then we obtain

Pr [G1(k)⇒ 1 ]− Pr [G2(k)⇒ 1 ] ≤ p ·Adv
xor-ind2ζ
F,G,C (k) .

Next, game G3 is identical to game G2, except in the image oracle, we use uniformly random value in producing t
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Games G1(k), G2(k)

i← 1 ; j ← 1 ; w←$ Coins(k) ; out← 0

r← ε ; s2 ← ε ; x← ε ; c← ε

KG←$KG(1k) ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k) ; state ← (KG,KH , f)

Run AO(·),I(·)(KG,KH , f ;w)

For i = 1 to |r| do

If ∃v : G(KG, v)|ζ = s2[i]

If G(KG, r[i])|ζ 6= s2[i] then out← 1

Return out

Procedure O(x)

If x ∈ x then return ⊥
(state, r)← E(state,x, c, x;w)

r[i]← r ; s2[i]← x ; i← i+ 1

Return r

Procedure I(M)

m←$M(1k) ; r←$ GDom(k)

x← G(KG, r) ; s← x⊕m‖0ζ

t← H(KH , s)⊕r ; t← r ; y ← f(t)

x[j]← x|ζ ; c[j]← (s, y) ; j ← j + 1

Return (s, c)

Games G3(k), G4(k)

i← 1 ; j ← 1 ; w←$ Coins(k) ; out← 0

r← ε ; s2 ← ε ; x← ε ; c← ε

KG←$KG(1k) ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k) ; state ← (KG,KH , f)

Run AO(·),I(·)(KG,KH , f ;w)

For i = 1 to |r| do

If ∃v : G(KG, v)|ζ = s2[i]

If G(KG, r[i])|ζ 6= s2[i] then out← 1

Return out

Procedure O(x)

If x ∈ x then return ⊥
(state, r)← E(state,x, c, x;w)

r[i]← r ; s2[i]← x ; i← i+ 1

Return r

Procedure I(M)

m←$M(1k) ; r←$ GDom(k)

x← G(KG, r); x←$ GRng(k) ; s← x⊕m‖0ζ

t←$ GDom(k) ; y ← f(t)

x[j]← x|ζ ; c[j]← (s, y) ; j ← j + 1

Return (s, c)

Games G5(k), G6(k)

i← 1 ; j ← 1 ; w←$ Coins(k) ; out← 0

r← ε ; s2 ← ε ; x← ε ; c← ε

KG←$KG(1k) ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k) ; state ← (KG,KH , f)

Run AO(·),I(·)(KG,KH , f ;w)

For i = 1 to |r| do

If ∃v : G(KG, v)|ζ = s2[i]

If G(KG, r[i])|ζ 6= s2[i] then out← 1

Return out

Procedure O(x)

If x ∈ x then return ⊥
(state, r)← E(state,x, c, x;w)

r[i]← r ; s2[i]← x ; i← i+ 1

Return r

Procedure I(M)

m←$M(1k) ; r←$ GDom(k)

s←$ GRng(k); s← G(KG, r) ; x← s⊕m‖0ζ

t←$ GDom(k) ; y ← f(t)

x[j]← s|ζ ; c[j]← (s, y) ; j ← j + 1

Return (s, c)

Games G7(k)

i← 1 ; j ← 1 ; w←$ Coins(k) ; out← 0

r← ε ; s2 ← ε ; x← ε ; c← ε

KG←$KG(1k) ; KH ←$KH(1k)

(f, f−1)←$ Kg(1k) ; state ← (KG,KH , f)

Run AO(·),I(·)(KG,KH , f ;w)

For i = 1 to |r| do

If ∃v : G(KG, v)|ζ = s2[i]

If G(KG, r[i])|ζ 6= s2[i] then out← 1

Return out

Procedure O(x)

If x ∈ x then return ⊥
(state, r)← E(state,x, c, x;w)

r[i]← r ; s2[i]← x ; i← i+ 1

Return r

Procedure I(M)

r←$ GDom(k) ; s← G(KG, r)

t← r ; y ← f(t)

x[j]← s|ζ ; c[j]← (s, y) ; j ← j + 1

Return (s, c)

Figure 76: Games G1-G7 in the proof of Lemma 7.11.

instead of value r. Note that this is very similar to switching game G1 to G2. For simplicity, we omit adversary’s
details here. Then,

Pr [G2(k)⇒ 1 ]− Pr [G3(k)⇒ 1 ] ≤ p ·Adv
xor-ind2ζ
F,G,C (k) .

Next, game G4 is identical to game G3, except in the image oracle, we use uniformly random value as x instead
of value G(KG, r). Consider adversary D` for ` ∈ [p] in Figure 78. We have Pr [G3(k)⇒ 1 ]− Pr [G4(k)⇒ 1 ] ≤
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Algorithm C`,1(f,KG, x)

x← ε ; st← ε ; z ← ε ; c← ε

j ← 1 ; w←$ Coins(k)

KH ←$KH(1k)

state ← (KG,KH , f)

Run AOSim(·),ISim(·)(KG,KH , f ;w)

Return (st, z)

Procedure OSim(v)

If v ∈ x then return ⊥
(state, r)← E(state,x, c, v;w)

Return r

Procedure ISim(M)

If j < `

m←$M(1k) ; r←$ GDom(k)

x′ ← G(KG, r) ; s′ ← x′⊕m‖0ζ

t← r ; y ← f(t) ; c← (s′, y)

x[j]← x′|ζ ; c[j]← c ; j ← j + 1

Return (s′, c)

If j = `

m←$M(1k) ; s← x⊕m‖0ζ

z ← H(KH , s) ; st← (KG,KH , f, w, s, x)

Halt A

Algorithm C
V(·)
`,2 (st, yb)

i← 1 ; j ← 1

x← ε ; c← ε ; r← ε ; s2 ← ε

(KG,KH , f, w, s, x)← st

Run AOSim(·),ISim(·)(KG,KH , f ;w)

b′ ← 0

For i = 1 to |r| do

If (V(s2[i]) = 1 ∧G(KG, r[i])|ζ 6= s2[i]) then b′ ← 1

Return b′

Procedure OSim(v)

If v ∈ x then return ⊥
(state, r)← E(state,x, c, v;w)

r[i]← r ; s2[i]← v ; i← i+ 1

Return r

Procedure ISim(M)

m←$M(1k) ; r←$ GDom(k)

x′ ← G(KG, r) ; s′ ← x′⊕m‖0ζ

If j < ` then t← r ; y ← f(t) ; c← (s′, y)

If j = ` then s′ ← s ; c← (s′, yb)

If j > ` then t← H(KH , s
′)⊕r ; y ← f(t) ; c← (s′, y)

x[j]← x′|ζ ; c[j]← c ; j ← j + 1

Return (s′, c)

Figure 77: Adversary C` in the proof of Lemma 7.11.

Algorithm D
V(·)
` (KG, x)

i← 1 ; j ← 1 ; b′ ← 0

x← ε ; c← ε ; r← ε ; s2 ← ε

w←$ Coins(k) ; (f, f−1)←$ Kg(1k)

KH ←$KH(1k) ; state ← (KG,KH , f)

Run AOSim(·),ISim(·)(KG,KH , f ;w)

For i = 1 to |r| do

If (V(s2[i]) = 1 ∧G(KG, r[i])|ζ 6= s2[i])

b′ ← 1

Return b′

Procedure OSim(v)

If v ∈ x then return ⊥
(state, r)← E(state,x, c, v;w)

r[i]← r ; s2[i]← v ; i← i+ 1

Return r

Procedure ISim(M)

If j < ` then x′←$ GRng(k)

If j = ` then x′ ← x

If j > ` then

r←$ GDom(k) ; x′ ← G(KG, r)

m←$M(1k) ; s′ ← x′⊕m‖0ζ

t←$ GDom(k) ; y ← f(t)

x[j]← x′|ζ ; c← (s′, y)

c[j]← c ; j ← j + 1

Return (s′, c)

Figure 78: Adversary D` in the proof of Lemma 7.11.

∑
` Adv

vprgζ
G,D` (k). Wlog, we can assume there exist adversary D such that for all ` ∈ [p], we have Adv

vprgζ
G,D` (k) ≤

Adv
vprgζ
G,D (k). Then we obtain

Pr [G3(k)⇒ 1 ]− Pr [G4(k)⇒ 1 ] ≤ p ·Adv
vprgζ
G,D (k) .

In game G5, we reorder the code of game G4 in producing s. The change is conservative, meaning that Pr[G4(k)⇒
1] = Pr[G5(k) ⇒ 1]. Game G6 is identical to game G5, except in the image oracle, we use value G(KG, r) as x
instead of uniformly random value. Note that this is very similar to switching game G3 to G4. For simplicity, we
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Adversary BO(·),I(·)(KG, f,KH ;w)

Run AOSim(·),ISim(·)(KG, f,KH ;w)

Procedure OSim(x)

Return O(x)

Procedure ISim(M)

(x, y)← I(1k)

c← (x, y)

Return (x, c)

Figure 79: EXT2 adversary B in the proof of Lemma 7.11.

omit adversary’s details here. Then,

Pr [G5(k)⇒ 1 ]− Pr [G6(k)⇒ 1 ] ≤ p ·Adv
vprgζ
G,D (k) .

Next, game G7 is identical to game G6, except in the image oracle, we use value r in producing t instead of
uniformly random value. Note that this is very similar to switching game G1 to G2. For simplicity, we omit
adversary’s details here. Then,

Pr [G6(k)⇒ 1 ]− Pr [G7(k)⇒ 1 ] ≤ p ·Adv
xor-ind2ζ
F,G,C (k) .

Let w be the randomness of adversary A in the game EXT2. Let KH be the key for the hash function family H
in the game EXT2. We define EXT2 adversary B with the hint function F and randomness w in Figure 79. Let
KH be the key independent auxiliary input to adversary B. Note that auxiliary input KH is independent of key

KG. Note that, Pr [G7(k)⇒ 1 ] = Adv
δ-ext2ζ
G,F,B,E(k).

Summing up,

Adv
η-ext2ζ
G,OAEPs-clear,A,Ext(k) ≤ Adv

δ-ext2ζ
G,F,B,Ext(k) + 3p ·Adv

xor-ind2ζ
F,G,C (k) + 2p ·Adv

vprgζ
G,D (k) .

This completes the proof.

66


	Introduction
	Background and Motivation
	Thesis and Approach
	RSA-OAEP and Ways to Validate its Security
	Using PA + IND-CPA
	Partial Instantiation Results
	Full Instantiation Results
	Discussion and Perspective
	Related Work
	Organization

	Preliminaries and Some Generalizations
	Notation and Conventions
	Public-Key Encryption and its Security
	Trapdoor Permutations and Their Security
	Function Families and Associated Security Notions
	The OAEP Framework

	Partial Instantiation Results for RSA-OAEP
	Algebraic Properties of RSA
	Main Results
	Partial Instantiation of G
	Partial Instantiation of H

	A Hierarchy of Extractability Notions
	Results for Padding Schemes and OAEP
	Scope and Perspective
	Our Results

	Full Instantiation Results for t-Clear RSA-OAEP
	Notions of High-Entropy-Message Security
	Main Results
	$IND-CPA-KI result
	PA0 and PA1 results

	Full Instantiation Results for s-Clear RSA-OAEP
	XOR Assumptions on Trapdoor Permutations and RSA
	Main Results
	IND-CPA Result
	PA0 and PA1 Results
	PA2 Result

	Generalized SIE and CIE of RSA
	IND-CPA Result Under Partial One-Wayness
	$IND-CPA-KI implies $SIM-CPA-KI
	Security of s-clear RSA-OAEP in the RO Model
	Proof of Lemma 7.11

