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Abstract

Let Ω be a finite set of operation symbols. We initiate the study of (weakly) pseudo-free families
of computational Ω-algebras in arbitrary varieties of Ω-algebras. Most of our results concern (weak)
pseudo-freeness in the variety O of all Ω-algebras. A family (Hd | d ∈ D) of computational Ω-algebras
(where D ⊆ {0, 1}∗) is called polynomially bounded (resp., having exponential size) if there exists a
polynomial η such that for all d ∈ D, the length of any representation of every h ∈ Hd is at most
η(|d|) (resp., |Hd| ≤ 2η(|d|)). First, we prove the following trichotomy: (i) if Ω consists of nullary
operation symbols only, then there exists a polynomially bounded pseudo-free family in O; (ii) if
Ω = Ω0∪{ω}, where Ω0 consists of nullary operation symbols and the arity of ω is 1, then there exist
an exponential-size pseudo-free family and a polynomially bounded weakly pseudo-free family (both
in O); (iii) in all other cases, the existence of polynomially bounded weakly pseudo-free families in O
implies the existence of collision-resistant families of hash functions. Second, assuming the existence
of collision-resistant families of hash functions, we construct a polynomially bounded weakly pseudo-
free family and an exponential-size pseudo-free family of computational m-ary groupoids (both in O),
where m ≥ 1. In particular, for arbitrary m ≥ 2, polynomially bounded weakly pseudo-free families
of computational m-ary groupoids in O exist if and only if collision-resistant families of hash functions
exist. Moreover, we present some simple constructions of cryptographic primitives from pseudo-free
families satisfying certain additional conditions. These constructions demonstrate the potential of
pseudo-free families.

Keywords: Universal algebra, family of computational universal algebras, pseudo-free family,
weakly pseudo-free family, collision-resistant family of hash functions, n-ary groupoid.
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1 Introduction

Informally, a family of computational groups is a family of groups whose elements are represented by bit
strings in such a way that equality testing, multiplication, inversion, computing the identity element, and
generating random elements can be performed efficiently. Loosely speaking, a family of computational
groups is called pseudo-free if, given a random member G of the family (for a given security parameter)
and random elements g1, . . . , gm ∈ G, it is computationally hard to find a system of group equations

vi(a1, . . . , am;x1, . . . , xn) = wi(a1, . . . , am;x1, . . . , xn), i ∈ {1, . . . , s}, (1)

in the variables x1, . . . , xn together with elements h1, . . . , hn ∈ G such that (1) is unsatisfiable in the free
group freely generated by a1, . . . , am, but

vi(g1, . . . , gm;h1, . . . , hn) = wi(g1, . . . , gm;h1, . . . , hn)

in G for all i ∈ {1, . . . , s}. If a family of computational groups satisfies this definition with the additional
requirement that n = 0 (i.e., that the equations in (1) be variable-free), then this family is said to be
weakly pseudo-free. Of course, (weak) pseudo-freeness depends heavily on the form in which system (1)
is required to be found, i.e., on the representation of such systems.

The notion of pseudo-freeness (which is a variant of weak pseudo-freeness in the above sense) was
introduced by Hohenberger in [Hoh03, Section 4.5] (for black-box groups). Rivest gave formal definitions
of a pseudo-free family of computational groups (see [Riv04a, Definition 2], [Riv04b, Slide 17]) and a
weakly pseudo-free one (see [Riv04b, Slide 11]). Note that the definitions of (weak) pseudo-freeness in
those works are based on single group equations rather than systems of group equations. For motivation
of the study of pseudo-freeness, we refer the reader to [Hoh03, Riv04a, Mic10].

Let Ω be a finite set of operation symbols and let V be a variety of Ω-algebras. (See Subsection 2.2 for
definitions.) Then the notions of pseudo-freeness and weakly pseudo-freeness can be naturally extended to
families of computational Ω-algebras in the variety V. Informally, a family of computational Ω-algebras is
a family of Ω-algebras whose elements are represented by bit strings in such a way that equality testing,
the fundamental operations, and generating random elements can be performed efficiently. To define
a (weakly) pseudo-free family of computational Ω-algebras in V, we require that all Ω-algebras in the
family belong to V and replace the free group by the V-free Ω-algebra in the above definition of a (weakly)
pseudo-free family of groups. In this case, vi(a1, . . . , am;x1, . . . , xn) and wi(a1, . . . , am;x1, . . . , xn) in (1)
are elements of the V-free Ω-algebra freely generated by a1, . . . , am, x1, . . . , xn. Of course, pseudo-free
families in different varieties are completely different objects.

Until now, researchers have considered pseudo-freeness (in various versions) only in the varieties of all
groups [Hoh03, Riv04a, Riv04b, HT07, HIST09, Ano13], of all abelian groups [Hoh03, Riv04a, Riv04b,
HT07, Mic10, JB09, CFW11, FHI+13, FHIS14a, FHIS14b, Ano18], and of all elementary abelian p-
groups, where p is a prime [Ano17]. A survey of some results concerning pseudo-freeness can be found
in [Fuk14, Chapter 1].

In this paper, we initiate the study of (weakly) pseudo-free families of computational Ω-algebras in
arbitrary varieties of Ω-algebras. We hope that the study of these families will open up new opportunities
in mathematical cryptography.
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The rest of the paper is organized as follows. Section 2 contains notation, basic definitions, and
general results used in the paper. In Section 3, we formally define and discuss (weakly) pseudo-free
families of computational Ω-algebras and related notions. In particular, the results of Subsections 3.4–3.5
can be considered as tools for constructing (weakly) pseudo-free families of computational Ω-algebras.
Furthermore, Subsection 3.6 contains simple constructions of the following cryptographic primitives from
pseudo-free families satisfying certain additional conditions:

• one-way family of permutations (see Example 3.22);

• family of trapdoor permutations (see Example 3.23);

• claw-resistant family of pairs of permutations (see Example 3.24).

These constructions demonstrate the potential of pseudo-free families of computational Ω-algebras.
Let O denote the variety of all Ω-algebras. In Section 4, we study the following question: When

polynomially bounded (weakly) pseudo-free families in O exist unconditionally? A family H = (Hd | d ∈
D) of computational Ω-algebras (where D ⊆ {0, 1}∗) is called polynomially bounded if there exists a
polynomial η such that the length of any representation of every h ∈ Hd is at most η(|d|) for all d ∈ D.
(See also Definition 3.3.) Furthermore, the family H is said to have exponential size if there exists a
polynomial η such that |Hd| ≤ 2η(|d|) for all d ∈ D. (See Definition 3.2.) It should be noted that a
(weakly) pseudo-free family can have applications in cryptography only if it is polynomially bounded or
at least has exponential size. (Weakly) pseudo-free families that do not have exponential size per se are of
little interest; they can be constructed unconditionally (see Subsection 3.4). Loosely speaking, the main
results of Section 4 can be summarized as follows:

(i) If Ω consists of nullary operation symbols only, then there exists a polynomially bounded pseudo-
free family in O.

(ii) Assume that Ω = Ω0 ∪ {ω}, where Ω0 consists of nullary operation symbols and the arity of ω
is 1. Then there exist an exponential-size pseudo-free family and a polynomially bounded weakly
pseudo-free family (both in O).

(iii) In all other cases, the existence of polynomially bounded weakly pseudo-free families in O implies
the existence of collision-resistant families of hash functions. Thus, in these cases, such weakly
pseudo-free families cannot be constructed unconditionally.

Moreover, the (weakly) pseudo-free families unconditionally existing in Cases (i)–(ii) have unique repre-
sentations, i.e., each element of any Ω-algebra in these families is represented by a single bit string. (See
Definition 3.4.) This property seems to be useful in applications. For precise statements of these results,
see Subsection 4.3 and references therein.

In Section 5, we consider the case where Ω consists of a single operation symbol of arity m ≥ 1. In
this case, Ω-algebras are called m-ary groupoids. Assuming the existence of collision-resistant families
of hash functions, we construct a polynomially bounded weakly pseudo-free family and an exponential-
size pseudo-free family of computational m-ary groupoids (both in O). Moreover, the first family has
unique representations. Combining this with the results of Section 4, we obtain that for arbitrary m ≥ 2,
polynomially bounded weakly pseudo-free families of computational m-ary groupoids in O exist if and
only if collision-resistant families of hash functions exist. The same holds if the weakly pseudo-free family
is additionally required to have unique representations. These results are stated loosely here; for precise
statements, we refer the reader to Subsections 5.1–5.2.

Finally, Section 6 concludes and suggests some directions for future research.

2 Preliminaries

2.1 General Preliminaries

In this paper, N denotes the set of all nonnegative integers. Let n ∈ N. For a set Y , we denote by Y n

the set of all (ordered) n-tuples of elements from Y . The operation of disjoint union is denoted by ⊔.
We consider elements of {0, 1}n as bit strings of length n. Furthermore, let {0, 1}≤n =

⊔n
i=0{0, 1}i and

{0, 1}∗ =
⊔∞

i=0{0, 1}i. If u, v ∈ {0, 1}∗, then we denote by |u| the length of u and by uv the concatenation
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of u and v. The unary representation of n, i.e., the string of n ones, is denoted by 1n. Similarly, 0n

denotes the string of n zeros.
Let I be a set. Suppose each i ∈ I is assigned an object qi. Then we denote by (qi | i ∈ I) the family

of all such objects and by {qi | i ∈ I} the set of all elements of this family.
When necessary, we assume that all “finite” objects (e.g., integers, tuples of integers, tuples of tuples

of integers) are represented by bit strings in some natural way. Sometimes we identify such objects with
their representations. Unless otherwise specified, integers are represented by their binary expansions.

Suppose ϕ is a function. We denote by domϕ the domain of ϕ. Also, we use the same notation for ϕ
and for the function (y1, . . . , yn) 7→ (ϕ(y1), . . . , ϕ(yn)), where n ∈ N and (y1, . . . , yn) ∈ (domϕ)n.

Let ρ be a function from a subset of {0, 1}∗ onto a set S and let s ∈ S. Then, unless otherwise
specified, [s]ρ denotes an arbitrary preimage of s under ρ. A similar notation was used by Boneh and
Lipton in [BL96] and by Hohenberger in [Hoh03]. In general, [s]ρ denotes many strings in {0, 1}∗ unless
ρ is one-to-one. We use any of these strings as a representation of s for computational purposes.

For convenience, we say that a function π : N→ N \ {0} is a polynomial if there exist c ∈ N \ {0} and
d ∈ N such that π(n) = cnd for any n ∈ N \ {0} (π(0) can be an arbitrary positive integer).

2.2 Algebraic Preliminaries

In this subsection, we recall the basic definitions and simple facts from universal algebra. For a detailed
introduction to this subject, the reader is referred to standard books, e.g., [Coh81], [BS12], or [Wec92].

Throughout the paper, Ω denotes a set of operation symbols. Each ω ∈ Ω is assigned a nonnegative
integer called the arity of ω and denoted by arω. An Ω-algebra is a set H called the carrier (or the
underlying set) together with a family (ω̂ : Harω → H |ω ∈ Ω) of finitary operations on H called the
fundamental operations. For simplicity of notation, the fundamental operation ω̂ associated with a symbol
ω ∈ Ω will be denoted by ω. Furthermore, we denote an Ω-algebra and its carrier by the same symbol.

Let H be an Ω-algebra. A set G ⊆ H is called a subalgebra of H if it is closed under the fundamental
operations of H. If S is a system of elements of H, then we denote by ⟨S⟩ the subalgebra of H generated
by S, i.e., the smallest subalgebra of H containing S.

An equivalence relation θ on H is said to be a congruence (on H) if

(h1, h
′
1), . . . , (harω, h

′
arω) ∈ θ =⇒ (ω(h1, . . . , harω), ω(h

′
1, . . . , h

′
arω)) ∈ θ

for any ω ∈ Ω and h1, h
′
1, . . . , harω, h

′
arω ∈ H. Suppose θ is a congruence on H. For arbitrary h ∈ H, we

denote by h/θ the equivalence class of h under θ. Moreover, let H/θ = {h/θ |h ∈ H}. Then H/θ is an
Ω-algebra whose fundamental operations are well defined as follows:

ω(h1/θ, . . . , harω/θ) = ω(h1, . . . , harω)/θ, ω ∈ Ω, h1, . . . , harω ∈ H.

This Ω-algebra is called the quotient algebra of H by θ. Also, let θ ̸= = {(h, h′) ∈ θ |h ̸= h′}. If ρ : Y → H,
then ρ/θ denotes the function y 7→ ρ(y)/θ, where y ∈ Y .

A homomorphism of H to an Ω-algebra L is a function ϕ : H → L such that for every ω ∈ Ω and
h1, . . . , harω ∈ H,

ϕ(ω(h1, . . . , harω)) = ω(ϕ(h1), . . . , ϕ(harω)).

If a homomorphism of H onto L is one-to-one, then it is called an isomorphism. Let ϕ : H → L be a
homomorphism. Then its kernel is defined as {(h, h′) ∈ H2 |ϕ(h) = ϕ(h′)}. It is evident that the kernel
of ϕ is a congruence on H. For example, if θ is a congruence on H, then h 7→ h/θ (where h ∈ H) is a
homomorphism of H onto H/θ (called the natural homomorphism) with kernel θ.

An Ω-algebra with only one element is said to be trivial. It is obvious that all trivial Ω-algebras are
isomorphic.

If Ω = {ω}, where arω = m ≥ 1, then Ω-algebras are called m-ary groupoids (or m-groupoids). When
m = 2, these Ω-algebras are called simply groupoids. Note that some authors consider m-ary groupoids
only for m ≥ 2.

Put Ω0 = {ω ∈ Ω | arω = 0}. We note that if Ω0 = ∅, then an Ω-algebra can be empty. Whenever
ω ∈ Ω0, it is common to write ω instead of ω().

Let Z be a set of objects called variables. We always assume that any variable is not in Ω. The set
Tm(Z) of all Ω-terms (or simply terms) over Z is defined as the smallest set such that Ω0 ⊔Z ⊆ Tm(Z)
and if ω ∈ Ω\Ω0 and v1, . . . , varω ∈ Tm(Z), then the formal expression ω(v1, . . . , varω) is in Tm(Z). The
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Ω-terms can be considered as strings over the alphabet consisting of all symbols from Ω⊔Z, parentheses,
and comma. Of course, Tm(Z) is an Ω-algebra under the natural fundamental operations. This Ω-algebra
is called the Ω-term algebra over Z.

Suppose v ∈ Tm(Z). Then the set subt(v) of subterms of the term v is defined inductively as follows:

subt(v) =

{
{v} if v ∈ Ω0 ⊔ Z,
{v} ⊔

∪arω
i=1 subt(vi) if v = ω(v1, . . . , varω), ω ∈ Ω \ Ω0, v1, . . . , varω ∈ Tm(Z).

Let the string P (v) over Ω⊔Z be obtained from the term v by removing all parentheses and commas.
The string P (v) is known as the term v written in Polish notation. It is well known that the function
v 7→ P (v) (v ∈ Tm(Z)) is one-to-one. Moreover, if the arities of operation symbols occurring in v are
known, then v can be easily recovered from P (v). See [Coh81, Chapter III, Section 2] for details, although
in that book reverse Polish notation is used.

Consider the case where Z = {z1, z2, . . . }, where z1, z2, . . . are distinct. Assume that v ∈
Tm({z1, . . . , zm}) for some m ∈ N. Furthermore, let h1, . . . , hm ∈ H. Then the element v(h1, . . . , hm) ∈
H is defined inductively in the natural way. It is easy to see that {v(h1, . . . , hm) | v ∈ Tm({z1, . . . , zm})} =
⟨h1, . . . , hm⟩.

An identity (or a law) over Ω is a closed first-order formula of the form ∀ z1, . . . , zm (v = w), where
v, w ∈ Tm({z1, . . . , zm}) (m ∈ N). A class V of Ω-algebras is said to be a variety if it can be defined by a
set Φ of identities. This means that for any Ω-algebra G, G ∈ V if and only if G satisfies all identities in Φ.
By the famous Birkhoff variety theorem (see, e.g., [Coh81, Chapter IV, Theorem 3.1], [BS12, Chapter II,
Theorem 11.9], or [Wec92, Subsection 3.2.3, Theorem 21]), a class of Ω-algebras is a variety if and only
if it is closed under taking subalgebras, homomorphic images, and direct products. Note that if a class
of Ω-algebras is closed under taking direct products, then it contains a trivial Ω-algebra as the direct
product of the empty family of Ω-algebras. Recall that if (Hi | i ∈ I) is a family of Ω-algebras, then the
fundamental operations of the direct product of this family are defined as follows:

ω((h1,i | i ∈ I), . . . , (harω,i | i ∈ I)) = (ω(h1,i, . . . , harω,i) | i ∈ I),

where ω ∈ Ω and h1,i, . . . , harω,i ∈ Hi (i ∈ I).
The variety consisting of all Ω-algebras with at most one element is said to be trivial ; all other varieties

of Ω-algebras are called nontrivial. The trivial variety is defined by the identity ∀ z1, z2 (z1 = z2). When
Ω0 = ∅, the trivial variety contains not only trivial Ω-algebras, but also the empty Ω-algebra. If C is a
class of Ω-algebras, then the variety generated by C is the smallest variety of Ω-algebras containing C.
This variety is defined by the set of all identities holding in all Ω-algebras in C.

Let V be a variety of Ω-algebras. Then an Ω-algebra F ∈ V is said to be V-free if it has a generating
system (fi | i ∈ I) such that for every system of elements (gi | i ∈ I) of any Ω-algebra G ∈ V there exists a
homomorphism α : F → G satisfying α(fi) = gi for all i ∈ I (evidently, this homomorphism α is unique).
Any generating system (fi | i ∈ I) with this property is called free and the Ω-algebra F is said to be freely
generated by every such system. It is well known (see, e.g., [Coh81, Chapter IV, Corollary 3.3], [BS12,
Chapter II, Definition 10.9 and Theorem 10.10], or [Wec92, Subsection 3.2.3, Theorem 16]) that for any
set I there exists a unique V-free Ω-algebra (up to isomorphism) with a free generating system indexed
by I. It is easy to see that if V is nontrivial, then for each free generating system (fi | i ∈ I) of a V-free
Ω-algebra, fi are distinct. In this case, one can consider free generating systems as sets.

We denote by F∞,∞(V) the V-free Ω-algebra freely generated by a1, a2, . . . , x1, x2, . . . . Of course, the
elements of this free generating system are assumed to be distinct. Furthermore, suppose m,n ∈ N and
let F∞(V) = ⟨a1, a2, . . . ⟩, Fm,n(V) = ⟨a1, . . . , am, x1, . . . , xn⟩, Fm(V) = Fm,0(V) = ⟨a1, . . . , am⟩. For
elements of Fm,n(V), we use the notation v(a1, . . . , am;x1, . . . , xn) = v(a;x), where v is an Ω-term. It
is well known that ai and xj can be considered as variables taking values in arbitrary Ω-algebra G ∈ V.
That is, for any v(a;x) ∈ Fm,n(V), g1, . . . , gm ∈ G, and h1, . . . , hn ∈ G (separated from g1, . . . , gm), the
element v(g1, . . . , gm;h1, . . . , hn) ∈ G is well defined as α(v(a;x)), where α is the unique homomorphism
of Fm,n(V) to G such that α(ai) = gi and α(xj) = hj for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. If
g = (g1, . . . , gm) and h = (h1, . . . , hn), then we sometimes write v(g;h) instead of v(g1, . . . , gm;h1, . . . , hn).
Whenever n = 0, we omit the semicolon in the above notation (e.g., v(a) = v(a; ) for any v(a; ) ∈ F∞(V)).

Denote by O the variety of all Ω-algebras. We write F∞,∞, F∞, Fm,n, and Fm instead of F∞,∞(O),
F∞(O), Fm,n(O), and Fm(O), respectively. These Ω-algebras are the Ω-term algebras over the respective
sets of variables.
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2.3 Probabilistic Preliminaries

Let Y be a probability distribution on a finite or countably infinite sample space Y . Then we denote by
suppY the support of Y, i.e., the set {y ∈ Y | PrY{y} ̸= 0}. In many cases, one can consider Y as a
distribution on suppY. Suppose α is a function from Y to a finite or countably infinite set Z. Then α
can be considered as a random variable. The distribution of this random variable is denoted by α(Y).
Recall that this distribution is defined by Prα(Y){z} = PrY α

−1(z) for each z ∈ Z.
We use the notation y1, . . . ,yn ← Y to indicate that y1, . . . ,yn (denoted by upright bold letters)

are independent random variables distributed according to Y. We assume that these random variables
are independent of all other random variables defined in such a way. Furthermore, all occurrences of an
upright bold letter (possibly indexed or primed) in a probabilistic statement refer to the same (unique)
random variable. Of course, all random variables in a probabilistic statement are assumed to be defined on
the same sample space. Other specifics of random variables do not matter for us. Note that the probability
distribution Y in this notation can be random. For example, suppose (Yi | i ∈ I) is a probability ensemble
consisting of distributions on the set Y , where the set I is finite or countably infinite. Moreover, let I be
a probability distribution on I. Then i← I and y ← Yi mean that the joint distribution of the random
variables i and y is given by Pr[i = i, y = y] = PrI{i}PrYi

{y} for each i ∈ I and y ∈ Y .
The notation y1, . . . , yn ← Y indicates that y1, . . . , yn (denoted by upright medium-weight letters)

are fixed elements of the set Y chosen independently at random according to the distribution Y.
For any n ∈ N, we denote by Yn the distribution of (y1, . . . ,yn), where y1, . . . ,yn ← Y. Furthermore,

if Z is a nonempty finite set, then U(Z) denotes the uniform probability distribution on Z.
The collision probability CP(Y) of the probability distribution Y is defined by

CP(Y) =
∑
y∈Y

(PrY{y})2 = Pr[y = y′],

where y,y′ ← Y. The next lemma is well known.

Lemma 2.1. Let Z be a finite set and let Z be a probability distribution on Z. Then CP(Z) ≥ 1/|Z|.
Furthermore, CP(Z) = 1/|Z| if and only if Z = U(Z).

Proof. It is easy to see that

CP(Z)− 1

|Z|
=

∑
z∈Z

(
PrZ{z} −

1

|Z|

)2

.

The lemma follows immediately from this.

2.4 Cryptographic Preliminaries

Let Y = (Yi | i ∈ I) be a probability ensemble consisting of distributions on {0, 1}∗, where I ⊆ {0, 1}∗.
Then Y is called polynomial-time samplable (or polynomial-time constructible) if there exists a proba-
bilistic polynomial-time algorithm A such that for every i ∈ I the distribution of A(i) coincides with Yi.
It is easy to see that if Y is polynomial-time samplable, then there exists a polynomial π satisfying
suppYi ⊆ {0, 1}≤π(|i|) for any i ∈ I. Furthermore, let Z = (Zj | j ∈ J) be a probability ensemble consist-
ing of distributions on {0, 1}∗, where J ⊆ N. Unless otherwise specified, when we speak of polynomial-time
samplability of Z, we assume that the indices are represented in binary. If, however, these indices are
represented in unary, then we specify this explicitly. Thus, the ensemble Z is called polynomial-time sam-
plable when the indices are represented in unary if there exists a probabilistic polynomial-time algorithm
B such that for every j ∈ J the distribution of B(1j) coincides with Zj .

Suppose K is an infinite subset of N, D is a subset of {0, 1}∗, and D = (Dk | k ∈ K) is a probability
ensemble consisting of distributions on D. We always assume that D is polynomial-time samplable when
the indices are represented in unary. Furthermore, put 1K = {1k | k ∈ K}. This notation is used
throughout the paper.

A function ν : K → R+ = {r ∈ R | r ≥ 0} is called negligible if for every polynomial π there exists a
nonnegative integer n such that ν(k) ≤ 1/π(k) whenever k ∈ K and k ≥ n. Of course, if ϵ, ν : K → R+,
ν is negligible, and ϵ(k) ≤ ν(k) for all sufficiently large k ∈ K, then ϵ is also negligible. Moreover, it is
easy to see that if ν, ν′ : K → R+ are negligible and η is a polynomial, then ν(k) + ν′(k) and η(k)ν(k)
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are negligible as functions of k ∈ K. We denote by negl an unspecified negligible function on K. Any
(in)equality containing negl(k) is meant to hold for all k ∈ K.

Let (rk | k ∈ K) and (sk | k ∈ K) be probability ensembles consisting of random variables that take val-
ues in {0, 1}∗. Then these ensembles are said to be computationally indistinguishable (or indistinguishable
in polynomial time) if for any probabilistic polynomial-time algorithm A,

|Pr[A(1k, rk) = 1]− Pr[A(1k, sk) = 1]| = negl(k).

In this case, we write rk ≈ sk. It is easy to see that computational indistinguishability is an equivalence
relation. Furthermore, if A is a probabilistic polynomial-time algorithm, then rk ≈ sk implies A(1k, rk) ≈
A(1k, sk).

Definition 2.2 (polynomial parameter; see also [Lub96, Preliminaries]). A function ξ : D → N is called
a polynomial parameter (on D) if the function d 7→ 1ξ(d) (d ∈ D) is polynomial-time computable. It is
easy to see that the function ξ is a polynomial parameter if and only if it is polynomial-time computable
and there exists a polynomial π satisfying ξ(d) ≤ π(|d|) for all d ∈ D. A function η : I → N, where I ⊆ N,
is said to be a polynomial parameter (on I) if the function 1i 7→ η(i) (i ∈ I) is a polynomial parameter on
the set {1i | i ∈ I} in the above sense, i.e., the function 1i 7→ 1η(i) (i ∈ I) is polynomial-time computable.

Note that the restriction of any polynomial to a set I ⊆ N is a polynomial parameter on I.
Let Φ = (ϕd : Yd → {0, 1}∗ | d ∈ D) be a family of functions, where Yd ⊆ {0, 1}∗ for all d ∈ D. Recall

that the family Φ is called polynomial-time computable if the function (d, y) 7→ ϕd(y) (where d ∈ D and
y ∈ Yd) is polynomial-time computable. Also, suppose Y = (Yd | d ∈ D) is a polynomial-time samplable
probability ensemble, where Yd is a probability distribution on Yd for any d ∈ D.

Definition 2.3 (one-way family). The family Φ is called one-way with respect to D and Y if it is
polynomial-time computable and for any probabilistic polynomial-time algorithm A, Pr[A(1k,d, ϕd(y)) ∈
ϕ−1
d (ϕd(y))] = negl(k), where d← Dk and y← Yd.

Let E = (Ek | k ∈ K), where Ek is a probability distribution on D × {0, 1}∗. Assume that E is
polynomial-time samplable when the indices are represented in unary. If (d, t)← Ek, where k ∈ K, then
we denote by E ′k the distribution of the random variable d.

Definition 2.4 (family of trapdoor functions). The family Φ is said to be a family of trapdoor functions
with respect to E and Y if it is one-way with respect to (E ′k | k ∈ K) and Y and there exists a deterministic
polynomial-time algorithm B such that B(1k, d, t, z) ∈ ϕ−1

d (z) for all k ∈ K, (d, t) ∈ supp Ek, and
z ∈ ϕd(Yd).

Of course, if ϕd is a permutation of Yd for every d ∈ D, then we use the term “family of trapdoor
permutations” instead of “family of trapdoor functions.”

Let α : Y → S and β : Z → S. A claw for the pair (α, β) is a pair (y, z) ∈ Y ×Z such that α(y) = β(z).

Definition 2.5 (claw-resistant family of pairs of permutations). Suppose each d ∈ D is assigned a pair
(αd, βd) of permutations of the set Yd. Then the family ((αd, βd) | d ∈ D) is called claw-resistant (or claw-
free) with respect to D if the families (αd | d ∈ D) and (βd | d ∈ D) are polynomial-time computable and
for any probabilistic polynomial-time algorithm A, Pr[A(1k,d) is a claw for (αd, βd)] = negl(k), where
d← Dk.

Definition 2.6 (family of hash functions). Assume that D =
⊔

k∈K Dk. For each d ∈ D, define κ(d) to
be the unique k ∈ K such that d ∈ Dk. Suppose the following two conditions hold:

• There exists a polynomial π such that ∅ ̸= Dk ⊆ {0, 1}≤π(k) for any k ∈ K.

• The function κ : D → K defined above is a polynomial parameter.

Furthermore, let ξ and η be polynomial parameters on K. Then a family (ψd : {0, 1}ξ(κ(d)) →
{0, 1}η(κ(d)) | d ∈ D) of functions is said to be a family of hash functions if this family is polynomial-
time computable and ξ(k) > η(k) for all k ∈ K.

In what follows, we use the assumptions and notation of Definition 2.6 when speaking of families of
hash functions. In this case, we also assume that for every k ∈ K, Dk is a probability distribution on Dk.

Recall that a collision for a function ϕ is a pair (y, z) ∈ (domϕ)2 such that y ̸= z and ϕ(y) = ϕ(z).

7



Definition 2.7 (collision-resistant family of hash functions). A family (ψd : {0, 1}ξ(κ(d)) →
{0, 1}η(κ(d)) | d ∈ D) of hash functions is called collision-resistant (or collision-intractable) with respect
to D if for any probabilistic polynomial-time algorithm A, Pr[A(d) is a collision for ψd] = negl(k), where
d← Dk.

Note that the algorithm A in Definition 2.7 can compute 1k as 1κ(d).
We use the term “one-way family of functions” instead of the more common term “family of one-way

functions” because one-wayness is a property of the whole family of functions rather than of its individual
members. For the same reason, we use the terms “claw-resistant family of pairs of permutations” and
“collision-resistant family of hash functions.”

Remark 2.8. Let Ψ = (ψd : {0, 1}ξ(κ(d)) → {0, 1}η(κ(d)) | d ∈ D) be a family of hash functions. Assume
that the family Ψ is collision-resistant with respect to D. Suppose A is a probabilistic polynomial-time
algorithm that on input d ∈ D chooses y, y′ ← U({0, 1}ξ(κ(d))) and outputs (y, y′). Let k ∈ K, d← Dk,
and y,y′ ← U({0, 1}ξ(k)). Then

negl(k) = Pr[A(d) is a collision for ψd] = Pr[ψd(y) = ψd(y
′)]− Pr[y = y′]

≥ 1

2η(k)
− 1

2ξ(k)
≥ 1

2η(k)
− 1

2η(k)+1
=

2−η(k)

2

(see Lemma 2.1) and hence 2−η(k) = negl(k).

The next lemma is well known and can be proved using a variant of the Merkle–Damg̊ard construction
(see, e.g., [Gol04, Subsubsection 6.2.3.2]). For completeness, we give a short proof of this lemma.

Lemma 2.9. Let (ψd : {0, 1}ξ(κ(d)) → {0, 1}η(κ(d)) | d ∈ D) be a family of hash functions that is collision-
resistant with respect to D. Suppose ξ′ is a polynomial parameter on K satisfying ξ′(k) > η(k) for all
k ∈ K. Then there exists a family (ψ′

d : {0, 1}ξ
′(κ(d)) → {0, 1}η(κ(d)) | d ∈ D) of hash functions that is

collision-resistant with respect to D.

Proof. For each k ∈ K, put β(k) = ⌈ξ′(k)/(ξ(k) − η(k))⌉ and δ(k) = β(k)(ξ(k) − η(k)) − ξ′(k). Then β
and δ are polynomial parameters on K.

Let d ∈ D, k = κ(d), and y ∈ {0, 1}ξ′(k). Express y0δ(k) as y1 . . . yβ(k), where y1, . . . , yβ(k) ∈
{0, 1}ξ(k)−η(k). Define γi(y) ∈ {0, 1}η(k) inductively as follows:

γ0(y) = 0η(k), γi(y) = ψd(yiγi−1(y)) for i ∈ {1, . . . , β(k)}.

Then we put ψ′
d(y) = γβ(k)(y). It is evident that (ψ

′
d | d ∈ D) is a family of hash functions.

Suppose (y, z) is a collision for ψ′
d. Let y0δ(k) = y1 . . . yβ(k) and z0δ(k) = z1 . . . zβ(k), where yi, zi ∈

{0, 1}ξ(k)−η(k) for all i ∈ {1, . . . , β(k)}. Since y0δ(k) ̸= z0δ(k), there exists an i ∈ {1, . . . , β(k)} such that
yiγi−1(y) ̸= ziγi−1(z). Choose the largest such i. Then it is easy to see that (yiγi−1(y), ziγi−1(z)) is a
collision for ψd. This implies that the family (ψ′

d | d ∈ D) is collision-resistant with respect to D.

3 (Weakly) Pseudo-Free Families of Computational Ω-Algebras:
Definitions, Properties, and Applications

From now on, we assume that Ω is finite and that algorithms can work with its elements. Let H =
((Hd, ρd,Rd) | d ∈ D) be a family of triples, where Hd is an Ω-algebra, ρd is a function from a subset of
{0, 1}∗ onto Hd, and Rd is a probability distribution on dom ρd for any d ∈ D. If Hd ⊆ {0, 1}∗ and ρd is
the identity function on Hd, then we denote this function simply by id because its domain is clear.

3.1 Families of Computational Ω-Algebras

Definition 3.1 (family of computational Ω-algebras). The family H is called a family of computational
Ω-algebras if the following conditions hold:

(i) There exists a deterministic polynomial-time algorithm that, given d ∈ D and [g]ρd
, [h]ρd

(for any
g, h ∈ Hd), decides whether g = h.
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(ii) For every ω ∈ Ω there exists a deterministic polynomial-time algorithm that, given d ∈ D and
[h1]ρd

, . . . , [harω]ρd
(where h1, . . . , harω ∈ Hd), computes [ω(h1, . . . , harω)]ρd

.

(iii) The probability ensemble (Rd | d ∈ D) is polynomial-time samplable.

Definition 3.2 (family having exponential size). The family H is said to have exponential size if there
exists a polynomial η such that |Hd| ≤ 2η(|d|) for all d ∈ D.

Of course, exponential size is a property of the family (Hd | d ∈ D), but it is convenient to define this
property for families of the form ((Hd, ρd,Rd) | d ∈ D).

Definition 3.3 (polynomially bounded family). We say that the family H is polynomially bounded if
there exists a polynomial η such that dom ρd ⊆ {0, 1}≤η(|d|) for all d ∈ D.

It is obvious that if H is polynomially bounded, then H has exponential size.

Definition 3.4 (family having unique representations). The family H is said to have unique representa-
tions if the function ρd is one-to-one for each d ∈ D.

Remark 3.5. Suppose H has unique representations. Then we can assume that for every d ∈ D,
Hd ⊆ {0, 1}∗ and the unique representation of each element h ∈ Hd is h itself. In other words, we
consider the family ((dom ρd, id,Rd) | d ∈ D) instead of H. Here dom ρd denotes the unique Ω-algebra
such that ρd is an isomorphism of this Ω-algebra onto Hd (d ∈ D).

3.2 (Weakly) Pseudo-Free Families of Computational Ω-Algebras

Throughout the paper, we denote by V a variety of Ω-algebras and by σ a function from a subset of
{0, 1}∗ onto F∞,∞(V). Also, suppose s ∈ N \ {0}, H ∈ V, ρ is a function from a subset of {0, 1}∗ onto
H, and g ∈ Hm, where m ∈ N \ {0}. Then we denote by Σs(H,V, σ, ρ, g) the set of all tuples

(([v1]σ, [w1]σ), . . . , ([vs]σ, [ws]σ), ([h1]ρ, . . . , [hn]ρ))

such that the following conditions hold:

• n ∈ N, vi, wi ∈ Fm,n(V) for all i ∈ {1, . . . , s}, and hj ∈ H for all j ∈ {1, . . . , n};

• the system of equations
vi(a;x) = wi(a;x), i ∈ {1, . . . , s},

in the variables x1, . . . , xn is unsatisfiable in Fm(V) (or, equivalently, in F∞(V));

• vi(g;h) = wi(g;h) in H for each i ∈ {1, . . . , s}, where h = (h1, . . . , hn).

Furthermore, let Σ′
s(H,V, σ, g) be the set of all tuples (([v1]σ, [w1]σ), . . . , ([vs]σ, [ws]σ)) such that

• vi, wi ∈ Fm(V) for all i ∈ {1, . . . , s},

• vj ̸= wj for some j ∈ {1, . . . , s}, and

• vi(g) = wi(g) in H for each i ∈ {1, . . . , s}.

In other words, (p1, . . . , ps) ∈ Σ′
s(H,V, σ, g) if and only if (p1, . . . , ps, ()) ∈ Σs(H,V, σ, ρ, g) (the last

condition does not depend on ρ). Thus, Σ′
s(H,V, σ, g) is obtained from Σs(H,V, σ, ρ, g) by imposing

the restriction n = 0 and removing the last element () of the tuples. Elements of Σ′
1(H,V, σ, g) will be

written as ([v]σ, [w]σ) instead of (([v]σ, [w]σ)). Moreover, let

Σ(H,V, σ, ρ, g) =

∞⊔
s=1

Σs(H,V, σ, ρ, g) and Σ′(H,V, σ, g) =

∞⊔
s=1

Σ′
s(H,V, σ, g).

We say that the family H = ((Hd, ρd,Rd) | d ∈ D) is in V if Hd ∈ V for all d ∈ D. In this subsection,
we assume that H is a family of computational Ω-algebras in V.
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Definition 3.6 (pseudo-free family). The family H is called pseudo-free in V with respect to D and σ if
for any polynomial π and any probabilistic polynomial-time algorithm A,

Pr[A(1k,d, r) ∈ Σ(Hd,V, σ, ρd, ρd(r))] = negl(k),

where d← Dk and r←Rπ(k)
d .

Remark 3.7. If V is trivial, then Σ(H,V, σ, ρ, g) = ∅ for any H ∈ V, any function ρ from a subset of
{0, 1}∗ onto H, and any g ∈ Hm, where m ∈ N \ {0}. Therefore, in this case the considered family H of
computational Ω-algebras is always pseudo-free in V with respect to D and σ.

The condition of the next definition is obtained from the condition of Definition 3.6 by replacing
Σ(. . . ) by Σ′(. . . ).

Definition 3.8 (weakly pseudo-free family). The family H is called weakly pseudo-free in V with respect
to D and σ if for any polynomial π and any probabilistic polynomial-time algorithm A,

Pr[A(1k,d, r) ∈ Σ′(Hd,V, σ, ρd(r))] = negl(k),

where d← Dk and r←Rπ(k)
d .

It is evident that if H is pseudo-free in V with respect to D and σ, then H is weakly pseudo-free in V
with respect to D and σ.

Remark 3.9. Let s ∈ N \ {0}. Define the notion of s-pseudo-freeness (resp., weak s-pseudo-freeness) in
V with respect to D and σ by replacing Σ(. . . ) by Σs(. . . ) in Definition 3.6 (resp., Σ′(. . . ) by Σ′

s(. . . )
in Definition 3.8). Note that in many works (see, e.g., [Hoh03, Riv04a, Riv04b, Mic10, JB09]), pseudo-
freeness (resp., weak pseudo-freeness) is understood as 1-pseudo-freeness (resp., weak 1-pseudo-freeness).
It is evident that any pseudo-free (resp., weakly pseudo-free) family of computational Ω-algebras inV with
respect to D and σ is also s-pseudo-free (resp., weakly s-pseudo-free) in V with respect to D and σ. Rivest
remarked that in the variety of all groups, 1-pseudo-freeness is equivalent to pseudo-freeness (see [Riv04a,
Subsection 5.1]). Micciancio obtained the same result for the variety of all abelian groups (see [Mic10,
Corollary 1]). Moreover, Anokhin proved that in the variety of all elementary abelian p-groups, where p is
an arbitrary prime, any weakly 1-pseudo-free family of computational groups is pseudo-free (see [Ano17,
Theorem 3.7]). Note that these results hold only under certain additional conditions.

Assume that there exists a deterministic polynomial-time algorithm that, given [v]σ and [w]σ (for any
v, w ∈ F∞(V)), decides whether v = w. (This is true in many important cases.) Then it is easy to see
that weak 1-pseudo-freeness in V with respect to D and σ is equivalent to weak pseudo-freeness in V
with respect to D and σ.

Remark 3.10 (see also [Ano13, Remark 3.6]). Assume that the family H is weakly 1-pseudo-free in V
with respect to D and σ. Let D′ be a subset of D such that {Hd | d ∈ D′} does not generate the variety V.
Then there exist distinct elements v, w ∈ Fm(V) (for some m ∈ N \ {0}) such that v(g) = w(g) for all
d ∈ D′ and g ∈ Hm

d . It is evident that ([v]σ, [w]σ) ∈ Σ′
1(Hd,V, σ, g) for every d ∈ D′ and g ∈ Hm

d .
This implies that PrDk

D′ = negl(k). Thus, we see that if D′ is a subset of D such that PrDk
D′ is not

negligible as a function of k ∈ K (in particular, if D′ = D), then {Hd | d ∈ D′} generates the variety V.
This shows that the family H can be weakly 1-pseudo-free (with respect to D and σ) only in the variety
generated by {Hd | d ∈ D}.
Remark 3.11. For each d ∈ D, let Sd be a subset of dom ρd such that ρd(Sd) = Hd and suppRd ⊆ Sd.
Also, assume that for every ω ∈ Ω there exists a deterministic polynomial-time algorithm that, given
d ∈ D and [h1]ρd

, . . . , [harω]ρd
∈ Sd (where h1, . . . , harω ∈ Hd), computes [ω(h1, . . . , harω)]ρd

∈ Sd. Then
H′ = ((Hd, ρd|Sd

,Rd) | d ∈ D) is a family of computational Ω-algebras in V. Moreover, if H is pseudo-
free (resp., weakly pseudo-free) in V with respect to D and σ, then H′ is also pseudo-free (resp., weakly
pseudo-free) in V with respect to D and σ. For weak pseudo-freeness, the converse also holds.

3.3 Two Examples of the Function σ

In this subsection, we introduce two functions nat and SLP. In what follows, we will often assume that
σ = nat or σ = SLP.
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Example 3.12 (natural representation). Denote by T∞,∞ the Ω-term algebra over the set
{a1, a2, . . . x1, x2, . . . } of distinct variables. Let v(a;x) be an arbitrary element of F∞,∞(V), where
v ∈ T∞,∞. In general, unless V = O, the term v is not uniquely determined by v(a;x). We rep-
resent v(a;x) by the term v written in Polish notation. Moreover, we encode each variable bi by
bi = bbin i, where b ∈ {a, x}, i ∈ N \ {0}, and bin i is the binary representation of i without lead-
ing zeros. More formally, consider the term v as a string over the alphabet consisting of all symbols from
Ω ⊔ {bi | b ∈ {a, x}, i ∈ N \ {0}}, parentheses, and comma. Let v be obtained from v by removing all
parentheses and commas and replacing all occurrences of bi by bi for every b ∈ {a, x} and i ∈ N \ {0},
where bi is defined above. Then v 7→ v is a one-to-one function from T∞,∞ to the set of all strings over the
finite alphabet Ω ⊔ {a, x, 0, 1}. It is convenient to use v as a representation of v(a;x) for computational
purposes. We call this representation natural and denote the function v 7→ v(a;x), where v ∈ T∞,∞,
by nat. Of course, the function nat is well defined. For each m ∈ N, let natm be the restriction of nat to
⟨a1, . . . , am⟩. Then nat and natm are functions onto F∞,∞(V) and Fm(V), respectively.

Assume that V = O. In this case, the function nat is one-to-one. For every i ∈ N \ {0}, we identify
ai with ai and xi with xi. Then nat−1(w) = w for all w ∈ F∞,∞. This allows us to simplify the notation.

Example 3.13 (representation by straight-line programs). By a straight-line program over F∞,∞(V) we
mean a sequence (u1, . . . , un) of tuples such that n ∈ N\{0} and for any i ∈ {1, . . . , n}, either ui = (b,m),
where b ∈ {a, x} and m ∈ N \ {0}, or ui = (ω,m1, . . . ,marω), where ω ∈ Ω and m1, . . . ,marω ∈
{1, . . . , i − 1}. Here a and x are considered as symbols that are not in Ω. Any straight-line program
u = (u1, . . . , un) over F∞,∞(V) naturally defines the sequence (v1, . . . , vn) of elements of F∞,∞(V) by
induction. Namely, for every i ∈ {1, . . . , n}, we put vi = bm if ui = (b,m) and vi = ω(vm1

, . . . , vmarω
) if

ui = (ω,m1, . . . ,marω), where b, m, ω, and m1, . . . ,marω are as above. The straight-line program u is
said to represent the element vn. We denote by SLP the function u 7→ vn, where u = (u1, . . . , un) is a
straight-line program over F∞,∞(V) and vn is defined above. It is evident that SLP is a function onto
F∞,∞(V). Note that this method of representation (for elements of the free group) was used in [Hoh03].

Remark 3.14. Assume that V = O. Unlike nat, the function SLP is not one-to-one. However, there
exists a deterministic polynomial-time algorithm that, given [v]SLP and [w]SLP (where v, w ∈ F∞,∞),
decides whether v = w. This algorithm can be easily constructed using the following observation: For
any b, c ∈ {a, x}, i, j ∈ N \ {0}, ω, µ ∈ Ω, and v1, . . . , varω, w1, . . . , warµ ∈ F∞,∞, we have

• bi = cj if and only if b = c and i = j;

• bi ̸= ω(v1, . . . , varω);

• ω(v1, . . . , varω) = µ(w1, . . . , warµ) if and only if ω = µ and vi = wi for all i ∈ {1, . . . , arω}.

Remark 3.15. As in Remark 3.14, assume that V = O. Let u = (u1, . . . , un) be a straight-line
program over F∞,∞ and let (v1, . . . , vn) be the sequence of elements of F∞,∞ naturally defined by u as
in Example 3.13, i.e., vi = SLP(u1, . . . , ui) for all i ∈ {1, . . . , n}. Then an easy induction on n shows that
subt(vn) ⊆ {v1, . . . , vn}. Moreover, there exists a deterministic polynomial-time algorithm that, given u,
computes (j1, . . . , jm) such that 1 ≤ j1 < · · · < jm ≤ n and subt(vn) = {vj1 , . . . , vjm}.
Remark 3.16. It is easy to see that, given [w]nat for arbitrary w ∈ F∞,∞(V), one can compute [w]SLP in
polynomial time. Therefore pseudo-freeness (resp., weak pseudo-freeness) in V with respect to D and SLP
implies pseudo-freeness (resp., weak pseudo-freeness) in V with respect to D and nat. The same holds for
(weak) s-pseudo-freeness for arbitrary s ∈ N \ {0}. However, the inverse transformation [w]SLP 7→ [w]nat,
in general, cannot be performed in polynomial time. This is because the unique representation [w]nat
(when V = O) can have length exponential in the length of the binary representation of [w]SLP. For
example, assume that V = O and Ω ∋ ζ, ω, where ar ζ = 0 and arω = 2. For each n ∈ N, let
wn = SLP((ζ), (ω, 1, 1), . . . , (ω, n, n)). This means that w0 = ζ and wn+1 = ω(wn, wn). Then an
induction on n shows that the length of wn = nat−1(wn) (as a string over Ω) is 2n+1 − 1.

3.4 Certain Families of V-Free Ω-Algebras Are Pseudo-Free

The next lemma is similar to Lemma 3.8 in [Ano13].

Lemma 3.17. For each u ∈ 1K , suppose τu is a function from a subset of {0, 1}∗ onto Fγ(u)(V) (where
γ : 1K → N \ {0}) and Fu is a probability distribution on dom τu. Assume that the following conditions
hold:
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(i) F = ((Fγ(u)(V), τu,Fu) |u ∈ 1K) is a family of computational Ω-algebras;

(ii) τu(suppFu) ⊆ {a1, . . . , aγ(u)} for all u ∈ 1K ;

(iii) CP(τ1k(F1k)) = negl(k).

Then F is pseudo-free in V with respect to (U({1k}) | k ∈ K) and σ.

Proof. Suppose π is a polynomial and A is a probabilistic polynomial-time algorithm. Let k ∈ K and
f1, . . . , fπ(k) ∈ suppF1k . Assume that

A(1k, 1k, (f1, . . . , fπ(k))) ∈ Σ(Fγ(1k)(V),V, σ, τ1k , (τ1k(f1), . . . , τ1k(fπ(k)))).

Then, in particular, there exist v1, . . . , vs, w1, . . . , ws ∈ Fπ(k),n(V) (for some s ∈ N \ {0} and n ∈ N) such
that the system of equations

vi(a1, . . . , aπ(k);x1, . . . , xn) = wi(a1, . . . , aπ(k);x1, . . . , xn), i ∈ {1, . . . , s},

is unsatisfiable in F∞(V), but the system

vi(τ1k(f1), . . . , τ1k(fπ(k));x1, . . . , xn) = wi(τ1k(f1), . . . , τ1k(fπ(k));x1, . . . , xn), i ∈ {1, . . . , s},

is satisfiable even in Fγ(1k)(V). Here, of course, x1, . . . , xn are considered as variables. Since
{τ1k(f1), . . . , τ1k(fπ(k))} ⊆ {a1, . . . , aγ(1k)} (see Condition (ii)), this implies that τ1k(f1), . . . , τ1k(fπ(k))
are not distinct. Hence,

Pr[A(1k, 1k, (f1, . . . , fπ(k))) ∈ Σ(Fγ(1k)(V),V, σ, τ1k , (τ1k(f1), . . . , τ1k(fπ(k))))]

≤ Pr[τ1k(f1), . . . , τ1k(fπ(k)) are not distinct] ≤ π(k)(π(k)− 1)

2
CP(τ1k(F1k)) = negl(k),

where f1, . . . , fπ(k) ← F1k . (Here we use Condition (iii).) Thus, the family F is pseudo-free in V with

respect to (U({1k}) | k ∈ K) and σ.

In the next corollary, ai = nat−1(ai) (see Example 3.12).

Corollary 3.18. Let η be a polynomial parameter on K such that 2−η(k) = negl(k). Then

((F2η(|u|) ,nat2η(|u|) ,U({a1, . . . , a2η(|u|)})) |u ∈ 1K)

is a pseudo-free family of computational Ω-algebras in O with respect to (U({1k}) | k ∈ K) and σ.

Corollary 3.18 follows from Lemma 3.17 because CP(U({a1, . . . , a2η(k)})) = 2−η(k) = negl(k) (see
Lemma 2.1).

3.5 (Weakly) Pseudo-Free Families of Quotient Algebras

In this subsection, as in Subsection 3.2, we assume that the family H = ((Hd, ρd,Rd) | d ∈ D) is a family
of computational Ω-algebras in V.

Definition 3.19 (σ-compatible family). We call the family H σ-compatible if there exists a deterministic
polynomial-time algorithm that, given

(d, [u]σ, ([g1]ρd
, . . . , [gm]ρd

), ([h1]ρd
, . . . , [hn]ρd

))

for any d ∈ D, u ∈ Fm,n(V) (m,n ∈ N), and g1, . . . , gm, h1, . . . , hn ∈ Hd, computes
[u(g1, . . . , gm;h1, . . . , hn)]ρd

.

Note that if the family H is polynomially bounded, then it is SLP-compatible and hence nat-compatible
(see Remark 3.16).

In Lemmas 3.20 and 3.21 below, let (Ed | d ∈ D) be a polynomial-time samplable probability ensemble
such that for every d ∈ D, Ed is a probability distribution on a set Ed ⊆ {0, 1}≤ξ(|d|), where ξ is a fixed
polynomial. (We can let Ed = supp Ed for all d ∈ D.) Furthermore, suppose each pair (d, e) with d ∈ D
and e ∈ Ed is assigned a congruence θd,e on Hd. Finally, we denote by D′

k the distribution of the random
variable (d, e), where d← Dk and e← Ed (k ∈ K).

The next lemma is similar to Theorem 3.7 in [Ano13].
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Lemma 3.20. Assume that the following conditions hold:

(i) There exists a deterministic polynomial-time algorithm that, given d ∈ D, e ∈ Ed, and [g]ρd
, [h]ρd

(where g, h ∈ Hd), decides whether (g, h) ∈ θd,e.

(ii) If d← Dk and e← Ed, then for any probabilistic polynomial-time algorithm A,

Pr[A(1k,d, e) = ([y]ρd
, [z]ρd

) s.t. (y, z) ∈ θ ̸=d,e] = negl(k).

Also, suppose the family H is σ-compatible and pseudo-free (resp., weakly pseudo-free) in V with respect to
D and σ. Then H′ = ((Hd/θd,e, ρd/θd,e,Rd) | d ∈ D, e ∈ Ed) is a pseudo-free (resp., weakly pseudo-free)
family of computational Ω-algebras in V with respect to (D′

k | k ∈ K) and σ.

Proof. It is evident that for any d ∈ D, e ∈ Ed, and h ∈ Hd, the set (ρd/θd,e)
−1(h/θd,e), where h/θd,e is

considered as an element of Hd/θd,e, coincides with the set ρ−1
d (h/θd,e), where h/θd,e is considered as a

subset of Hd. This together with Condition (i) implies that H′ is a family of computational Ω-algebras.
We consider only the case where H is pseudo-free. When H is weakly pseudo-free, the proof is the same,

mutatis mutandis. Suppose π is a polynomial and A is a probabilistic polynomial-time algorithm. Let B
be a probabilistic polynomial-time algorithm that on input (1k, d, r) for arbitrary k ∈ K, d ∈ suppDk,
and r ∈ (suppRd)

π(k) chooses e ← Ed, runs A on input (1k, (d, e), r), and returns the output of A (if it
exists). Furthermore, suppose C is a probabilistic polynomial-time algorithm that on input (1k, d, e) for
every k ∈ K, d ∈ suppDk, and e ∈ supp Ed proceeds as follows:

1. Choose r←Rπ(k)
d .

2. Run A on input (1k, (d, e), r). Assume that the output is

(([v1]σ, [w1]σ), . . . , ([vs]σ, [ws]σ), (q1, . . . , qn)), (2)

where s ∈ N \ {0}, n ∈ N, vi, wi ∈ Fπ(k),n(V) for all i ∈ {1, . . . , s}, and qj = [hj ]ρd
=

[hj/θd,e]ρd/θd,e (hj ∈ Hd) for all j ∈ {1, . . . , n}. If this is not true, then C fails.

3. Compute [vi(ρd(r);h)]ρd
and [wi(ρd(r);h)]ρd

for all i ∈ {1, . . . , s}, where h = (h1, . . . , hn). (This
can be done in deterministic polynomial time because H is σ-compatible.)

4. If there exists an i ∈ {1, . . . , s} such that vi(ρd(r);h) ̸= wi(ρd(r);h), then output
([vi(ρd(r);h)]ρd

, [wi(ρd(r);h)]ρd
) for some such i. Otherwise, the algorithm C fails.

Assume that the algorithm A is invoked by B or C on input (1k, (d, e), r) (where k ∈ K,
d ∈ suppDk, e ∈ supp Ed, and r ∈ (suppRd)

π(k)) and that the output of A (denoted by u)
is in Σ(Hd/θd,e,V, σ, ρd/θd,e, (ρd/θd,e)(r)). In particular, this means that u has the form (2) and
(vi(ρd(r);h), wi(ρd(r);h)) ∈ θd,e for all i ∈ {1, . . . , s}. If vi(ρd(r);h) = wi(ρd(r);h) for every
i ∈ {1, . . . , s}, then the algorithm B outputs u ∈ Σ(Hd,V, σ, ρd, ρd(r)). Otherwise, the algorithm C

outputs a pair ([y]ρd
, [z]ρd

) such that (y, z) ∈ θ ̸=d,e. Hence,

Pr[A(1k, (d, e), r) ∈ Σ(Hd/θd,e,V, σ, ρd/θd,e, (ρd/θd,e)(r))] ≤ Pr[B(1k,d, r) ∈ Σ(Hd,V, σ, ρd, ρd(r))]

+ Pr[C(1k,d, e) = ([y]ρd
, [z]ρd

) s.t. (y, z) ∈ θ ̸=d,e] = negl(k) + negl(k) = negl(k),

where k ∈ K, d← Dk, e← Ed, and r←Rπ(k)
d . Thus, H′ is pseudo-free in V with respect to (D′

k | k ∈ K)
and σ.

Lemma 3.21. Assume that the following conditions hold:

(i) There exists a deterministic polynomial-time algorithm that, given d ∈ D, e ∈ Ed, [g]ρd
, and [h]ρd

(where g, h ∈ Hd), decides whether (g, h) ∈ θd,e (as in Lemma 3.20).

(ii) For any polynomial π and any probabilistic polynomial-time algorithm A,

Pr[A(1k,d, e, r) = ([v]σ, [w]σ) s.t. v, w ∈ Fπ(k)(V) and (v(ρd(r)), w(ρd(r))) ∈ θ ̸=d,e] = negl(k),

where d← Dk, e← Ed, and r←Rπ(k)
d .
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Also, suppose the family H is weakly pseudo-free in V with respect to D and σ. Then H′ =
((Hd/θd,e, ρd/θd,e,Rd) | d ∈ D, e ∈ Ed) is a weakly pseudo-free family of computational Ω-algebras in
V with respect to (D′

k | k ∈ K) and σ.

Proof. As in the proof of Lemma 3.20, we see that H′ is a family of computational Ω-algebras.
Let π be a polynomial and let A be a probabilistic polynomial-time algorithm. Suppose B is a

probabilistic polynomial-time algorithm that on input (1k, d, r) for arbitrary k ∈ K, d ∈ suppDk, and
r ∈ (suppRd)

π(k) chooses e ← Ed, runs A on input (1k, (d, e), r), and returns the output of A (if it
exists). Furthermore, let C be a probabilistic polynomial-time algorithm that on input (1k, d, e, r) for
every k ∈ K, d ∈ suppDk, e ∈ supp Ed, and r ∈ (suppRd)

π(k) proceeds as follows:

1. Run A on input (1k, (d, e), r). Assume that the output is (p1, . . . , ps), where s ∈ N \ {0} and
pi ∈ (domσ)2 for all i ∈ {1, . . . , s}. If this is not true, then C fails.

2. Choose j← U({1, . . . , 2⌈log2 s⌉}).

3. If j ∈ {1, . . . , s}, then output pj. Otherwise, the algorithm C fails.

Assume that the algorithm A is invoked by B or C on input (1k, (d, e), r) (where k ∈ K, d ∈ suppDk,
e ∈ supp Ed, and r ∈ (suppRd)

π(k)) and that the output of A is

u = (([v1]σ, [w1]σ), . . . , ([vs]σ, [ws]σ)) ∈ Σ′(Hd/θd,e,V, σ, (ρd/θd,e)(r)).

This means that s ∈ N \ {0}, vi, wi ∈ Fπ(k)(V) for all i ∈ {1, . . . , s}, vj ̸= wj for some j ∈ {1, . . . , s}, and
(vi(ρd(r)), wi(ρd(r))) ∈ θd,e for each i ∈ {1, . . . , s}. For brevity, put

Π(k, d, e, r) = {([v]σ, [w]σ) | v, w ∈ Fπ(k)(V), (v(ρd(r)), w(ρd(r))) ∈ θ ̸=d,e}.

Moreover, let vu(g) = (v1(g), . . . , vs(g)) and wu(g) = (w1(g), . . . , ws(g)) for arbitrary g ∈ Hπ(k)
d . Choose

a polynomial η satisfying 2⌈log2 s⌉ ≤ η(k). If vu(ρd(r)) = wu(ρd(r)), then the algorithm B outputs
u ∈ Σ′(Hd,V, σ, ρd(r)). Assume that vu(ρd(r)) ̸= wu(ρd(r)). Then it is evident that the algorithm C
outputs an element of Π(k, d, e, r) if and only if j ∈ {1, . . . , s} and vj(ρd(r)) ̸= wj(ρd(r)), where j is defined
in Step 2 of C. This shows that

Pr[C(1k, d, e, r) ∈ Π(k, d, e, r) |A(1k, (d, e), r) = u]

= Pr[j ∈ {1, . . . , s}, vj(ρd(r)) ̸= wj(ρd(r))] ≥
1

2⌈log2 s⌉ ≥
1

η(k)
,

where j ← U({1, . . . , 2⌈log2 s⌉}). (The random bits of the algorithm A are considered as a part of the
random bits of the algorithm C.) Hence,

Pr[A(1k, (d, e), r) = u] ≤ η(k) Pr[C(1k, d, e, r) ∈ Π(k, d, e, r), A(1k, (d, e), r) = u]

and

Pr[A(1k, (d, e), r) = u′ ∈ Σ′(Hd/θd,e,V, σ, (ρd/θd,e)(r)) s.t. v
u′
(ρd(r)) ̸= wu′

(ρd(r))]

≤ Pr[C(1k, d, e, r) ∈ Π(k, d, e, r)].

Therefore we have

Pr[A(1k, (d, e), r) ∈ Σ′(Hd/θd,e,V, σ, (ρd/θd,e)(r))]

= Pr[A(1k, (d, e), r) = u′ ∈ Σ′(Hd/θd,e,V, σ, (ρd/θd,e)(r)) s.t. v
u′
(ρd(r)) = wu′

(ρd(r))]

+ Pr[A(1k, (d, e), r) = u′ ∈ Σ′(Hd/θd,e,V, σ, (ρd/θd,e)(r)) s.t. v
u′
(ρd(r)) ̸= wu′

(ρd(r))]

≤ Pr[B(1k,d, r) ∈ Σ′(Hd,V, σ, ρd(r))] + η(k) Pr[C(1k,d, e, r) ∈ Π(k,d, e, r)]

= negl(k) + η(k) negl(k) = negl(k),

where k ∈ K, d ← Dk, e ← Ed, and r ← Rπ(k)
d . Thus, H′ is weakly pseudo-free in V with respect to

(D′
k | k ∈ K) and σ.
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3.6 Some Applications of Pseudo-Free Families

In this subsection, we construct some cryptographic primitives from pseudo-free (more specifically, 1-
pseudo-free) families satisfying certain additional conditions. We do not discuss the existence of such
families. The purpose of this subsection is to demonstrate the potential of pseudo-free families.

In Examples 3.22–3.24 below, let H = ((Hd, id,Hd) | d ∈ D), where Hd ⊆ {0, 1}≤η(|d|) is an Ω-algebra
in the specified variety V and Hd is a probability distribution on Hd for every d ∈ D. We assume that
H is a 1-pseudo-free family of computational Ω-algebras in V with respect to D and nat. Recall that
1-pseudo-freeness is implied by pseudo-freeness (see Remark 3.9). We say that the family H has pseudo-
uniform distributions with respect to D if (d,h) ≈ (d,u), where d← Dk, h← Hd, and u← U(Hd) for
all k ∈ K.

Example 3.22 (one-way family of permutations from H). Assume that the following conditions hold:

• Ω = {ω}, where arω = 1, and V = O;

• ω is a permutation of Hd for each d ∈ D;

• H has pseudo-uniform distributions with respect to D;

• there exists a deterministic polynomial-time algorithm that, given d ∈ D and u ∈ {0, 1}≤η(|d|),
decides whether u ∈ Hd.

Let Φ = (ω : Hd → Hd | d ∈ D). Suppose A is a probabilistic polynomial-time algorithm. For every
k ∈ K, let d ← Dk, h ← Hd, and u ← U(Hd). Then (d,h) ≈ (d,u) and (d, ω(h)) ≈ (d, ω(u)), where
(d,u) and (d, ω(u)) are identically distributed. Hence, (d, ω(h)) ≈ (d,h) and

Pr[A(1k,d, ω(h)) = h] ≤ Pr[A(1k,d,h) = ω−1(h)] + negl(k).

But Pr[A(1k,d,h) = ω−1(h)] = negl(k) because the equation ω(x1) = a1 (in the variable x1) is unsatis-
fiable in F1 and ω−1(h) is the (unique) solution to the equation ω(x1) = h in Hd. This shows that the
family Φ of permutations is one-way with respect to D and (Hd | d ∈ D).

Example 3.23 (family of trapdoor permutations from H). Assume that the following conditions hold:

• Ω = {ω, ϵ, δ}, where arω = 1, ar ϵ = ar δ = 2, and ϵ ̸= δ;

• the variety V is defined by the identity ∀ z1, z2 (δ(z1, ϵ(ω(z1), z2)) = z2);

• ω is a permutation of Hd for each d ∈ D;

• H has pseudo-uniform distributions with respect to D;

• there exists a deterministic polynomial-time algorithm that, given d ∈ D and u ∈ {0, 1}≤η(|d|),
decides whether u ∈ Hd.

Let k ∈ K, d ← Dk, h,y ← Hd, and u ← U(Hd). For every d ∈ D and h, y ∈ Hd, we put ψd,h(y) =
ϵ(h, y) ∈ Hd. Since Hd ∈ V, ψd,h is a permutation of Hd and y 7→ δ(ω−1(h), y) (y ∈ Hd) is its inverse.

Suppose A is a probabilistic polynomial-time algorithm. Since (d,h) ≈ (d,u), we have (d,h,y) ≈
(d,u,y). Hence, (d, ω(h),y) ≈ (d, ω(u),y) ≈ (d,h,y) because (d,u,y) and (d, ω(u),y) are identically
distributed. Therefore, (d, ω(h), ψd,ω(h)(y)) ≈ (d,h, ψd,h(y)). Furthermore, (d,h,y) ≈ (d,h,u) because
(d,h) ≈ (d,u). This implies that (d,h, ψd,h(y)) ≈ (d,h, ψd,h(u)). But (d,h,u) and (d,h, ψd,h(u)) are
identically distributed. Hence we obtain that

(d, ω(h), ψd,ω(h)(y)) ≈ (d,h, ψd,h(y)) ≈ (d,h,y)

and
Pr[A(1k,d, ω(h), ψd,ω(h)(y)) = y] ≤ Pr[A(1k,d,h,y) = ψ−1

d,h(y)] + negl(k). (3)

Let G be the Ω-algebra with carrier N and fundamental operations defined as follows:

ω(m) = m, ϵ(m,n) = m+ n, δ(m,n) = max{n−m, 0}, m, n ∈ N.
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Then it is evident that G ∈ V and the equation ϵ(1, x1) = 0 is unsatisfiable in G. This implies that
the equation ϵ(a1, x1) = a2 (in the variable x1) is unsatisfiable in F2(V). Also, ψ−1

d,h(y) is the (unique)

solution to the equation ϵ(h, x1) = y in Hd. Therefore, Pr[A(1
k,d,h,y) = ψ−1

d,h(y)] = negl(k) and hence

Pr[A(1k,d, ω(h), ψd,ω(h)(y)) = y] = negl(k) (see (3)). Moreover, ψ−1
d,ω(h)(y) = δ(h, y) for all d ∈ D and

h, y ∈ Hd. Thus, (ψd,h | d ∈ D, h ∈ Hd) is a family of trapdoor permutations with respect to (Ek | k ∈ K)
and (Hd | d ∈ D, h ∈ Hd), where Ek is the distribution of the random variable ((d, ω(h)),h).

Example 3.24 (claw-resistant family of pairs of permutations from H). Assume that the following con-
ditions hold:

• Ω = {ω1, ω2}, where arω1 = arω2 = 1, ω1 ≠ ω2, and V = O;

• ω1 and ω2 are permutations of Hd for each d ∈ D.

Then the family ((ω1 : Hd → Hd, ω2 : Hd → Hd) | d ∈ D) of pairs of permutations is claw-resistant with
respect to D. This is because the equation ω1(x1) = ω2(x2) is unsatisfiable in F∞ and a pair (h1, h2) ∈ H2

d

is a claw for (ω1, ω2) if and only if it is a solution to this equation.

4 When Polynomially Bounded (Weakly) Pseudo-Free Families
in O Exist Unconditionally?

In this section, we mostly consider the case where V = O. Recall that w = nat−1(w) for any w ∈ F∞,∞
(see Example 3.12).

4.1 Unconditional Results

Remark 4.1. Assume that Ω consists of nullary operation symbols only. By Corollary 3.18,

F = ((F2|u| ,nat2|u| ,U({a1, . . . , a2|u|})) |u ∈ 1K)

is a pseudo-free family of computational Ω-algebras in O with respect to (U({1k}) | k ∈ K) and σ. Also,
F has unique representations. Furthermore, it is easy to see that F2k = Ω ⊔ {a1, . . . , a2k} for all k ∈ K.
Therefore each string (over the alphabet Ω⊔{a, 0, 1}) in domnat2k has length at most k+2. This shows
that F is polynomially bounded.

Remark 4.2. Assume that Ω = Ω0 ⊔ {ω}, where Ω0 consists of nullary operation symbols and arω = 1.
For arbitrary n ∈ N, denote by ωn the n-fold composition of ω with itself. It is easy to see that every
element of F∞ can be uniquely represented as ωi(b), where i ∈ N and b ∈ Ω0 ⊔ {a1, a2, . . . }.

Let k ∈ K. Denote by θ1k the following binary relation on F2k :

θ1k = {(v, w) ∈ F 2
2k | v = w or v = ωi(b), w = ωj(b), where i, j ≥ 2k, b ∈ Ω0 ⊔ {a1, . . . , a2k}}.

This relation is a congruence on F2k . The equivalence classes under θ1k are

{ω0(b)}, . . . , {ω2k−1(b)}, {ω2k(b), ω2k+1(b), . . . },

where b ranges over Ω0 ⊔ {a1, . . . , a2k}.
By Corollary 3.18,

F = ((F2|u| ,nat2|u| ,U({a1, . . . , a2|u|})) |u ∈ 1K)

is a pseudo-free family of computational Ω-algebras in O with respect to (U({1k}) | k ∈ K) and nat. We
observe that, given (1k, v, w) (where v, w ∈ F2k), one can decide whether (v, w) ∈ θ1k in deterministic

polynomial time. Also, if (v, w) ∈ θ ̸=
1k
, then both v and w have length at least 2k + 1 as strings over

Ω⊔{a, 0, 1}. This implies that for any probabilistic polynomial-time algorithm A, we have Pr[A(1k, 1k) =

(v, w) s.t. (v, w) ∈ θ ̸=
1k
] = 0 for all sufficiently large k ∈ K. Moreover, it is easy to see that the family F

is nat-compatible. Thus, by Lemma 3.20,

F′ = ((F2|u|/θu,nat2|u|/θu,U({a1, . . . , a2|u|})) |u ∈ 1K)
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is a pseudo-free family of computational Ω-algebras in O with respect to (U({1k}) | k ∈ K) and nat.
(We apply this lemma to H = F, Eu = {e}, where e ∈ {0, 1}∗ is arbitrary, Eu = U(Eu), and θu,e = θu
for all u ∈ 1K . Since e is fixed, we omit it.) The family F′ has exponential size because |F2k/θ1k | =
(2k + 1)(|Ω0|+ 2k) for all k ∈ K. But this family is not polynomially bounded and does not have unique
representations. The last disadvantage can be overcome by restricting the function nat2|u| to the set

Su = {ωi(b) | i ∈ {0, . . . , 2|u|}, b ∈ Ω0 ⊔ {a1, . . . , a2|u|}},

where u ∈ 1K . Namely, let

F′′ = ((F2|u|/θu, (nat2|u| |Su)/θu,U({a1, . . . , a2|u|})) |u ∈ 1K).

Then by Remark 3.11, F′′ is a pseudo-free family of computational Ω-algebras in O with respect to
(U({1k}) | k ∈ K) and nat (note that (nat2|u| |Su)/θu = (nat2|u|/θu)|Su for all u ∈ 1K). This family has
exponential size and unique representations, but is not polynomially bounded.

Remark 4.3. In this remark, as in Remark 4.2, we assume that Ω = Ω0 ⊔ {ω}, where Ω0 consists of
nullary operation symbols and arω = 1. Also, we use the notation of Remark 4.2.

Let k ∈ K. Define the function δ1k by δ1k(i, b) = ωi(b) for each i ∈ N and b ∈ Ω0 ⊔ {a1, . . . , a2k}.
This function provides a more succinct representation of elements of F2k than nat2k . By Lemma 3.17,

F = ((F2|u| , δu,U({(0, a1), . . . , (0, a2|u|)})) |u ∈ 1K)

is a pseudo-free (and hence weakly pseudo-free) family of computational Ω-algebras in O with respect
to (U({1k}) | k ∈ K) and SLP. Of course, given 1k and [v]δ

1k
, [w]δ

1k
(where v, w ∈ F2k), one can decide

whether (v, w) ∈ θ1k in deterministic polynomial time. Suppose v, w ∈ Fm and f ∈ {a1, . . . , a2k}m
(where m ∈ N) are such that (v(f), w(f)) ∈ θ ̸=

1k
. Let v = ωi(b) and w = ωj(c), where i, j ∈ N and

b, c ∈ Ω0⊔{a1, . . . , am}. Then v(f) = ωi(b(f)) and w(f) = ωj(c(f)), where b(f), c(f) ∈ Ω0⊔{a1, . . . , a2k}.
Therefore we have i, j ≥ 2k. It is evident that subt(v) = {ωl(b) | l ∈ {0, . . . , i}} and subt(w) = {ωl(c) | l ∈
{0, . . . , j}}. Hence it follows from Remark 3.15 that if (u1, . . . , un) ∈ SLP−1(v) ⊔ SLP−1(w), then n ≥
min{i, j} + 1 ≥ 2k + 1. This implies that for any polynomial π and any probabilistic polynomial-time
algorithm A,

Pr[A(1k, 1k, r) = ([v]SLP, [w]SLP) s.t. v, w ∈ Fπ(k) and (v(δ1k(r)), w(δ1k(r))) ∈ θ
̸=
1k
] = 0

for all sufficiently large k ∈ K, where r← U({(0, a1), . . . , (0, a2k)})π(k). Thus, by Lemma 3.21,

F′ = ((F2|u|/θu, δu/θu,U({(0, a1), . . . , (0, a2|u|)})) |u ∈ 1K)

is a weakly pseudo-free family of computational Ω-algebras in O with respect to (U({1k}) | k ∈ K)
and SLP. (As in Remark 4.2, we apply this lemma to H = F, Eu = {e}, where e ∈ {0, 1}∗ is arbitrary,
Eu = U(Eu), and θu,e = θu for all u ∈ 1K . Since e is fixed, we omit it.) The family F′ has exponential size,
but is not polynomially bounded and does not have unique representations. However, we can overcome
both of these disadvantages by restricting the function δu to the set Su = {(i, b) | i ∈ {0, . . . , 2|u|}, b ∈
Ω0 ⊔ {a1, . . . , a2|u|}}, where u ∈ 1K . Namely, let

F′′ = ((F2|u|/θu, (δu|Su)/θu,U({(0, a1), . . . , (0, a2|u|)})) |u ∈ 1K).

Then by Remark 3.11, F′′ is a weakly pseudo-free family of computational Ω-algebras in O with respect
to (U({1k}) | k ∈ K) and SLP (note that (δu|Su)/θu = (δu/θu)|Su for all u ∈ 1K). It is easy to see that
the family F′′ is polynomially bounded and has unique representations.

Note that neither F′ nor F′′ is 1-pseudo-free in O with respect to (U({1k}) | k ∈ K) and nat. This is

because the equation x1 = ω(x1) is unsatisfiable in F∞, but ω2|u|
(a1)/θu = δu(2

|u|, a1)/θu is a solution
to this equation in F2|u|/θu (u ∈ 1K). In particular, neither F′ nor F′′ is pseudo-free in O with respect to
(U({1k}) | k ∈ K) and SLP (see Remarks 3.16 and 3.9).

4.2 Some Cases Where the Existence of Weakly Pseudo-Free Families Implies
the Existence of Collision-Resistant Families of Hash Functions

Construction 4.4. Suppose χ :
⊔

n∈N{0, 1}n → F∞(V) is a function satisfying the following conditions:
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(i) N is an infinite polynomial-time enumerable subset of N. This means that the function i 7→
min{n ∈ N |n > i} is a polynomial parameter on N (see [Gol01, Subsubsection 2.2.3.1]).

(ii) There exists a deterministic polynomial-time algorithm that, given y ∈
⊔

n∈N{0, 1}n, com-
putes [χ(y)]nat.

(iii) There exists a polynomial γ such that χ({0, 1}n) ⊆ Fγ(n)(V) for all n ∈ N .

(iv) For any n ∈ N , χ|{0,1}n is one-to-one.

Also, let H = ((Hd, ρd,Rd) | d ∈ D) be a polynomially bounded family of computational Ω-algebras in V
(see Subsection 3.2). Choose a polynomial parameter η on K such that dom ρd ⊆ {0, 1}≤η(k) for each
k ∈ K and d ∈ suppDk. Denote by ξ the polynomial parameter k 7→ min{n ∈ N |n > η(k) + 1} on K
(see Condition (i)). Then ξ(k) ∈ N and ξ(k) > η(k) + 1 for all k ∈ K.

For any n ∈ N, let αn be the one-to-one function from {0, 1}≤n onto {0, 1}n+1 \ {0n+1} defined by
αn(y) = y10n−|y| for all y ∈ {0, 1}≤n. Then the function (1n, y) 7→ αn(y), where n ∈ N and y ∈ {0, 1}≤n,
is polynomial-time computable.

Choose a polynomial π such that χ({0, 1}ξ(k)) ⊆ Fπ(k)(V) for all k ∈ K. Condition (iii) implies that
such a polynomial exists. Put

Ek = {(1k, d, r) | d ∈ suppDk, r ∈ (dom ρd)
π(k)} (where k ∈ K) and E =

⊔
k∈K

Ek.

For each e ∈ E, define κ(e) to be the unique k ∈ K such that e ∈ Ek. It is easy to see that Ek ⊆ {0, 1}≤ζ(k)

for all k ∈ K, where ζ is a fixed polynomial, and κ is a polynomial parameter on E, as in Definition 2.6.
Finally, let

ϕ(1k,d,r)(y) = αη(k)([χ(y)(ρd(r))]ρd
),

for every k ∈ K, d ∈ suppDk, r ∈ (dom ρd)
π(k), and y ∈ {0, 1}ξ(k). Here [χ(y)(ρd(r))]ρd

denotes the
preimage of χ(y)(ρd(r)) under ρd computed by the following deterministic polynomial-time algorithm:

1. Given y, compute [χ(y)]nat (see Condition (ii)).

2. Given d, [χ(y)]nat, and r, compute and output [χ(y)(ρd(r))]ρd
. (This can be done in deterministic

polynomial time because H is nat-compatible.)

Thus, Φ = (ϕe : {0, 1}ξ(κ(e)) → {0, 1}η(κ(e))+1 | e ∈ E) is a family of hash functions.

Theorem 4.5. Let H, π, and Φ be as in Construction 4.4. Assume that the family H is weakly 1-pseudo-
free in V with respect to D and nat. For each k ∈ K, denote by Ek the distribution of the random

variable (1k,d, r), where d ← Dk and r ← Rπ(k)
d . Then the family Φ is collision-resistant with respect

to E = (Ek | k ∈ K). (It is evident that the probability ensemble E is polynomial-time samplable when the
indices are represented in unary.)

Proof. Let A be a probabilistic polynomial-time algorithm. Suppose B is a probabilistic polynomial-time
algorithm that on input e = (1k, d, r) for every k ∈ K, d ∈ suppDk, and r ∈ (suppRd)

π(k) proceeds as
follows:

1. Run A on input e. Assume that the output is a collision (y, z) for the function ϕe. If this is not
true, then B fails.

2. Compute and output ([χ(y)]nat, [χ(z)]nat), where χ is related to π and Φ as in Construction 4.4.
(It is easy to see that this pair is in Σ′

1(Hd,V,nat, ρd(r)).)

Let k ∈ K, d ← Dk, and r ← Rπ(k)
d . Then the random variable e = (1k,d, r) is distributed according

to Ek. Furthermore, we have

Pr[A(e) is a collision for ϕe] = Pr[B(1k,d, r) ∈ Σ′
1(Hd,V,nat, ρd(r))] = negl(k)

because H is weakly 1-pseudo-free in V with respect to D and nat. Thus, the family Φ is collision-resistant
with respect to E .
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Corollary 4.6. Assume that there exists a function χ :
⊔

n∈N{0, 1}n → F∞(V) satisfying Conditions (i)–
(iv) of Construction 4.4. Then the existence of polynomially bounded weakly 1-pseudo-free families of com-
putational Ω-algebras in V with respect to D and nat implies the existence of collision-resistant families
of hash functions (with respect to some probability ensemble that is indexed by K and is polynomial-time
samplable when the indices are represented in unary).

Corollary 4.6 follows immediately from Theorem 4.5.

Remark 4.7. Here are some cases where a function χ :
⊔

n∈N{0, 1}n → F∞(V) satisfying Conditions (i)–
(iv) of Construction 4.4 exists:

(i) Ω ∋ ω, where arω = 2, and V is a nontrivial variety of Ω-algebras such that any H ∈ V is
a groupoid with an identity element (denoted by 1H) under ω. (In particular, this holds if V
is a nontrivial variety of monoids, loops, groups, or rings.) In this case, the required function
χ : {0, 1}∗ → F∞(V) can be defined as follows. For any y ∈ {0, 1}∗, let {i1, . . . , im} (where
i1 < · · · < im) be the set of all i ∈ {1, . . . , |y|} such that the ith bit of y is 1. Then

χ(y) =


1F∞(V) if m = 0,

ai1 if m = 1,

ω(. . . ω(ω(ai1 , ai2), ai3), . . . , aim) if m ≥ 2.

Choose an Ω-algebra H ∈ V with at least two elements. Furthermore, let h ∈ H \{1H}. Suppose
y and z are distinct bit strings of the same length. We assume that the jth bits of y and z are
0 and 1, respectively. Let α be the homomorphism of F∞(V) to H such that α(aj) = h and
α(ai) = 1H for all i ∈ N \ {j}. Then it is easy to see that α(χ(y)) = 1H ̸= h = α(χ(z)) and
hence χ(y) ̸= χ(z). (We note that α(1F∞(V)) = ω(α(1F∞(V)), α(aj+1)) = α(aj+1) = 1H .) Thus,
χ|{0,1}n is one-to-one for every n ∈ N.

(ii) Ω ∋ ω0, ω1, where arω0 = arω1 = 1 and ω0 ̸= ω1, and V = O. In this case, the required function
χ : {0, 1}∗ → F∞ can be defined by χ(y) = ωyn(. . . ωy2(ωy1(a1)) . . . ) for all y = y1 . . . yn ∈ {0, 1}∗,
where n ∈ N and y1, . . . , yn ∈ {0, 1}.

(iii) Ω ∋ ω, where arω = m ≥ 2, and V = O. In this case, the required function χ : {0, 1}∗ → F∞
can be defined inductively as follows:

χ(ϵ) = a1, χ(y0) = χ(y), χ(y1) = ω(a|y|+1, . . . , a|y|+1︸ ︷︷ ︸
m−1 times

, χ(y)),

where ϵ is the empty string and y ∈ {0, 1}∗. Using induction on |z|, it is easy to see that for any
z ∈ {0, 1}∗ and any i ∈ {1, . . . , |z|}, the ith bit of z is 1 if and only if χ(z) contains a subterm of
the form ω(ai, . . . , ai, v), where v ∈ F∞. This implies that for each n ∈ N, χ|{0,1}n is one-to-one.

By Corollary 4.6, in any of these cases, the existence of polynomially bounded weakly 1-pseudo-free
families of computational Ω-algebras in V with respect to D and nat implies the existence of collision-
resistant families of hash functions (with respect to some probability ensemble that is indexed by K and
is polynomial-time samplable when the indices are represented in unary).

4.3 Summary of Results

The main results of this section can be summarized as follows:

• Assume that Ω consists of nullary operation symbols only. Then there exists a polynomially bounded
pseudo-free family of computational Ω-algebras in O with respect to (U({1k}) | k ∈ K) and σ.
Moreover, this family has unique representations. See Remark 4.1.

• Assume that Ω = Ω0 ⊔ {ω}, where Ω0 consists of nullary operation symbols and arω = 1. Then
there exist

– an exponential-size pseudo-free family of computational Ω-algebras in O with respect to
(U({1k}) | k ∈ K) and nat and
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– a polynomially bounded weakly pseudo-free family of computational Ω-algebras in O with
respect to (U({1k}) | k ∈ K) and SLP.

Moreover, both of these families have unique representations. See Remarks 4.2 and 4.3.

• In all other cases, the existence of polynomially bounded weakly pseudo-free families of compu-
tational Ω-algebras in O with respect to D and nat implies the existence of collision-resistant
families of hash functions (with respect to some probability ensemble that is indexed by K and
is polynomial-time samplable when the indices are represented in unary). See Corollary 4.6 and
Remark 4.7 (Cases (ii) and (iii)). Note that by Remark 3.9, weak pseudo-freeness in O with respect
to D and nat is equivalent to weak 1-pseudo-freeness in O with respect to D and nat.

5 (Weakly) Pseudo-Free Families in the Variety of All m-Ary
Groupoids

In this section, we assume that Ω = {ω}, where arω = m ≥ 1. In other words, we consider m-ary
groupoids.

Lemma 5.1. Let G be an m-ary groupoid and let g = (g1, . . . , gn) ∈ Gn, where n ∈ N. Assume that
g1, . . . , gn are distinct and that gi /∈ ω(Gm) for all i ∈ {1, . . . , n}. Also, suppose v and w are distinct
elements of Fn such that v(g) = w(g). Then there exist v1, . . . , vm, w1, . . . , wm ∈ Fn such that the
following two conditions hold:

(i) ω(v1, . . . , vm) ∈ subt(v) and ω(w1, . . . , wm) ∈ subt(w);

(ii) (v1(g), . . . , vm(g)) ̸= (w1(g), . . . , wm(g)), but ω(v1(g), . . . , vm(g)) = ω(w1(g), . . . , wm(g)).

Proof. Denote by V the set of all v ∈ Fn satisfying the following condition:

∀w ∈ Fn (v ̸= w, v(g) = w(g) =⇒ ∃ v1, . . . , vm, w1, . . . , wm ∈ Fn s.t. Conditions (i) and (ii) hold).

To prove the lemma, it suffices to show that {a1, . . . , an} ⊆ V and that V is an m-ary subgroupoid (i.e.,
subalgebra) of Fn.

If v ∈ {a1, . . . , an}, then the assumptions on g imply that for any w ∈ Fn, we have v = w or
v(g) ̸= w(g). This shows that {a1, . . . , an} ⊆ V .

Let v′1, . . . , v
′
m ∈ V and v = ω(v′1, . . . , v

′
m). Also, suppose w is an element of Fn such that v ̸= w and

v(g) = w(g). Then it follows from the assumptions on g that w = ω(w′
1, . . . , w

′
m), where w′

1, . . . , w
′
m ∈ Fn.

If (v′1(g), . . . , v
′
m(g)) ̸= (w′

1(g), . . . , w
′
m(g)), then Conditions (i) and (ii) hold for vi = v′i and wi = w′

i

(i ∈ {1, . . . ,m}). Otherwise, choose an index j ∈ {1, . . . ,m} satisfying v′j ̸= w′
j ; such an index exists

because v ̸= w. In this case, Conditions (i) and (ii) hold for some v1, . . . , vm, w1, . . . , wm ∈ Fn such
that ω(v1, . . . , vm) ∈ subt(v′j) and ω(w1, . . . , wm) ∈ subt(w′

j). This is because v′j ∈ V , v′j ̸= w′
j , and

v′j(g) = w′
j(g). Thus, we obtain that v ∈ V . This shows that V is an m-ary subgroupoid of Fn.

In Subsections 5.1–5.2 below, we use the assumptions and notation of Definition 2.6. In these subsec-
tions, we also assume that suppDk ⊆ Dk for every k ∈ K.

5.1 Constructing a Polynomially Bounded Weakly Pseudo-Free Family from
a Collision-Resistant Family of Hash Functions

Construction 5.2. Suppose Ψ = (ψd : {0, 1}mξ(κ(d)) → {0, 1}η(κ(d)) | d ∈ D) is a family of hash functions,
where ξ and η are polynomial parameters on K satisfying ξ(k) > η(k) for all k ∈ K. Then for every
d ∈ D, let Gd be the m-ary groupoid with carrier {0, 1}ξ(κ(d)) and fundamental operation defined by

ω(g1, . . . , gm) = ψd(g1 . . . gm)1ξ(κ(d))−η(κ(d)), g1, . . . , gm ∈ {0, 1}ξ(κ(d)).

Finally, put Mk = {0, 1}η(k)0ξ(k)−η(k) for each k ∈ K.

Theorem 5.3. Let Ψ, Gd (d ∈ D), and Mk (k ∈ K) be as in Construction 5.2. Assume that the family
Ψ is collision-resistant with respect to D. Then G = ((Gd, id,U(Mκ(d))) | d ∈ D) is a polynomially bounded
weakly pseudo-free family of computational m-ary groupoids in O with respect to D and SLP.
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Proof. It is easy to see that G is a polynomially bounded family of computational m-ary groupoids. Let
π be a polynomial and let A be a probabilistic polynomial-time algorithm. Suppose B is a probabilistic
polynomial-time algorithm that on input d ∈ D proceeds as follows:

1. Choose g1, . . . , gπ(k) ← U(Mk), where k = κ(d). If g1, . . . , gπ(k) are distinct, then put g =
(g1, . . . , gπ(k)). Otherwise, the algorithm B fails.

2. Run A on input (1k, d, g). Assume that the output is ([v]SLP, [w]SLP) ∈ Σ′
1(Gd,O,SLP, g). If this

is not true, then B fails.

3. Find (by exhaustive search) a pair (([v1]SLP, . . . , [vm]SLP), ([w1]SLP, . . . , [wm]SLP)) of m-tuples
such that the following conditions hold:

• ω(v1, . . . , vm) ∈ subt(v) and ω(w1, . . . , wm) ∈ subt(w);

• (v1(g), . . . , vm(g)) ̸= (w1(g), . . . , wm(g)), but ω(v1(g), . . . , vm(g)) = ω(w1(g), . . . , wm(g)).

By Lemma 5.1, such a pair exists. (We note that gi /∈ ω(Gm
d ) for all i ∈ {1, . . . , π(k)}. This is

because the last bits of gi and of any string in ω(Gm
d ) are 0 and 1, respectively.) The exhaustive

search can be performed in polynomial time by Remark 3.15.

4. Output (v1(g) . . . vm(g), w1(g) . . . wm(g)). (By the last condition of the previous step, together
with the definition of ω on Gd, this is a collision for ψd.)

Let k ∈ K, d← Dk, g1, . . . ,gπ(k) ← U(Mk), and g = (g1, . . . ,gπ(k)). Then

Pr[A(1k,d,g) ∈ Σ′
1(Gd,O,SLP,g)]

= Pr[A(1k,d,g) ∈ Σ′
1(Gd,O,SLP,g), g1, . . . ,gπ(k) are distinct]

+ Pr[A(1k,d,g) ∈ Σ′
1(Gd,O,SLP,g), g1, . . . ,gπ(k) are not distinct]

≤ Pr[B(d) is a collision for ψd] +
π(k)(π(k)− 1)

2η(k)+1
= negl(k) + negl(k) = negl(k)

because Ψ is collision-resistant with respect to D and 2−η(k) = negl(k) (see Remark 2.8). Thus, the family
G is weakly pseudo-free in O with respect to D and SLP (see Remarks 3.14 and 3.9).

Corollary 5.4. Assume that m ≥ 2. Then the following conditions are equivalent:

(i) There exists a collision-resistant family of hash functions with respect to some probability ensemble
that is indexed by K and is polynomial-time samplable when the indices are represented in unary.

(ii) There exists a polynomially bounded weakly pseudo-free family of computational m-ary groupoids
in O with respect to some probability ensemble (with the same properties as in Condition (i))
and SLP.

(iii) The same as Condition (ii), but with nat instead of SLP.

Proof. The implication (i) =⇒ (ii) follows from Lemma 2.9 and Theorem 5.3. The implication (ii) =⇒ (iii)
follows from Remark 3.16. Finally, the implication (iii) =⇒ (i) follows from Corollary 4.6 and Remark 4.7
(Case (iii)).

Remark 5.5. Note that the family G in Theorem 5.3 has unique representations. Therefore Corollary 5.4
remains valid if we require that the weakly pseudo-free families in Conditions (ii) and (iii) additionally
have unique representations.

5.2 Constructing an Exponential-Size Pseudo-Free Family from a Collision-
Resistant Family of Hash Functions

Construction 5.6. Suppose Ψ = (ψd : {0, 1}mξ(κ(d)) → {0, 1}η(κ(d)) | d ∈ D) and Gd (d ∈ D) are as in
Construction 5.2. Let d ∈ D and k = κ(d). For each n ∈ {0, . . . , 2η(k) − 1}, denote by βk(n) ∈ {0, 1}η(k)
the binary representation of length η(k) of n (with enough leading zeros to obtain η(k) bits). Thus,
βk is a one-to-one function from {0, . . . , 2η(k) − 1} onto {0, 1}η(k). Suppose λd is the homomorphism of
F2η(k) to Gd such that λd(ai) = βk(i − 1)0ξ(k)−η(k) for all i ∈ {1, . . . , 2η(k)} and θd is the kernel of this
homomorphism.
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Recall that w = nat−1(w) for any w ∈ F∞,∞ (see Example 3.12).

Theorem 5.7. Let Ψ, η, and θd (d ∈ D) be as in Construction 5.6. Assume that the family Ψ is
collision-resistant with respect to D. Then

Q = ((F2η(κ(d))/θd,nat2η(κ(d))/θd,U({a1, . . . , a2η(κ(d))})) | d ∈ D)

is a pseudo-free family of computational m-ary groupoids in O with respect to D and nat. Moreover, the
family Q has exponential size.

Proof. Remark 2.8 shows that 2−η(k) = negl(k). Therefore, by Corollary 3.18,

F = ((F2η(|u|) ,nat2η(|u|) ,U({a1, . . . , a2η(|u|)})) |u ∈ 1K)

is a pseudo-free family of computational m-ary groupoids in O with respect to (U({1k}) | k ∈ K) and nat.
Furthermore, it is easy to see that F is nat-compatible.

Suppose λd (d ∈ D) is as in Construction 5.6. It is not hard to show that, given (d, v) (where
d ∈ D and v ∈ F2η(κ(d))), one can compute λd(v) in polynomial time. Hence there exists a deterministic
polynomial-time algorithm that, given (1k, d, v, w), where k ∈ K, d ∈ Dk, and v, w ∈ F2η(k) , decides
whether (v, w) ∈ θd.

Let A be a probabilistic polynomial-time algorithm. Suppose B is a probabilistic polynomial-time
algorithm that on input d ∈ D proceeds as follows:

1. Run A on input (1k, 1k, d), where k = κ(d). Let g = λd(a1, . . . , a2η(k)). Assume that the output

is (v, w) such that (v, w) ∈ θ ̸=d . (This means that v, w ∈ F2η(k) , v ̸= w, and v(g) = w(g).) If this
is not true, then B fails.

2. Find (by exhaustive search) a pair ((v1, . . . , vm), (w1, . . . , wm)) ofm-tuples such that the following
conditions hold:

• ω(v1, . . . , vm) ∈ subt(v) and ω(w1, . . . , wm) ∈ subt(w);

• (v1(g), . . . , vm(g)) ̸= (w1(g), . . . , wm(g)), but ω(v1(g), . . . , vm(g)) = ω(w1(g), . . . , wm(g)).
(Of course, subt(v)∪ subt(w) ⊆ ⟨ai1 , . . . , ain⟩, where 1 ≤ i1 < · · · < in ≤ 2η(k) and n ≤ π(k)
for some fixed polynomial π.)

By Lemma 5.1, such a pair exists. (We note that the elements of the 2η(k)-tuple g are distinct.
Moreover, these elements are not in ω(Gm

d ) because the last bits of each such element and of any
element in ω(Gm

d ) are 0 and 1, respectively. See also Step 3 of the algorithm B in the proof of
Theorem 5.3.)

3. Output (v1(g) . . . vm(g), w1(g) . . . wm(g)). (By the last condition of the previous step, together
with the definition of ω on Gd, this is a collision for ψd. See also Step 4 of the algorithm B in
the proof of Theorem 5.3.)

Let k ∈ K and d← Dk. Then

Pr[A(1k, 1k,d) = (v, w) s.t. (v, w) ∈ θ ̸=d ] = Pr[B(d) is a collision for ψd] = negl(k)

because Ψ is collision-resistant with respect to D.
For every k ∈ K, denote by D′

k the distribution of the random variable (1k,d), where d ← Dk. It
follows from the above and from Lemma 3.20 that

F′ = ((F2η(|u|)/θd,nat2η(|u|)/θd,U({a1, . . . , a2η(|u|)})) |u ∈ 1K , d ∈ D|u|)

is a pseudo-free family of computational m-ary groupoids in O with respect to (D′
k | k ∈ K) and nat.

For each d ∈ D, put α(d) = (1κ(d), d). Then α is a one-to-one function from D onto {(u, d) |u ∈
1K , d ∈ D|u|}. Both α and α−1 are polynomial-time computable. Therefore the family F′ can be indexed
by D instead of {(u, d) |u ∈ 1K , d ∈ D|u|}. Furthermore, α−1(D′

k) = Dk for all k ∈ K. Thus, we see that
Q is a pseudo-free family of computational m-ary groupoids in O with respect to D and nat. Moreover,
the family Q has exponential size because |F2η(κ(d))/θd| ≤ |Gd| = 2ξ(κ(d)) for all d ∈ D, where κ and ξ are
polynomial parameters on D and K, respectively.
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6 Conclusion

We have initiated the study of (weakly) pseudo-free families of computational Ω-algebras in arbitrary
varieties of Ω-algebras. We hope that the assumption of the existence of polynomially bounded or
exponential-size (weakly) pseudo-free families in an appropriate variety of Ω-algebras will be useful in
mathematical cryptography. The results of the paper show that this assumption can be quite strong, but
not unrealistic. Moreover, this assumption can hold in a post-quantum world (see Subsections 5.1–5.2).

Here are some suggestions for further research:

• Find applications of (weakly) pseudo-free families of computational Ω-algebras. For example, con-
struct a cryptographic primitive or a secure cryptographic protocol from a polynomially bounded or
exponential-size (weakly) pseudo-free family in a suitable variety of Ω-algebras. See Subsections 3.6
and 4.2 for results in this direction.

• Construct a polynomially bounded or exponential-size (weakly) pseudo-free family in some inter-
esting variety of Ω-algebras under a standard cryptographic assumption. See Subsections 5.1–5.2
for results in this direction.

• Modify the definition of a (weakly) pseudo-free family of computational Ω-algebras to make this
definition more useful.
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