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Abstract

This paper introduces elliptic curves in generalized Hu�'s model.

These curves endowed with addition are shown to be a group over a

�nite �eld. We present formulae for point addition and doubling point

on the curves and evaluate computational cost of point addition and

doubling point using projective, Jacobian and Lopez-Dahab coordi-

nates. It is noted that the computational cost for point addition and

doubling on the curves is lower on the projective coordinates than the

other mentioned above coordinates.
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1 Introduction

Elliptic curves are algebraic curves and have been widely studied in number
theory and cryptography [22, 19, 7, 18, 21]. The study of elliptic curves could
be of a variety of areas : Algebra, Algebraic Geometry, Number Theory,
Diophantine problems and so on. Lang [25] mentions in his book that

”It is possible towrite endlessly on elliptic curves. (This is not a treat.)”

In 1995, Andrew Wiles proved the Fermat's Last Theorem using proof of the
modularity conjecture for semistable elliptic curves [32]. The use of elliptic
curves have commercialized and are studied intensively for its application in
cryptography [16, 8, 9].

The plane curves of degree 3 are known as cubics and have the general
form of

Ax3 +Bx2y + Cxy2 +Dy3 + Ex2 + Fxy +Gy2 +Hx+ Iy + J = 0.
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Elliptic curves are non-singular cubic curves and have points de�ned over a
�eld K [15, 31].

In mid-1980s, Koblitz and Miller independently proposed Elliptic Curve
Cryptography (ECC) using Elliptic Curve Discrete Logarithmic Problem
(ECDLP) [23, 27]. The ECC provides better security when compared to
Di�e-Hellman (DH) key exchange and Rivest-Shamir-Adlemen (RSA) algo-
rithm using substantially lower key sizes but the arithmetic underlying group
is more tedious, which makes the study particularly interesting for systems
with con�ned computing power and memory [24] .

Some of the famous forms of elliptic curves existing in literature are Weier-
strass cubics [15, 31], Hessian curves [6, 21], Jacobi quartics [7], Montgomery
[28, 29], Edwards [4, 5, 13] and Hu�'s curve [19]. There has been a lot of de-
velopment to these models of elliptic curves, for instance Joye et al. studied
Hu�'s model for elliptic curves in 2010 [22]. In the same year, Wu and Feng
also carried out a research on Hu�'s curves in [14]. An year later, Binary
Hu�'s curves were investigated by Devigne and Joye [12]. In 2015, He et al.
[18] studied generalized Hu�'s curves. The di�erent families of Hu�'s elliptic
curves studied over the past decade are listed below.

1. The curves over a �eld K, char(K) 6= 2 by Joye et al. in [22] are of the
form of:

ax(y2 − 1) = by(x2 − 1),where a2 − b2 6= 0,

2. The generalized Hu�'s curves over a �eld K, char(K) 6= 2 by Joye et
al. in [22] are of the form of:

ax(y2 − d) = by(x2 − d),where abd(a2 − b2) 6= 0,

3. The generalized Hu�'s curves over a �eld K, char(K) 6= 2 by Wu and
Feng in [14] are of the form of:

x(ay2 − 1) = y(bx2 − d),where ab(a− b) 6= 0,

4. The binary Hu� curves over a �eld K, char(K) = 2 by Joye et al. in
[22] are of the form of:

ax(y2 + y + 1) = by(x2 + x+ 1),where ab(a− b) 6= 0,

5. The generalized binary Hu� curves over a �eld K, char(K) = 2 by Joye
et al. in [22] are of the form of:

ax(y2 + fy + 1) = by(x2 + fx+ 1),where abf(a− b) 6= 0,
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6. The generalized Hu�'s curves over a �eld K, char(K) 6= 2 by Ciss and
Sow in [10] are of the form of:

ax(y2 − c) = by(x2 − d),where abcd(a2c− b2d) 6= 0.

We can also �nd similar progress of other elliptic curves. For instance, after
the introduction of Edwards curve in [13] by Harold Edwards, it became an
active area of research resulting in an extensive literature [3, 4, 5, 11, 20, 1, 2].

In this paper, we propose a generalization of Hu�'s model of elliptic curves
over a �eld K, char(K) 6= 2 which are of the form
E(K) : ax (y2 + xy + f) = by (x2 + xy + g) , where a, b, f, g ∈ K and
abfg(a− b) 6= 0, and under appropriate addition operation shows that these
curves satisfy axioms of an abelian group. Furthermore, we provide for-
mulae for point addition and doubling point in a�ne, projective, Jacobian
and Lopez-Dahab coordinates, including an estimate of number of points on
E over a �eld K, and evaluate computational cost in the each coordinate
systems.

The rest of the paper is organized as follows. In Section 2, we show that
the proposed generalized Hu�s model curves is a commutative group over a
�nite �eld and give formulae for point addition and doubling points for a�ne,
projective, Jacobian, and Lopez-Dahab coordinates, including an estimate of
number of points on E(K). Furthermore, we give computational costs and a
comparison for di�erent projective coordinates. In Section 3, we discuss the
elliptic curve discrete logarithmic problem on the curve E(K). Finally, we
conclude in the Section 4 with prospective of future study.

2 Generalized Hu�'s Model

Let K be a �nite �eld of characteristic 6= 2. We de�ne an elliptic curve,
denote it by E over K as E(K) : ax (y2 + xy + f) = by (x2 + xy + g) , where
a, b, f, g ∈ K and abfg(a − b) 6= 0 . The in�ection point (0, 0, 1) of E(K)
has the tangent line as bgy = afx, that passes through the curve with the
multiplicity of 3, thus O = (0, 0, 1) is the neutral point of E(K). Furthermore,
we denote group law as ⊕. The �gure 2.1 shows that the line passing through
the points P and Q, and intersecting at third point R on E(K).
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Figure 2.1: An example for the elliptic curve E(K)

Let P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and R = (X3, Y3, Z3) be three
points on E(K). Then, P ⊕ Q could be obtained by line connecting R and
O that intersects at third point 	R on E(K) such that
P ⊕Q = 	R which implies that P ⊕Q⊕ R = O. In particular, the inverse
of the point P is 	P = (X1, Y1,−Z1). It is clear that the curve E(K) posses
commutative law. We note that there are three points at in�nity, namely
(1, 0, 0), (0, 1, 0) and (a, b, 0) on E(K), and the sum of any two points at
in�nity equals to the third point. For any point (X1, Y1, Z1), when Z1 6= 0,
for some real number α and γ bounded by the �eld K, we observe that

(1 : 0 : 0) ⊕ (X1 : Y1 : Z1) = (αZ2
1 : −X1Y1 : X1Z1) and

(0 : 1 : 0) ⊕ (X1 : Y1 : Z1) = (−X1Y1 : γZ2
1 : Y1Z1).

Furthermore, we note that

(a : b : 0) ⊕ (X1 : Y1 : Z1) = (0 : 1 : 0) ⊕ (αZ2
1 : −X1Y1 : X1Z1),

therefore

(a : b : 0)⊕ (X1 : Y1 : Z1) =

{
(a : b : 0) if (X1 : Y1 : Z1) = (0 : 0 : 1)

(−αy1z1 : −γX1Z1 : X1Y1) otherwise
.

We have doubling point if P = Q, thus the line connecting P and Q is
the tangent at the point P .
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2.1 A�ne formulae

In this Subsection, we provide formulae for the group law for the elliptic
curve E(K) : ax (y2 + xy + f) = by (x2 + xy + g) , where a, b, f, g ∈ K and
abfg(a− b) 6= 0 .

Let P = (x1, y1), Q = (x2, y2) and R = (x3, y3) be the three di�erent
points on E(K) such that R is obtained by connecting a line through P and

Q. Let the secant line joining P and Q have the slope de�ned as λ =
y2 − y1
x2 − x1

.

Thus, y = λx+β is the equation of the secant line passing through the points
P , Q and R, where β = y1 − λx1 . For the curve equation
ax(y2 + xy + f) = by(x2 + xy + g), we can replace y with λx+ β.

ax((λx+ β)2 + x(λx+ β) + f) = b(λx+ β)

(x2 + x(λx+ β) + g)

x
(
af + aβ2

)
+ x2(aβ + 2aβλ)

+x3
(
aλ+ aλ2

)
= (bgβ + x

(
bβ2 + bgλ

)
+ x2(bβ + 2bβλ) + x3

(
bλ+ bλ2

)
Let

A = aβ − bβ + 2aβλ− 2bβλ

and
B = aλ− bλ+ aλ2 − bλ2

then

−bgβ + x (af + aβ2 − bβ2 − bgλ) + Ax2 +Bx3 = 0.

We now note that

x1 + x2 + x3 = −A
B

−x3 = x1 + x2 +
aβ − bβ + 2aβλ− 2bβλ

aλ− bλ+ aλ2 − bλ2

substituting β = y1 − λx1 and λ =
y2 − y1
x2 − x1

.

x3 = −
(
x1 + x2 +

(x1 − x2 + 2y1 − 2y2) (−x2y1 + x1y2)

(y1 − y2) (x1 − x2 + y1 − y2)

)
= −x1 − x2 −

(x1 − x2 + 2y1 − 2y2) (−x2y1 + x1y2)

(y1 − y2) (x1 − x2 + y1 − y2)
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which simpli�es to

x3 = −(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)
. (2.1)

We claim, by symmetry that

y3 = −(y1 − y2) (x21 + x1y1 − x2 (x2 + y2))

(x1 − x2) (x1 − x2 + y1 − y2)
. (2.2)

Thus, this is an evidence that the curve E(K) has three points
P = (x1, y1), Q = (x2, y2) and R = (x3, y3). We observe that inverse of
the point R is 	R = (−x3,−y3). We note that the point R = (x3, y3) is
computed only when x1 6= x2, y1 6= y2 and x1 − x2 + y1 − y2 6= 0 and the
addition formula used in the a�ne coordinate system could not be employed
for doubling points since x1 6= x2 and y1 6= y2.

We now show that the curve E(K) holds associative law, that is
P ⊕ (Q⊕R) = (P ⊕Q)⊕R.
For x-coordinates, we have

P ⊕ (Q⊕R) = x1 +

[
x2 −

(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)

]
= x1 +[

x21y1 − 2x1x2y1 + x22y1 + x1y
2
1 − 2x2y

2
1 + 2x2y1y2 − x1y22

(y1 − y2) (−x1 + x2 − y1 + y2)

]
= −(x1 − x2 + 2y1 − 2y2) (−x2y1 + x1y2)

(y1 − y2) (x1 − x2 + y1 − y2)

and

(P ⊕Q)⊕R = (x1 + x2)−
(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)

= x1 + x2 −
(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)

= −(x1 − x2 + 2y1 − 2y2) (−x2y1 + x1y2)

(y1 − y2) (x1 − x2 + y1 − y2)
.

For y-coordinates, we have

6



P + (Q+R) = y1 +

[
y2 −

(y1 − y2) (x21 + x1y1 − x2 (x2 + y2))

(x1 − x2) (x1 − x2 + y1 − y2)

]
= y1 +

x21y1 − x22y1 + x1y
2
1 − 2x21y2 + 2x1x2y2 − 2x1y1y2 + x1y

2
2

(x1 − x2) (−x1 + x2 − y1 + y2)

= −(2x1 − 2x2 + y1 − y2) (x2y1 − x1y2)
(x1 − x2) (x1 − x2 + y1 − y2)

and

(P +Q) +R = (y1 + y2)−
(y1 − y2) (x21 + x1y1 − x2 (x2 + y2))

(x1 − x2) (x1 − x2 + y1 − y2)

= y1 + y2 −
(y1 − y2) (x21 + x1y1 − x2 (x2 + y2))

(x1 − x2) (x1 − x2 + y1 − y2)

= −(2x1 − 2x2 + y1 − y2) (x2y1 − x1y2)
(x1 − x2) (x1 − x2 + y1 − y2)

.

Thus, we have (P ⊕Q)⊕R = P ⊕ (Q⊕R).

We now de�ne a point of in�nity on E(K) as O = (0, 0). For the point
P = (x1, y1), we have 	P = (−x1,−y1). Thus, it follows that

x3 = −(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)

= −(x1 −−x1) (y1 (x1 + y1)−−y2 (−x2 − y2))
(y1 −−y2) (x1 −−x2 + y1 −−y2)

= −(x1 + x1) (y1 (x1 + y1) + y1 (−x1 − y1))
(y1 −−y1) (x1 −−x1 + y1 −−y1)

= − (2x1) (0)

(2y1) (2x1 + 2y1)
= 0

and
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y3 = −(y1 − y2) (x21 + x1y1 − x2 (x2 + y2))

(x1 − x2) (x1 − x2 + y1 − y2)

= −(y1 −−y1) (x21 + x1y1 −−x1 (−x1 − y1))
(x1 −−x1) (x1 −−x1 + y1 −−y1)

= −(2y1) (x21 + x1y1 + x1 (−x1 − y1))
(x1 + x1) (x1 + x1 + y1 + y1)

= − (2y1) (0)

(2x1) (2x1 + 2y1)
= 0

Thus P ⊕ (	P ) = O.
The slope of the tangent line on the curve

E(K) : ax(y2 + xy + f) = by(x2 + xy + g), where abfg(a − b) 6= 0 could
be computed by implicit di�erentiation, thus by di�erentiation of E(K) with
respect to x, we have

af + 2axy + ay2 + ax2y′ + 2axyy′ = 2bxy + by2 + bgy′ + bx2y′ + 2bxyy′

y′ =
af + 2axy + ay2 − 2bxy − by2

bg − ax2 + bx2 − 2axy + 2bxy
.

For the point P = (x1, y1), we can describe the slope as

λp =
af + 2ax1y1 + ay21 − 2bx1y1 − by21
bg − ax21 + bx21 − 2ax1y1 + 2bx1y1

=
af + (a− b)y1 (2x1 + y1)

bg − (a− b)x1 (x1 + 2y1)
.

Let

A1 = afx1 + (2af + bg + (a− b)x21) y1, A2 = 3(a− b)x1y21 + 2(a− b)y31,
A3 = (bg − (a− b)x1 (x1 + 2y1))

and

B1 = (af + (a− b)y1 (2x1 + y1)), B2 = 2(−a+ b)x31 + bgy1 + 3(−a+ b)x21y1,
B3 = x1 (af + 2bg + (−a+ b)y21)

We claim that

x2 = − A3 (A1 + A2)

(af + bg + (−a+ b)x21 + (a− b)y21) (af + (a− b)y1 (2x1 + y1))
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and

y2 = − B1 (B2 +B3)

(af + bg + (−a+ b)x21 + (a− b)y21) (bg − (a− b)x1 (x1 + 2y1))

are the second coordinates of the point of intersection for the tangent line
at P .

We can prove our claim by simply checking the slope given by

λ =
y2 − y1
x2 − x1

and by simpli�cation we can obtain

λ =
af + (a− b)y1 (2x1 + y1)

bg − (a− b)x1 (x1 + 2y1)

which have same slope as λp.

2.2 Projective formulae

Let x =
X

Z
, y =

Y

Z
and Z = 1 [15, 31], then the a�ne coordinate

E(K) : ax (y2 + xy + f) = by (x2 + xy + g) , where a, b, f, g ∈ K and
abfg(a− b) 6= 0 becomes

a
X

Z

(
Y 2

Z2
+
XY

Z2
+ f

)
= b

Y

Z

(
X2

Z2
+
XY

Z2
+ g

)
Finally, multiplying by Z3 on both the sides to get rid of denominators and
achieve the projective form of the curve equation
E(K) : aX (Y 2 +XY + fZ2) = bY (X2 +XY + gZ2), where a, b, f, g ∈ K
and abfg(a− b) 6= 0.

For the point P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), the third point of
intersection known as R = (U3, V3,W3) of the line joining P and Q has the
coordinates as follows:

U3 = (X2Z1 −X1Z2)
2
(
Y2Z

2
1 (X2 + Y2)− Y1Z2

2 (X1 + Y1)
)

V3 = (Y2Z1 − Y1Z2)
2
(
X2Z

2
1 (X2 + Y2)−X1Z

2
2 (X1 + Y1)

)
W3 =− Z1Z2 (X2Z1 −X1Z2) (Y2Z1 − Y1Z2) (Z1 (X2 + Y2)− Z2 (X1 + Y1)) .

(2.3)
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For doubling points, the coordinates are as follows:

U2 = −
(
X1(a− b) (X1 + 2Y1)− bgZ2

1

)
2(

Y1(a− b) (X1 + Y1) (X1 + 2Y1) + Z2
1 (afX1 + (2af + bg)Y1)

)
V2 = −

(
Y1(a− b) (2X1 + Y1) + afZ2

1

)
2(

−X1(a− b) (X1 + Y1) (2X1 + Y1) + Z2
1 (X1(af + 2bg) + bgX1)

)
W2 = Z1

(
Y1(a− b) (2X1 + Y1) + afZ2

1

) (
−X1(a− b) (X1 + 2Y1) + bgZ2

1

)(
−(a− b)

(
X2

1 − Y 2
1

)
+ (af + bg)Z2

1

)
(2.4)

Projective coordinates may be preferred for faster arithmetic than the
a�ne formula. The a�ne formulae equation 2.1 and 2.2 for addition of two
di�erent point on E(K) is described by equation 2.3.

We let cost of a multiplication be m and the cost of a square be s in the
�eld K. Then, we have

m1 = X1Z2, m2 = X2Z1, m3 = Y1Z2, m4 = Y2Z1,

m5 = m4(m2 +m4), m6 = m3(m1 +m3), m7 = m2(m2 +m4),
m8 = m1(m1 +m3), m9 = −Z1Z2,

s1 = (m2 −m1)
2, s2 = (m4 −m3)

2,

U3 = s1(m5 −m6), V3 = s2(m7 −m8),
W3 = m9(m2 −m1)(m4 −m3)(m2 +m4 −m1 −m3),

Therefore, the total cost of point addition on the curve E(K) is 14m+2s.
For the doubling point as described by equation 2.4, we have

s1 = Z2
1 , s2 = X2

1 , s3 = Y 2
1 ,

m1 = X1(a− b)(X1 + 2Y1), m2 = (X1 + Y1)(X1 + 2Y1),
m3 = s1(afX1 +Y1(2af + bg)), m4 = (a− b)Y1m2, m5 = Y1(a− b)(2X1 +Y1)

m6 = (X1 + Y1)(2X1 + Y1), m7 = s1((af + 2bg)X1 + bgY1),
m8 = −X1m6(a− b), m9 = (m5 + afs1)((a− b)(s2 + s3) + s1(af + bg))

U2 = −(m1 − bgs1)2(m3 +m4), V2 = −(m5 + afs1)
2(m7 +m8),

W2 = −m1m9Z1.

Therefore, the total cost of point addition on the curve E(K) is 13m+5s.
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Theorem 1. Let K be a �nite �eld of characteristic 6= 2. Let P1 = (X1, Y1, Z1)
and P2 = (X2, Y2, Z2) be two points on E(K). Then, the addition formula

given by equation 2.3 is valid provided that X1Z2 6= X2Z1, Y1Z2 6= Y2Z1 and

X1Z2 + Y1Z2 6= X2Z1 + Y2Z1.

Proof. Let P1 and P2 be �nite, we can write P1 = (x1, y1), where
(x1, y1) 6= (0, 0) and P2 = (x2, y2). The point addition given by the equa-
tions 2.1 and 2.2 is only valid if x1 6= x2, y1 6= y2 and
x1 − x2 + y1 − y2 6= 0, which translate to projective coordinates as
X1Z2 6= X2Z1, Y1Z2 6= Y2Z1 and X1Z2 + Y1Z2 6= X2Z1 + Y2Z1, respectively.

It remains to analyze that the condition is satis�ed at the in�nity points.
The points at in�nity are (1 : 0 : 0), (0 : 1 : 0) and (a, b, 0), if P1 or
P2 ∈ {(1 : 0 : 0), (0 : 1 : 0)}, then X1Z2 6= X2Z1, Y1Z2 6= Y2Z1 and
X1Z2 + Y1Z2 6= X2Z1 + Y2Z1 is not satis�ed. Since P1 /∈ {O, (1 : 0 : 0), (0 :
1 : 0)} then the addition law is valid for P2 = (a : b : 0) as mentioned
earlier.

2.3 Jacobian formulae

Let x =
X

Z2
, y =

Y

Z3
and Z = 1 [15, 31]. Then the a�ne coordinate

E(K) : ax (y2 + xy + f) = by (x2 + xy + g) , where a, b, f, g ∈ K and
abfg(a− b) 6= 0 after simpli�cation becomes
E(K) : aX(Y 2+XY Z+fZ6) = bY (XZ2+XY Z+gZ6), where a, b, f, g ∈ K
and abfg(a− b) 6= 0 .

For the point P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), the third point of
intersection known as R = (U3, V3,W3) of the line joining P and Q has the
coordinates as follows:

U3 = −Z1Z2

(
X2Z

2
1 −X1Z

2
2

)
2
(
Y 2
2 Z

6
1 +X2Y2Z

6
1Z2 − Y1Z6

2 (Y1 +X1Z1)
)
,

V3 = −
(
Y2Z

3
1 − Y1Z3

2

)
2
(
X2Y2Z

5
1 +X2

2Z
5
1Z2 −X1Z

5
2 (Y1 +X1Z1)

)
,

W3 = Z2
1Z

2
2

(
Y2Z

3
1 − Y1Z3

2

) (
X2Z

3
1Z2 −X1Z1Z

3
2

) (
Y2Z

3
1 +X2Z

3
1Z2 − Z3

2 (Y1 +X1Z1)
)
.

For doubling points, the coordinates are as follows:
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U2 = −Z1

(
2X1Y1(−a+ b) + (−a+ b)X2

1Z1 + bgZ5
1

)
2(

2(a− b)Y 3
1 + 3(a− b)X1Y

2
1 Z1 + afX1Z

7
1 + Y1Z

2
1

(
(a− b)X2

1 + (2af + bg)Z4
1

))
,

V2 = −
(
(a− b)Y 2

1 + 2(a− b)X1Y1Z1 + afZ6
1

)
2(

3(−a+ b)X2
1Y1Z1 + 2(−a+ b)X3

1Z
2
1 + bgY1Z

5
1 +X1

(
(−a+ b)Y 2

1 + (af + 2bg)Z6
1

))
,

W2 = Z3
1

(
2(−a+ b)X1Y1 + (−a+ b)X2

1Z1 + bgZ5
1

) (
(a− b)Y 2

1 + 2(a− b)X1Y1Z1 + afZ6
1

)(
(a− b)Y 2

1 + (−a+ b)X2
1Z

2
1 + (af + bg)Z6

1

)
.

The costs of point addition and doubling point on the curve E(K) are
32m+ 4s and 29m+ 5s , respectively.

2.4 Lopez-Dahab formuale

Let x =
X

Z
, y =

Y

Z2
and Z = 1 [15, 31]. Then the a�ne coordinate

E(K) : ax (y2 + xy + f) = by (x2 + xy + g) , where a, b, f, g ∈ K and
abfg(a− b) 6= 0 after simpli�cation becomes
E(K) : aX(Y 2 +XY Z + fZ5) = bY (XZ2 +XY + gZ6), where a, b, f, g ∈ K
and abfg(a− b) 6= 0.

For the point P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), the third point of
intersection known as R = (U3, V3,W3) of the line joining P and Q has the
coordinates as follows:

U3 = −Z1Z2 (X2Z1 −X1Z2)
2
(
Y 2
2 Z

4
1 +X2Y2Z

4
1Z2 − Y1Z4

2 (Y1 +X1Z1)
)
,

V3 = −
(
Y2Z

2
1 − Y1Z2

2

)
2
(
X2Y2Z

3
1 +X2

2Z
3
1Z2 −X1Z

3
2 (Y1 +X1Z1)

)
,

W3 = Z2
1Z

2
2 (X2Z1 −X1Z2)

(
Y2Z

2
1 − Y1Z2

2

) (
Y2Z

2
1 + Z2

(
X2Z

2
1 − Z2 (Y1 +X1Z1)

))
.

For doubling points, the coordinates are as follows:

U2 = −Z1

(
2(−a+ b)X1Y1 + (−a+ b)X2

1Z1 + bgZ3
1

)
2(

2(a− b)Y 3
1 + 3(a− b)X1Y

2
1 Z1 + afX1Z

5
1 + Y1Z

2
1

(
(a− b)X2

1 + (2af + bg)Z2
1

))
,

V2 = −
(
(a− b)Y 2

1 + 2(a− b)X1Y1Z1 + afZ4
1

)
2(

3(−a+ b)X2
1Y1Z1 + 2(−a+ b)X3

1Z
2
1 + bgY1Z

3
1 +X1

(
(−a+ b)Y 2

1 + (af + 2bg)Z4
1

))
,

W2 = Z2
1

(
2(−a+ b)X1Y1 + (−a+ b)X2

1Z1 + bgZ3
1

) (
(a− b)Y 2

1 + 2(a− b)X1Y1Z1 + afZ4
1

)(
(a− b)Y 2

1 + (−a+ b)X2
1Y

2
1 + (af + bg)Z4

1

)
.

The costs of point addition and doubling point on the curve E(K) are
32m+ 6s and 26m+ 5s , respectively.
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2.5 Hasse's Theorem

For the elliptic curve E(K) : ax (y2 + xy + f) = by (x2 + xy + g) , where
a, b, f, g ∈ K and abfg(a − b) 6= 0, we replace K by Fq, where q is a prime.
We observe that for each x yields at most two values for y, and the point of
in�nity (0, 0) is always on the curve E(Fq). Thus, we can set up an upper
bound for the number of rationals on E(Fq) as

#E(Fq) ≤ 2q + 1.

However, computing the exact number of points on the curve E(Fq) is a
challenge to us. Hasse's theorem on elliptic curve E(Fq) provides an estimate
on the number of points over the �nite �eld Fq as

| #E(Fq)− (q + 1) | ≤ 2
√
q.

For the understanding purpose, the curve
E(Fq) : ax (y2 + xy + f) = by (x2 + xy + g) , where a, b, f, g ∈ Fq and abfg(a−
b) 6= 0 with the condition
abfg(a− b) 6= 0 could be rearranged as
afx + (−bg + ax2 − bx2) y + (ax− bx)y2 = 0 and may be seen as quadratic
equation of y. The discriminant can be calculated by
∆ = −4afx(ax− bx) + (−bg + ax2 − bx2)2and y can be rational if and only
if ∆ = j2 for some rational j. The variables of the curve are a, b, g and f
and we can easily �nd some points on the curve by simply assigning values
of a, f and g and solving for b. The examples below will show how one can
obtain y coordinate.

Example. We assign a = 1, f = 1, x = 1 and g = −1. The discriminant
formula then becomes

i2 = −4a(ax− bx) + (−bg + ax2 − bx2)2

i2 = −4(1− b) + 1

i2 = 4b− 3.

We note that 4b− 3 should be a rational square. Thus choosing
4b− 3 = 1 yields b = 1 but we omit this value due to the initial condition of
the curve. We now use 4b− 3 = 4 and it gives b = 3. Now our curve becomes
E(F17) : x (y2 + xy + 1) = 3y (x2 + xy − 1) which has a rational coordinate
of (1, 1). Since (1, 1) is on the curve then so does (−1,−1). We now apply

13



point doubling formula on the points (1, 1) and (−1,−1). The solution to
(1, 1) is another point (18

5
,−10

3
) and solution to (−1,−1) is (−18

5
, 10

3
). We now

apply point addition of the point (1, 1) and (−18
5
, 10

3
) which yields (299

119
, 91
391

).
We can also apply point addition of points (−1,−1) and (18

5
,−10

3
) which

yields (−299
119
,− 91

391
). We can use this method to generate more points on the

curve E(F17).

2.6 Computational cost analysis

In this subsection, we evaluate e�ciency of point addition and doubling point
on the curve E(K). The computation cost ratio between square (s) and
multiplication (m) is typically s = 0.8m. We omit other operations such as
addition and subtraction as computation cost is lower. The following table
summarizes the computational cost of point addition and doubling point
in standard coordinate such as projective, Jacobian and Lopez-Dahab. We
note that the computational cost using projective coordinate system on the
curve E(K) is lower than the Jacobian and Lopez Dahab coordinates. Thus,
we recommend to use projective coordinates as the cost is lower for point
addition and doubling points.

Table 1: Computational cost comparison

Coordinates
Cost

Addition Doubling

Projective 14m+2s 13m+5s
Jacobian 32m+4s 29m+5s

Lopez-Dahab 32m+6s 26m+5s

3 Applicability in Cryptography

Elliptic curves have been widely used in cryptography [22, 19, 7, 18, 21],
integer factorization [26, 3] and primality test [17]. In the cryptography, one
of the famous computational problem, ECDLP is employed. We can also
de�ne the ECDLP on our curves E(Fq) as follows: Given two points P and
Q on the curves E(Fq), compute n ∈ Fq is hard such that
Q = P ⊕P ⊕P ⊕ ...⊕P = nP . One requires O(

√
q) operations to break the

ECDLP by Pollard Rho method [30]. The ECDLP has been widely used in
cryptographic applications such as key exchange protocol, encryption, and
digital signatures. Furthermore, one can use our curve for cryptography.
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4 Conclusion

This paper introduced a generalized model of Hu�'s elliptic curve. We have
presented formulae for point addition and doubling on the a�ne, projective,
Jacobian and Lopez-Dahab coordinates. We have noted that the computa-
tional cost of the point addition and doubling point is lower on the projective
coordinates than the other mentioned coordinates. It remains to conduct
a comparative study of the computational cost for the point addition and
doubling point with the other curves such Weierstrass, Montegomery and
Edwards. Furthermore, we can extend the study to supersingular elliptic
curves and isogeny-based cryptography.
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