Uncontrolled Randomness in Blockchains:
Covert Bulletin Board for Illicit Activities

Nasser Alsalami and Bingsheng Zhang

Lancaster University, UK
{n.alsalami,b.zhang2}@lancaster.ac.uk

Abstract. The blockchain technology represents a new paradigm to re-
alize persistent distributed ledgers globally. While the blockchain tech-
nology is promising in a great number of fields, it can be abused to
covertly store and disseminate potentially harmful digital content. Con-
sequently, using blockchains as uncensored decentralized networks for
arbitrary data distribution poses a serious regulatory issue. In this work,
we show the severity of the problem by demonstrating a new technique
that can be exploited to use the blockchain as a covert bulletin board
to secretly store and distribute objectionable content. More specifically,
all major blockchain systems use randomized cryptographic primitives,
such as digital signatures and non-interactive zero-knowledge proofs, and
we illustrate how the uncontrolled randomness in such primitives can
be maliciously manipulated to enable covert communication and hidden
persistent storage. We also demonstrate how the same technique can
be extended to launch subversion attacks on the wallets of most top-
ranked cryptocurrencies, such as Bitcoin, Ethereum, Monero, etc. To
clarify the potential risk of uncontrolled randomness, we design, imple-
ment and evaluate our technique against the widely-used ECDSA sig-
nature scheme, the CryptoNote’s ring signature scheme, and Monero’s
ring confidential transactions. Note that the significance of the demon-
strated attacks stems from their undetectability, their adverse effect on
the future of decentralized blockchains, and their serious repercussions
on users’ privacy and crypto funds. Finally, besides presenting the at-
tacks, we provide a discussion of current countermeasures and suggest
some countermeasures to mitigate the threat of such attacks.

Keywords: Blockchain, Steganography, Covert Broadcast Channels, Con-
tent Insertion, Wallet Subversion

Table of Contents

Introduction.
1.1 Paper Roadmap i,
Preliminaries
2.1 Notationsottt
2.2 Blockchain
2.3 (Ring) Signature schemes..........o i
2.4 Brief description of CryptoNote
2.5 Brief description of Monero (Version 0.12.0.0)
2.6 Steganography
2.7 Kleptography/Algorithm-substitution attacks
2.8 ECDSA .
Generic Steganographic Attacks
3.1 SeCcurity ..o
3.2 Robustness and Efficiency i
Case studies: Bytecoin and Monero.............
4.1 Implementation in Bytecoin
4.2 Implementation in Monero (version 0.12.0.0)
Attack Scenarios: Covert Broadcast Communication and Persistent
SEOTAZE « . oottt
5.1 Attack Scenario 1: Covert Broadcast Channel
5.2 Attack Scenario 2: Covert Data Storage and Distribution
Attack Scenario 3: Wallet Subversion
6.1 Subverting Ring-Signature Crypto Wallets....................
6.2 Subverting ECDSA-Signature Crypto Wallets: Synthetic

Randommness
6.3 Subverting ECDSA-Signature Crypto Wallets: Rejection Sampling

7 COUNtEIMEASUTES . « . o« vttt ettt e et et e et et et
7.1 Current Content Insertion Countermeasures
7.2 Wallet Subversion Countermeasures.

8 Related Work

9 Conclusion and Future Work i

Referenceso

ApPendiCes

A Security Proofs

B Demo Bytecoin Steganographically Created Transaction

C Detailed Implementation of Steganographic Attack in Monero

D ECDSA-Signature Rejection-Sampling Experiment

E Signature subversion

F Ciphertext Stealing Technique

21
21
21
22
22

24

Uncontrolled Randomness in Blockchains 3

1 Introduction

The blockchain technology has pioneered a new paradigm to realize large-scale
immutable, persistent, and append-only distributed ledgers. Nowadays, blockchain-
powered systems have become largely ubiquitous across various sectors including
technology, academia, medicine, economics, finance, etc. While the blockchain
technology is promising in a great number of application scenarios, it can also
be used to anonymously store and disseminate potentially harmful digital con-
tent. A recent study [1] has shown that 1.4% of all Bitcoin transactions contain
non-financial data, some of which contain objectionable content, e.g. links to
child pornography. The absence of a central authority makes it hard to censor
the content posted on decentralized blockchains. With the increasing amount
of illicit content posted to the blockchains on daily basis, using blockchains as
uncensored networks for arbitrary data storage and distribution has become a
serious regulatory issue. Subsequently, several techniques have been discussed
to either filter unwanted content before it is added to the ledger [2] or remove
content from the blockchain [3,4].

However, all of the proposed countermeasures can only be effective if the
malicious content attached to the transactions can be detected. The situation
gets worse when the attackers can hide data into normal transactions and use
blockchain platforms for covert communications. Naively, one can encrypt the
malicious content and attach its ciphertext to a transaction, but it is notice-
able to the public that there is suspicious data attached. In 2018, Partala [5]
showed a proof-of-concept steganography technique that allows an adversary to
covertly embed one bit into a standard blockchain transaction without being
distinguished from an innocuous transaction.

In this work, we further advance this line of research by demonstrating an ef-
fective steganographic method that offers high throughput and can be launched
against any blockchain platforms that use randomized, i.e. probabilistic, crypto-
graphic primitives, such as digital signatures and non-interactive zero-knowledge
proofs. The main observation is that all randomized cryptographic algorithms
need to consume random coins somewhere along the execution, and these ran-
dom coins are not audited or certified publicly. By intentionally manipulating
the random coin supplied to a randomized algorithm, an attacker is able to em-
bed arbitrary information into the outputs of the algorithm. The output that
contain steganographic data is computationally indistinguishable from normal
output.

Besides using the demonstrated attack for covert channels and hidden stor-
age, the same attack is applicable in another scenario. The attacker(s) may try
to subvert, or mis-implement, cryptocurrency wallets and re-distribute them to
unsuspecting users. The subverted wallets can then surreptitiously leak the vic-
tim’s secret, such as the signing key, via standard transactions. Importantly,
the transactions generated by the subverted wallet are computationally indistin-
guishable from normal transactions for any black-box observer. We emphasize
that this attack scenario is very realistic and represents a serious vulnerability.
Currently the focus of research regarding blockchain subversion vulnerabilities is

4 N. Alsalami and B. Zhang

mainly on the trusted parameter setup process, such as common reference string
(CRS) generation [6, 7], while software subversion vulnerabilities in blockchain
cryptocurrency applications has not been extensively studied. The plausibility
of algorithm-substitution attacks against cryptocurrency can be attributed to
the following three reasons.

Firstly, cryptocurrencies have very complex cryptographic primitives and
structures. This complexity requires highly sophisticated mathematical and cryp-
tographic expertise to effectively review the source code and implementation. As
a result, cryptographic design and implementation mistakes can be found in the
products of many world-leading IT companies. For instance, as recently shown
in [8], Tencent’s QQ browser uses textbook RSA algorithm with no padding,
which is well-known to be insecure as it is a deterministic encryption scheme.
Likewise, it is shown in [9] that over 1/3 of the smart contracts , which are open-
source, contain at least one bug, and some of them are maliciously embedded
and can be triggered later by the attackers in a similar manner to the infamous
Ethereum DAO hack [10] ($55 million USD).

Secondly, the highly centralized development may cause bias and introduce
intentional and unintentional flaws which may not be spotted by code review-
ers. Although many cryptocurrencies are marketed as open-source decentralized
platforms, in many cases, the majority of the source code is contributed by a
single developer or a small group of developers. Studies have found that the de-
velopment of many blockchain applications is highly centralized in reality. For
example, 30% of the source files in Bitcoin are written by a single author, and
7% of the code is written by the same author [11]. Similarly, 20% of the source
code in Ethereum is attributed to the same author [11].

Thirdly, common end users lack the ability and the means to check the con-
formity of an executable wallet with its reference source code. In fact, in some
platforms, such as iOS, users can not directly access the binary files without
jailbreaking their devices, which paradoxically is not advisable and may render
a device unsafe to run a cryptocurrency wallet. Besides, it is uncommon for
users to compile the source code of any application by themselves; instead, they
usually relay on downloading readily prepared executable applications. The dif-
ficulty to examine the implementation of a cryptocurrency wallet is even more
pertinent to hardware wallets, such as the various Swiss-Army-Knife hardware
wallets [12]. These hardware wallets are typically manufactured in an outsourced
loosely-controlled environment, and it is practically impossible to audit the in-
tegrity of their implementation through the standard functionality ‘correctness’
test by observing input/output pairs in a black-box manner.

Our contributions. The primary objective of this work is to draw attention
to the potential threat of abusing uncontrolled randomness in blockchain algo-
rithms. To the best of our knowledge, this work is the first in literature that
discusses such a widely spread vulnerability in the blockchain context. More
specifically, we summarize our contributions as follows:

— Novel blockchain steganographic technique. We propose a stegano-
graphic technique that greatly increases the throughput of the state-of-the-

Uncontrolled Randomness in Blockchains 5

art blockchain steganographic attack that affect many cryptocurrencies. We
present our general attack against the widely-used CryptoNote framework,
and as a demonstration, we design, implement and evaluate the attack on
Monero and Bytecoin currencies.

Covert broadcast channels. As an immediate application, we show blockchain
platforms can be exploited to act as covert broadcast channels. Once deployed,
this would be the world’s first practical covert broadcast channel. The exis-
tence of such a channel will be untraceable, unlinkable, and even unobservable.
Such broadcast channels could be disastrous if used by outlaws, e.g. terrorists.
Persistent storage. With the proposed steganographic technique, anyone
can use the blockchain as a cheap hidden persistent storage along with his/her
daily transactions. For instance, this can be used for uncensorable cyberlock-
ers. At the time of submission, persistently storaging 1G data on Bytecoin and
using its P2P network as CDN only costs less than 3 USD. In theory, data
storage is just a communication channel between the current user and the user
himself/herself in the future. Nevertheless, there is a subtle difference between
hidden storage and covert channels, that is how long the channel (data) would
exist. Some countermeasures are effective against persistent storage but not
covert channels.

Wallet subversion attacks. For the first time, we point out that there is
a troubling high risk of massive coin stealing among all of the current cryp-
tocurrency wallets by demonstrating efficient and effective subversion attacks
within the realm of Kleptography and Algorithm Substitution Attacks. This

attack possesses the following properties:
e Passive attack. The attacker does not need to interact directly with the

victim’s wallet, i.e. subverted wallet. The communication channel between
the subverted wallets and the attacker is simply through the transactions
posted on the blockchain.

e Undetectability. The transactions generated by compromised wallets are
computationally indistinguishable from the normally generated transac-
tions. Therefore, no online/offline watchdog can detect the subversion.

e Interoperability. The subverted wallets transact seamlessly with normal
wallets; i.e. they can send to and receive from other wallets regardless
whether other wallets are subverted or not.

e Subtlety. Although we present our attack in the black-box setting, when
optimized, the difference between a subverted wallet source code, e.g.
Bytecoin wallet, and the original code is only about ten lines of code in
two functions. This subtlety makes it difficult even for technology-savvy
users to review and detect the subversion even if the subverted wallet is

open source.
We have implemented our subversion attacks against the ECDSA signature

scheme, and the ring signature used in the CryptoNote framework which is im-
plemented by many cryptocurrencies, such as Bytecoin. Because ECDSA and
ring signature are widely used among cryptocurrencies, this work has direct
impact on 18 of the top 25 cryptocurrencies in terms of market capitalization
[13] (as of the time of writting) as depicted in Table 1.

6 N. Alsalami and B. Zhang

Table 1. Cryptocurrencies and Digital Signature Schemes (currencies checked with
either the ECDSA signature or the Ring signature are potentially susceptible to the
our wallet subversion attacks.)

Cryptocurrencies’ Signatures
#|Cryptocurrency| ECDSA |EdDSA |Ring Signature| Note
1 Bitcoin v
2 Ethereum v
3 Ripple v v
4 Bitcoin Cash v
5 Litecoin v
6 Cardanos v
7 Stellar v
8 Zcash v
9 I0TA Winternitz
10 Monero v
11 Dash v
12 NEM v
13| Ethereum Classic v
14 Komodo v
15 Verge v
16 Lisk v
17 Dogecoin v
18 Decred v v
19 Nano v
20 Wanchain v v
21 Bytecoin v
22 Siacoin v
23| Bitcoin Diamond v
24 BitShares v
25 Waves v

1.1 Paper Roadmap

The rest of this document is organized as follows: Sec. 2 provides background
and definitions, and explains some preliminary concepts. In Sec. 3, we present
our generic steganographic attack against CryptoNote-based cryptocurrencies,
illustrate the effectiveness of the attack, and discuss its security proof. After
that, we demonstrate our implementation of the generic steganographic attack
in Bytecoin and Monero in Sec. 4. In Sec. 5 and Sec. 6, we explore three different
scenarios in which our generic attack could be applied, besides Sec. 6 presents
two more subversion attacks on ECDSA-signature wallets. We also study the
current countermeasures and suggest some mitigations in Sec. 7, and provide the
related work in Sec. 8. Finally, Sec. 9 restates the main objectives and findings,
concludes the document, and explains potential future work.

Uncontrolled Randomness in Blockchains 7
2 Preliminaries

Below we describe the necessary notations to used in this document, and provide
description of some preliminary concepts that are related to this work.

2.1 Notations

We use the following notations throughout this paper. The notation [n]| stands
for the set {1,2,...,n}. For a randomized algorithm A(), we write y = A(z;7) to
denote the unique output of A on input z and randomness r, and write y < A(x)
to denote the process of picking randomness r uniformly at random and setting

y = A(z;r). We use s & S to denote sampling an element s uniformly at random
from a set S. We use A € N as the security parameter. Let poly(-) denote a
polynomially-bounded function and negl(-) denote a negligible function. Unless
specified in the context, we use hash, : {0,1}* — Z,, and hash, : {0,1}* — G as
two collision resistant hash functions that map an arbitrary length string to a
group element in Z, and G, respectively. However, the actual group parameters
of Z, and G may vary depending on the context. m(,.;) stands for the truncation
that contains from the a-th bit to the b-th bit of m.

2.2 Blockchain

The term blockchain encompasses a broader range of distributed ledger tech-
nologies initiated by the Bitcoin [14]. There are two types of blockchain; permis-
sioned (private) and permissionless (public). In this work, we mainly focus on
permissionless blockchain. Typically, a permissionless blockchain uses a Proof-
of-X mechanism, such as Proof-of-Work (PoW) and Proof-of-Stake (PoS), to
randomly nominate a node who will propose the next block. The valid transac-
tions contained in a block need to be signed by the owner(s) of the corresponding
consumed coins. Most blockchain systems use randomized signature algorithms,
which makes them vulnerable to our attacks.

2.3 (Ring) Signature schemes

For notation simplicity, we unify the syntax of signature schemes and ring sig-
nature schemes. A (ring) signature scheme consists of a tuple of algorithms
S = (Setup, KeyGen, Sign, Verify) as follows:

— param Setup(l)‘) is the setup algorithm that takes as input the security
parameter 1, and it outputs a system parameter param. The rest of the
algorithms implicitly take param as an input.

— (PK, SK) < KeyGen(param) is the key generation algorithm that takes as
input the setup parameter param, and it outputs a public key and secret key
pair (PK, SK).

8 N. Alsalami and B. Zhang

,—(CryptoNote Long-term Key Generation) N

KeyGen(param):

— Pick random b & ZLp;
— Set a := hash,(b), A := g%, and B := ¢%
— Return (PK := (A, B), SK := (a,b)) and TK := (a, B).

Fig. 1. CryptoNote Long-term Key Generation Algorithm.

— o0 « Sign(P,SK, ¢, m) is the signing algorithm that takes as input a set
of public keys P := {PKj,...,PK,}, the secret key SK, the index ¢ such
that SK is the corresponding secret key of PK,, and the message m, and it
outputs the signature o. (For a standard signature scheme, we have |P| =1
and ¢ =1.)

— b « Verify(P,m, o) is the verification algorithm that takes as input a set of
public keys P, the message m and the signature o, and it outputs b := 1 if
only if the signature is valid.

Unforgeability. In a blockchain application, a signature scheme needs to
achieve existential unforgeability under an adaptive chosen-message attack (EUF-
CMA). Whereas, there are various unforgeability definitions for ring signature
schemes; in this work, we adopt the most commonly used unforgeability against
fixed-ring attacks and unify it with EUF-CMA. We refer interested readers to
[15] for more ring signature security definition variants and their differences.

Definition 1. We say a (ring) signature scheme S = (Setup, KeyGen, Sign, Verify)
is EUF-CMA if for any PPT adversary A, any integer A € N, any n = poly(\),
any param <« Setup(1*), any {(PK;,SK;)}", output by KeyGen(param), we
have:

(m*,0%) < A°CI({PK I) -

Pr Verify({PK;}™,,m*,0*) =1 A m* ¢ Q| — negl(})

where O(s,m) := Sign({PK,;}"_,,SKs,s,m) be the signing oracle, and Q :=
{mq,...,mg} is the set of queries to the signing oracle O(,).

2.4 Brief description of CryptoNote

CryptoNote is a protocol proposed by Nicolas van Saberhagen [16], and it has
been implemented in many emerging cryptocurrencies, such as Bytecoin [17],
CryptoNoteCoin [18], Fantomcoin [19], etc. Compared to Bitcoin-like cryptocur-
rencies, CryptoNote offers two main features: (i) stealth address via non-interactive
key exchange and (ii) set anonymity via (linkable) ring signatures. More specif-
ically, the user’s private key consists of a,b € Z,, and the corresponding public
key (A, B) consists of A := g% and B := g*. Note that in a standard CryptoNote

Uncontrolled Randomness in Blockchains 9

,—(CryptoNote Signing Algorithm) N

Slgn({Pl}:lzh tb £7 m):

— Set I := hashy(FP);
— For ¢ € [k], pick ¢ & Zp;
— For i € [k],i # ¢, pick w; & D
— For i € [k]:
e Set L; := g% if i = ¢
Set L; := g% - Pt if i £ ¢;
e Set R, := (hashy(P;))% if i = ¢,
Set R; := (hashy(P;))% - IV if ¢ # £,
— Set ¢ := hashy,(m, L1,...,Li, R1, ..., Ri);
— For i € [k]:
e Set ¢; :=w; ifi # ¢
Set ¢; :=c— Zle cj if i =¢;
o Setr;:=q; if i # ¢
Set r; := q¢ — cotg if i = ¢
— Return o :=(I,¢1,...,Ck,71,...,Tk).

Fig. 2. CryptoNote Signing Algorithm.

implementation, a is usually defined as hash,(b); therefore, b is the actual se-
cret key. To transfer funds to a recipient, the payer needs to generate a trans-
action public key R := ¢" and compute the corresponding one-time address
T := (ghaShP(AT) -B). The recipient is then able to compute the corresponding one-
time private key as t := (hash,(R®) + b). By the property of Diffie-Hellman ex-
change, we have A” = R®. With regards to the one-time ring signature schemes,
it is transformed from the OR-composition of Schnorr’s identification Sigma
protocols. There exists a LNK algorithm that can link two signatures together
if they are produced by the same signing key. By design, the one-time signature
key can only be used once, and it can be detected if the same key is used to sign
two transactions, which prevents double spending. More specifically, let T := g
be the one-time public key, and define I := (hash,(T))" as a “key image” as
part of the signature. The ring signatures signed by the same secret key would
have identical key image; therefore, double spending can be defeated efficiently
by simply checking if the key image has already been used.

Let P := {P;}7, be a set of public keys, and the signer knows the secret
key t; such that Py = g%, ¢ € [n]. Denote I := hash,(P) as the key image. The
param is defined as the parameters of the ED25519 twisted Edwards curve. For
completeness, we provide the key generation and signing algorithms in Fig. 1
and Fig. 2, respectively. Fig. 1 shows a third key called the tracking key TK
that can be given to a third party to track all transactions destined to the owner
of this key without revealing their secret key SK.

10 N. Alsalami and B. Zhang

2.5 Brief description of Monero (Version 0.12.0.0)

Monero [20] is one of the most successful CryptoNote-based cryptocurrencies,
and its source code is available on GitHub [21]. Although the original Monero
was based on the CryptoNote protocol, its transaction signature has evolved be-
yond this protocol!. As mentioned in [23], CryptoNote suffers from a shortcoming
where amounts in transactions are not hidden. To address this issue, Ring Confi-
dential Transaction (RingCT) [23] has been developed and deployed in Monero.
It combines (linkable) ring signature and Pedersen commitment schemes [24],
and also adopts Multilayered Linkable Spontaneous Anonymous Group Signa-
ture (MLSAG). RingCT has been supported by Monero since January 2017.

In Monero, suppose a user wants to spend m coins from his wallet, denoted
as Ay = {(PKY, CN)}m | where PKY is the user’s i-th account address and
CNS) is the balance of the account. The user first chooses k output accounts
{(PKY) CNU))}f:l such that the sum of balances of the input accounts equals

the output accounts, and sets R := {PKgnj)}é?:l as the output addresses. In
addition, the user selects n — 1 groups of input accounts with each containing
m different accounts to anonymously spend A, i.e. set anonymity. Whenever
receiving this transaction from the P2P blockchain network, the miners check the
validity of the transaction along with its public information. The commitments
are used to hide account balance. There are several special properties required for
the RingCT protocol. Public keys generated by the key generation algorithm of
ring signature should be homomorphic. Commitments should be homomorphic
w.r.t. the same operation as public keys. Commitments to zero are well-formed
public keys, each corresponding secret key of which can be derived from the
randomness of commitments.

In particular, we will explore our subversion attack against the Borromean
ring signature [25]. In a high-level abstraction, Borromean ring signature is a
Fiat-Shamir transformation of an AND /OR composition Sigma protocol of the
Schnorr’s identity protocol. More specifically, let P := {P; j}icjo,n—1],j€[0,m;—1]
be a set of public keys, and the signer knows the secret key ¢; such that P; ;- =
g'i, i € [0,n — 1], where jf are fixed and unknown indices. For completeness, we
provide the signing algorithms in Fig. 3.

2.6 Steganography

Steganography refers to techniques that allow a sender to send a message covertly
over a communication channel so that the mere presence of the hidden mes-
sage is not detectable by an adversary who monitors the channel [26,27]. Mod-
ern steganography techniques can be applied to various media, such as im-

! Monero project is very active and it rapidly evolves. In fact they have two major
release each year. In Oct. 2018, Monero released version 0.13.0.0 “Beryllium Bullet”,
which switched to Bulletproofs [22]. Since the technical specification of the latest
version is not well documented yet, our work is for Monero version 0.12.0.0 and
earlier versions.

Uncontrolled Randomness in Blockchains 11

,—(Borromean Signing Algorithm) <

Slgn(P7 {tl ?;017 {J: ?;017 m):

— Forie[0,n—1]:
e Pick k; & 7,;
e Set e; j«11 := hashy(m, g* i, 57);
e For j € [j;,m; — 1], pick s;,; & Z, and compute

€i,j+1 = haShP(mngI’] : Pi,j 1’J723]);

For i € [0,n — 1], pick 8;,m, & Zp, and compute
€o = haShp(gsi'mj . Pi,_jeiymj g 79‘%’% : Pi,j
For i € [0,n — 1]:

e For j €[0,j; — 1], pick s;; & Z, and compute

—€e .
n,m;)
)

- — Sid TG s .
€i,j+1 := hashy,(m, g% - P; %7 i, j);
° Set Si’jt* = k’l -+ tiei,j:_l;

— Return o := (eo, {55 }ico,n],je[0,ma])-

Fig. 3. Borromean Signing Algorithm.

ages, audios, HTML files, etc. A stegosystem consists of three PPT algorithms
ST := (KeyGen, Embed, Extract) as follows:

— (ek,dk) + KeyGen(1*) is the key generation algorithm that takes as input the
security parameter 1, and it outputs an embedding key ek and an extraction
key dk.

— st < Embedy k(m). Given an embedding key ek, a hidden message m €
{0,1}* and channel history H € {0,1}*, Embed generates a stegotext mes-
sage st € {0,1}* that is indistinguishable from the normal channel distribu-
tion D of innocent cover text objects ct.

— m < Extractqx(st), Extract takes as input a extraction key dk and the stego-
text st € {0,1}* and outputs a hidden message m € {0,1}*.

Definition 2 (Correctness). We say a stegosystem ST := (KeyGen, Embed, Extract)
is correct if for all (ek,dk) «+ KeyGen(1*) we have

Pr [Extractgk(Embedy ek(m))] > 1 — negl(A) .

Security. The stegosystem’s goal is to communicate a hidden message covertly
by hiding the mere existence of the hidden communication. Therefore, a stegosys-
tem is considered to be secure if an observer is not able to distinguish stegotext
st from objects randomly picked from the channel distribution D. More formally,
this is defined as a chosen hidden-text attacks (CHA) game/experiment.

12 N. Alsalami and B. Zhang

Expt$ (1)

1. A(1*) outputs a message m;

(ek, dk) < KeyGen(1*);

b+ {07 1};

If b = 0: ¢ < Embedy ek (m);

Else: ¢ + D;

A(c) outputs a bit b';

Return b = b/';

We say a stegosystem ST := (KeyGen, Embed, Extract) is CHA-secure if

Ll S

o o

AdvZsT(1%) =

Pr [ExptS‘HA(l)‘)] - ;‘ = negl(}\) .

Besides security, the following properties are also important to a stegosystem.

— Reliability/Efficiency. The probability that an embedded message is extracted
when the stegosystem does not achieve not perfect correctness.

— Robustness. The inability of a challenger/warden to alter the sender’s com-
munication transcript (that contain hidden message), and possibly prevent
the receiver from recovering the hidden message.

2.7 Kleptography/Algorithm-substitution attacks

Our wallet subversion attacks can be classified as kleptographic attacks [28,29]
and algorithm-substitution attacks (ASA) [30,31]. The concept of subversion
attacks was initially introduced by Young and Yung about two decades ago in a
series of publications [28,29,32]. Recently, Bellare et al. proposed a similar type
of subversion attacks called ASA attacks [28,29,32]. As a high level definition,
in such attacks, the adversary maliciously tampers with the implementation
of a cryptographic algorithm Gyup and changes it from its specification Gspgc
algorithm, with the aim to subliminally and exclusively leak the user’s secret
information to the adversary while evading detection in the black-box setting.
The depiction in Fig. 4 illustrates how an adversarial implementation Gyp of the
algorithm Gspgc can allow the adversary, given their secret key z, to detect the
subverted ciphertext ¢’ and extract the user’s secret s. Kleptographic attacks are
significant due to their undetectability in the black-box setting and their severe
consequences on the security of the users. See Appendix E for more details about
signature subversion.

2.8 ECDSA

ECDSA is a randomized-signature scheme over the NIST elliptic curves that
has been widely used in cryptocurrencies, such as Bitcoin, Ethereum, etc.

Elliptic Curve Over F,.Let param := (p,a, b, g, ¢, () be the elliptic curve pa-
rameters over I, consisting of a prime p specifying the finite field I, two ele-
ments a, b € F, specifying an elliptic curve E(F,) defined by F : y* = 2® +az+b

Uncontrolled Randomness in Blockchains 13

m m ’
C C
S @_ S GIMP _>

Z—fExt}e s
N

Fig. 4. Kleptography/ASA: specification Gspec takes input as the message m and the
secret s, and outputs c; whereas, the malicious implementation Gump outputs a sub-
verted ciphertext ¢’ which can leak the secret s exclusively to the attacker who knows

“—{ECDSA (KeyGen, Sign, Verify)))

— KeyGen(param):
e Pick random s < Zg;
e Set S :=g° = (54,5y);
e Output (PK := 5, SK := s);
— Sign({PK}, SK, 1,m):
e Pick random r + Zg;
e Set R:=g" = (Rz, Ry);
e Set w := (hash,(m) 4+ s- R;) -~ " (mod q);
e Output o := (Rz, w);
— Verify({PK}, m,0):
e u; :=hash,(m)-w™* (mod q) and uz := R, -w™ ' (mod q);
e Compute P := g“1S"2 = (P,, Py);
e Output valid if and only if P, = R, (mod q);

Fig. 5. ECDSA Signature Scheme.

(mod p), a base point g = (z4,y4) on E(Fp), a prime ¢ which is the order of
g, and an integer ¢ which is the cofactor (= #E(F,)/q. We denote the cyclic
group generated by g as G, and it is assumed that the DDH assumption holds
over G, that is for all PPT adversary A:

. . Ty. 1
AdngH(A):‘PI‘ |:xay<_anb<_{O,1}ah g 7:| _‘

O =
h1<—G2A(g,917gy7hb):b 2
is negligible in .
ECDSA description. The ECDSA signature scheme is depicted in Fig. 5.

3 Generic Steganographic Attacks

Many cryptocurrencies use ring signatures to preserve users’ privacy. For exam-
ple, the CryptoNote framework [16], which is adopted by around 20 cryptocur-
rencies, uses ring signatures. As a demonstration, in this section, we describe how
the uncontrolled randomness in CryptoNote’s ring signature can be maliciously
exploited. Namely, we show how the randomness within the ring signatures can

14 N. Alsalami and B. Zhang

<1 bit> <— ——128 bits —— —> <—124 bits —>
&i: [|V=Fz(rand||oo...0)] (Payload 1]
slBiBs======= 22 hils======= 3

ri: [Payload 2 J

Fig. 6. Steganographic attack against CryptoNote: Format of one pair of random num-
bers (¢j, ;) with 47-byte embedded stegotext.

be used to communicate covertly, store arbitrary information, and surreptitiously
leak private keys. Note that the same principles are applicable to any other un-
controlled randomness in blockchain premitives.

Steganographic Attack against CryptoNote. We now describe a generic
steganographic attack against all CryptoNote-based cryptocurrencies and their
variants. As mentioned in Sec. 2.4, the CryptoNote protocol uses the ED25519
twisted Edwards curve, and the group order is a 253-bit prime p. The long term
secret key of a user consists of two group elements a,b € Z, but a := hash,, (b)
is commonly used in practical implementation. Therefore, the long term secret
key of a CryptoNote account is effectively 253 bits.

As part of the one-time (linkable) ring signature, a one-out-of-many non-
interactive zero knowledge proof is included. More specifically, for a ring of size
k, the format of the ring signature is ¢ = (I,c1,...,Cky71,...,Tk). Suppose
the sender’s public key is PK;, ¢ € [k]. For all j € [k] and j # 4, the com-
ponents c¢; and r; are uncontrolled random group elements in Z, and can be
used for covert communication. (cf. Fig. 2, above) Hence, our attack is premised
on steganographically embedding arbitrary information on the ring signature’s
random numbers (¢;,7;).

In our attack example, ek = dk, which is a simple 128-bit random key z,
is the common shared secret. The attack is explained as a three-step process
carried out by two parties: a sender called Alice and a receiver called Bob.

Step 1: embedding hidden messages (Embed). As the most significant bit of a
random Z, element does not have uniform distribution (which is more biased
to 0), to ensure (computational) indistinguishability between stegotext st and
innocuous random elements (c;, ;) € Zp, Alice embeds her secret message m in
the least significant 252 bits of ¢; and r;, whereas, the most significant bits b;
and by are sampled according to the real distribution of ¢; and r;. As depicted
in Fig. 6, the rest of the bits consist of a 128-bit 1V, 124-bit Payload 1, 252-bit
Payload 2. Let F: {0,1}128 x {0,1}'2® — {0,1}'2® be a block cipher that takes
as input a 128-bit plaintext and a 128-bit key, and outputs a 128-bit (pseudo-
random) ciphertext. Moreover, Alice uses synthetic IV to allow Bob to efficiently
identify which transactions on the blockchain contain stegotext st. In particular,
IV := F,(rand||00...0), where rand is a 64-bits random string, and 00...0 is a

Uncontrolled Randomness in Blockchains 15

,—(A Generic CryptoNote Stegosystem) \

KeyGen(1'2®):

— Pick random z + {0, 1}'%%;
— Return ek := dk := z;

Embedy e (m):

— Pick random rand + {0, 1}%*;

— IV := F.(rand||00...0);

— 1 := CTS-Enc.(IV, m);

— Payload 1:= ’I?A’L[Qzlgg];

— Payload 2 := m[124:375];

— Sample random ¢ ¢~ Z;,, and r < Zy;

— Cp2g) = 1V
— C129:252] := Payload 1;
— T[1:252) := Payload 2;

— Return (¢, r);
Extractax(c, r):

- o= Fz_l(c[1:128]);
If Oé[64;127] # (00 N 0)
e Return 1;
— Else:
o IV := Cl1:128];
Payload 1:= C[129:252];
Payload 2 := c[1.252);
m := CTS-Dec. (IV, Payload 1||Payload 2);
— Return m;

\. J

Fig. 7. Pseudo code for a generic stegosystem ST := (KeyGen, Embed, Extract) to
covertly communicate a 376-bit message m in one pair of innocuous-looking (c,r),
where A = 128.

64-bit string of 0’s. As a result, to check if a signature contains any st, Bob can
simply try to decrypt a suspected IV, obtaining d := F; }(IV). If the lower half
of d consists of 64 bits of 0’s, then this signature contains stegotext st.

In our attack, Payload 1 and Payload 2 are jointly used to convey a 376-bit
hidden message (m = Payload 1||Payload 2). The payloads are encrypted via
a semantically secure symmetric encryption under the secret key z and using
IV. Also, to handle an arbitrary-length hidden message and ensure the resulting
ciphertext has the same length as the message (besides the IV), Alice can use
Ciphertext Stealing (CTS) as described in Appendix F.

Step 2: identifying stegotext. Unlike conventional P2P covert communication,
before attempting to extract a hidden message from a transaction, Bob should
first identify if the target transaction contains a stegotext st. As mentioned

16 N. Alsalami and B. Zhang

before, Bob can accomplish this by parsing IV from the first two c;’s of the ring
signature ¢ in a transaction, and checking whether the decryption of IV contains
pattern 64 bits of 0’s as shown in Fig. 6. Note that Embed embeds the hidden
message m in one of the first two pairs of (¢;,7;). If ¢ does not yield the IV,
then Alice’s secret index 7 must be 1, and Bob moves on to decrypt ¢ which
must contain the IV, otherwise, the signature is an innocent cover text ct that
does not contain st.

Step 3: extracting hidden messages (Extract). Once a steganographic ring sig-
nature is successfully identified, Bob can use the Extract algorithm to extract
the hidden message. More specifically, Bob collects Payload 1 and Payload 2 as
depicted in Fig. 6. Bob then uses the extraction key dk := z to decrypt the
payload, obtaining m := CTS-Dec, (IV, Payload 1||Payload 2).

The pseudo code in Fig. 7 further illustrates the generic steganographic attack
on CryptoNote currencies. Note that, in practice, the IV and Payload can be
encrypted under two different keys derived from a single master key z. However,
for notation simplicity, we use the same key here.

3.1 Security

The security of the proposed generic stegosystem against all CyptoNote-based
cryptocurrencies is examined for undetectability under the chosen hidden-text
attacks (CHA) game/experiment. We remark that the content-insertion tech-
niques that use non-standard Bitcoin scripts or exchange the public key with
an arbitrary string with printable characters, as mentioned in [1,33], can be
detected. However, our proposed steganographic attack on CryptoNote simply
replaces random numbers with pseudo-random ciphers which, by definition of
semantic security, are computationally indistinguishable from each other. As-
suming the CTS-Enc algorithm described in Appendix F uses F' as the internal
PRF function, we have the following theorem.

Theorem 1. If F is a secure pseudorandom function, the stegosystem ST :=
(KeyGen, Embed, Extract) as shown in Fig. 7 is CHA secure.

Proof. See Appendix A.

3.2 Robustness and Efficiency

In terms of robustness, it is easy to see that, unlike image steganography, the
stegotext embedded in the signatures can never be removed while still preserving
the functionality of the signatures. Therefore, there is no filter that can remove
our stegotext.

Throughput. The only similar attack in literature is the proof-of-concept
attack in [5] which sends a hidden message bit-by-bit through the rejection-
sampling of the transaction address. Besides sending one bit of the hidden mes-
sage m per transaction, their attack also sends one transaction per block. As
a result, with 10 minutes to add a new block in Bitcoin, a sender needs more

Uncontrolled Randomness in Blockchains 17

than 24 hours to send a message of 20 bytes. On the other hand, our stegano-
graphic attack takes advantage of the randomness within each ring signature in
CryptoNote transactions. In fact, a CryptoNote transaction contains a ring sig-
nature for each input. Therefore, if a transaction tx has y number of inputs, and
n public keys in the ring of each signature, then the total number N of random
numbers (cj,7;) in tx is N = y * (n — 1) * 2. Whereas, the available bandwidth
B in bytes is B = 32N. Hence, the available bandwidth in one transaction of 10
inputs and 10 public keys is more than 5KB.

Cost. Content-insertion through the use of OP_RETURN transactions and the
arbitrary replacement of transaction addresses [33] render the funds unspend-
able. Therefore, these techniques burns funds. On the contrary, our proposed
steganographic attack does not incur any additional cost, except for minimal
transaction fees, as the sender can always send transactions to his own addresses.
Technically, we can put arbitrarily large ring size in a transaction. In practice,
we found ring size between 20 and 30 is the optimal ring size to get the trans-
action included quickly with minimum transaction fees. In the following section,
we give some concrete costs for Bytecoin blockchain as guidelines.

4 Case studies: Bytecoin and Monero

This section contains specific implementation of the proposed attack in Sec. 3.
We have implemented and evaluated the attack in two real cryptocurrencies;
Bytecoin and Monero. Namely, we implemented the steganographic attack in
the most recent release of Bytecoin (v 3.3.3) which has a market cap of around
$142 millions as of the time of writing [13]. Similarly, we implemented and tested
the attack in Monero which is ranked 11 among currencies and has a market cap
of around $1 billion. It is important to note that as of October 2018, Monero
(v 0.13.0.0) has replaced Borromean ring signatures, that is exploited by our
attack, by a succinct zero-knowledge proof called Bulletproofs, which is not cov-
ered by this work. Consequently, all of our discussion in relation with Monero
is regarding previous versions of the source code mainly (v 0.12.0.0) and older.
Although Monero is based on CryptoNote protocol, it uses Borromean ring
signature which is different from the ring signature used in CryptoNote protocol
as previously shown in Sec. 2.4. Nevertheless, our generic attack in Sec. 3 is still
applicable to Monero. This emphasizes that the same attack can be extended to
all public blockchain applications with randomized cryptographic primitives.

4.1 Implementation in Bytecoin

Bytecoin is an open-source cryptocurrency project [34] that implements the
CryptoNote protocol described in Sec. 2.4. Accordingly, Bytecoin uses the ED25519
twisted Edwards curve and CryptoNote (linkable) ring signature to sign its trans-
actions. As previously mentioned in Sec. 2.4, this protocol has sufficiently many
uncontrolled random numbers that could be exploited to covertly communicate
arbitrary information. Since Bytecoin closely follows the specifications of the

18 N. Alsalami and B. Zhang

<———128 bits ———> <—125 bits —>

Ci: (IV=F(rand||00..0))(Rand |

<———128 bils ———> <—126 bits —>

ri: [st][Rand]

Fig. 8. Bytecoin: embedding a 16-byte st in one pair of (¢;,r;) in transaction’s ring
signature

CryptoNote framework, it can directly be attacked using the generic stegano-
graphic attack described in Sec. 3. However, for code simplicity and clarity of
demonstration, Ciphertext Stealing (CTS) is not used, and AES128 is used in
the stegosystem because AES is already implemented in Bytecoin source code.

As a proof-of-concept experiment and due to ethical reasons, we only covertly
transfer 16 bytes in the real-world Bytecoin without significantly abusing the
blockchain system. Following the description of the generic attack in Sec. 3, we
have implemented our steganographic attack on Bytecoin wallet in the following
three steps.

Step 1: embedding a hidden message m and generating a signature that contains
st. To embed a 16-byte hidden message m in a pair of random numbers (c;,7;),
Alice generates a synthetic IV := AES,(rand||00...0) where rand is a 64-bit
random string, and 00...0 is a 64-bit string of 0’s. Alice then places IV as the
most significant 16 bytes of ¢; and sets the rest of ¢; randomly. She later uses
this IV along with z to generate st that is embedded in the most significant 16
bytes of ;. Namely, st := AES. (m @ IV). The format of (¢;,r;) containing st is
illustrated in Fig. 8.

Furthermore, to implement this step of the attack, the Bytecoin wallet’s
source code is changed by mainly modifying one source file: crypto.cpp. The
modified wallet simply alters the random numbers in the transaction’s ring sig-
nature(s) by producing one pair of (¢;,r;) as aforementioned. Note that j # i
where i is the signer’s secret index within the ring. Particularly, the changes
introduced to crypto.cpp affect the following two functions within the source
file:

— generate_ring_signature(): This function is slightly modified to pass a counter
value to the random_scalar function.

— random_scalar(): This function is modified by including an additional pa-
rameter in its input to specify the counter. When this counter is 0 and 1,
random_scalar() generates ¢; and r; respectively which are stegotexts that
hide a 16-byte message as depicted in Fig. 8.

After generating the subverted signature that contains the stegotext, the
transaction is sent as per normal over the blockchain. The sender does not need
to modify other parts of the wallet source code.

Uncontrolled Randomness in Blockchains 19

,—(Bytecoin covert communication pseudo code) <

KeyGen(1'%%):

— Pick random z < {0, 1}'2%;
— Return ek := dk := z;

Embedy, . (m):
generate_ring_signature():

= If((4 #)& == 0)):
e ¢; := random_scalar(0);
e r; := random_scalar(1);
— Else:
e process as per normal;

random_scalar(n):

rand < Zp;
if(n ==0):

o IV := rand[o.¢3)||zeros;

o IV:=AES.(IV);

[] rand[0;127] = |V;
— if(n==1):

e randjo.127) := AES.(m @ IV);

— Return rand;

Extract. (¢, r):

— for(j =0;5 <25 ++)
] IV/ = AES;l(C]"[O;127]);
o if(IV(gy4.127 == zeros):
* m = AESI " (r) 0:127]) @ ¢, 01273
* Return m;
— Return 0; % No hidden message

Fig. 9. Pseudo code for the implementation of covert communication in Bytecoin and
similar currencies.

Step 2: identifying signature containing stegotext st. To distinguish and identify
signatures containing stegotext st, Bob checks every new transaction added to the
ledger. To implement this, BlockChainState.cpp is slightly modified to check each
signature by decrypting each pair of (¢;, r;) numbers. In particular, Bob uses his
key z to decrypt the most significant 16 bytes of ¢; to check if it contains 64 bits
of zeros as in Fig. 8. If he detects such a pattern, Bob identifies the existence of
a stegtext and sets IV as the most significant 16 bytes of c;. If, however, no such
pattern is detected, then the signature does not contain any hidden message.

20 N. Alsalami and B. Zhang

Step 3: extracting hidden message m. After identifying a stegotext st, Bob de-
crypts the most signigicant 16 bytes of r; to extract m, that is m := AES;! (75,[0:127))D
(¢jj0:1271)- This process is further clarified by the pseudo code in Fig. 9.

To further demonstrate the attack over the real Bytecoin blockchain, Ap-
pendix B provides a demo transaction included in the block at height 1671177.
It contains a 16-byte hidden message “steganography”.

4.2 Implementation in Monero (version 0.12.0.0)

Monero has a very complex cryptographic structure and ring signature scheme
in particular. The core of Monero’s wallet involves Multilayered Linkable Spon-
taneous Anonymous Group Signature (MLSAG) and Borromean ring signature
[25]. MLSAG is similar to the l-out-of-n ring signature that is used as part of
the CryptoNote protocol; however, rather than using a ring signature on a set of
n keys, MLSAG uses a ring signature on a set of n-key vectors. Using MLSAG,
the signer proves to know all the private keys corresponding to one column in
the public keys’ matrix. Despite the massive one-time secret key, the long-term
secret key is still a single group element in Z,,.

Borromean ring signature [25], which is a generalization and based on the
1-out-of-n signature [35], is used to mask the transferred amount while enabling
the receiver to know how much they have received by revealing the mask [36].

In our experiment, we chose to exploit the Borromean ring signature as it of-
fers higher throughput. However, though with lower throughput, different prim-
itives could also be exploited to mount steganographic attacks. Our attack on
Monero is based on embedding a 32-byte hidden message m in the randomly gen-
erated s; ; numbers as part of the Borromean ring signature [25]. Specifically,
two vectors of s; ; numbers are generated by the genBorromean() function: sq ;
and sy ;. In addition, sg ;’s are randomly generated when the 4t bit commitment
is 1. Two of these randomly generated sg ;’s are used to embed m as shown in
Fig. 10. In a similar manner to our attack on Bytecoin, we use AES because it
is already available in the source code. More details about the implementation
of the steganographic attack on Monero can be found in Appendix C.

! A B
Sos i [16bytesRand IV][Encs(index of Soz) XOR A)]

, c D
Soz i EncmiXORB) J[Enc{m:XORC) |}

Fig. 10. Monero: embedding a 32-bybte hidden message (m1||m2) in two random num-
bers (so,1, So0,2) in the Borromean ring signature

Uncontrolled Randomness in Blockchains 21

5 Attack Scenarios: Covert Broadcast Communication
and Persistent Storage

As immediate applications of our steganographic attack, adversaries can abuse
the blockchain for (i) covert broadcast communication and (ii) covert persistent
storage.

It is noticeable that both attack scenarios do not only facilitate malicious be-
haviour, but can also hinder the very future of public blockchains. In particular,
if a public blockchain is known to the authorities to be abused for covert commu-
nication or storage of malicious content, then authorities in any given country
may criminalize the mere participation in such blockchains. Even if participation
is not criminalized, users may choose not to store the full ledger, which defeats
the purpose of decentralized blockchains, and leads to a more centralized setting,
where few users participate in the consensus protocol.

5.1 Attack Scenario 1: Covert Broadcast Channel

Conventional steganographic techniques typically assume that the covert com-
munication is between two parties — a sender and a receiver. In fact, our stegano-
graphic attack can be used as a covert broadcast channel, i.e. one sender and
multiple receivers. As analyzed in Sec. 3.2, to steganographically send a hid-
den message of 1 KB, Alice can easily craft a transaction with 4 inputs and
5 public keys. As illustrated in Fig. 11, it is easy to use our steganographic
technique in conjunction with some broadcast encryption scheme, e.g. [37], to
enable a practical broadcast channel. The feasibility of this attack and the high
throughout illustrate the severity of this attack scenario, especially if abused by
outlaws to use public blockchains as covert broadcast networks for their illicit
communication.

5.2 Attack Scenario 2: Covert Data Storage and Distribution

Data storage can be viewed as a communication channel between the user and
the user himself in the future. Unlike covert communication, covert persistent
storage requires the uploaded content to be permanently stored and available on
the blockchain. For instance, to store 1G of data, we can use transactions with
a ring size of 21 with minimal transaction fees, 0.01 Bytecoin. With 2 inputs,
each transaction can store about 2 kB of data, so the total cost is less than $3
given the value of Bytecoin at the time of writing. Consequently, an adversary
can use Bytecoin as a cyberlocker and abuse the P2P network of Bytecoin as a
content distribution network (CDN) forever. For example, it could be used to
store pirated movies, wikileaks documents, etc.

Another special case of this scenario that shows the threat of such attack is
blackmailing. An adversary, Alice, can covertly store private information about
a victim, Bob. Alice may even demonstrate this to Bob by sharing the key and
the extraction tool with him. Alice can then threaten Bob that she can make
the information publicly available by revealing the key to everyone.

22 N. Alsalami and B. Zhang

}
}
Master : MVl\jlil‘lf(‘eetd m
key } |
\essssscsssssssnes
Receiver 1
1
— S 1
Modified BIOCkCha|n key2
Wallet | {

Sender i Extract g
Modmed |
Wallet |

Hecelver 2

Fig. 11. Attack scenario 1: Covert broadcast communication.

6 Attack Scenario 3: Wallet Subversion

In the first two attack scenarios in Sec. 5, the sender, Alice, is complicit in the
malicious attacks. This section presents another scenario where the sender is
oblivious and is in fact a victim of the attack. Although this scenario may be
applicable to open-source blockchain applications due to their complexity, it is
more applicable to close-source and hardware-based applications, e.g. hardware
wallets. The significance of this attack scenario stems from its undetectability in
the black-box setting, where secrets are leaked via normal transactions posted on
the blockchain, and its serious repercussions on the victim’s privacy and funds.

As depicted in Fig. 12, in this scenario, Alice is an innocent user who has
downloaded, or bought, a wallet that is produced by a third party Carol who has
maliciously implemented the wallet. In particular, Carol used a subversion attack
to modify a wallet and redistribute it so to leak the signer’s private key, while
evading detection in black-box settings. The way in which Carol modifies the
wallet depends on the used cryptographic primitives and signature algorithms.

Below we present three subversion attacks that realize the scenario in Fig. 12.
The first is a direct application of the generic steganographic attack described
in Sec. 3 and its demo implementation in Bytecoin and Monero. We also present
two more wallet subversion attacks targeting ECDSA-signature cryptocurren-
cies. Namely, the first attack on ECDSA-signature crypto wallets uses synthetic
ephemeral key to covertly leak the entire signer’s secret key over two signatures.
However, it requires that the wallet is stateful in the sense that the wallet needs
to store some variables from the previous signing execution. The second attack
on ECDSA-signature crypto wallets is stateless and has lower throughput com-
pared to the stateful attack. Note, in both ECDSA attacks, it is assumed that
the attacker can identify the transactions generated by the victim user.

6.1 Subverting Ring-Signature Crypto Wallets

In the following we describe how the generic steganographic attack described
in Sec. 3 is used by a third party, Carol, to subvert a ring-signature currency

Uncontrolled Randomness in Blockchains 23

Carol

0 W Distribute
/ Wallet

(¢}
o Bob (Reciver)

key —s
O Alice (Sender) d 8K .

SK _. T
5 —»m _,x/_/ "

Fig. 12. Attach scenario 3: Subversion attack on crypto wallets to steal users’ private
keys

wallet, e.g. Bytecoin, to steal private keys. Similar attack is also applicable to
Monero’s Borromean signature.

Carol modifies the wallet by adding an embedding algorithm Embed., (b),
where b is Alice’s 253-bit private key b € Z,. The subverted wallet secretly
executes Embed, (b) to generate one pair of (¢j,r;) as shown in Fig. 13. In this
scenario, the subverted c; contains 128-bit IV that consists of an encryption of
64 random bits rand and 64 bits of zeros, i.e. IV := F,(rand||00...0). ¢; also
contains Payload 1 which is 124 bits of b. r; contains Payload 2 which is 129 bits
of b and Payload 3 which is the least significant 123 bits of Alice’s public key B.
The payloads are encrypted via a symmetric encryption under the same secret
key z using IV.

Carol checks every added transaction for any exfilterated private keys by
decrypting the first 16 bytes of c;’s from each signature, and checking if the
decrypted text contains 64 bits of 0’s as in Fig. 13. Note, Carol only needs to
check the first two pairs of (c;,r;) to identify any subverted signature.

After successfully identifying a subverted signature, Carol parses and col-
lects IV, Payload 1, Payload 2, and Payload 3. Carol then uses her secret key z
to decrypt the payloads, obtaining b € Z,, and LSB93(B). After that she com-
putes a := hash,(b) and retrieves the corresponding public key (A, B) from the
blockchain. After checking that A = g% and B = g%, Carol returns the secret key
(a,b) € (Zy)?. Carol can now recover all the one-time addresses and transactions
and even impersonate the compromised signer, Alice, to spend her money.

6.2 Subverting ECDSA-Signature Crypto Wallets: Synthetic
Randomness

Our first proposed subversion attack on ECDSA is a simplified version of the
attack proposed in [38]. In this attack, we mainly aim to attack hardware wal-
lets, and hence we assume that the users are oblivious to the adversary’s secret
key encapsulated in the secure hardware. The subverted algorithm is depicted
in Fig. 14. Let 2z, € Z, be the adversary’s secret keys, and set Z := g*. Let
R + map(R,) be a mapping function that takes as input the x-coordinate and
outputs the corresponding point on the curve. The subverted wallet needs to

24 N. Alsalami and B. Zhang

<1 bit> <———128 bits ———> <—124 bits —>
G (b1](Iv=Fefrand|00..0)) (Payload 1]
<1 bit> <———129 bits— — —> <— 128 bits —>

r: [Payload 2 }[Payload 3]

Fig. 13. Attack scenario 3: Covertly leaking the signer’s private key in one pair of
(cj,75)-

use algorithms Sign(l) and Sign(2) in turn to leak the signing key s. For the first
time, Sign(l) is identical to the original signature algorithm, however, the sub-
tle difference is that Sign(l) stores the ephemeral key 71 in a long-term memory,
which can be accessed during the next signature invocation. Sign(Q) is also identi-
cal to the original signature algorithm except that it deterministically generates
ro = hash,(g®" - Z™), where both o and Z are hardcoded in the wallet. Once
the adversary obtains two signatures o1, g2, he can use his secret keys z, a to re-
cover the victim’s signing key s. First, he parses 01,09 as (R, wy) and (R, ws).
The attacker then finds the point on the curve that corresponds to R., using
R’ < map(R.). After that, the attacker computes 5 := hash,((R')***). Note
that if % is equal to 75 then everything is correct. Let R := " = (R, R,). The
secret key can be extracted as s := (ws - ry — hash,(ms)) - (R,)~'. This attack
illustrates how the entire long term signing key s can be leaked exclusively to
the adversary over two subverted signatures.

6.3 Subverting ECDSA-Signature Crypto Wallets: Rejection
Sampling

While our first ECDSA subversion attack has a very high throughput, it has
few drawbacks. First of all, it is a stateful algorithm, so it is not suitable for all
scenarios, especially for software wallets. Furthermore, the first attack can only
leak the signing key by the nature of its design, and not any other confidential
information. Note that most cryptocurrency wallets are able to avoid the re-use
of the address and signing key. As a result, the leaked signing key in our first
attack, may never be used again even if the signing algorithms are executed twice
with the same signing key. Nevertheless, for most wallets, there is a master key
that is used to deterministically derive all the one-time signing keys.

As a result, our second subversion attack on ECDSA is stateless and is
designed to leak arbitrary confidential information. As depicted in Fig. 15, the
subverted signing algorithm takes as input the signing key s, the message m;,
and the secret x € {0,1}" to be leaked. The signing algorithm leaks a random
bit of per signature. Let PRF : {0,1}* x {0,1}* + {0,1}°8™ x {0,1} be a
pseudo-random function that takes as input an arbitrary length message and
the A-bit PRF key, and it outputs a random number of (logn + 1) bits. The

Uncontrolled Randomness in Blockchains 25

,—(Subverted ECDSA signing algorithm 1) N

— Sign({S},s,m1):

Pick random 71 ¢ Zg;

Set R' := g™ = (R, Ry);

Set wy := (hashy(m1) +s- Ry) -1y
Output o1 := (R}, w1);

! (mod gq);

— Sign®@({S}, 5, ma,m1):

Set ro := hash, (g% - Z™);

Set R := g™ = (Rs, Ry);

Set ws := (hash,(m2) +s- Ry) -5 (mod q);
Output o2 := (Rg, w2);

— Recover(o1, 02, m2, 2, @):
e Set R’ + map(R.);
e Set 7} := hash, ((R')**);
e Set R := gTé = (Rz, Ry);
e Output s := (ws - 5 — hash,(m2)) - (Rz) ™Y

Fig. 14. The subverted ECDSA signing algorithm 1.

first logn bits is interpreted as an index j, and the last 1 bit is viewed as b.
The subverted signing algorithm performs a rejection-sampling to find a random
R = (Rg, R,) such that (j,b) <— PRF.(R,) and x[j] = b. The rest signing process
is identical to the original signature algorithm. Note that the rejection-sampling
is efficient, and the expected repetition per signature is 1.5 times.

To recover the secret, the adversary needs to obtain a collection of the sig-
natures generated by the subverted algorithm. We emphasize that when the
secret is a master key that can be tested for its correctness, it is not necessary
to leak the entire key in practice. Assuming the master key is 256 bits, to ob-
tain 50% distinct key bits, the expected number of signatures is bounded by
approximately 256 signatures. Asymptotically, to obtain n secret bits, we need
f(nlogn) signatures. To demonstrate this, we preformed an experiment using
our rejection sampling technique to empirically test the needed number of signa-
tures to 32, 64,96, 128,160,192 and 224 bits out of the total 256 key bits. This
experiment was run 20 times to record the number of needed signatures to leak
some bits of the secret key. As shown in Table 3 in Appendix D, the average
number of signatures that should be intercepted by an attacker to retrieve 50%
of the key, i.e. 128 bits, is about 179 signatures.

26 N. Alsalami and B. Zhang
7 Countermeasures

Below, we explore the techniques that are currently found in relevant literature
to mitigate the threat of arbitrary content insertion on blockchains. In addition,
we propose some countermeasures to thwart the exploitation of uncontrolled
randomness to launch wallet subversion attacks.

7.1 Current Content Insertion Countermeasures

In the following we summarize and discuss the current practices and techniques
that can deter content insertion on blockchains:

Light Blockchains. To solve issues related with blockchain size and scalability,
new blockchain designs have emerged. For example, PascalCoin [39] is a cryp-
tocurrency that does not keep the full history of transactions but rather stores
the last 100 blocks in its ledger, and actual account balances are stored in a
another cryptographic structure called the SafeBox. A very similar approach is
used in the mini-blockchain scheme [40] that is implemented by Cryptonite [41]
which stores the actual balances in a structure called the account tree which is up-
dated by the transactions in the blockchain. Because new transactions reference
the account tree and not previous transactions in the blockchain, transactions
in older blocks can be discarded. Note, older block headers are still kept in the
mini-blockchain. Although these solutions are mainly proposed solve scalability
issues, these new designs can deter permanent storage of malicious content.

Redactable Blockchains. Redactable blockchains have been proposed in [4] to
rewrite, remove, and insert new blocks in the blockchain. In their technique,
which is based on the use of Chameleon hashes [42], the redaction could be per-
formed by a trusted central node, or a group of nodes who posses the Chameleon
hash trapdoor. Similarly, pchain [3] proposes a mutable blockchain that is based
on consensus. Hence, if malicious content is identified, mutable blockchains can
effectively deter the persistent storage of such content on the blockchain.

Content Filters. Content filters target human readable strings to detect and
reject unwanted content, e.g. rejecting a transaction if its 20-Byte destination
address has 18 printable characters [2].

Increasing Transaction Fees. Although increasing the transaction fees is not
advisable for promoting blockchain among innocent users, and can unfairly pe-
nalize users who relay on large transactions, e.g. exchange services, minimum
mandatory fees has been proposed as a countermeasure in [2] to render content
insertion economically infeasible for large transactions.

Self-verifying Addresses. The goal of this technique is to deter content in-
sertion in Bitcoin by using arbitrary addresses. The authors of [2] suggested
that instead of sending an address a, ¢, is sent in the transaction, where ¢, =
(G*,r,Sign(G*||r,a)), r = CRC32(ty||...||t;), and ¢; is the transaction corre-
sponding to the i** input. A similar approach is to limit the address Space.
For example, PascalCoin [39] has a finite address space, and accounts are lim-
ited but can be associated with any public key. Although may not be intended

Uncontrolled Randomness in Blockchains 27

Table 2. Effectiveness of Current Countermeasures Against the Three Attack Scenarios

Technique Attack Scenarios
Covert Channels|Persistent Storage|Wallet Subversion
Light chains - v -
Redactable chains - v -

Content Filters - - -
Increasing Transaction Fees - - B
Self-verifying Addresses - - B

to stop content-insertion, this practice can deter the arbitrary manipulation of
transactions’ addresses.

Table 2 lists all of the current countermeasures to thwart content insertion
in blockchains, and compares their effectiveness against our three attack scenar-
ios as described in Sec. 5 and Sec. 6. As seen in Table 2, light and redactable
blockchains represent effective countermeasures against using blockchains to per-
sistently store arbitrary and possibly malicious content. However, there is not
currently any effective countermeasure against the use of blockchains for covert
communication, nor is there any practical countermeasure against the exploita-
tion of blockchains by Algorithm Substitution Attacks (ASA). Therefore, we
urge that new blockchain designs study the use of deterministic signatures, and
also the use of signature schemes that offer less redundancy which can be abused
to conduct such attacks.

7.2 Wallet Subversion Countermeasures

In terms of countermeasures to wallet subversion attacks, we propose the fol-
lowing mitigation methods. Containerization and Deterministic Compila-

tion.

Our first proposed countermeasure may be intuitive but, we believe, is also
practical in certain situations. If reasonable trust can be placed on a reference
executable binary, while at the same time a security-conscious user wants to
compile a binary from the corresponding source code, then producing the same
binary as the reference binary is a sufficient measure for insuring that the source
code has not been maliciously modified. However, compiling the same source code
multiple times usually results in different executable binaries due to differences in
build environments. Therefore, the same build environment is needed to produce
an identical binary as the reference binary.

To achieve this goal, i.e. providing an identical build environment, the devel-
opers can provide a virtual machine or a container, e.g. a Docker container [43],
with pre-configured compiler settings and scripts to build a given source code,
rendering the whole compilation process deterministic. Using this paradigm, the
user can ensure the source code has not been modified by any third party after
it was tested and built by the, presumably trusted, developers. This approach

28 N. Alsalami and B. Zhang

,—(Subverted ECDSA signing algorithm 2) N

— Sign({S}, s, m, z):
e Repeat the following process:
* Pick random 7 < Zg;
* Set R:=g¢" = (R, Ry);
*x Compute (j,b) + PRF.(R;);
x If z[j] = b, break the loop;
e Set w := (hash,(m;) +s- R.) - r~* (mod q);
e Output o; := (R, w);

— Recover(o1,...,00,2):
e Init an array S := 0);
e For ¢ € [{], do:
x Parse o; as (ui, vi);
x Compute (j;,b;) + PRF(u;);
* Set S[ji] := bs;
e Output S;

Fig. 15. The subverted ECDSA signing algorithm 2

also guarantees that there are no backdoors introduced by malicious compilers
that may have not been tested by the developers. Finally, the provided container
can enable multiple builders to verify the executable binary and establish trust
for other users.

Signature with Synthetic Randomness. As identified by many researchers [28—
31], the root of such class of subversion attacks is the uncontrolled randomness.
One possible solution to this issue is to use deterministic signatures. In fact,
all the signatures can be made deterministic using synthetic randomness. More
specifically, assume a signature algorithm consumes ¢ random coins, denoted as
r1,...,7n. Without loss of generality, suppose the signing algorithm takes as
input the signing key s and the message m. We can generate the needed random
coins deterministically as r; := hash(s,m,). Based on heuristics property and
onewayness of the hash function, r; is unpredictable due to the entropy of s. On
the other hand, this tweak allows offline watchdogs (verification algorithms) to
compare and test an implementation with its specification.

Note that no probabilistic polynomial time black-box verification mechanism
can ensure an implementation exactly matches its specification. This is because a
malicious functionality may be triggered by a specific input, and it is impossible
to verify that an implementation behaves as expected for all inputs. For instance,
our attack can be modified so that the signing algorithm behaves honestly for
all the inputs, except when the input message m = m* the signing algorithm
switches to our attack version, where m* is the hidden trigger that has high
entropy. The elimination of such hidden triggers is discussed below.

Uncontrolled Randomness in Blockchains 29

,—(Signature scheme without hidden triggers) N\

Sign*({PK}, SK, m;r):

— Set s := hash(r, “msg”) and m" := hash(m, s);
— Compute o < Sign({PK}, SK, m™;r);
— Return o™ := (o, 5).

Verify*({PK}, m,0"):

— Parse o* as (o, s);
— Compute m* := hash(m, s);
— Return Verify({PK}, m*, o).

Fig. 16. Signature algorithm with hidden trigger elimination.

Instead, the offline implementation verification is only required to check poly-
nomially many randomly sampled inputs (together with randomly sampled ex-
plicit randomness) and compare the corresponding outputs of the implemen-
tation with its specification. The most recommended approach to achieve auto-
matic verification is to use so-called executable specifications [44]. We emphasize
that the offline implementation verification algorithm must be trusted and certi-
fied. Nevertheless, it is universal and only needs simple comparison functionality,
which makes it easy to ensure subversion freeness.

Hidden Trigger Elimination. As mentioned before, in practice, a subverted sig-
nature algorithm may behave maliciously when a specific input message is given.
Such a specific input message has high entropy, so with negligible probability an
offline watch dog can trigger and detect such a malicious behaviour. To remove
hidden triggers, we need to randomize the input message. Suppose the original
signature scheme consists of the following three algorithms:

— (PK, SK) + KeyGen(param;r)
— o + Sign({PK}, SK,m € {0,1}*;7)
— b« Verify({PK}, m, o)

The proposed new signature scheme uses identical KeyGen, and the modified
Sign* and Verify™ algorithms are described in Fig. 16. We now show that the
new proposed signature scheme achieves strong existential unforgeability if the
original signature scheme is strong existential unforgeable under adaptive chosen-
message attack.

Theorem 2. Let S := (Setup, KeyGen, Sign, Verify) be a signature scheme that
achieves strong existential unforgeability under adaptive chosen-message attack.
Let hash : {0,1}* + {0,1}* be a cryptographic hash function. If hash securely
realises a random oracle, then 8* := (Setup, KeyGen, Sign™, Verify™) is also strong
existential unforgeable under adaptive chosen-message attack.

Proof. See Appendix A.

30 N. Alsalami and B. Zhang

,—(External-randomness Key Generation) N\

KeyGenP (param; r):

— Set b := hash,(r);
— Set a := hash,(b), A := g%, and B := g%
— Return PK := (A, B), TK := (a, B), and SK := (a,b).

Fig. 17. External-randomness key generation specification.

External-Randomness Architecture. Sometimes randomized signatures are
desired for certain applications, the question is: can we use randomized signa-
tures while preventing kleptographic attacks? Before illustrating the proposed
architectural modification, let us first examine the existing running environment
of a cryptocurrency wallet. It is safe to assume that the majority of users down-
load wallets’ executable binaries directly from the corresponding cryptocurrency
website or a third-party software distribution platform, e.g. Apple AppStore.
During the running time, depending on the functionality, the wallet may con-
sume randomness collected by the underlying operating system (OS). For in-
stance, Linux kernel gathers entropy from keyboard timings, mouse movements
and IDE timings, and the randomness pool can be accessed via /dev/random
and /dev/urandom. Although the executable binary files can be potentially sub-
verted, unlike conventional kleptographic settings, the randomness generator is
usually a part of the underlying operating system and can be trusted if we can
ensure sufficient entropy. Later, we will also address untrusted OS-level random-
ness generator. Nevertheless, as shown in our attacks, trusted randomness source
alone does not guarantee subversion-immunity, because the actual use of ran-
domness in implementation may deviate from the corresponding software speci-
fications. In fact, the implementation may simply bypass the specified software
or hardware randomness generator. For example, in our attack, the subverted
wallet uses r' := Enc,(sk;) as the randomness instead of the given randomness
r, where z is the adversarial key and sk is the victim’s secret key to be leaked.
Besides, if the randomness consumption is not restricted, the wallet can also
perform rejective sampling to leak information. To control randomness usage,
we propose the following modifications.

External-randomness Wallet. To ensure correct usage of randomness, we need to
make a cryptocurrency wallet deterministic by externalizing the software ran-
domness draw. At the specification level, all the algorithms of a wallet are for-
bidden to have any internal randomness draw component. The algorithm spec-
ifications Agppc take a A-bit randomness as an explicit input parameter, where
A € N is the security parameter, e.g. 256 in practice. For uniformity, all al-
gorithms Agppc take the same amount of randomness. If more randomness is
needed, they are deterministically derived from the input randomness r by set-
ting r; := hash(r,i), where ¢ € N is an index and hash is a cryptographically
secure hash function, e.g. SHA3-256.

Uncontrolled Randomness in Blockchains 31

,—(External-randomness Signing Algorithm) N

Sign(param, {P; };c ks te, £, m;r):

— Set I := hashy(FP);
— Set ctr := 0;
— For i € [k], set q; := hash,(r, ctr) and ctr := ctr + 1;
— For i € [k],i # £, set w; := hash,(r, ctr) and ctr := ctr + 1;
— For i € [k]:
e Set L; :=g¥ ifi=1¢
Set L; := g% - P"" if i # ¢,
e Set R; := (hashg(Pi))‘“ if i = [;
Set R; := (hashy(P;))% - IV if © # £
— Set ¢ := hash,(m, L1,..., Lk, R1,..., Ri);
— For i € [k]:
o Set ¢y :=w; ifi # ¢
Set ¢; :=c — Z?:o cj ifi =4,
e Set r;:=gq; if i # ¢
Set 7; := qu — cotg if i = ¢
— Return o := (I, c1,. .., Cly P14 v oy Tk).

Fig. 18. External-randomness signing algorithm specification.

The main functionality of a cryptocurrency wallet is a signature scheme.
Without loss of generality, a signature scheme consists of KeyGen,Sign, and
Verify. (Of course, the linkable ring signature scheme used in CryptoNote also
has a LNK algorithm to detect double spending, but it is deterministic.)

In the following, we modify the specification of KeyGen and Sign of CryptoNote
wallet as examples. A typical key generation algorithm KeyGen takes input as the
group parameter param, which defines the underlying group (or elliptic curve),
e.g. Bitcoin uses SECP256k1 NIST curves and CryptoNote uses the ED25519
twisted Edwards curve. Of course, choosing a “nothing up the sleeve” group pa-
rameter is essential for subversion resilient cryptographic primitives; however, it
is outside the scope of our work. We assume the commonly used blockchain group
parameters are carefully examined, and are widely believed to be stego-free. The
modified signature specification takes an explicit randomness r € {0, 1}*.

As shown in Fig. 17 and Fig. 18, only a few number of lines need to be
modified to make a signature scheme use external randomness. The difference
between the modified version and the original version is marked in red.

8 Related Work

This work is closely related to the topics of malicious content insertion in
blockchains, steganography, covert channels in blockchains, as well as kleptog-
raphy (a.k.a. Algorithm-Substitution Attacks).

Content insertion in blockchain. As far as we know, all previous research
on malicious content insertion has been conducted on one application: Bit-

32 N. Alsalami and B. Zhang

coin. For example, the authors of [33] provided insight regarding the various
ways that could be exploited to store, possibly illegal, content onto the Bit-
coin blockchain. They specifically listed four methods of embedding content in
Bitcoin transactions: 1) Including up to 100 Bytes of arbitrary content in coin-
base and OP_RETURN transactions, which offer an intended mechanism to aug-
ment transactions with arbitrary text, 2) Exchanging the public key (hash) in
Pay-to-Pubkey (Pay-to-Pubkey-Hash), 3) Attaching up to 83 Bytes in nulldata
transactions, and 4) Using non-standard scripts, e.g., by adding noneffective
lines to the script. Similarly, the authors of [1] attempted to systematically ana-
lyze the non-financial content in Bitcoin’s blockchain. Specifically, they surveyed
the methods and services that are used to store non-financial content, and pro-
vided a general categorization of objectionable content that could be found on
Bitcoin’s blockchain. They found that 1.4% of all Bitcoin transactions contain
non-financial data, and retrieved over 1600 files, some of which contain objec-
tionable content, e.g. links to child pornography.

Steganography. The concept of steganography was introduced by Simmons’
prisoner’s problem in [45]. Simmons discussed the problem where two prisoners
want to exchange secret information, an escape plan, without being detected
by the prison’s warden who carefully inspects the exchanged messages and will
throw any suspicious communication. In this context, the problem of steganog-
raphy is the ability of the two prisoners to communicate secret information via
the warden-inspected messages without being caught.

Furthermore, Anderson et al. listed some of the limits of steganography and
discussed the difficulty associated with formalizing a general proof of security for
steganography [46,47]. A number of works, e.g. [48-50], provided information-
theoretic treatment of steganography security and robustness. The authors of [51]
used information theory to model the security of stegosystems by the relative
entropy (uncertainty) of the hidden message m, the entropy of the stegotext st
and the entropy of normal cover text. In a similar manner, [50] used information
theory to quantify the security of a stegosystem as the discrimination between
the distribution of innocent cover text and that of stegotext. More recently,
Hopper et al. provided a cryptographic formalization of steganographic security
and robustness [26]. In addition, they presented a definition for the security of
a steganographic system in terms of the computational indistinguishability of
stegotext from cover text.

Covert channels in blockchains. While there is a relatively significant body
of research on content insertion in Bitcoin’s blockchain [1,2,33,52], the authors
of [5] were the first to discuss the use of steganography to covertly communicate
in Bitcoin’s blockchain. However, due to its limitation, the authors of [5] consider
their attack to be a proof of concept rather than a practical attack. In short, to
covertly send a hidden message m using the attack from [5], the sender sends
A = d||m/, where m’ is the symmetric cipher encrypted under the key k, i.e.
m’ = Encg(m), and § is a starting pattern known to both the sender and the
receiver(s). In addition, the string A is sent bit by bit through the rejection-
sampling of the transaction address a, so that the least significant bit of the

Uncontrolled Randomness in Blockchains 33

address a is the same as the i*" bit of A, i.e. a[LSB] = A[i]. Only one bit is sent
in every transaction, and, to maintain order, only one transaction is sent in each
block. Therefore, with average time of 10 minutes to validate a block, the sender
needs more than 24 hours to send a message of 20 bytes. Moreover, the receiver
continuously checks the payments generated by the sender and if he ever detects
0, he retrieves m/ bit by bit and decrypts it to reveal m, i.e. m = Decy(m’). Note
that because the receiver needs to know the sender’s identity, this method is not
usable in blockchains where the sender’s identity is anonymous, e.g. Zcash.
Kleptography and ASA. Our wallet subversion attack falls within the realm
the topic of Algorithm-Substitution Attacks (ASA) [30,31], also called Kleptogra-
phy [28,29] and Subversion Attacks (SA) [53]. The notion of Kleptography was in-
troduced by Young and Yung in 1996 [28,29]. Subsequent work demonstrated the
possible use of ASA in mass surveillance, and the susceptibility of all randomized
symmetric encryption schemes to such attacks [31,54]. Another demonstration
of ASA attacks is found in the work of Goh et al. [55] who presented practical
hidden key-recovery attacks against the SSL/TLS and SSH2 protocols by mod-
ifying the implementation of the OpenSSL library. In the context of signature
schemes, Young and Yung [32] showed that DSA signature schemes can be sub-
verted to leak secret information. Also, Ateniese et al. [53] described stateful sub-
version attacks against randomized coin-injective and coin-extractable signature
schemes, and explained how their attacks can subvert a randomized signature
even if it has only one bit of randomness. They also proposed subversion-resilient
signature schemes using so-called cryptographic reverse firewalls to sanitize the
signatures generated by untrusted algorithm implementations. However, their
solution cannot be generalized to mitigate the risk of subversion for the vast
emerging blockchain technology protocols. In addition, Russell et al. [56] mod-
eled and proved a full domain hash-based signature scheme achieves subversion
resilience. Recently, Russell et al. [57] proposed the use of a splitting-randomness
technique to secure a randomizable IND-CPA secure public key encryption. But
it is unknown how to apply their technique in the blockchain context with rea-
sonable assumptions.

9 Conclusion and Future Work

The main aim of this work is to highlight the potential threat of maliciously
abusing uncontrolled randomness in randomized cryptographic primitives in
blockchain applications. To illustrate the idea, we designed, implemented, and
evaluated our attacks against the widely-used ECDSA signature scheme, the
ring signature used in the CryptoNote framework, and the Ring Confidential
Transaction used in Monero (up to version 0.12.0.0). We emphasize that this
line of research is far from being completed, and our technique can also be used
on any other randomized cryptographic primitives, such as SNARK and Bul-
letproofs. We plan to extend our technique to non-interactive zero-knowledge
proofs/arguments. Finally, with regard to wallet subversion attacks, we hope
that our work motivates the research of subversion-resistant randomized crypto-

34

N. Alsalami and B. Zhang

graphic primitives and encourages novel software design principles that thwart
unintentional and intentional implementation of vulnerabilities and backdoors.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldor, D. Mullman, O. Hohlfeld, and
K. Wehrle, “A quantitative analysis of the impact of arbitrary blockchain content
on bitcoin,” in F'C 2018, 2018.

R. Matzutt, M. Henze, J. H. Ziegeldorf, J. Hiller, and K. Wehrle, “Thwarting
unwanted blockchain content insertion,” in IC2E 2018, pp. 364-370, April 2018.
I. Puddu and A. Dmitrienko, “uchain: How to forget without hard forks,” JACR
Cryptology ePrint Archive 2017/106, 2017. https://eprint.iacr.org/2017/106.
G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable blockchain or
rewriting history in bitcoin and friends,” in Euro S&P 2017, pp. 111-126, April
2017.

J. Partala, “Provably secure covert communication on blockchain,” Cryptography,
vol. 2, no. 3, 2018.

G. Fuchsbauer, “Subversion-zero-knowledge snarks,” in PKC 2018, pp. 315-347,
2018.

B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajac, “A subversion-resistant
snark,” in ASTACRYPT 2017, pp. 3-33, 2017.

J. Knockel, T. Ristenpart, and J. R. Crandall, “When textbook RSA is used to
protect the privacy of hundreds of millions of users,” CoRR, vol. abs/1802.03367,
2018.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts
smarter,” in CCS 2016, pp. 254-269, 2016.

D. Siegel, “Understanding the dao attack,” 2016. Available Online: https://
www.coindesk.com/understanding-dao-hack-journalists (Last accessed 7-Feb-
2018).

S. Azouvi, M. Maller, and S. Meiklejohn, “Egalitarian society or benevolent dic-
tatorship: The state of cryptocurrency governance,” in 5th Workshop on Bitcoin
and Blockchain Research, 2018.

Giza Device Ltd, “Giza wallet,” 2017. Avialable Online: https://wuw.
gizadevice.com/ (Last accessed 7-Feb-2018).

CoinMarketCap, “Cryptocurrency market capitalizations,” 2018. Available Online:
https://coinmarketcap.com/ (Last accessed 26-Nov-2018).

S. Nakamoto, “A Peer-to-Peer Electronic Cash System,” 2008. Available Online:
https://bitcoin.org/bitcoin.pdf (Last accessed 05-Nov-2018).

A. Bender, J. Katz, and R. Morselli, “Ring signatures: Stronger definitions, and
constructions without random oracles,” J. Cryptol., vol. 22, pp. 114-138, Dec. 2008.
N. V. Saberhagen, “Cryptonote v 2.0,” 2013. whitepaper, Available online: https:
//cryptonote.org/whitepaper.pdf, (Last accessed 23-Nov-2018).

Bytecoin Org., “Bytecoin (bcn),” 2018. Available Online: https://bytecoin.org/
(Last accessed 23-Nov-2018).

CryptoNote Org., “Cryptonotecoin,” 2018. Available Online: http://
cryptonote-coin.org/ (Last accessed 23-Nov-2018).

Fantomcoin, “Fantomcoin,” 2014. Available Online: http://fantomcoin.org/
(Last accessed 23-Nov-2018).

https://eprint.iacr.org/2017/106
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.gizadevice.com/
https://www.gizadevice.com/
https://coinmarketcap.com/
https://bitcoin.org/bitcoin.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://bytecoin.org/
http://cryptonote-coin.org/
http://cryptonote-coin.org/
http://fantomcoin.org/

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Uncontrolled Randomness in Blockchains 35

Monero, “Monero,” 2018. Available Online: https://getmonero.org/ (Last ac-
cessed 07-Feb-2018).

R. Spagni, “Monero project github repository,” 2018. Available Online: https:
//github.com/monero-project/monero (Last accessed 07-Feb-2017).

B. Biinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bullet-
proofs: Short proofs for confidential transactions and more,” in S&P 2018, vol. 00,
pp. 319-338, 2018.

S. Noether, “Ring signature confidential transactions for monero.” Cryptology
ePrint Archive, Report 2015/1098, 2015.

T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret
sharing,” in CRYPTO ’91, pp. 129-140, 1992.

G. Maxwell and A. Poelstra, “Borromean Ring Signatures,” 2015. Avail-
able Online: http://diyhpl.us/~bryan/papers2/bitcoin/Borromean20ring
20signatures.pdf (Last accessed 07-Feb-2018).

N. J. Hopper, J. Langford, and L. von Ahn, “Provably secure steganography,” in
CRYPTO 2002, 2002.

N. Dedi¢, G. Itkis, L. Reyzin, and S. Russell, “Upper and lower bounds on black-
box steganography,” Journal of Cryptology, vol. 22, pp. 365-394, Jul 2009.

A. Young and M. Yung, “The dark side of “black-box” cryptography or: Should
we trust capstone?,” in CRYPTO ’96, 1996.

A. Young and M. Yung, “Kleptography: Using cryptography against cryptogra-
phy,” in EUROCRYPT ’97, 1997.

M. Bellare, K. G. Paterson, and P. Rogaway, “Security of symmetric encryp-
tion against mass surveillance,” in CRYPTO 2014, (Berlin, Heidelberg), pp. 1-19,
Springer Berlin Heidelberg, 2014.

M. Bellare and J. Jaeger, “Mass-surveillance without the State : Strongly Unde-
tectable Algorithm-Substitution Attacks,” in CCS, 2015.

A. Young and M. Yung, “The prevalence of kleptographic attacks on discrete-log
based cryptosystems,” in CRYPTO ’97, 1997.

R. Matzutt, O. Hohlfeld, M. Henze, R. Rawiel, J. H. Ziegeldorf, and K. Wehrle,
“Poster: I don’t want that content! on the risks of exploiting bitcoin’s blockchain
as a content store,” in CCS ’16, 2016.

B. D. Team, “Bytecoin project github repository,” 2018. Available Online: https:
//github.com/bendev (Last accessed 26-Nov-2018).

M. Abe, M. Ohkubo, and K. Suzuki, “l-out-of-n signatures from a variety of keys,”
in ASIACRYPT 2002, 2002.

G. Maxwell, “Confidential Transactions,” 2018. Available Online: https://
people.xiph.org/~greg/confidential_values.txt (Last accessed 07-Feb-2018).
A. Fiat and M. Naor, “Broadcast encryption,” in CRYPTO’ 98 (D. R. Stinson,
ed.), (Berlin, Heidelberg), pp. 480—491, Springer Berlin Heidelberg, 1994.

E. Mohamed and H. Elkamchouchi, “Kleptographic Attacks on Elliptic Curve
Cryptosystems,” Journal of Computer Science, vol. 10, no. 6, pp. 213-215, 2010.
A. Molina and H. Schoenfeld, “PascalCoin Whitepaper v2,” 2017. Available Online:
https://www.pascalcoin.org/PascalCoinWhitePaperV2.pdf (Last accessed 08-
November-2018).

J.D. Bruce, “The Mini-Blockchain Scheme - Rev. 3,” 2017. Available On-
line: http://cryptonite.info/files/mbc-scheme-rev3.pdf (Last accessed 08-
November-2018).

Mini-blockchain Project, “Cryptonite Cryptocurrency,” 2018. Available Online:
http://cryptonite.info/ (Last accessed 01-November-2018).

https://getmonero.org/
https://github.com/monero-project/monero
https://github.com/monero-project/monero
http://diyhpl.us/~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf
https://github.com/bcndev
https://github.com/bcndev
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://www.pascalcoin.org/PascalCoinWhitePaperV2.pdf
http://cryptonite.info/files/mbc-scheme-rev3.pdf
http://cryptonite.info/

36

42

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

N. Alsalami and B. Zhang

J. Camenisch, D. Derler, S. Krenn, H. C. P&hls, K. Samelin, and D. Slamanig,
“Chameleon-hashes with ephemeral trapdoors,” in PKC 2017, 2017.

Docker-Inc., “Docker,” 2018. Available Online: https://www.docker.com (Last
accessed 7-Feb-2018).

M. Cardinal, Ezecutable Specifications with Scrum. Upper Saddle River, NJ:
Addison-Wesley, 2014.

G. J. Simmons, The Prisoners’ Problem and the Subliminal Channel, pp. 51-67.
Boston, MA: Springer US, 1984.

R. Anderson, “Stretching the limits of steganography,” in Information Hiding,
pp- 39-48, Springer Berlin Heidelberg, 1996.

R. J. Anderson and F. A. P. Petitcolas, “On the limits of steganography,” IEEE
Journal on Selected Areas in Communications, vol. 16, pp. 474-481, May 1998.

J. A. O’Sullivan, P. Moulin, and J. M. Ettinger, “Information theoretic analysis of
steganography,” in Proceedings. 1998 IEEE International Symposium on Informa-
tion Theory, 1998.

T. Mittelholzer, “An information-theoretic approach to steganography and water-
marking,” in Information Hiding, 2000.

C. Cachin, “An information-theoretic model for steganography,” in Information
Hiding, 1998.

J. Zollner, H. Federrath, H. Klimant, A. Pfitzmann, R. Piotraschke, A. Westfeld,
G. Wicke, and G. Wolf, “Modeling the security of steganographic systems,” in
Information Hiding, 1998.

K. Shirriff, “Hidden surprises in the bitcoin blockchain and how they are stored:
Nelson mandela, wikileaks, photos, and python software,” 2014. Available Online:
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.
html (Last accessed 01-November-2018).

G. Ateniese, B. Magri, and D. Venturi, “Subversion-resilient signature schemes,”
in CCS 15, pp. 364-375, 2015.

M. Bellare and V. T. Hoang, “Resisting randomness subversion: Fast deterministic
and hedged public-key encryption in the standard model,” in EUROCRYPT 2015,
2015.

E.-J. Goh, D. Boneh, B. Pinkas, and P. Golle, “The design and implementation of
protocol-based hidden key recovery,” in Information Security, 2003.

A. Russell, Q. Tang, M. Yung, and H.-S. Zhou, “Cliptography: Clipping the power
of kleptographic attacks,” in ASTACRYPT, 2016.

A. Russell, Q. Tang, M. Yung, and H.-S. Zhou, “Destroying steganography via
amalgamation: Kleptographically cpa secure public key encryption.” Cryptology
ePrint Archive, Report 2016/530, 2016.

J. Katz and V. Vaikuntanathan, “Signature schemes with bounded leakage re-
silience,” in ASIACRYPT 2009, 2009.

E. Boyle, G. Segev, and D. Wichs, “Fully leakage-resilient signatures,” in EURO-
CRYPT 2011, 2011.

M. J. Dworkin, “Recommendation for block cipher modes of opera-
tion: Three variants of ciphertext stealing for cbc mode.” NIST Pubs,
Report Number 800-38A Addendum, 2010. Available Online: https:
/ /www . gpo . gov/fdsys/pkg/GOVPUB-C13-cObObae5£66880bf 051f6d4ac2d8f07d/
pdf/GOVPUB-C13-c0bObae5£66880bf051f6d4ac2d8£07d. pdf (Last accessed
08-Feb-2018).

https://www.docker.com
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
https://www.gpo.gov/fdsys/pkg/GOVPUB-C13-c0b0bae5f66880bf051f6d4ac2d8f07d/pdf/GOVPUB-C13-c0b0bae5f66880bf051f6d4ac2d8f07d.pdf
https://www.gpo.gov/fdsys/pkg/GOVPUB-C13-c0b0bae5f66880bf051f6d4ac2d8f07d/pdf/GOVPUB-C13-c0b0bae5f66880bf051f6d4ac2d8f07d.pdf
https://www.gpo.gov/fdsys/pkg/GOVPUB-C13-c0b0bae5f66880bf051f6d4ac2d8f07d/pdf/GOVPUB-C13-c0b0bae5f66880bf051f6d4ac2d8f07d.pdf

Uncontrolled Randomness in Blockchains 37
Appendices

A Security Proofs

Proof of Theorem 1
In this section, we provide a full proof of Theorem 1.

Proof. We prove this theorem by reduction. Assume there exists a PPT adver-
sary A who can break ST with an non-negligible AdvfﬂéT(l)‘) advantage w.r.t.
the CHA game. We need to construct a PPT adversary B who can break the
PRF game for F'. During the reduction game, B plays as a challenger for A in
the CHA game. Upon receiving m from A, B picks random rand < {0,1}%* and
sets x := rand||00...0. B then queries = to the PRF game challenger and obtains
IV. Subsequently, B queries IV, IV + 1,1V 4 2 to the PRF game challenger, and
obtains ki, ko, k3. B then compute c1, co, c3 according to the description shown
in Fig. 21. It then computes (¢, r) as described in Fig. 7. B flips a coin b + {0, 1}.
If b = 0, B computes a ring signature using (¢, r); otherwise, B computes a ring
signature normally. B then sends the resulting signature to A. Finally, A outputs
a guess b'. Assume the challenge bit in the PRF game is 3, i.e. 8 = 0 is in the
PRF mode; 8 =1 is in the random function mode. If b = ', B outputs 8* = 0;
otherwise, B outputs 8* = 1.

Pr[B win] = Pr[* = 0| =0] - Pr[8 =0] +
PP = 103 = 1] Pifg = 1

= Pr [ExptG(1%)] % + % %
= (ANSE (1Y) +5) 5+
= 5 AN (1Y) 4
Hence, the advtantage of B w.r.t to the PRF game is
Advlpg'?; = |Pr[B] win — ;‘ AdvngT(M.

Since Advj‘jﬁT(l”\) is non-negligible, we have Adleg'?IE is also non-negligible, which
concludes the proof.

Proof of Theorem 2

In this section, we provide a full proof of Theorem 2.

Proof. We proof this theorem by reduction. Assume there exists a PPT adver-
sary A who can break S* := (Setup, KeyGen, Sign™, Verify*) with at most ¢ sig-
nature queries and at least ¢ advantage. We need to construct a PPT adversary

38 N. Alsalami and B. Zhang

,—(Demo Steganographic Bytecoin Transaction) N\

— Block height: 1671177

— Transaction id: 52cababe f4ed716ac8a25681eb3 f380d3d1 fee057ada7ebb
2d687af36 fladdf f

— Sender’s address: 26c6YmZmLJZY xnV At56kRraBhxi EUt8yoJ R3V
VAUVEVeRMI9Pzs5qVTKStQHaaTxkAHej3WTTxtAcl K HbCSPoZ?2
ms3bdUsY 6.

— Receiver’s address: 26c6YmZmLJZY xnV At56kRraBhxziEUt8yoJ R
3VVAUVSEVcRMI9Pzs5qVTKStQHaaTrkAHej3WTTxtAcl1 K HbC' S Po
Z2ms3bdUsY 6.

— Mixin count (ring size): 6

Fig. 19. An example of the stegangraphically-generated bytecoin transaction

B who can break the & := (Setup, KeyGen, Sign, Verify). During the reduction
game, upon receiving query m; from A, B computes m} := hash(m,, s;) with a
randomly sampled s; € {0,1}*, and then query the signing oracle with m}. After
getting o; back from the signing oracle, B return o} := (0, s;) to A. Whenever
A can provide a valid pair (11, &) as forgery (6 = (07, s')), since the probability
that A can find a collision on hash is negligible, 5 can compute m’ := hash(h, s).
By definition, (6, m’) is a forgery against S.

B Demo Bytecoin Steganographically Created
Transaction

The attack described in Sec. 4 has been executed, and the transaction with the
attributes shown in Fig. 19 has been generated. To demonstrate how the hidden
message is embedded and extracted we provide an extraction tool that can be
downloaded and tested from: https://github.com?. The repository also con-
tains the actual transaction binary in tx.txt and includes a pair (¢, r) of random
numbers containing a 16-byte hidden message, where (c,r) is found in cr.txt.
The transaction hash in Fig. 19 can also be seen in any Bytecoin explorer, like
https://minergate.com/blockchain/bcn/blocks, and the provided transac-
tion binary should hash to the same hash value.

C Detailed Implementation of Steganographic Attack in
Monero

The following is the details of our implementation of the generic steganographic
attack in Monero (v0.12.0.0) and older).

2 Actual GitHub repository is omitted for blind review

https://github.com
https://minergate.com/blockchain/bcn/blocks

Uncontrolled Randomness in Blockchains 39

,—(Steganographic Monero Transaction) N\

— Block height: 1502164

— Transaction id: e4b7982b081a17892525 f1b1d3011ec06a0820cbf451d3a6
4f8ea998104a753¢

— Sender’s address: 455BulzXzgX EeXxzrjzRSsEif PSWgtLTKY Lre
QTRrAlfcFi2U Kjgtc2U BapB9AcDaitdY7TSAWGFsEZRELL8AInM
nEFRV Zg4T.

— Receiver’s address: 42F5itWceiY AghQJx ZEqW z5hrQN FaySUbx fx
sjedp8Fnr RM68c8N zujm3Uq fscV C6r2c2GwuiP4sRsQu3Z ZU clspjU
HuDH szx.

— Mixin count (ring size): 5

Fig. 20. An example of the steganographically-generated Monero transaction

Step 1: embedding a hidden message m and generating a signature
that contains st. The sender’s wallet is modified to surreptitiously embed a 32-
byte message m in the randomly generated s; ; numbers as part of the Borromean
ring signature. Specifically, two vectors of s; ; numbers are generated by the
genBorromean() function: s¢ ; and s; ;. In addition, s¢ ;’s are randomly generated
when the j** bit commitment is 1, and two of these randomly generated 50,58
are used in our attack to embed the stegotext st. For simplicity, we use so ; and
50,2 to denote the first two randomly generated numbers in s ; vector, although
they might not necessarily correspond to j = 1 and j = 2 respectively.

Fig. 10 shows the two subverted numbers, in which sy ; includes 16 bytes of
random |V concatenated with 1 byte representing the index of sp 2 and 15 bytes
of zeroes, where the last 16 bytes are sent encrypted using AES-CBC. The
second subverted random number, sg 2, contains hidden message m encrypted
using AES-CBC under the key z.

This step of the attack is achieved by slightly modifying two functions:
genBorromean() and skGen() in two files: rctSig.cpp and rctOps.cpp. genBorromean()
is modified to pass two extra parameters to skGen(). The first parameter is the
counter that indicates which of the two random numbers is to be generated,
while the second parameter represents the index of j** bit that corresponds to
the second number sp o within the so; vector. When the value of the counter
is 0 or 1, skGen() generates random numbers according to Fig. 10, otherwise
executes as normal.

Step 2: identifying signature containing stegotext st, and extract-
ing hidden message m. To identify transactions containing st, the source
blockchain.cpp file is modified to check the randomness within each new transac-
tion and identify signatures containing stegotext. The receiver tests each number
in the sg ; vector by looking for a random IV that decrypts the second half of
the tested number to a similar pattern as sg; in Fig. 10. Once this pattern is
detected, the receiver concludes that this signature contains st and retrieves the
index of sg o from the 16" byte of sq 1.

40 N. Alsalami and B. Zhang

Table 3. Number of signatures needed to leak bits of the long-term private key in our
rejection-sampling ECDSA subversion attack

Number of Signatures to Leak Key Bits
Exp. # (32|64 | 96 | 128 | 160 | 192 224
1 35| 71 | 117 | 173 | 227 | 314 520
2 33| 73 | 119 | 189 | 253 | 344 485
3 32|74 | 120 | 170 | 230 | 339 471
4 34|70 | 114 | 179 | 238 | 335 491
5 32169 | 119 | 189 | 280 | 385 552
6 32|76 | 122 | 170 | 233 | 333 526
7 36 | 76 | 120 | 180 | 262 | 400 576
8 32| 71 | 127 | 197 | 259 | 368 566
9 33| 72 | 115 | 162 | 242 | 348 528
10 32| 71| 121 | 177 | 243 | 363 498
11 31| 70 | 121 | 180 | 246 | 345 524
12 35| 76 | 120 | 181 | 260 | 386 563
13 33169 | 124 | 190 | 251 | 352 506
14 32| 72| 121 | 180 | 255 | 353 518
15 33| 78 | 124 | 178 | 246 | 355 539
16 34|72 | 113 | 168 | 232 | 331 522
17 35| 72 | 111 | 162 | 228 | 340 512
18 31|79 | 125 | 201 | 281 | 378 544
19 37|76 | 122 | 174 | 243 | 329 475
20 34| 75| 121 | 175 | 260 | 369 570
Average [33.3(73.1/119.8|178.8|248.4|353.4 524.3
Std. dev.| 1.6 29| 3.9 |10.2|15.2 | 21.6 30.5

When a malicious signature is detected, the receiver retrieves the index of sg o
as above. The receiver then extracts the hidden message by decrypting sg 2 using
his key z with AES-CBC. Fig. 20 shows a Monero transaction that has been
steganographically subverted by our attack, and has been successfully posted to
the Monero blockchain

D ECDSA-Signature Rejection-Sampling Experiment

Table 3 illustrates the experimental results on how many signatures needed to
obtain 32,64,96,128,160,192 and 224 bits out of the total 256 key bits. This
experiment was run 20 times to record the number of needed signatures to leak
some bits of the secret key. As seen in Table 3, the average number of signatures
that should be intercepted by the attacker to retrieve 50% of the key, i.e. 128
bits, is about 179 signatures.

Uncontrolled Randomness in Blockchains 41
E Signature subversion

In theory, the Setup, KeyGen, Sign algorithms of a signature scheme can be sub-
verted to leak secret information. However, in practice most blockchain plat-
forms do not generate the setup parameters themselves; instead, widely trusted
setup parameters, such as in ED25519, are adopted. Therefore, we don’t con-
sider Setup algorithm in this work. In terms of KeyGen algorithms, they are
usually based on some one-way function, and it is possible to leak O(log A\) bits
through rejective sampling. Nevertheless, for most signature schemes, this would
not be sufficient to allow the adversary to forge a signature. See leakage resilient
signatures in [58,59] for more discussion. Therefore, this work focuses on the
subversion of the Sign algorithm. As a result, we adopt the following modified
definition of undetectability from [53].

Public/Secret Undetectability. The undetectability is used to model the fact that
normal users cannot distinguish if a signature is produced by a subverted signing
algorithm or the genuine one.

Definition 3. Let S = (Setup, KeyGen, Sign, Verify) be a signature scheme. Let
M be the message space. We say a subverted Sign™ algorithm is secretly un-
detectable w.r.t. S if for all PPT adversary A we have any {(PK;, SK;)}",
output by KeyGen(param) for any integer A € N, any n = poly()), any param +
Setup(1*), any {(PK;, SK;)}"_, output by KeyGen(param), any ¢ € [n], we have:

Advi (1% =

Pr {Exptiu(l)‘)} - ;‘ = negl(\)

w.r.t. the following game/experiment:
Expt3(1*)

1. Pick b+ {0,1};
2. Send ({PK;}" ,,SKy) to A;
3. For j € {1,...,k}, A queries m; € M and obtains

0 0; < Slgn({PKZ}le, SK@,& mj) Zfb =0;

oo} « Sign"({PK;}i_y, SKy, £,my) if b= 1;
4. A outputs a bit b';
6. Return b= b;

We say a subverted Sign™ algorithm is publicly undetectable w.r.t. S if in step

1 of the above game A only receives {PK;}_;.

F Ciphertext Stealing Technique

In our attack, the leaked information is encrypted by a semantically secure
symmetric-key encryption scheme. To minimize the number of lines of code to
be changed, we need to adopt a readily implemented encryption algorithm. In

42 N. Alsalami and B. Zhang

| IV [v+t]| ve2 |

1 1 1
k~(AES] k—{AES] k~{AES]
) e e

| k1 [| k2 [k3 |
@

| m1 [| m2 [m3

| C1 [| C2 [| c3 |

Fig. 21. Ciphertext Stealing (CTR mode)

our experiment, both Bytecoin and Monero wallets already have AES-128 al-
gorithm, which; therefore, can be used as a building block of the semantically
secure encryption. However, the message length is usually not a perfect multiple
of 128 bits. To maximize the subversion channel capacity, one option is to adopt
the concept of Ciphertext Stealing (CTS) [60]. For any given message length,
with ciphertext stealing techniques, the ciphertext length is exactly the same as
the message length (besides the IV). Our generic attack, in Sec. 3, uses CTR-~
mode based ciphertext stealing technique, where the last encryption block is
truncated to fit the message length. The encryption algorithm CTS-Encg(IV,m)
is depicted in Fig. 21. We refer interested readers to [60] for more operation
modes with CTS, such as CBC.

	Introduction
	Paper Roadmap

	Preliminaries
	Notations
	Blockchain
	(Ring) Signature schemes
	Brief description of CryptoNote
	Brief description of Monero (Version 0.12.0.0)
	Steganography
	Kleptography/Algorithm-substitution attacks
	ECDSA

	Generic Steganographic Attacks
	Security
	Robustness and Efficiency

	Case studies: Bytecoin and Monero
	Implementation in Bytecoin
	Implementation in Monero (version 0.12.0.0)

	Attack Scenarios: Covert Broadcast Communication and Persistent Storage
	Attack Scenario 1: Covert Broadcast Channel
	Attack Scenario 2: Covert Data Storage and Distribution

	Attack Scenario 3: Wallet Subversion
	Subverting Ring-Signature Crypto Wallets
	Subverting ECDSA-Signature Crypto Wallets: Synthetic Randomness
	Subverting ECDSA-Signature Crypto Wallets: Rejection Sampling

	Countermeasures
	Current Content Insertion Countermeasures
	Wallet Subversion Countermeasures

	Related Work
	Conclusion and Future Work
	References
	Appendices
	Security Proofs
	Demo Bytecoin Steganographically Created Transaction
	Detailed Implementation of Steganographic Attack in Monero
	ECDSA-Signature Rejection-Sampling Experiment
	Signature subversion
	Ciphertext Stealing Technique

