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Abstract. Division property is a generalized integral property proposed
by Todo at EUROCRYPT 2015, and then conventional bit-based division
property (CBDP) and bit-based division property using three subsets (B-
DPT) were proposed by Todo and Morii at FSE 2016. The huge time
and memory complexity that once restricted the applications of CBDP
have been solved by Xiang et al. at ASIACRYPT 2016. They extended
Mixed Integer Linear Programming (MILP) method to search integral
distinguishers based on CBDP. BDPT can find more accurate integral
distinguishers than CBDP, but it can not be modeled efficiently. Thus it
cannot be applied to block ciphers with block size larger than 32 bits. In
this paper, we focus on the feasibility of applying MILP-aided method
to search integral distinguishers based on BDPT. We firstly study how
to get the BDPT propagation rules of an S-box. Based on that we can
efficiently describe the BDPT propagation of cipher which has S-box.
Moreover, we propose a technique called “fast propagation”, which can
translate BDPT into CBDP, then the balanced bits based on BDPT can
be presented. Together with the propagation properties of BDPT, we can
use MILP method based on CBDP to search integral distinguishers based
on BDPT. In order to prove the efficiency of our method, we search in-
tegral distinguishers on SIMON, SIMECK, PRESENT, RECTANGLE,
LBlock, and TWINE. For SIMON64, PRESENT, and RECTANGLE, we
find more balanced bits than the previous longest distinguishers. For L-
Block, we find a 17-round integral distinguisher which is one more round
than the previous longest integral distinguisher, and a better 16-round in-
tegral distinguisher with less active bits can be obtain. For other ciphers,
our results are in accordance with the previous longest distinguishers.

Keywords: Division property using three subsets · Integral distinguish-
er · MILP.

1 Introduction

Integral attack proposed by Knudsen and Wagner at FSE 2002 [7] is one of the
most powerful tools used for block cipher. It is extended from square attack [4]

⋆ Supported by organization x.
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and has been applied to many block ciphers so far, such as Rijndael [9], ARIA
[8] and Serpent [28]. The basic idea of integral attack is to analyze properties of
the corresponding ciphertexts, such as zero-sum property.

Division property is a generalization of integral property proposed by Todo
[19] at EUROCRYPT 2015. It can exploit the algebraic structure of block cipher
to construct integral distinguishers even if the block cipher has non-bijective,
bit-oriented, or low-degree structures. With this new technique, he detected a 6-
round integral characteristic on MISTY1 [10], and achieved the first theoretical
cryptanalysis of the full MISTY1 [17]. In order to exploit the concrete structure
of round function, Todo and Morii [18] proposed conventional bit-based division
property (CBDP), which use not only the algebraic degree but also the alge-
braic structure. Using CBDP, they explored a 14-round integral distinguisher of
SIMON32 [1] which improved 4 rounds than [19]. Although CBDP could find
more accurate integral distinguishers, it once required much time and memory
complexity. They couldn’t apply it to cipher whose block size was more than
32 bits. At CRYPTO 2016, Boura and Canteaut [3] introduced the parity set
to exploit division property in another view. They formulated and characterized
the division property, specially for the construction of division trails of S-box.
They utilized the parity set to exploit further properties of the S-box and lin-
ear layer of PRESENT [2], leading to several improved distinguishers against
reduced-round PRESENT. Since more properties of S-box and linear layer were
utilized, parity sets could find more accurate integral characteristics. But it also
required higher time and memory complexity than CBDP. In the paper [23], Xie
and Tian proposed a concept called “term set” to propagate some information
of Algebraic Normal Form (ANF). With term set, they improved the distin-
guisher searching method based on the parity set both in terms of memory and
time complexity. And they found a 9-round distinguisher of PRESENT with 22
balanced output bits.

For block cipher whose block size is larger than 32, searching integral distin-
guishers by CBDP under Todo and Morii’s framework once was infeasible just
because of computational complexity. To solve the restriction of the huge com-
plexity, Xiang et al. [22] applied MILP method to search integral distinguishers
based on CBDP, which allowed them to analyze primitives whose block sizes
were larger than 32. They analysed six block ciphers and found some longer in-
tegral distinguishers for SIMON, SIMECK [24], PRESENT, RECTANGLE [25],
LBlock [20], and TWINE [12]. Then, Sun, Wang, and Wang gave the feasibili-
ty of MILP-aided CBDP for ciphers with non-bit-permutation linear layers [13,
14]. However the paper [26] found that the solutions of linear inequalities in
[13] contained some impossible division trails, which may eventually lead the
integral-trail searching come to a premature end and resulted in a shorter in-
tegral distinguisher. Then they found a way to give an accurate and compact
description on the binary linear layer of block cipher. CBDP may find better
integral distinguishers and it has been applied to various block ciphers. Take
HIGHT as an example, in the paper [5], Funabiki, Todo, Isobe, and Morii pro-
posed a new 19-round integral distinguisher by using the propagation of CBDP
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and they improved the previous best attack by two rounds. At CRYPTO 2017,
Todo, Isobe, Hao, and Meier applied CBDP in the cube attack on the stream ci-
phers ACORN, Grain128a, and TRIVIUM, and got the best key-recovery attack
against these ciphers at that time.

CBDP proved the existence of the 14-round integral distinguisher of SI-
MON32 [18]. However, the experimental distinguisher covered 15 rounds [21],
and there was still a one-round gap between the experiments and theoretical
analysis. The paper [18] introduced a new variant called bit-based division prop-
erty using three subsets (BDPT). CBDP focuses on that the parity ⊕

x∈X
πu (x)

is 0 or unknown, while BDPT focuses on that the parity ⊕
x∈X

πu (x) is 0, 1, or

unknown. Therefore, BDPT can find more accurate integral characteristics than
CBDP. Using BDPT, they proved the existence of 15-round integral distinguish-
er of SIMON32. However, the propagation of BDPT requires more time and
memory complexity than CBDP. When we evaluate BDPT propagation of an
n-bit block ciphers directly, the complexity is about 2n because BDPT has to
manage the set of n-dimensional vectors whose elements take values in F2.

For designers, they want to know the number of rounds that has provable
security against BDPT. Therefore, Todo and Morii [18] introduced a new tech-
nique called “lazy propagation” which could evaluate the number of rounds that
BDPT couldn’t find integral characteristics based on BDPT. But the number
of rounds required to be provable secure has a gap to the existing integral dis-
tinguishers. Take SIMON128 as an example, SIMON128 has a 26-round integral
distinguisher gotten by CBDP, but the result of provable security shows that 29-
round SIMON128 doesn’t have integral distinguishers based on BDPT. There is
a question whether 27- or 28-round integral distinguishers of SIMON128 exist
or not based on BDPT. For attackers, they want to find better integral distin-
guishers based on BDPT.

1.1 Our Contributions

In this paper, we propose a novel technique to search integral distinguishers based
on BDPT by using the propagation properties of BDPT and MILP method.

BDPT Division Trails of S-box. Although the BDPT of any Boolean func-
tion can be evaluated by the propagation rules of Copy, And, and Xor, the
propagation requires much time and memory complexity when Boolean function
is complex. We propose an algorithm which can obtain the BDPT propagation
rules of S-box according to its ANF directly.

Pruning Techniques of BDPT. When we evaluate the propagation of B-
DPT, there will be many vectors whose elements take values in Fn

2 . However
there may be some vectors that have no impact on the output bit’s balance
based on BDPT. So we show the properties when the vectors of BDPT can be
removed.
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Fast Propagation and Stopping Rules. Inspired by the “lazy propagation”,
we propose the notion of “fast propagation” which translates BDPT into CBDP
and can shows some bits is balanced. Then based on “lazy propagation” and
“fast propagation”, we obtain three stopping rules in searching integral distin-
guishers based on BDPT.

MILP Method of Searching Integral Distinguishers Based on BDPT.
According to the propagation properties of BDPT, we design the MILP method
to search integral distinguishers based on BDPT. In order to improve the effi-
ciency, we simplify the MILP method of searching integral distinguishers based
on CBDP in the paper [22] and divide the round function into several parts.

Applications to SIMON and SIMECK. Their round functions only con-
sist of And, Rotation, and Xor. Our MILP method based on BDPT can find
the 15-round integral distinguisher of SIMON32 that cannot be found by MILP
method based on CBDP. It should be mentioned that, the 15-round distinguish-
er of SIMON32 is also the longest integral distinguisher that works for all keys
which proved by experience. For 18-round SIMON64, we find 23 balanced bits
which has one more bit than the previous longest integral distinguisher. For SI-
MON32/48/96/128 and SIMECK32/48/64, the integral distinguishers we find
are in accordance with the longest existing integral distinguishers.

Applications to PRESENT and RECTANGLE. Both of them are SP-
N ciphers with bit permutation. For PRESENT, when the input data is 260,
our method can find 3 more balanced bits than the previous longest integral
distinguisher. Moreover, when the input data is 263, the integral distinguisher
we got has 6 more balanced bits than that got by term set in the paper [23]. For
RECTANGLE, when the input data is 260, our method can also obtain 11 more
balanced bits than the previous longest 9-round integral distinguisher.

Applications to LBlock and TWINE. They are two generalized Feistel block
ciphers. We apply our technique to these two ciphers. For LBlock, we obtain a 17-
round integral distinguisher which is one more round than the previous longest
integral distinguisher. Moreover, a better 16-round integral distinguisher with
less active bits can be obtain. For TWINE, we find the existing longest 16-round
distinguisher which is in accordance with that in [27].

The summarization of our main results is shown in Table 1. Note that all our
experiments are conducted on a desktop which are very efficient, the details are
listed in Table 1. In a word, our method can search integral distinguishers based
on BDPT for ciphers with the block size larger than 32.

Outline of the Paper. The paper is organized as follows: Section 2 shows
some notations, definitions, and basic backgrounds. In Section 3, we give some
propagation properties of BDPT. Section 4 shows the method of searching in-
tegral distinguishers based on BDPT. Section 5 shows applications to SIMON,
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SIMECK, PRESENT, RECTANLE, LBlock, and TWINE. Section 6 concludes
the paper and summarizes our results. Some auxiliary materials are supplied in
Appendix.

Table 1. Summarization of integral distinguishers for some block ciphers

Cipher Data Round
Number of

Time Reference
balanced bits

SIMON32 231
15 3 [18]
15 3 1h48m Sect. 5.1

SIMON48 247
16 24 48.2s [22]
16 24 1h48m Sect. 5.1

SIMON64 263
18 22 6.7m [22]
18 23 23h31m Sect. 5.1

SIMON96 295
22 5 17.4m [22]
22 5 31h25m Sect. 5.1

SIMON128 2127
26 3 58.4m [22]
26 3 62h16m Sect. 5.1

SIMECK32 231
15 7 6.5s [22]
15 7 51m Sect. 5.1

SIMECK48 247
18 5 56.6s [22]
18 5 5h3m Sect. 5.1

SIMECK64 263
21 5 3m [22]
21 5 23h25m Sect. 5.1

PRESENT
260

9 1 3.4m [22]
9 4 12h37m Sect. 5.2

263
9 22 [23]
9 28 4h8m Sect. 5.2

RECTANGLE 260
9 16 4.1m [22]
9 27 10m Sect. 5.2

LBlock
263

16 32 4.9m [22]
17 4 98h30m Sect. 5.3

262 16 3 41h29m Sect. 5.3

TWINE 263
16 32 2.6m [22]
16 32 6m Sect. 5.3

For SIMON and SIMECK, since the round key is Xored into the state after the round
function, we can add one more round before the distinguishers using the technique in
[21]. The results of SIMON and SIMECK family presented in the above table have
been added by one round.
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2 Preliminaries

2.1 Notations and Definitions

In this subsection, we present the notations and definitions used throughout this
paper. Let F2 denote the finite field {0, 1} and a [i] denotes the i-th bit of a ,
where a is an n-bit vector (a[n− 1], . . . , a[0]) ∈ Fn

2 . The Hamming weight of a is

calculated as w (a) =
∑n−1

i=0 a [i] . For any a = (am−1, . . . , a0) ∈ Fnm−1

2 ×· · ·×Fn0
2 ,

the vectorial Hamming weight of a is defined asW (a) = (w (am−1) , . . . , w (a0)) ∈
Zm, where Z denotes the integer ring. We use ⊕ and + as the addition of Fn

2

and addition of Z.
For any k ∈ Zm and k′ ∈ Zm, define k ≽ k′ if ki ≥ k′i holds for all i =

0, 1, . . . ,m − 1 and k ≻ k′ if ki > k′i holds for all i = 0, 1, . . . ,m − 1. In this
paper, K denotes the set of k, and |K| is the number of elements in K. Let ∅
be an empty set. We simply write K← k when K = K ∪ {k} and K→ k when

K = K \ {k}. Moreover, we write K x←k, where the new K is computed as

K =

{
K ∪ {k} if the original K does not include k,
K \ {k} if the original K includes k.

Definition 1. (Bit Product Function [19]). For any u ∈ Fn
2 and x ∈ Fn

2 ,
the bit product function πu : Fn

2 → F2 is defined as

πu (x) =
n−1∏
i=0

x[i]
u[i]

.

For any u = (um−1, . . . , u0) ∈
(
Fnm−1

2 × · · · × Fn0
2

)
and x = (xm−1, . . . , x0) ∈(

Fnm−1

2 × · · · × Fn0
2

)
, the bit product function πu (x) is defined as

πu (x) =
m−1∏
i=0

πui (xi).

The bit product function also appears in the Algebraic Normal Form (ANF)
of a Boolean function. The ANF of a Boolean function f : Fn

2 → F2 is represented
as

f (x) = ⊕
u∈Fn

2

afu

(
n−1∏
i=0

x[i]
u[i]

)
= ⊕

u∈Fn
2

afuπu (x)

where afu ∈ F2 is a constant value depending on f and u.

2.2 Division Property and Conventional Bit-based Division
Property

Division property [19] is a new method of finding integral characteristics. This
subsection briefly shows its definition and propagation rules. For more details,
please refer to [19].
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Definition 2. (Conventional Division Property [19]). Let X be a multiset
whose elements take values from

(
Fnm−1

2 × · · · × Fn0
2

)
. When the multiset X has

the division property Dnm−1,...,n0

K , where K denotes a set of m-dimensional vec-
tors whose i-th element takes a value between 0 and ni, it fulfills the following
conditions:

⊕
x∈X

πu (x) =

{
unknown if there exists k ∈ K satisfying W (u) ≽ k,
0 otherwise.

If there are k ∈ K and k′ ∈ K satisfying k ≽ k′ in the division property
Dnm−1,...,n0

K , k can be removed from K because the vector k is redundant.
In the paper [18], Todo and Morii introduced a bit-based division property

when nm−1, . . . , n0 were restricted to 1, i.e. D1m

K , we call it conventional bit-
based division property (CBDP). Some propagation rules of CBDP are proven
in [3, 15, 18, 19, 22].

CBDP Rule 1 (Copy). The output of a Copy function is calculated as (y1, y0) =
(x, x), where x ∈ X is the input. Assuming the input multiset X has division
property D1

{k}, then the corresponding output multiset Y has division property

D12

K′ as follow:

K′ =
{
{(0, 0)} if k = 0,
{(0, 1) , (1, 0)} if k = 1.

CBDP Rule 2 (Xor). The output of an Xor function is calculated as y =
x1 ⊕ x0, where (x1, x0) ∈ F2 × F2 is the input. Assuming the input multiset

X has division property D12

{k}, then the corresponding output multiset Y has

division property D1
K′ as follow:

K′ =

{(0)} if k = (0, 0) ,
{(1)} if k = (0, 1) or (1, 0) ,
∅ if k = (1, 1) .

CBDP Rule 3 (And). The output of an And function is calculated as y =
x1∧x0, where (x1, x0) ∈ F2×F2 is the input. Assuming the input multiset X has

division property D12

{k}, then the corresponding output multiset Y has division

property D1
K′ as follow:

K′ =
{
{(0)} if k = (0, 0) ,
{(1)} otherwise.

CBDP Rule 4 (S-box). For the propagation rules of S-box, the paper [3]
introduced the table-aided CBDP to generate the propagation table of S-box.
The CBDP propagation of S-box is related to its ANF. The papers [3, 15, 22]
all showed the method of getting the CBDP propagation trails. Please refer to
them for more information.
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2.3 MILP-aided Conventional Bit-based Division Property

Although CBDP has been proved to be a powerful tool to find integral distin-
guishers, the time and memory complexity once restricted its applications to
block ciphers whose block sizes were larger than 32 bits. At ASIACRYPT 2016,
Xiang et al. [22] modeled CBDP propagations of three basic operations (Copy,
And, Xor) and S-box operation by linear inequalities. Based on that they con-
structed a linear inequality system which could describe CBDP propagations of a
block cipher given an initial division property. Then, by choosing an appropriate
objective function, they converted a search algorithm under Todo’s framework
into an MILP problem. They solved the MILP problem by the openly available
MILP optimizer Gurobi [6] to search integral distinguishers. In this subsection
we will give a brief review of MILP-aided CBDP.

MILP Model 1. Let a→ (b1, b0) be a division trail of Copy. The following
inequalities are sufficient to describe the propagation of the division property
for Copy. {

a− b1 − b0 = 0,
a, b1, b0 are binaries.

MILP Model 2. Let (a1, a0)→ b be a division trail of Xor. The following in-
equalities are sufficient to describe the propagation of the division property for
Xor. {

a1 + a0 − b = 0,
a1, a0, b are binaries.

MILP Model 3. Let (a1, a0)→ b be a division trail of And. The following
inequalities are sufficient to describe the propagation of the division property
for And: ai ≤ b for all i ∈ {0, 1} ,

b− a0 − a1 ≤ 0,
a1, a0, b are binaries.

After generating the propagation property of S-box from CBDP Rule 4 in
subsection 2.2, there are two main approaches that can be used to model S-box.

H-representation of the Convex Hull. By using the inequality generator()
function in Sage [11] software, we can get a set of linear inequalities L. Some-
times the number of linear inequalities in the set is so large that adding all these
inequalities into the MILP model will make the problem computational infea-
sible. Thus, Sun et al. [16] proposed an algorithm called Greedy Algorithm to
reduce this set.

Logical Condition Modeling. For simplicity, if we want to remove the vector
(x7, x6, x5, x4, x3, x2, x1, x0) = (0, 0, 1, 1, 0, 1, 0, 1) from the solution space, we
can specify x7 + x6 − x5 − x4 + x3 − x2 + x1 − x0 ≥ −3, which removes this
pattern while keeps all the other patterns in the solution space.
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Note that MILP models for Copy, Xor, and And are sufficient to represent
any circuit. Up to now, for block ciphers based on the three operations and S-
box, we are able to construct a set of linear inequalities characterizing one round
CBDP. Iterating this process r times, we can get a linear inequality system L
describing r-round CBDP. All feasible solutions of L correspond to all r-round
division trails, which are defined below.

Definition 3. (Division Trail [22]). Let us consider the propagation of the

division property {k} def= K0 → K1 → K2 → · · · → Kr. Moreover, for any vector
ki+1 ∈ Ki+1, there must exist a vector ki ∈ Ki such that ki can propagate
to ki+1 for all i ∈ {0, 1, . . . r − 1}, we call (k0 → k1 → · · · → kr) an r-round
division trail.

Initial Division Property and Stopping Rule. Attackers determine indices
set I =

{
i|I|−1, i|I|−2, . . . , i0,

}
⊂ {0, 1, . . . , n− 1} and prepare 2|I| chosen plain-

texts where variables indexed by I are taking all possible combinations of values.
The division property of such chosen plaintexts is D1n

{k}, where ki = 1 if i ∈ I

and ki = 0 otherwise. Then, the propagation of division property from D1n

{k} is
evaluated as

{k} def= K0 → K1 → K2 → · · · → Kr,

where D1n

Kr
is the division property after r-round propagation. If the division

property Kr does not have an unit vector em whose only m-th element is 1,
the m-th bit of r-round ciphertexts is balanced. Denote

(
a0n−1, . . . , a

0
0

)
→ · · · →(

arn−1, . . . , a
r
0

)
an r-round division trail, and let L denote a linear inequality

system whose feasible solutions are all division trails which start with the given
initial division property. Thus, we can set the objective function as:

Obj : Min
(
arn−1 + arn−2 + · · ·+ ar0

)
.

Now we get a complete MILP problem by setting L as constraints and Obj as
objective function. If Kr+1 for the first time contains all the n unit vectors, the
division property propagation should stop and an r-round distinguisher can be
derived from D1n

Kr
. For more details, please refer to [3, 15, 17–19, 22].

2.4 Bit-based Division Property Using Three Subsets and Lazy
Propagation

CBDP focuses on that the parity ⊕
x∈X

πu (x) is 0 or unknown. Because CBDP

is insufficient to find the 15-round integral distinguisher of SIMON32, the paper
[18] introduced a new variant of bit-based division property called bit-based
division property using three subsets (BDPT). The new variant focuses on that
the parity ⊕

x∈X
πu (x) is 0, 1, or unknown.

Definition 4. (BDPT [18]). Let X be a multiset whose elements take a value
of Fn

2 , and k is a n-dimensional vector whose i-th element takes 0 or 1. When
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the multiset X has the BDPT D1n

K,L, it fulfills the following conditions:

⊕
x∈X

πu (x) =

unknown if there is k ∈ K satisfying W (u) ≽ k,
1 else if there is ℓ ∈ L satisfying W (u) = ℓ,
0 otherwise.

When there is k ∈ K satisfying W (u) ≽ k, ⊕
x∈X

πu (x) is unknown even if

there is ℓ ∈ L satisfying W (u) = ℓ. We show the propagation rules of Copy,
And, and Xor for BDPT, because any Boolean function can be evaluated by
using these three rules. For more details, please refer to [18].

BDPT Rule 1 (Copy). Let (xn−1, xn−2, . . . , x0) ∈ Fn
2 be the input of a Copy

function, and (xn−1, xn−1, xn−2, . . . , x0) be the output. Assuming the input mul-

tiset X has D1n

K,L, then the output multiset Y has D1n+1

K′,L′ .

K′ ←
{
{(0, 0, kn−2, . . . , k0)} if kn−1 = 0,
{(1, 0, kn−2, . . . , k0) , (0, 1, kn−2, . . . , k0)} if kn−1 = 1,

L′ ←
{
{(0, 0, ℓn−2, . . . , ℓ0)} if ℓn−1 = 0,
{(1, 0, ℓn−2, . . . , ℓ0) , (0, 1, ℓn−2, . . . , ℓ0) , (1, 1, ℓn−2, . . . , ℓ0)} if ℓn−1 = 1.

computed from all k ∈ K and all ℓ ∈ L, respectively.

BDPT Rule 2 (And). Let (xn−1, xn−2, . . . , x0) ∈ Fn
2 be the input of And

function and (xn−1 ∧ xn−2, . . . , x0) be the output. Assuming the input multiset

X has D1n

K,L, then the output multiset Y has D1n−1

K′,L′

K′ ←
(⌈

kn−1 + kn−2
2

⌉
, kn−3, . . . , k0

)
,

L′ ←
(⌈

ℓn−1 + ℓn−2
2

⌉
, ℓn−3, . . . , ℓ0

)
,

where K′ is computed from all k ∈ K and L′ is computed from all ℓ ∈ L satis-
fying (ℓn−1, ℓn−2) = (0, 0) or (1, 1).

BDPT Rule 3 (Xor). Let (xn−1, xn−2, . . . , x0) ∈ Fn
2 be the input of Xor

function and (xn−1 ⊕ xn−2, xn−3, . . . , x0) be the output. Assuming the input

multiset X has D1n

K,L, then the output multiset Y has D1n−1

K′,L′

K′ ← (kn−1 + kn−2, kn−3, . . . , k0) ,

L′ x← (ℓn−1 + ℓn−2, ℓn−3, . . . , ℓ0) ,

where K′ is computed from all k ∈ K satisfying (kn−1, kn−2) = (0, 0) , (1, 0) , or
(0, 1) and L′ is computed from all ℓ ∈ L satisfying (ℓn−1, ℓn−2) = (0, 0), (1, 0),
or (0, 1).
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BDPT Rule 4 (Xor with Secret Round Key). Let X and Y be the in-
put and output multiset satisfying D1n

K,L and D1n

K′,L′ , respectively. Then, y ∈ Y is
computed as y = x ⊕ rk, where rk is the secret round key. Assuming a round
key is Xored with the i-th bit, then K′ and L′ is computed as

K′ ← (ℓn−1, ℓn−2, . . . , ℓi ∨ 1, . . . , ℓ0) ,

L′ = L,

for all ℓ ∈ L satisfying ℓi = 0.
When we consider the propagation of BDPT for public functions, we do not

need to care about the dependencies between K and L. However, independent
propagations generate many redundant vectors in K′ and L′. Although for any
u, the redundant vectors in K′ and L′ do not affect whether the parity becomes
0, 1, or unknown, we should remove redundant vectors if possible because of the
only reason of complexity.

BDPT can find more accurate integral characteristics than CBDP. However,
the propagation of BDPT requires more time and memory complexity. By the
“lazy propagation”, Todo and Morii [18] gave the provable security of SIMON
family against BDPT.

Definition 5. (Lazy Propagation). Let D1n

Ki,Li
be the input BDPT of the i-th

round function and D1n

Ki+1,Li+1
be the BDPT from the lazy propagation. Then,

Ki+1 is computed from only a part of vectors in Ki, and Li+1 always becomes
the empty set ∅. Therefore, if the lazy propagation creates D1n

Kr,∅
, where Kr has

n distinct vectors whose Hamming weight is one, the accurate propagation also
creates the same n distinct vectors in the same round.

3 The Propagation Properties of BDPT

We know that BDPT can find more accurate integral characteristics than CBDP.
However, it need much time and memory complexity. In order to solve this
problem, we need to explore the propagation properties of BDPT more deeply.

3.1 BDPT Division Trails of S-box

In the subsection 2.4, we have introduced the existing propagation rules of Copy,
And, and Xor for BDPT. Although any Boolean function can be evaluated by us-
ing these three rules, the propagation requires much time and memory complex-
ity when Boolean function is complex. Inspired by the algorithm of calculating
CBDP division trails of S-box [22], we propose a generalized algorithm to calcu-
late BDPT division trails of S-box . In Algorithm 1, x = (xn−1, . . . , x0) and
y = (yn−1, . . . , y0) denote the input and output of an n-bit S-box respectively,
and yi is expressed as a Boolean function of (xn−1, . . . , x0).
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Algorithm 1: Calculating the BDPT division trails of S-box

Input: The input BDPT of an n-bit S-box D1n

K,L={ℓ}, where ℓ = (ℓn−1, . . . , ℓ0)

Output: The output BDPT D1n

K′,L′

1 begin

2 S =
{
k|there is k ∈ K satisfying k ≽ k

}
3 F (X) =

{
πk (x) |k ∈ S

}
4 K = ∅ and L = ∅
5 for u ∈ Fn

2 do
6 if πu (y) contains any monomial in F (X) then
7 K = K ∪ {u}
8 end
9 if πu (y) contain the monomial πℓ (x) then
10 L = L ∪ {u}
11 end
12 end
13 K′=SizeReduce0 (K) and L′=SizeReduce1 (K,L)
14 return D1n

K′,L′

15 end

We explain Algorithm 1 line by line:
Line 2-3 According to the input BDPT D1n

K,{ℓ}, the parity of monomial πk (x)

satisfying there is k ∈ K satisfying k ≽ k over X is undetermined, and we store
all these monomials in F (X).
Line 4 Initialize K and L as empty set ∅.
Line 5-8 For any possible u, if Boolean function πu (y) contains any monomial
in F (X), the parity of πu (y) over X is undetermined, and we store all these
vectors in K.
Line 9-11 For any possible u, if πu (y) contains the monomial πℓ (x), we store
all these vectors in L.
Line 13 The function SizeeReduce0() removes all the redundant vectors in K.
Namely, if there is u′,u ∈ K satisfying u′ ≽ u, the vector u′ should be removed
from K. And SizeReduce1() removes all the redundant vectors in L. That is,
if there exist u ∈ K, ℓ ∈ L satisfying ℓ ≽ u, then ℓ should be removed from L.
Line 14 Return D1n

K′,L′ as output.

The Precondition for the Propagation Rules of BDPT. The propaga-
tion rules of BDPT in subsection 2.4 simply regard ⊕

x∈X
(πu1 (x)⊕ πu2 (x)) as

unknown if either ⊕
x∈X

πu1 (x) or ⊕
x∈X

πu2 (x) is unknown. Under this precondi-

tion, we will prove that our algorithm provides accurate propagation of BDPT.

Theorem 1. Let D1n

K,L={ℓ} be the input BDPT of an n-bit S-box, under the

precondition for the propagation rules of BDPT, the output BDPT D1n

K′,L′ can be
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accurately described by D1n

K,L, where

K = {u|πu (y) contains any momomial in F (X)},
L = {u|πu (y) contains the momomial πℓ (x)}.

That is K′ = SizeReduce0 (K) and L′ = SizeReduce1 (K,L).

Proof. Let K′ be the set of output BDPT that has no redundant vectors. Accord-
ing to the definition of BDPT and the precondition for the propagation rules, for
any u, if Booblean function πu (y) contains any monomial in F (X), the parity
πu (y) is undetermined. Then we get SizeReduce0 (K) ⊂ K′.

On the other hand, for any u ∈ K′, we have πu (y) is undetermined. Sup-
pose that πu (y) doesn’t has any monomial in F (X). Then if πu (y) contain-
s the monomial πℓ (x), we have πu (y) = 1, or else πu (y) = 0. The value
of πu (y) is determined, which is a contradiction. So for any u ∈ K, πu (y)
contain at least one monomial in F (X). Therefore, K′ ⊂ K. Since K′ has no
redundant vectors, we can get K′ ⊂ SizeReduce0 (K). Altogether, we obtain
K′ = SizeReduce0 (K).

Let L′ be the set of output BDPT that has no redundant vectors. For any
u ∈ L′, we have πu (y) = 1. Since there is only one vector ℓ in the input L, the
ANF of πu (y) must has the monomial πℓ (x). Thus we get

L′ ⊂ L = {u|πu (y) contains the momomial πℓ (x)}.

Since the redundant vectors of L do not affect whether the parity becomes 0, 1,
or unknown, we have L′ ⊂ SizeReduce1 (K,L).

On the other hand, if πu (y) contains the monomial πℓ (x), then

⊕
x∈X

πu (y) = ⊕
x∈X

πℓ (x)⊕ ⊕
x∈X

(πu (y)⊕ πℓ (x))

= 1⊕ ⊕
x∈X

(πu (y)⊕ πℓ (x)) .

Consider first the case πu (y)⊕πℓ (x) does not contains any monomial in F (X),
then ⊕

x∈X
(πu (y)⊕ πℓ (x)) = 0, we get ⊕

x∈X
πu (y) = 1 and u ∈ L′. Now consider

the case πu (y)⊕πℓ (x) contains some monomials in F (X), then u ∈ K, πu (y) is
unknown. According to the definition, when there is k ∈ K satisfying W (u) ≽ k,
⊕

x∈X
πu (y) is unknown even if there is ℓ ∈ L satisfying W (u) = ℓ. So u is a

redundant vector in L. Then we get SizeReduce1 (K,L) ⊂ L′. Altogether, we
obtain L′ = SizeReduce1 (K,L). �

we apply our algorithm to the core operation of SIMON family, the BDPT
division trails we get is in accordance with [18]. Thus, we believe that our al-
gorithm is sound. Algorithm 1 will return a table of the BDPT division trails
when the input L has only one vector. If there are more than one vector in L, the
paper [18] showed an example on how to get its division trails from the table.
Let D1n

K,L={ℓm−1,ℓm−2,...,ℓ0} and DK′,L′ be the input and output BDPT of S-box,
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respectively. According to the Algorithm 1, we can get the output BDPT DK′,L′
i

from the input BDPT DK,L={ℓi}, where i = 0, 1, . . . ,m− 1. Therefore, we have

L′ = {u|u appears odd times in sets L′m−1,L′m−2, . . . ,L′0}.

And we also give an example in subsection 5.1 to help readers understand the
propagation of BDPT.

3.2 Pruning Techniques of BDPT

The previous works often divide cipher into r rounds, and investigate the CBDP
or BDPT of round function. Round function often have too many operations
which will generate many redundant intermediate vectors of division property.
When the round number or block size grows, it will make propagation impossible
just because of complexity. In order to solve this problem we divide the cipher
into small parts, and after the BDPT propagation of a part we will use the
BDPT properties to remove the redundant vectors. Then the propagation of the
remaining vectors can continue efficiently.

Let Qi be the i-th round function of an r-round cipher E = Qr ·Qr−1 ·· · · ·Q1,
then we divide Qi into li parts Qi = Qi,li−1 · Qi,li−2 · · · · · Qi,0. Therefore E =
r∏

i=1

li−1∏
j=0

Qi,j . Let Ei,j = (Qi,j−1 ·Qi,j−2 · · · · ·Qi,0) · (Qi−1 ·Qi−2 · · · · ·Q1) and

Ei,j = (Qr ·Qr−1 · · · · ·Qi+1) (Qi,li−1 ·Qi,li−2 · · · · ·Qi,j), then E = Ei,j · Ei,j ,
where 1 ≤ i ≤ r, 0 ≤ j ≤ li − 1 and E1,0 is identity function.

Theorem 2. For r-round cipher E = Qr ·Qr−1 ·· · ··Q1, let D1n

Ki,j ,Li,j
be the input

BDPT of Ei,j, if k ∈ Ki,j cannot generate the output unit vector em of Ei,j based
on CBDP, then whether D1n

Ki,j ,Li,j
can generate the vector em ∈ Kr+1,0 based on

BDPT or not is equivalent to D1n

Ki,j→k,Li,j
, where Ki,j → k denotes removing k

from Ki,j.

Proof. In the subsection 2.4, we know that for public function, the propagation
of Ki,j and Li,j is independent. Only when the secret round key is Xored, some
vectors of Li,j will affect Ki,j , but they only adds some vectors into Ki,j . Because
every vector k ∈ Ki,j is propagated dependently based on CBDP, if k ∈ Kr can
not generate the output unit vector em, then removing it from Ki,j doesn’t have
any impact on whether Kr+1,0 has em or not. That is D1n

Ki,j ,Li,j
has the same

result with D1n

Ki,j→k,Li,j
on whether Kr+1,0 has em based on BDPT or not. �

Theorem 3. For r-round cipher E = Qr · Qr−1 · · · · · Q1, let D1n

Ki,j ,Li,j
be the

input BDPT of Ei,j. Then let ℓ ∈ Li,j be the initial CBDP of Ei,j, if D1n

{ℓ}
cannot generate the output unit vector em of Ei,j based on CBDP, we obtain
whether D1n

Ki,j ,Li,j
can generate the vector em ∈ Kr+1,0 based on BDPT or not is

equivalent to D1n

Ki,j ,Li,j→ℓ, where Li,j → ℓ denotes removing ℓ from Li,j.
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Proof. For the input BDPT D1n

Ki,j ,Li,j
of Ei,j , if D1n

{ℓ} cannot generate the out-

put unit vector em of Ei,j based on CBDP, where ℓ ∈ Li,j . According to
Theorem 2, whether D1n

Ki,j ,Li,j→ℓ can generate em ∈ Kr+1,0 or not is equiva-

lent to D1n

Ki,j←ℓ,Li,j→ℓ. Then by the definition of BDPT, ℓ is unknown, even

though ℓ ∈ Li,j , because of Ki,j ← ℓ. So whether D1n

Ki,j←ℓ,Li,j→ℓ can generate

em ∈ Kr+1,0 based on BDPT or not is equivalent to D1n

Ki,j←ℓ,Li,j
. Moreover,

according to Theorem 2 again, it equivalent to D1n

Ki,j ,Li,j
. So we get the result,

whether D1n

Ki,j ,Li,j
can generate the vector em ∈ Kr+1,0 based on BDPT or not

is equivalent to D1n

Ki,j ,Li,j→ℓ. �

Because the propagation of CBDP can be efficiently solved by MILP model.
The meaning of Theorem 2 and Theorem 3 is that we can use CBDP method
to determine whether the vectors k ∈ Ki,j and ℓ ∈ Li,j are redundant or not
to the propagation of BDPT. Dividing a cipher into small parts guarantees that
we can remove redundant vectors timely and prevent them from expanding too
much. In subsection 5.1, we will compared the size of BDPT vectors obtained
by our method with that in [18] to show its high efficiency.

3.3 Fast Propagation

Because it needs much time and memory complexity to evaluate the propagation
of BDPT, Todo and Morii proposed the concept of “lazy propagation” to guaran-
tee the security against BDPT. The “lazy propagation” can show that some bits
are unknown. Inspired by it, we propose a notion called “fast propagation” to
show the balanced bits. Combining “lazy propagation” with “fast propagation”,
we can obtain the balanced information of the output bits efficiently.

Definition 6. (Fast Propagation). For r-round cipher E = Qr ·Qr−1 ·· · ··Q1,
let D1n

Ki,j ,Li,j
be the input BDPT of Ei,j, then we translate the BDPT into CBDP

D1n

Ki,j
, where Ki,j = Ki,j ∪ Li,j. The output division property of Ei,j is computed

from all vectors of Ki,j = Ki,j ∪ Li,j based on CBDP.

The “fast propagation” removes all vectors from Li,j , and get the union set
Ki,j ∪ Li,j . By its nature, “fast propagation” translate BDPT into CBDP. We
can use the MILP method to solve the propagation problem of D1n

Ki,j∪Li,j ,
. Let

us consider the meaning of “fast propagation”. Assuming the input set of Ei,j

has D1n

Ki,j ,Li,j
, according to the definition of BDPT and CBDP, the set must

also satisfies D1n

Ki,j∪Li,j ,
. We get D1n

Kr+1,0,Lr+1,0
and D1n

Kr+1,0,
by the propagation

of BDPT and the “fast propagation”, respectively. Then, the set of u satisfying
parity is 0 is represented as

SKr+1,0 = {u ∈ Fn
2 | there is no k ∈ Kr+1,0 satisfying W (u) ≽ k} .

Though the complementary set of SKr+1,0
cannot completely represent the set of

u that the parity is unknown, SKr+1,0
⊆ SKr+1,0 always holds.
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4 The Method of Searching Integral Distinguishers Based
on BDPT

Based on the work of [22], we first simplify the MILP algorithm of searching
integral distinguishers based on CBDP to improve efficiency. Then we show
three stopping rules and propose an algorithm to search integral distinguishers
based on BDPT.

4.1 Simplify the MILP-aided Method of CBDP

Using the method in the paper [22], we can get a linear inequality set L which
describes the r-round CBDP division trails with the given initial input division
propertyD1n

{k}. The former CBDPmethod will return a set of balanced bits. Since
the absence of integral distinguisher based on division property doesn’t imply
the absence of integral distinguishers, the bits that are not balanced based on
CBDP will be viewed as unknown. Since only one bit’s balanced information is
needed, our MILP model has no objective function which is added into the con-
strains. Let L′ = L ∪

{
arn−1 = 0, . . . , arm+1 = 0, arm = 1, arm−1 = 0, . . . , ar0 = 0

}
,

we can use Gurobi to determine whether L′ has feasible solutions or not. If it
has feasible solutions, it shows that the m-th bit of the output of cipher E is
unknown. Otherwise, the m-th bit is balanced. The detail information is shown
in Algorithm 2.

Algorithm 2 SCBDP(E,k,m)

Input: The cipher E, the initial CBDP vector k, and the number m
Output: Whether the m-th bit of the output is balanced or not based on CBDP

1 begin

2
L is a linear inequality set which describe the CBDP division trails of E
with given initial division property D{k}

3 Let L′ = L ∪ {ar
n−1 = 0, . . . , ar

m+1 = 0, ar
m = 1, ar

m−1 = 0, . . . , ar
0 = 0}

4 if L′ has feasible solutions do
5 return unknown
6 else
7 return balanced
8 end

4.2 Stopping Rules

Based on “lazy propagation” and “fast propagation”, in this subsection, we pro-
pose three stopping rules in searching integral distinguishers based on BDPT.

Stopping Rule 1. For r-round cipher E = Qr ·Qr−1 · · · · ·Q1, let D1n

Ki,j ,Li,j
be

the input BDPT of Ei,j, If D1n

{k} can generate the output unit vector em of Ei,j
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based on CBDP, where k ∈ Ki,j. Then according to “lazy propagation”, we stop
the process and obtain that the m-th output bit of E is unknown.

After Stopping Rule 1, if the searching procedure doesn’t stop, all the vector
in Ki,j will be removed according to the pruning techniques. Then we consider
the following Stopping Rule 2.

Stopping Rule 2. After removing the redundant vectors in the set Li,j by
the pruning techniques in subsection 3.2, if there is element ℓ ∈ Li,j that can
generate the output unit vector em of Ei,j based on CBDP, we cannot stop the
procedure and ℓ should be propagated to next part based on BDPT. If there is no
element in Li,j that can generate em, according to “fast propagation”, we can
get that the m-th output bit of E is balanced.

Different from Stopping Rule 1 which shows some bits is unknown, Stopping
Rule 2 can show some bits is balanced based on BDPT. If the process doesn’t
stop even we get the output BDPT of E, Stopping Rule 3 can explain this situ-
ation.

Stopping Rule 3. If Kr+1,0 = ∅ and Lr+1,0 = {ℓ}, then we find an integral
distinguisher of E whose sum is 1.

When this situation happens, we find an integral distinguisher that cannot
be found by CBDP.

4.3 The MILP Method of Searching Integral Distinguishers Based
on BDPT

The algorithm of searching integral distinguishers often has a given initial di-
vision property D1n

K1,0,L1,0
. Attackers determine indices I = {i1, i2, . . . , i|I|} ⊂

{1, 2, . . . , n} and prepare 2|I| chosen plaintexts where variables indexed by I are
taking all possible combinations of values. The CBDP of such chosen plaintexts
is D1n

{k}, where ki = 1 if i ∈ I and ki = 0 otherwise. Then, the BDPT of such

chosen plaintexts is DK1,0,L1,0 , where K1,0 = {k′|k′ ≻ k} and L1,0 = {k}.
Using the propagation rules of BDPT in subsection 2.4 and 3.1, we can obtain

output BDPT from the input when function is not very complexity. Then the
pruning techniques can simplify output BDPT to avoid it expanding too much. If
the BDPT satisfies any stopping rules in subsection 4.2, we obtain the balanced
information of corresponding output bit. Algorithm 3 will return whether the
m-th output bit is balanced or not based on BDPT.

We explain Algorithm 3 line by line:
Line 2-3 When we describe the BDPT propagation of E = Qr ·Qr−1 · · · · ·Q1,
there will be redundant vectors. We have to divide the cipher into small parts so
that the BDPT vectors don’t expand too much. For every part, we will remove
the redundant BDPT vectors and consider the stopping rules.
Line 4-9 For every vector in Ki,j , we use Algorithm 1 to get whether it can gen-
erate unit vector em based on CBDP or not. If SCBDP

(
Ei,j ,k,m

)
is unknown,

according to Stopping Rule 1, we known that the m-th output bit is unknown



18 Wang., Hu. et al.

Algorithm 3 BDPT (E,L1,0,K1,0,m)

Input: The cipher E, the input initial BDPT DK1,0,L1,0 , and the number m
Output: Whether the m-th bit of output is balanced or not based on BDPT

1 begin
2 for (i = 1; i ≤ r; i++) do
3 for (j = 0; j ≤ li − 1; j ++) do
4 for k in Ki,j

5 if SCBDP
(
Ei,j ,k,m

)
is unknown

6 return unknown
7 else
8 Ki,j → k
9 end
10 L′

i,j = ∅
11 for ℓ in Li,j do

12 if SCBDP
(
Ei,j , ℓ,m

)
is unknown

13 L′
i,j = L′

i,j ∪ ℓ
14 end
15 end
16 if L′

i,j = ∅
17 return balanced
18 end

19 DKi+⌊(j+1)/li⌋,(j+1)modli
,Li+⌊(j+1)/li⌋,(j+1)modli

= BDPTP
(
Qi,j ,D∅,L′

i,j

)
20 end
21 end
22 end

based on BDPT. Otherwise k cannot generate the unit vector em, we remove it
from Ki,j according to the pruning technique in Theorem 2.
Line 10 Initialize L′i,j to be an empty set.

Line 11-15 For any vector ℓ ∈ Li,j , if SCBDP
(
Ei,j , ℓ,m

)
can generate the u-

nit vector em of the output BDPT, it doesn’t satisfy the pruning technique in
Theorem 3, and we store all these vectors in L′i,j .
Line 16-18 If the set L′i,j is empty set, it satisfies Stopping Rule 2, that is the
m-th output bit is balanced.
Line 19 After the process of pruning techniques and stopping rules, if we don’t
get the balanced information of the m-th bit, we should use the propagation
rules of BDPT to get the input BDPT DKi+⌊(j+1)/li⌋,(j+1)%li

,Li+⌊(j+1)/li⌋,(j+1)%li
of

the next part.

The principle of determining the size of Qi,j is that the BDPT set doesn’t
expand too much. Only in this way, can we run the searching algorithm effi-
ciently. Algorithm 3 can show the balanced information of the m-th output bit.
Therefore, we can search the integral distinguisher by exploring n-bit output of
the cipher one by one.
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5 Applications to SIMON, SIMECK, PRESENT,
RECTANGLE, LBlock, and TWINE

In this section, we show some applications of our technique. In [22], Xiang et
al. have applied MILP method to search integral distinguishers based on CB-
DP for 6 lightweight block ciphers SIMON, SIMECK, PRESENT, RECTAN-
GLE, LBlock, and TWINE. We apply our technique to them too, we want to
know whether BDPT can improve the integral distinguishers gotten by CBDP
or not. The results listed in Table 1 show that we get improved distinguishers for
SIMON64, PRESENT, RECTANGLE, and LBlock. For SIMON32/48/96/128,
SIMECK32/48/64, and TWINE our results are consistent with the previous best
results. Especially, for SIMON 32 we find the 14-round distinguisher that found
in [18] used BDPT. It shows that our algorithm is valid. All the experiments are
conducted on the following platform: Intel Celeron CPU 1007U @1.5GHz, 6.00
RAM, 64-bit Windows system. And the optimizer we used to search integral
distinguishers is Gurobi 7.5.2 [6].

5.1 Applications to SIMON and SIMECK

SIMON is a lightweight block cipher family [1] based on Feistel structure which
only involves bit-wise And, Xor, and Circular shift operations. Let SIMON2n be
the SIMON cipher with 2n-bit block length, where n ∈ {16, 24, 32, 48, 64}. The
input of the i-th round function is denoted by

(
xi
n−1, . . . , x

i
0, y

i
n−1, . . . , y

i
0

)
. And

the left part of Fig.1 shows the round structure of SIMON2n. The core opera-
tion of round function is represented by the right part of Fig. 1. In every core
operation, we only focus on four bits and evaluate the propagation independent
of other (2n− 4) bits. The round function of SIMON2n repeats core operation
for all n-bit values in the right half. For more details please refer to [1].
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When we apply Algorithm 3 to SIMON2n, we divide one-round SIMON2n
into n+ 1 parts Qi = Qi,n ·Qi,n−1 · · · · ·Qi,0.

When 0 ≤ j ≤ n− 1, we have

Qi,j

(
xi,j
n−1, . . . , x

i,j
0 , yi,jn−1, . . . , y

i,j
0

)
=
(
xi,j
n−1, . . . , x

i,j
0 , yi,jn−1, . . . , y

i,j
j+1, Y

i,j
j , yi,jj−1, . . . , y

i,j
0

)
,

where Y i,j
j =

(
xi,j
(j−1)modn&xi,j

(j−8)modn

)⊕
xi,j
(j−2)modn.

Moreover, Qi,n is

Qi,n

(
xi,n
n−1, . . . , x

i,n
0 , yi,nn−1, . . . , y

i,n
0

)
=
(
yi,nn−1 ⊕ kin−1, . . . , y

i,n
0 ⊕ ki0, x

i,n
n−1, . . . , x

i,n
0

)
.

For Qi,j , 0 ≤ j ≤ n−1, when we consider the BDPT propagation rules of the

function BDPTP
(
Qi,j ,D∅,L′

i,j

)
, (2n− 4) bits remain unchanged. Thus only 4-

bit
(
xi,j
(j−1)mod n, x

i,j
(j−2)modn, x

i,j
(j−8)modn, y

i,j
(j)modn

)
of the BDPT vectors will be

changed. We can view it as 4-bit S-box and use Algorithm 1 to get its accurate
BDPT propagation rules which are in accordance with that in the paper [18].
We show it in Appendix Table 8.

When we use Algorithm 3 to search the integral distinguishers of SIMON2n
based on BDPT, we should call Algorithm 2 to build the MILP model based on
CBDP. The paper [22] shows us how to model one-round CBDP division trail
of SIMON2n.

1-round Description of SIMON Denote 1-round division trail of SIMON2n
by
(
ain−1, . . . , a

i
0, b

i
n−1, . . . , b

i
0

)
→
(
ai+1
n−1, . . . , a

i+1
0 , bi+1

n−1, . . . , b
i+1
0

)
. In order to

get a linear description of all division trails of 1-round SIMON2n, we intro-
duce four vectors of auxiliary variables which are

(
ui
n−1, . . . , u

i
0

)
,
(
vin−1, . . . , v

i
0

)
,(

wi
n−1, . . . , w

i
0

)
and

(
tin−1, . . . , t

i
0

)
. We denote

(
ui
n−1, . . . , u

i
0

)
the input CBDP of

the left circular shift by 1 bit. Similarly, denote
(
vin−1, . . . , v

i
0

)
and

(
wi

n−1, . . . , w
i
0

)
the input CBDP of the left circular shift by 8 bits and 2 bits, respectively. Let(
tin−1, . . . , t

i
0

)
denote the output CBDP of bit-wise And operation. The following

inequalities are sufficient to model the Copy operation used in SIMON2n:

L1 : aij − ui
j − vij − wi

j − bi+1
j = 0 for j ∈ {0, 1, . . . , n− 1}.

Then the 1-round bit-wise And operation used in SIMON2n can be modeled by
the following inequalities:

L2 =


tij − ui

(j−1)modn ≥ 0 for j ∈ {0, 1, . . . , n− 1},

tij − vi(j−8)modn ≥ 0 for j ∈ {0, 1, . . . , n− 1},

tij − ui
(j−1)modn − vi(j−8)modn ≤ 0 for j ∈ {0, 1, . . . , n− 1}.
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At last, the Xor operations in SIMON2n can be modeled by the following in-
equalities:

L3 : ai+1
j − bij − tij − wi

(j−2)modn = 1 for j ∈ {0, 1, . . . , n− 1}.

So far, we get a description {L1,L2,L3} of 1-round division trails. By repeating
this procedure r times, we can get a linear inequality system L for r-round CB-
DP propagation. Given the initial CBDP, we can add corresponding constrains
into L and estimate whether an integral distinguisher exists by Algorithm 2.

How to Describe the CBDP Division Trails of Partial Round. For Ei,j ,
the first round maybe a partial round Qi,li−1 ·Qi,li−2 · · · · ·Qi,j , we can use the
propagation rules of Copy, And, and Xor to obtain its linear inequality system
directly. But there will be n different situations which will make program code
complex. We observe that when we consider the CBDP propagation ofQi,j , if add

constrain bi+1,j
j = bi,jj , the output vector set is the same with input vector, that is

Qi,j is transformed into identical function. For example, when the input CBDP of
core operation is D{k=(1,0,1,0)}, according to the Table 7 in Appendix, the output

CBDP of core operation is D14

K , where K = {(1, 0, 1, 0) , (0, 0, 1, 1) , (1, 0, 0, 1)}.
When adding the constrain bi+1,j

j = bi,jj , we get K = {(1, 0, 1, 0)}. So it may
make the core operation become identical function.

For partial round Qi,li−1 ·Qi,li−2 · · · · ·Qi,j , we let the Qi,j−1 ·Qi,j−2 · · · · ·Qi,0

be identical function. Adding the following constrains

L4 : ai+1
j − bij = 0 for j ∈ {0, 1, . . . , j − 1},

we get a description {L1,L2,L3,L4} of partial round Qi,li−1 ·Qi,li−2 · · · · ·Qi,j .
Then by repeating the constrains of one round r − i times, we can get a linear
inequality system L for Ei,j . Given some initial division property, we can add
the corresponding constrains into L and estimate whether a distinguisher based
on CBDP exists or not by Algorithm 2.

How to Obtain the Output BDPT of Qi,j . After the pruning techniques and
stopping rules, if Algorithm 3 doesn’t stop, we know that Ki,j = ∅ and Li,j ̸= ∅.
In order to help readers understand our algorithm, we show an example of the
propagation of BDPT here.

For SIMON32, if the input BDPT ofQ1,15 isDK1,15=∅,L1,15={ℓ1,ℓ2}, where ℓ1 =
(1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), and ℓ2 =
(1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). The 4 bit-
s of ℓ1 that may be updated by Q1,15 is (0, 1, 1, 0). Then according to the B-
DPT propagation rules of core operation in Table 8. The output vector set
is L′1 = {[0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]}. So the propagation from ℓ1 generates
three vectors as:

(1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
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In the same way, we can obtain that the propagation from ℓ2 generates only one
vectors (1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

According to theBDPT Rule 3 (Xor), the vector (1,0,0, 1, 1, 1, 1, 1,1, 1, 1, 1,
1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) should be cancelled because it is prop-
agated from ℓ1 and ℓ2 twice. So the output BDPT ofQ1,15 isDK1,16=∅,L1,16={ℓ3,ℓ4},
where ℓ3 = (1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
and ℓ4 = (1,0,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Finally, Q1,16 has round keys Xored operation, So new vectors are gener-
ated from L1,16 according to the BDPT Rule 4, and the new vectors are
inserted into K1,16. Moreover, some vectors in L1,16 becomes redundant be-
cause of the new vectors of K1,16. After the swapping, the output BDPT of
Q1,16 is DK2,0={k},L2,0={ℓ5}, where k = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and ℓ5 = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The High Efficiency of Our Algorithm. For SIMON32, we prepare chosen
plaintexts such that the leftmost bit is constant and the others are active, the
set of chosen plaintexts has D{(1,1,1,...,1)},{(0,1,1,...,1)}. Take 14-round SIMON32
as an example, if we want to obtain the balanced information of the rightmost
output bit, we have to evaluate the propagation characteristic of BDPT. Table 2
shows the size of |K| and |L| in every round. The size in the paper [18] is obtained
after removing redundant vectors according to the definition of BDPT, while the
size in this paper is obtained after the pruning techniques. From Table 2, we find
that |L| of the 5-th round in this paper becomes 0, it triggers Stopping Rule 2,
and we obtain that the rightmost bit is balanced. Our pruning techniques can
reduce the size of BDPT greatly.

Table 2. Sizes of DK,L in obtaining balanced information of the rightmost output bit

Reference BDPT
Size in every round

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[18]
|L| 1 1 5 19 138 2236 89878 4485379 47149981 2453101 20360 168 8 0 0 0
|K| 1 1 1 6 43 722 23321 996837 9849735 2524718 130724 7483 852 181 32 32

This paper
|L| 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0
|K| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The Integral Distinguishers of SIMON and SIMECK Based on B-
DPT. SIMECK is a family of lightweight block cipher proposed at CHES 2015
[24], and its round function is very similar to that of SIMON except the rota-
tion constants. The rotation number is changed from (1, 8, 2) to (0, 5, 1). Let
SIMECK2n be the SIMECK block ciphers with 2n-bit block length, where n is
chosen from 16, 24, and 32. We use Algorithm 3 to search the integral distinguish-
ers of SIMON and SIMECK family based on BDPT. For 17-round SIMON64,
we find an integral distinguisher with 23 balanced bits which has one more bit
than the previous longest integral distinguisher. For SIMON32/48/96/128 and
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SIMECK32/48/64, the distinguishers we find are in accordance with the previ-
ous longest distinguishers. Especially for SIMON32, our MILP algorithm finds
the 14-round integral distinguisher that found in [18] by going through all the
BDPT division trails. It shows the valid of our algorithm.

Since round keys are Xored after the round function in SIMON and SIMECK,
we can trivially get the (r + 1)-round integral characteristic from the r-round
integral distinguisher. Like Table 1, the results of SIMON and SIMECK present
in Table 3 have been added by one round. What needs to be explained is that
“a” denotes active bit, “c” denotes constant bit, “?” denotes the balanced infor-
mation in unknown based on BDPT, and “b” denotes the balanced bit.

Table 3. Integral distinguishers for SIMON and SIMECK

Cipher Distinguisher

15-SIMON32
In: (caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)

Out: (????????????????, ?b??????b??????b)

16-SIMON48
In: (caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????, bbbbbbbbbbbbbbbbbbbbbbbb)

18-SIMON64
In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,bbbbbbbbbbb??b??b?????bbbbbbbbbb)

22-SIMON96

In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????????????????????,

b?b????b?????????????????????????????????b????b?)

26-SIMON128

In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????????????????????????????????????,

b?b???????????????????????????????????????????????????????????b?)

15-SIMECK32
In: (caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)

Out: (????????????????, bb???bb???bb???b)

18-SIMECK48
In: (caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????, b???bb?????????????bb???)

21-SIMECK64
In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,bb???b?????????????????????b???b)

5.2 Applications to PRESENT and RECTANGLE

PRESENT has an SPN structure and uses 80- and 128-bit keys with 64-bit
blocks through 31 rounds. In order to improve the hardware efficiency, it use a
fully wired diffusion layer. Fig. 2 illustrates one-round structure of PRESENT.
For more details, please refer to [2].

We divide one-round PRESENT into 17 parts Qi = Qi,16 · Qi,15 · · · · · Qi,0.
When 0 ≤ j ≤ 15, we have

Qi,j

(
xi,j
63 , x

i,j
62 , . . . , x

i,j
0

)
=
(
xi,j
63 , . . . , S

(
xi,j
4j+3, x

i,j
4j+2, x

i,j
4j+1, x

i,j
4j

)
, . . . , xi,j

0

)
,
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Fig. 2. One-round SP structure of PRESENT

where S
(
xi,j
4j+3, x

i,j
4j+2, x

i,j
4j+1, x

i,j
4j

)
is the S-box of PRESENT. When j = 16, we

have

Qi,16

(
xi,16
63 , xi,16

62 , . . . , xi,16
63

)
= P

(
xi,16
63 , xi,16

62 , . . . , xi,16
0

)
⊕ ki,

where P is the linear permutation function of PRESENT and ki is the i-th round
key.

The paper [22] has studied how to calculate the CBDP division trails of S-
box and model those trails by linear inequalities. In this part, we only list the
L propagation property of PRESENT’s S-box in Appendix Table 9 gotten by
Algorithm 1. The linear layer of PRESENT is a bit permutation, thus the propa-
gation of BDPT through linear layer is just a permutation of the vector. Finally,
when round keys are Xored with the middle state, new vectors are generated
from L, and the new vectors are inserted into K. If the partial round doesn’t has
Qi,j , we only need to avoid the responding linear inequalities. So we can easily

complete the algorithm SCBDP
(
Ei,j ,k,m

)
and BDPTP

(
Qi,j ,D∅,L′

i,j

)
.

RECTANGLE is very like to PRESENT, for more detail information please
refer to the paper [25]. We list the L propagation property of RECTANGLE’s
S-box in Appendix Table 10. We apply Algorithm 3 to PRESENT and RECT-
ANGLE, and the results are listed in Table 4. For 9-round PRESENT, when the
input plaintexts is 260 we find a better integral distinguisher which has 3 more
balanced bits than before. When 263 plaintexts are used, the paper [23] gave a
9-round integral distinguisher with 22 balanced bits, while our algorithm can
obtain 28 balanced bits. For RECTANGLE, when the input plaintexts is 260,
the best integral distinguisher is 9 rounds with 16 balanced bits. In this paper
we find a better 9-round distinguisher which has 27 balanced bits.

Table 4. Integral distinguishers for PRESENTand RECTANGLE

Cipher Distinguisher

9-PRESENT
In: (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaacccc)

Out: (????????????????????????????????,???????????????????b???b???b???b)

9-PRESENT
In: (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac)

Out: (???b???b???bbbbb???b???b???bbbbb, ???b???b???bbbbb???b???b???bbbbb)

9-RECTANGLE
In: (caaaaaaaaaaaaaaa,caaaaaaaaaaaaaaa,caaaaaaaaaaaaaaa,caaaaaaaaaaaaaaa)

Out: (bbbbbbbbbbbbbbbb,bbbb??bb???bbbbb,????????????????,????????????????)
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5.3 Applications to LBlock and TWINE

LBlock is a lightweitht block cipher proposed by Wu and Zhang [20]. The block
size is 64 bits and the key size is 80 bits. It employs a variant Feistel structure
and consists of 32 rounds. The output nibble of every S-box in Xored with some
another nibble of the right branch. The non-linear layer uses eight 4-bit S-boxes
and we do not list these S-boxes due to the space limitation. One-round structure
of LBlock is given in Fig. 3. For a more detailed description, please refer to [20].

<<< 8

Å
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i
k

Fig. 3. Round structure of LBlock

Table 5. The diffusion function P

j 0 1 2 3 4 5 6 7

P (j) 2 0 3 1 6 4 7 5

We divide one-round LBlock into 9 parts Qi = Qi,8 · Qi,7 · · · · · Qi,0. When
0 ≤ j ≤ 7, we have

Qi,j

(
xi,j
7 , . . . , xi,j

0 , yi,j7 , . . . , yi,j0

)
=
(
xi,j
7 , . . . , xi,j

0 , yi,j7 , . . . , yi,jP (j)+1, Y
i,j
P (j), y

i,j
P (j)−1, . . . , y

i,j
0

)
,

where Y i,j
P (j) = Sj

(
xi,j
j

⊕
ki,j

)⊕
yi,j(P (j)−2)mod8, Sj is the j-th S-box of LBlock,

and P (x) is the nibble diffusion function as shown in Table 5. For Qi,8, we have

Qi,8

(
xi,8
7 , . . . , xi,8

0 , yi,87 , . . . , yi,80

)
=
(
yi,87 , . . . , yi,80 , xi,8

7 , . . . , xi,8
0

)
.

For Qi,j , 0 ≤ j ≤ 7, when we consider the BDPT propagation rules of the

function BDPTP
(
Qi,j ,D∅,L′

i,j

)
in Algorithm 3, the 56 bits remain unchanged,

and there will be 8 bits
(
xi,j
j , yi,jP (j)

)
of the BDPT vectors will be changed. We
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can view it as 8-bit S-box to get its output BDPT. It should be valued that the
round key Xor operation is in the front of S-box, we have to build a table to
describe the impact of L to K.

After generating the propagation table for every enlarged S-box, we can use
Algorithm 3 to find integral distinguishers for LBlock. We find a new 17-round
integral distinguisher of LBlock which is one more round than the previous
longest integral distinguisher, and a better 16-round integral distinguisher with
less active bits can be obtain. The detail forms of the integral distinguishers are
shown in Table 6.

Table 6. Integral distinguishers for LBlock and TWINE

Cipher Distinguisher

17-LBlock
In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,??bb??????????????????????????bb)

16-LBlock
In: (aaccaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????????????????????????????????,??bbbbbbbbbb?b?bb?b?bbbb????????)

16-TWINE
In: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Out: (????bbbb????bbbb????bbbb????bbbb,????bbbb????bbbb????bbbb????bbbb)

TWINE is a 64-bit lightweight block cipher supporting 80- and 128-bit keys
and has the alike structure as LBlock. We get a 16-round integral distinguisher
on TWINE which is the same with the previous best results [27]. We omit the
details for TWINE due to the limit of space.

6 Conclusions

In this paper, we solve the complexity problem of searching integral distinguish-
ers based on BDPT. We research the BDPT of S-box for the first time and
propose an algorithm which can get the BDPT division trails from the ANF of
S-box directly. Using the pruning techniques, we can removing redundant vectors
which has no impact on the m-th bit’s balance based on BDPT. It makes the
propagation of BDPT efficient. Inspired by the “lazy propagation” which can
use CBDP method to show some bits are unknown based on BDPT, we propose
the notion of “fast propagation” which show some bits are balanced. Finally we
propose an algorithm to estimate whether the m-th output bit is balanced or
not based on BDPT.

We apply our searching algorithm to SIMON, SIMECK, PRESENT, RECT-
ANGLE, LBlock, and TWINE. For SIMON64, PRESENT, and RECTANGLE,
we find more balanced bits than the previous longest distinguishers. For LBlock,
we find a 17-round integral distinguisher which is one more round than the pre-
vious longest integral distinguisher, and a better 16-round integral distinguisher
with less active bits can be obtain. For other ciphers, all the integral distin-
guishers we get are in accordance with the existing best integral distinguishers.
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It shows that BDPT is powerful in finding integral distinguishers for block ci-
phers, and our algorithm can search integral distinguishers based on BDPT in
practical time for block ciphers with block size larger than 32, which is imprac-
tical under the traditional framework.

The absence of integral characteristic based on BDPT doesn’t imply the
absence of integral characteristic. The precondition for the propagation rules
of BDPT regards ⊕

x∈X
(πu1 (x)⊕ πu2 (x)) as unknown if either ⊕

x∈X
πu1 (x) or

⊕
x∈X

πu2 (x) is unknown. Any improvement on the accuracy of BDPT propa-

gation may also obtain better integral distinguishers. Moreover, our searching
algorithm supposes that all round keys are randomly and secretly chosen. If con-
sider the key scheduling algorithm, we may obtain better integral distinguishers.
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A The Propagation of Division Property

Table 7. The K propagation of CBDP for the core operation of SIMON

Input D14

K,{ℓ} Output D14

K′,L′

ℓ = [0, 0, 0, 0] L′ = {[0, 0, 0, 0]}
ℓ = [1, 0, 0, 0] L′ = {[1, 0, 0, 0], [0, 0, 0, 1]}
ℓ = [0, 1, 0, 0] L′ = {[0, 1, 0, 0], [0, 0, 0, 1]}
ℓ = [1, 1, 0, 0] L′ = {[1, 1, 0, 0], [0, 0, 0, 1]}
ℓ = [0, 0, 1, 0] L′ = {[0, 0, 1, 0], [0, 0, 0, 1]}
ℓ = [1, 0, 1, 0] L′ = {[1, 0, 1, 0], [1, 0, 0, 1], [0, 0, 1, 1]}
ℓ = [0, 1, 1, 0] L′ = {[0, 1, 1, 0], [0, 0, 1, 1], [0, 1, 0, 1]}
ℓ = [1, 1, 1, 0] L′ = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1]}
ℓ = [k3, k2, k1, k0] L′ = {[k3, k2, k1, k0]}

Table 8. The L propagation of BDPT for the core operation of SIMON

Input D14

K,{ℓ} Output D14

K′,L′

ℓ = [0, 0, 0, 0] L′ = {[0, 0, 0, 0]}
ℓ = [1, 0, 0, 0] L′ = {[1, 0, 0, 0]}
ℓ = [0, 1, 0, 0] L′ = {[0, 1, 0, 0]}
ℓ = [1, 1, 0, 0] L′ = {[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1], [1, 1, 0, 1]}
ℓ = [0, 0, 1, 0] L′ = {[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 1]}
ℓ = [1, 0, 1, 0] L′ = {[1, 0, 1, 0], [1, 0, 0, 1], [1, 0, 1, 1]}
ℓ = [0, 1, 1, 0] L′ = {[0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]}
ℓ = [1, 1, 1, 0] L′ = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 0, 1]}
ℓ = [ℓ3, ℓ2, ℓ1, ℓ0] L′ = {[ℓ3, ℓ2, ℓ1, ℓ0]}
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Table 9. The L propagation property of S-box in PRESENT

Input D14

K,{ℓ} Output D14

K′,L′

ℓ = [0, 0, 0, 0] L′ = {[0, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0]}
ℓ = [0, 0, 0, 1] L′ = {[0, 0, 0, 1], [0, 1, 0, 1], [1, 0, 0, 0], [1, 1, 0, 0]}
ℓ = [0, 0, 1, 0] L′ = {[0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 0, 0], [1, 1, 0, 0]}

ℓ = [0, 0, 1, 1]
L′ = {[0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0],

[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0]}
ℓ = [0, 1, 0, 0] L′ = {[0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0]}
ℓ = [0, 1, 0, 1] L′ = {[0, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 0]}
ℓ = [0, 1, 1, 0] L′ = {[0, 0, 0, 1], [0, 1, 1, 0], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 0, 0]}

ℓ = [0, 1, 1, 1]
L′ = {[0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 1, 0], [1, 0, 0, 0],

[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 0, 1]}
ℓ = [1, 0, 0, 0] L′ = {[0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0]}
ℓ = [1, 0, 0, 1] L′ = {[0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 0]}

ℓ = [1, 0, 1, 0]
L′ = {[0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 1], [1, 0, 0, 1], [1, 0, 1, 0],

[1, 0, 1, 1, [1, 1, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1]}

ℓ = [1, 0, 1, 1]
L′ = {[0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 1, 1], [1, 0, 0, 0],

[1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 0, 1], , [1, 1, 1, 1]}
ℓ = [1, 1, 0, 0] L′ = {[0, 0, 1, 0], [0, 0, 1, 1], [1, 0, 0, 1], [1, 1, 0, 0]}

ℓ = [1, 1, 0, 1]
L′ = {[0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 1], [1, 0, 0, 0],

[1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 1, 0]}
ℓ = [1, 1, 1, 0] L′ = {[0, 1, 0, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1]}
ℓ = [1, 1, 1, 1] L′ = {[1, 1, 1, 1]}

Table 10. The L propagation property of S-box in RECTANGLE

Input D14

K,{ℓ} Output D14

K′,L′

ℓ = [0, 0, 0, 0] L′ = {[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0]}
ℓ = [0, 0, 0, 1] L′ = {[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 1], [0, 1, 1, 0]}
ℓ = [0, 0, 1, 0] L′ = {[0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 0, 0], [1, 1, 0, 0]}
ℓ = [0, 0, 1, 1] L′ = {[0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 0, 0]}
ℓ = [0, 1, 0, 0] L′ = {[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0]}
ℓ = [0, 1, 0, 1] L′ = {[0, 1, 0, 0], [0, 1, 0, 1], [1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 1, 0]}
ℓ = [0, 1, 1, 0] L′ = {[0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 1], [1, 0, 0, 0], [1, 1, 0, 0]}
ℓ = [0, 1, 1, 1] L′ = {[0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 1, 1], [1, 0, 0, 1], [1, 1, 1, 0]}

ℓ = [1, 0, 0, 0]
L′ = {[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0],

[1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1]}

ℓ = [1, 0, 0, 1]
L′ = {[0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 1, 0], [1, 0, 0, 0],

[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1]}
ℓ = [1, 0, 1, 0] L′ = {[0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0]}
ℓ = [1, 0, 1, 1] L′ = {[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1]}
ℓ = [1, 1, 0, 0] L′ = {[0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1]}
ℓ = [1, 1, 0, 1] L′ = {[0, 1, 1, 0], [0, 1, 1, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, 1, 1, 1]}

ℓ = [1, 1, 1, 0]
L′ = {[0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 1, 1], [1, 0, 0, 0],

[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0]}
ℓ = [1, 1, 1, 1] L′ = {[1, 1, 1, 1]}


