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Abstract. In a recent work, Katz et al. (CANS’17) generalized the
notion of Broadcast Encryption to define Subset Predicate Encryption
(SPE) that emulates subset containment predicate in the encrypted do-
main. They proposed two selective secure constructions of SPE in the
small universe settings. Their first construction is based on q-type as-
sumption while the second one is based on DBDH. Both achieve con-
stant size secret key while the ciphertext size depends on the size of the
privileged set. They also showed some black-box transformation of SPE
to well-known primitives like WIBE and ABE to establish the richness
of the SPE structure.
This work investigates the question of large universe realization of SPE
scheme based on static assumption without random oracle. We pro-
pose two constructions both of which achieve constant size secret key.
First construction SPE1, instantiated in composite order bilinear groups,
achieves constant size ciphertext and is proven secure in a restricted ver-
sion of selective security model under the subgroup decision assumption
(SDP). Our main construction SPE2 is adaptive secure in the prime order
bilinear group under the symmetric external Diffie-Hellman assumption
(SXDH). Thus SPE2 is the first large universe instantiation of SPE to
achieve adaptive security without random oracle. Both our constructions
have efficient decryption function suggesting their practical applicabil-
ity. Thus the primitives like WIBE and ABE resulting through black-box
transformation of our constructions become more practical.

1 Introduction

The notion of Identity-Based Encryption (IBE) [7] was generalized by Katz
et al. [21] to Predicate Encryption (PE). PE emulates a predicate function
R : X × Y → {0, 1} in the encrypted domain in the following sense. A key
(SK) associated with key-index (x) can decrypt a ciphertext (CT) associated
with data-index (y) if R(x, y) = 1. In such a generalized view, IBE evaluates an
equality predicate. Attribute-Based Encryption (ABE) [17] is another example
of predicate encryption that emulates boolean function in the encrypted domain.
One can view Broadcast Encryption (BE) [8] as a simpler form of ABE where
the predicate evaluated is disjunction in the form of membership checking.



Katz et al. [20] recently introduced another primitive called Subset Predicate
Encryption (SPE) that allows checking for subset containment in the encrypted
domain. More formally, in an SPE, a key (SK) associated with a key-index set
(Ω) can decrypt a ciphertext (CT) associated with data-index set (Θ) if Ω ⊆ Θ.
There is an obvious connection between BE and SPE in the sense that both
encrypt for a privileged set Θ. However, unlike BE, the KeyGen in SPE takes
input a set of identities Ω allowing a subset based testing during decryption.
It is trivial to achieve subset containment check through multiple membership
checks.

Thus, one may be tempted to use an efficient BE instantiation [8] to con-
struct a small-universe SPE. In such an instantiation, KeyGen of SPE would
simply be a concatenation of output of KeyGen of BE for each x ∈ Ω i.e.
SKΩ = (SKx1 , . . . ,SKxk

) where Ω = (x1, . . . , xk). However, such a realization
of SPE suffers from an obvious security issue. Given a ciphertext CTΘ, an un-
privileged user having secret key SKΩ (for Ω 6⊆ Θ), can easily derive a valid key
by stripping the SKΩ as long as Ω ∩Θ 6= φ.

In their work, Katz et al. [20] discussed and then ruled out a few generic tech-
niques to construct small-universe SPE from Inner-Product Encryption (IPE),
Wildcard Identity-Based Encryption (WIBE) and Fuzzy Identity-Based En-
cryption (FIBE) due to the reason of inefficiency. They proposed two dedicated
SPE constructions in the small universe settings. Both the constructions achieve
constant-size secret key while the ciphertext size depends on the cardinality of
the privileged set it is intended to. Informally speaking, their first construc-
tion utilized the inversion exponent technique [9] and the second one utilized
the commutative blinding technique [6]. However, both the constructions were
proven only selectively secure. The security of the first construction is based on
a non-static assumption (q-BDHI) whereas the security of second construction
is based on a static assumption (DBDH). The second construction of [20] can
be easily modified to achieve selective security in large universe setting in the
random oracle model.

Given the above results of [20], the main open question in the context of
SPE is the following. Can we realize an adaptively secure SPE in the large
universe setting without random oracle where security is based on some static
assumption? In this paper we answer this question in the affirmative. In addition,
we also ask whether one can achieve an SPE with constant-size ciphertext. On
this front this paper reports some partial success through a trade-off in the
security model.

We start with a rather obvious observation. Recall the connection between
SPE in small universe and public key broadcast encryption mentioned above.
In a similar vein, Identity-Based Broadcast Encryption (IBBE) can be seen as
a special case of large-universe SPE. In particular, the KeyGen of IBBE always
takes a singleton set as input. However, trivially extending the KeyGen of IBBE
to that of SPE may be problematic. The security model of IBBE has a natural
restriction that the intersection of challenge identity set and the set of identities
compromised in the key extraction phase must be null. On the other hand, the
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corresponding natural restriction in the context of SPE would be that none of
the set of identities queried in the key extraction phase should be a subset of
the challenge identity set.

A constant-size ciphertext IBBE was proposed in [13] based on q-type as-
sumption in the random oracle model. Recently, Gong et al. [16] proposed in-
tegration of [13] and Déjà Q [26] towards selective secure IBBE with constant-
size ciphertext under static subgroup decision assumptions. However, unlike the
IBBE KeyGen that encodes a single identity, the KeyGen in SPE encodes a set
Ω into a secret key of constant-size. We notice that the KeyGen of [16] can be
tweaked appropriately to generate a constant-size secret key corresponding to a
set. This way we arrive at our first construction SPE1, a constant-size ciphertext
SPE in the large universe setting without random oracle.

The security reduction, closely follows that of [16]. However, the reduction
faces additional hurdles in order to properly simulate KeyGen of SPE. In the usual
IBBE scenario, for a challenge ciphertext CTΘ∗ , adversary is not allowed to make
secret key queries on x ∈ Θ∗. In case of SPE, however, it is possible to have some
x ∈ Ω ∩Θ∗. In other words, the simulator in our SPE security argument should
be able to answer for key extraction queries which were naturally ruled out in
IBBE security model considered in [16].

Our Déjà Q based security argument is able to achieve the following – (i)
the effect of the terms encoding x ∈ (Θ∗ ∩ Ω) gets nullified naturally and
(ii) takes into consideration of the effect of availability of admissible Aggregate
function [14] to adversary. This, however, comes with a restriction on the KeyGen
queries (also due to the Déjà Q approach). Informally speaking, we need the sets
that are queried for key extraction: (Ω1,Ω2, . . . ,Ωq) to be cover-free sets i.e. for
any i ∈ [q], Ωi \ (

⋃
j∈[q]\{i} Ωj) 6= φ.

While pairing-based adaptive secure IBBE achieveing constant size secret key
as well as ciphertext remains still as an open problem; our above result indicates
the limitations of the available techniques to argue even selective security for
constant size ciphertext SPE.

Our main construction (SPE2) achieves adaptive security in the prime order
groups under SXDH with constant-size secret key. This construction resembles
IBBE structure of [22] which extended JR-IBE [19] to achieve an efficient tag-
based IBBE construction. We tweak the KeyGen algorithm of their IBBE 1 [22]
to realize adaptive secure SPE in the large universe settings. Again, the non-
triviality lies in the security argument. Precisely, in the security model of [22], for
a challenge set Θ∗ = (y1, . . . , yl), the set of identities queried for key extraction
should be strictly non-overlapping. However, in the security argument of (SPE2),
the query (Ω) adversary makes may contain some elements that also belong to
the challenge set Θ∗.

We are able to realize the first large universe adaptive secure SPE without
random oracle. Our construction is quite efficient too in terms of parameter size,
encryption and decryption cost. For example, encryption does not require any
pairing evaluation while decryption evaluates only 3 pairings. The only limitation
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is the obvious: ciphertext size depends on the size of the privileged set it is
intended to.

We briefly discuss the effect of black-box transformations of Katz et al. [20]
on our SPE2 constructions. We achieve first adaptive secure CP-DNF (CP-ABE
with DNF policy) evaluation with constant-size secret key. We present the com-
parison with state of the art in Table 1 and Table 2.

Organization of the Paper. In Section 2 we recall few definitions and present the
notations that will be followed in this paper. In Section 3 we define the subset
predicate encryption (SPE) and its security model. In Section 4 and in Section 5,
we present two SPE constructions along with their proofs. Section 6 concludes
this paper.

2 Preliminaries

Notations. Here we denote [a, b] = {i ∈ N : a ≤ i ≤ b} and for any n ∈ N,
[n] = [1, n]. The security parameter is denoted by 1λ where λ ∈ N. By s←↩ S we
denote a uniformly random choice s from S. By P(S) we denote the power set of
set S. We use A ≈ε B to denote that A and B are computationally indistinguish-
able such that for any PPT adversary A, |Pr[A(A)→ 1]− Pr[A(B)→ 1]| ≤ ε
where ε ≤ neg(λ) for neg(λ) denoting negligible function. We use AdviA(λ) to
denote the advantage adversary A has in security game Gamei and AdvHP

A (λ) is
used to denote the advantage of A to solve the hard problem HP.

2.1 Bilinear Groups

This paper presents two subset predicate encryption schemes. The first construc-
tion is instantiated in the composite order symmetric bilinear groups whereas
the second one is instantiated in the prime order asymmetric bilinear groups.

Composite Order Bilinear Pairings. A composite order symmetric bilinear
group generator Gsbg, apart from security parameter 1λ takes an additional pa-
rameter n and returns an (n + 3)-tuple (p1, · · · , pn,G,GT, e) where both G,GT

are cyclic groups of order N =
∏
i∈[n]

pi where all pi are large primes and e :

G × G → GT is an admissible, non-degenerate Type-1 bilinear pairing. Here,
Gpi denotes a subgroup of G of order pi. This notation is naturally extended to
Gpi···pj denoting a subgroup of G of order pi× · · ·× pj . By convention gi···j is an
element of subgroup Gpi···pj . It is evident that e(gi, gj) = 1 if i 6= j.

Prime Order Bilinear Pairings. The prime order asymmetric bilinear group
generator Gabg, takes security parameter 1λ and returns a 5 tuple (p,G1,G2,GT, e)
where all of G1,G2,GT are cyclic groups of order large prime p and e : G1×G2 →
GT is an admissible, non-degenerate Type-3 bilinear pairing [15].
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2.2 Hardness Assumptions

Composite Order Setting. Let (p1, p2, p3,G,GT, e)← Gsbg(1λ, 3) be the out-
put of symmetric bilinear group generator where both G,GT are cyclic groups
of order N = p1p2p3 where p1, p2, p3 are large primes. We define two variants of
subgroup decision problems [26] as follows:

DS1. {D,T0} ≈εDS1
{D,T1} for T0 ←↩ Gp1 and T1 ←↩ Gp1p2 given D = (g1, g3, g12)

where g1 ←↩ G×p1 , g3 ←↩ G×p3 and g12 ←↩ Gp1p2 . In other words, the advantage of
any adversary A to solve the DS1 is

AdvDS1
A (λ) = |Pr[A(D,T0)→ 1]− Pr[A(D,T1)→ 1]| ≤ εDS1.

DS1 is hard if advantage of A is negligible i.e. εDS1 ≤ neg(λ).

DS2. {D,T0} ≈εDS2
{D,T1} for T0 ←↩ Gp1p3 and T1 ←↩ G givenD = (g1, g3, g12, g23)

where g1 ←↩ G×p1 , g3 ←↩ G×p3 , g12 ←↩ Gp1p2 and g23 ←↩ Gp2p3 . In other words, the
advantage of any adversary A to solve the DS2 is

AdvDS2
A (λ) = |Pr[A(D,T0)→ 1]− Pr[A(D,T1)→ 1]| ≤ εDS2.

DS2 is hard if advantage of A is negligible i.e. εDS2 ≤ neg(λ).

Prime Order Setting. Let (p,G1,G2,GT, e) ← Gabg(1λ, 1) be the output of
asymmetric bilinear group generator where G1,G2,GT are cyclic groups of order
a large prime p.

Symmetric External Diffie-Hellman Assumption (SXDH). The SXDH assump-
tion in group (G1,G2) is: DDH in G1 and DDH in G2 is hard. We rewrite DDH in
G1 in the form of 1-Lin assumption below and call it DDHG1

. The DDHG2
denotes

the DDH problem in G2.

– DDHG1
: {D,T0} ≈εDDHG1

{D,T1} for T0 = gs1 and T1 = gs+ŝ1 given D =

(g1, g2, g
b
1, g

bs
1 ) where g1 ←↩ G1, g2 ←↩ G2, b ←↩ Z×p , s, ŝ ←↩ Zp. In other

words, the advantage of any adversary A to solve the DDHG1 is

Adv
DDHG1

A (λ) = |Pr[A(D,T0)→ 1]− Pr[A(D,T1)→ 1]| ≤ εDDHG1
.

DDHG1 is hard if advantage of A is negligible i.e. εDDHG1
≤ neg(λ).

– DDHG2 : {D,T0} ≈εDDHG2
{D,T1} for T0 = gcr2 and T1 = gcr+r̂2 given D =

(g1, g2, g
c
2, g

r
2) where g1 ←↩ G1, g2 ←↩ G2, c, r, r̂ ←↩ Zp. In other words, the

advantage of any adversary A to solve the DDHG2
is

Adv
DDHG2

A (λ) = |Pr[A(D,T0)→ 1]− Pr[A(D,T1)→ 1]| ≤ εDDHG2
.

DDHG2
is hard if advantage of A is negligible i.e. εDDHG2

≤ neg(λ).
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3 Subset Predicate Encryption

We rephrase Subset Predicate Encryption (SPE) in terms of a predicate encryp-
tion [21] and formally model its security requirement.

3.1 Subset Predicate Encryption (SPE)

Let ID be the identity space. For a key-index set Ω ∈ X ⊂ ID and a data-index
set Θ ∈ Y ⊂ ID, the predicate function for SPE is

Rs (Ω,Θ) =

{
1 if Ω ⊆ Θ

0 otherwise
.

The following description of SPE scheme is presented here as a Key-Encapsulation
Mechanism (KEM) where C, SK and K denote ciphertext space, secret key space
and encapsulation key space respectively.

– Setup: It takes m ∈ N along with security parameter 1λ. It outputs master
secret key msk and public key mpk.

– KeyGen: It takes mpk, msk and key-index set Ω ∈ X of size k≤ m as input.
It generates secret key SK ∈ SK corresponding to key-index set Ω.

– Encrypt: It takes mpk, data-index set Θ ∈ Y of size l ≤ m as input. It
generates encapsulation key κ ∈ K and ciphertext CT ∈ C.

– Test: It takes (SK,Ω) and (CT,Θ) as input. Outputs κ or ⊥.

Correctness. For all (mpk,msk) ← Setup(1λ), all key-index set Ω ∈ X , all
SK← KeyGen(msk,Ω), all data-index set Θ ∈ Y, all (κ,CT)← Encrypt(mpk,Θ),

Decrypt(mpk, (SK,Ω), (CT,Θ)) =

{
κ if Rs (Ω,Θ) = 1

⊥ otherwise
.

Remark 1. The Setup algorithms takes an additional parameterm along with the
security parameter λ. This is because, both our constructions are large universe
constructions. The cardinality of the sets processed in ciphertext generation and
key generation in both of our constructions will be upper bounded by m like any
other available standard model large universe constructions [4, 22].

3.2 Security Notions

Adaptive CPA-Security of SPE. The security game for adaptive CPA-Security
for SPE (SPE) is defined as following:

– Setup: The challenger gives mpk to adversary A and keeps msk as secret.
– Query Phase-I: Given a key-index Ω, challenger returns SK← KeyGen(msk,Ω).
– Challenge: The adversary (A) provides challenge data-index Θ∗ (such that

Rs (Ω,Θ∗) = 0 for all previous key queries). Then challenger generates (κ0,CT)
← Encrypt(mpk,Θ∗) and chooses κ1 ←↩ K . It returns (CT, κb) to adversary
for b←↩ {0, 1}.
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– Query Phase-II: Given a key-index Ω such that Rs (Ω,Θ∗) = 0, challenger
returns SK← KeyGen(msk,Ω).

– Guess: Adversary (A) outputs its guess b′ ∈ {0, 1} and wins if b = b′.

For any adversary A,
AdvSPE
A,IND-CPA(λ) = |Pr[b = b′]− 1/2|.

We say, SPE is Ind-CPA secure (IND-CPA) if for any PPT adversaryA, AdvSPE
A,IND-CPA(λ)

≤ neg(λ). If there is a Init phase before the Setup where the adversary A com-
mits to the challenge data-index set Θ∗, we call such security model as sInd-CPA
security (sIND-CPA) model.

4 SPE1: Realizing Constant Size Ciphertext

We present first SPE construction having constant-size secret key and constant-
size ciphertext in the composite order pairing setting.

4.1 Construction

SPE1 is defined by following four algorithms.

– Setup(1λ,m) : The symmetric bilinear group generator outputs (p1, p2, p3,
G,GT, e) ← Gsbg(1λ, 3) where both G,GT are cyclic groups of order N =
p1p2p3. Then pick α, β ←↩ N , generators g1, u←↩ Gp1 and g3 ←↩ Gp3 . Choose
R3,i ←↩ Gp3 for all i ∈ [m]. Define the msk = (α, β, u, g3) and the public
parameter is

mpk = (g1, g
β
1 ,
(
Gi = gα

i

1 , Ui = uα
i

· R3,i

)
i∈[m]

, e(g1, u)β ,H)

where H : GT → {0, 1}poly(λ)
is a randomly chosen universal hash function.

– KeyGen(msk,Ω) : Given a set Ω, such that |Ω| = k ≤ m; define the polyno-
mial PΩ(z) =

∏
x∈Ω

(z+x) = d0 + d1z+ d2z
2 + . . .+ dkz

k, pick X3 ←↩ Gp3 and

define secret key as

SKΩ = u
β

PΩ(α) ·X3 = u

β∏
x∈Ω

(α+x)

·X3.

– Encrypt(mpk,Θ) : Given a set Θ, such that |Θ| = l ≤ m; the polynomial
PΘ(z) =

∏
y∈Θ

(z + y) = c0 + c1z + c2z
2 + . . . + clz

l. Choose s ←↩ Zp and

compute κ and CTΘ = (C0,C1) such that

κ = H(e(g1, u)sβ),C0 = gsβ1 ,C1 = g
sPΘ(α)
1 =

gc01 ∏
i∈[l]

Gcii

s

.
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– Decrypt((SKΩ,Ω), (CTΘ,Θ)): As Ω ⊆ Θ, compute PΘ\Ω(α) =
∏

w∈Θ\Ω
(α + w)

= a0 + a1α + a2α
2 + . . . + atα

t where t = |Θ \ Ω|. Then compute κ =
H((B/A)1/a0) where

A = e(C0,
∏
i∈[t]

Uaii ), B = e(C1,SKΩ).

Correctness. Notice that,

A = e(C0,
∏
i∈[t]

Uaii ) = e(gsβ1 , uPΘ\Ω(α)−a0) = e(g1, u)sβ(PΘ\Ω(α)−a0),

B = e(C1,SKΩ) = e(g
sPΘ(α)
1 , u

β
PΩ(α) ·X3) = e(g1, u)sβPΘ\Ω(α).

Then B/A = e(g1, u)sβa0 , H((B/A)1/a0) = H(e(g1, u)sβ) = κ.

4.2 Security

As we already have mentioned, one can view SPE as a generalization of IBBE [13].
Recently Gong et al. [16] used Déjà Q to prove their identity-based broadcast
encryption selective secure in the standard model. The crux of their proof lies
in the independence of the semi-functional component of the secret keys (SKΩ)
and semi-functional components of the related public parameters (Ui)i∈[m]. To
argue that, they showed corresponding matrix representation to be non-singular
(in game G5) during the hybrid argument of the proof of [16, Theorem 1]. The
proof made an implicit natural assumption that none of the secret key queries
get repeated. Otherwise, the matrix will have more than one identical rows that
encode the same key-index. The matrix in such case is singular and the proof
fails.

SPE, being a generalization of IBBE, allows key queries on sets where same
key-index can appear in different key queries. Precisely, the adversary in case
of SPE, can make key extraction queries on Ωi and Ωj for Ωi ∩ Ωj 6= 0. This
introduces a problem here due to dependency among the secret keys of SPE1.
As a result, the matrix in Game6 (an intermediate game that we define in the
hybrid argument to prove Theorem 1) might become singular. Here, we take a
simple example to show this problem in light of admissible Aggregate [14].

In [14], an efficient algorithm called Aggregate was introduced. Given finite

sets S = (xi)i∈I and H =
(
h

1
z+xi

)
xi∈S

, Aggregate outputs h

1∏
xi∈S

(z+xi)

where I

is finite set of indices on S, z is the indeterminant, h is an element from cyclic
group W and xi ∈ [ord(h)]. Note that this holds for any cyclic group (W ) unless
there exists distinct xi, xj ∈ S but xi − xj = 0 mod ord(W ).

Now, notice that the secret keys of SPE1 allow collusion similar to [14, 16].
But such collusions did not create any problem in [14, 16] as their KeyGen takes
singleton key-index. On the other hand, as SPE1.KeyGen takes set as input, col-
lusion due to Aggregate creates the following problem. Suppose the adversary of
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SPE1 makes following three queries: Ω1 = {1, 2}, Ω2 = {1, 3} and Ω3 = {2, 3}.
Given SKΩ1

and SKΩ2
, the adversary can easily compute SKΩ using Aggregate

function where Ω = {1, 2, 3}. Moreover, given SKΩ2 and SKΩ3 , the adversary can
also compute same key SKΩ using Aggregate function. For the query sequence
considered above, during the proof of Lemma 3 (in Section 4.2.1) which is at
the core of the proof of indistinguishability of Game5 and Game6, the matrix P′

(and subsequently A in Lemma 2) precisely would be singular. Notice that, given
(SKΩi)i∈I , one can use Aggregate in a cascading manner to get secret keys corre-
sponding to other sets as well. We formally define the claw due to Aggregate as
following: there exists Ωi,Ωj ,Ωk

1⊂ ID such that adversary has acquired secret
key on all three of them and Aggregate(SKΩi ,SKΩj ) = Aggregate(SKΩj ,SKΩk).
In case the query sequence has such a claw, the matrix P′ becomes singular and
the proof fails. The easiest work-around would be to ensure that no two queries
have any element common i.e. Ωi ∩ Ωj = φ for all distinct i, j ∈ [q].

We put a much weaker restriction on the adversary where we allow making
key queries only on cover-free sets. Formally, after making a challenge query
Θ∗, adversary A is allowed to make key extraction queries on (Ω1,Ω2, . . . ,Ωq)
adaptively with two restrictions. For all i ∈ [q], the following must hold:

1. Ωi 6⊂ Θ∗,
2. Ωi \ (

⋃
j∈[q]\{i}Ωj) 6= φ.

Notice that, the first is the natural restriction on the relation between challenge
set Θ∗ with secret key queries {Ωi}i∈[q]. We say, SPE is selective* Ind-CPA secure

(aka s∗IND-CPA) if for any PPT adversary A that gives out the challenge Θ
during Init and the queries it make following the above-mentioned restrictions,
AdvSPE
A,s∗IND-CPA(λ) ≤ neg(λ).

Here we mention that, we do not see any ready vulnerability in our construc-
tion due to Aggregate (or any other way for that matter). This is because, given
secret keys corresponding to Ωi and Ωj , the Aggregate computes secret key for
bigger set Ω (precisely Ω = Ωi ∪Ωj for distinct Ωi,Ωj). Now for a challenge Θ∗,
the natural restriction ensures Ωi,Ωj 6⊂ Θ∗ and therefore Ω 6⊂ Θ∗. Naturally,
the resulting Ω is a valid key-indexset. Thus, even if the Aggregate function is
used to compute SKΩ from SKΩi and SKΩj , it does not help the adversary in
any way to break the security of the scheme. We reiterate that, we do not put
any restriction on the relation between challenge Θ∗ and secret-key queries Ω
apart from the natural restriction mentioned above. This s∗IND-CPA model in
this respect behaves exactly the same as sIND-CPA model.

Theorem 1. For any adversary A of SPE construction SPE1 in the s∗IND-CPA
model that makes at most q many secret key queries, there exist adversary B1,
B2 such that

AdvSPE1

A,s∗IND-CPA(λ) ≤ 2 · AdvDS1
B1

(λ) + (m+ q + 2) · AdvDS2
B2

(λ)

+ ((m+q)(m+q+1)+1)
p2

+ 2−λ.

1 Atleast two of {Ωi,Ωj ,Ωk} are distinct.
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Proof Sketch. The proof is established via a hybrid argument. The idea is to
modify each game only a small amount that allows the solver B to model the
intermediate games properly. The hybrid argument is based on Wee’s [25] porting
of Déjà Q framework introduced by Chase and Meiklejohn [10]. Intuitively, in
the first game Game0, both the challenge ciphertext and secret keys are normal.
We define three intermediate games (Game1,Game2, and Game3) to change the
ciphertext to semi-functional in Game4. We next define a sub-sequence of games
(Game5,1,0,Game5,1,1,Game5,2,0,Game5,2,1, . . . ,Game5,m+q+1,0,Game5,m+q+1,1)
to introduce enough randomness into the semi-functional components of secret
key and few related public parameters. Note that till this point, we mostly have
followed [16]. Such a sub-sequence effectively introduces enough entropy in the
semi-functional component such that we can replace it by pure random choice
in Game6. The structure here is more involved than [16] and we find a trick
(namely key-queries on cover-free sets only) that is necessary and sufficient to
complete the security argument. Finally, in Game7, we show that semi-functional
components as a whole supply enough entropy to hide encapsulation key κ. The
detailed proof is given next.

4.2.1 Formal Proof of Theorem 1

Proof. As already mentioned above, the proof is established via a hybrid argu-
ment. Intuitively, in the first game Game0, both the challenge ciphertext and
secret keys are normal. The Game1 differs from the Game0 as we introduce some
simplifying natural restriction. The Game2 reformulates the ciphertext to dif-
ferent representation that will be useful in later games. In Game3, we replace
challenge ciphertext component C0 with a random Gp1 element. Then we in-
troduce semi-functional component in the challenge ciphertext in Game4. The
secret keys are then changed to semi-functional in a series of games where the
kth game is denoted by its two sub-division Game5,k,0 and Game5,k,1. We per-
form another conceptual change this time on the semi-functional components of
public parameters as well as the secret keys in Game6. In the final game Game7,
we show that the semi-functional components supply enough entropy to hide the
encapsulation key κ.

Aggregate Algorithm. Note that, the functionality of Aggregate [14] function
essentially boils down to computing R = 1∏

xi∈S
(z+xi)

using only linear operations

given (S, Ĥ) where Ĥ =
(

1
z+xi

)
xi∈S

. Notice that this is a reversible process in

the sense, given (S,R) as defined above, one can efficiently find out the linear
transformation of Ĥ that resulted in R. Precisely, given (S,R) where S = (xi)i∈I
and R = 1∏

xi∈S
(z+xi)

, we can express R as following [18]. This representation will

be required in the proof.
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R =
1∏

xi∈S
(z + xi)

=
∑
xi∈S

1∏
xj∈S\{xi}

(xj − xi)
· 1

z + xi
. (1)

Let the adversary A make challenge query on Θ∗ and q many queries on
the sets (Ω1,Ω2, . . . ,Ωq) where Ωi 6⊆ Θ∗ for all i ∈ [q]. Let us denote Θ∗ =
{y1, y2, . . . , yl} and Ωi = {xi,1, . . . , xi,ki} for all i ∈ [q]. Then we define sets
C ′i = Θ∗ \ Ωi and Ci = Ωi \Θ∗ for all i ∈ [q] and denote their cardinality by `′i
and `i respectively. The set Mi,j = Ωi \Ωj is the set of identities that is queried
in ith query but not in jth query for all i, j ∈ [q] and i 6= j. Let us denote Ei be
the event that A has won the game Gamei.

Game0. This is same as the real game.
Game1. The following natural assumptions are made on the game.

– For all z ∈ (Θ∗ ∪
⋃
i∈[q] Ωi), (α + z) is not divisible by p1. Otherwise,

B can easily solve the subgroup decision assumption DS1 by computing
gcd((α+ z), N).

– For all i, j ∈ [q] and i 6= j, for all x, x′ ∈ Mi,j , if x 6= x′ mod N then
x 6= x′ mod p2. Otherwise, B can easily solve the subgroup decision
assumption DS2 by computing gcd((x− x′), N).

Therefore, |Pr[E1]− Pr[E0]| ≤ AdvDS1
B (λ) + AdvDS2

B (λ).

Game2. We perform a conceptual change to Game1 here. Given the challenge
Θ∗ = {y1, . . . , yl}, pick α, β̃, u ←↩ Z2

N × Gp1 . Define polynomial PΘ∗(z) =∏
y∈Θ∗

(z+ y). Set β = β̃ ·PΘ∗(α) mod N . In mpk, this affects only gβ1 . Rest of

the public parameters in mpk is defined the same as Game1. The secret keys

corresponding to Ωi is SKΩi = u
β̃·PΘ∗ (α)

PΩi
(α) ·X3 for i ∈ [q]. The ciphertext is

κ = H(e(C0, U0)),C0 = g
sβ̃PΘ∗ (α)
1 ,C1 = g

sPΘ∗ (α)
1 = C

1/β̃
0 ,

where U0 = u · R3 for R3 ←↩ Gp3 . Note that, the β = β̃ · PΘ∗(α) mod N

replacement doesn’t change the ciphertext distribution as β̃ is uniformly
random and PΘ∗(α) 6= 0 mod p1. Therefore, Pr[E2] = Pr[E1].

Game3. Another conceptual change to Game2 is performed here. Choose C0 ←↩
Gp1 . The rest of the ciphertext is defined the same as in Game2. As both

κ and C1 are functions of C0, namely κ = H(e(C0, U0)) and C1 = C
1/β̃
0 ,

such a replacement doesn’t change the distribution of ciphertext. Therefore,
Pr[E3] = Pr[E2].

Game4. Here the subgroup decision assumption DS1 is used to choose C0 from
the group Gp1p2 uniformly at random. The rest of the ciphertext and se-
cret keys are generated similar to Game3. Therefore, |Pr[E4]− Pr[E3]| ≤
AdvDS1
B (λ). We provide a proof sketch here. Given the problem instance DS1,

B chooses α, β̃ ←↩ ZN . This allows B to compute all of mpk similar to Game3.
As it holds both α and β̃, B can answer any key extraction query. In the
challenge phase it uses the target T of DS1 problem instance to simulate C0.
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If T was from Gp1 , the C0 is normal whereas if T was from Gp1p2 , the C0 is
semi-functional. Since C0 determines the challenge ciphertext completely, the
distribution from which T was chosen, determines if the challenge ciphertext
is normal or semi-functional.

Game5. Now we change the secret keys SKΩi for all i ∈ [q] gradually to make
them semi-functional. To do that, we also change the Ui in mpk for all
i ∈ [m] gradually by introducing Gp2 component. Precisely, we change the
public parameter Ui from

uα
i

· R3,i to uα
i

· g
∑
j∈[m+q+1] rjα

i
j

2 ·R′3,i

and the secret key SKΩi for each Ωi is changed from

u
β̃·PΘ∗ (α)

PΩi
(α) ·X3 to u

β̃·PΘ∗ (α)

PΩi
(α) · g

∑
j∈[m+q+1]

rj ·β̃·PΘ∗ (αj)
PΩi

(αj)

2 ·X ′3

for r1, . . . , rm+q+1, α1, . . . , αm+q+1 ←↩ ZN . This is done via intermediate
games namely Game5,k,0 and Game5,k,1 for k ∈ [m+q+1]. We denote Game4
by Game5,0,1 and Game5 by Game5,m+q+2,0.

– In Game5,k,0(k ∈ [0,m + q + 1]), the public parameter Ui for i ∈ [m] is
changed as follows. We also change U0 similarly.

uα
i

· g
∑
j∈[k−1] rjα

i
j

2 R′3,i → uα
i

· grα
i

2 · g
∑
j∈[k−1] rjα

i
j

2 R′3,i.

The secret key SKΩi for i ∈ [q] on the other hand is changed as follows.

u
β̃·PΘ∗ (α)

PΩi
(α) · g

∑
j∈[k−1]

rj ·β̃·PΘ∗ (αj)
PΩi

(αj)

2 X ′3

→ u
β̃·PΘ∗ (α)

PΩi
(α) · g

r·β̃·PΘ∗ (α)

PΩi
(α)

2 · g
∑
j∈[k−1]

rj ·β̃·PΘ∗ (αj)
PΩi

(αj)

2 X ′3. (2)

– In Game5,k,1(k ∈ [0,m + q + 1]), the parameters {Ui}i∈[0,m] and secret

key {SKΩi}i∈[q] distributions are respectively given by,

Ui = uα
i

· g
∑
j∈[k] rjα

i
j

2 R′3,i,

SKΩi = u
β̃·PΘ∗ (α)

PΩi
(α) · g

∑
j∈[k]

rj ·β̃·PΘ∗ (αj)
PΩi

(αj)

2 X ′3.

Notice that, Adv
Game5,k,0
A (λ) = Adv

Game5,k,1
A (λ) as α mod p2 is uniformly ran-

dom to the view of the adversary A since public parameters gβ1 , (Gi)i∈[m]

contains information related to α mod p1 only; and by CRT, they do not
leak any information regarding α mod p2. The semi-functional components
of C1 and κ0 is completely determined by semi-functional component of C0.
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Since C0 is chosen uniformly at random from Gp1p2 , it is completely indepen-
dent of α mod p2. Therefore, the changes between Game5,k,0 and Game5,k,1
is invisible to any A.

Now in Lemma 1, we prove that under DS2 assumption, Game5,k−1,1 and
Game5,k,0 are indistinguishable for any k ∈ [m+ q + 1]. As a result we have

|Pr[E5]− Pr[E4]| ≤ (m+ q + 1) · AdvDS2
B (λ).

Lemma 1. There exists PPT adversary B such that, |Pr[E5,k−1,1]− Pr[E5,k,0]|
≤ AdvDS2

B (λ).

Proof. The solver B is given the problem instance D = (g1, g3, g12, g23) and
the target T .

Setup. The adversary A sends the challenger target set Θ∗. B chooses
α, β̃ ←↩ Z2

N to generate the public parameters gβ1 , (Gi)i∈[m] efficiently

where β = β̃·PΘ∗(α) mod N ,Gi = gα
i

1 . It then chooses {r̂j , αj}j∈[k−1] ←↩
ZN . The public parameters (Ui)i∈[m] are generated as follows along with

U0 which is used to compute e(g1, u)β = e(g1, U0)β . For R′3,i ←↩ Gp3 ,

Ui = Tα
i

g
∑
j∈[k−1] r̂jα

i
j

23 R′3,i.

B then outputs public parameter

mpk = (g1, g
β
1 , (Gi, Ui)i∈[m] , e(g1, U0)β ,H),

where H is randomly chosen universal hash function.
Phase-I Queries. On a secret key query on Ωi, B chooses X ′3 ←↩ Gp3 and

sets

SKΩi = T
β̃·PΘ∗ (α)

PΩi
(α) · g

∑
j∈[k−1]

r̂j ·β̃·PΘ∗ (αj)
PΩi

(αj)

23 X ′3.

Challenge. B here computes κ0 and CTΘ∗ = (C0,C1) where C0 = g12, C1 =

C
1/β̃
0 and κ0 = H(e(C0, U0)). Chooses κ1 ←↩ K and outputs (κb,C0,C1)

for b←↩ {0, 1}.
Phase-II Queries. Same as Phase-I queries.
Guess. B outputs 1 if A’s guess b′ is same as B’s choice b.

If T ∈ Gp1p3 , then the game distribution is same as Game5,k−1,1. On the
other hand, if T ∈ G, then the game distribution is same as Game5,k,0 as can
be seen in Equation (2).

Game6. Here, we replace the Gp2 components of (Ui)i∈[0,m] and (SKΩi)i∈[q] with
randomly chosen elements z0, z1, . . . , zm+q respectively. Precisely, for all i ∈
[0,m] and for all j ∈ [q],

Ui = uα
i

· gzi2 · R̂3,i,SKΩj = u
β̃·PΘ∗ (α)

PΩi
(α) · gzm+j

3 X̂3,j .

This change between Game5 and Game6 can be represented as a linear system
z = Ar in Equation (3). To argue that such a change will be invisible
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to the adversary, it is enough to argue that the matrix A is non-singular
as this ensures z to be a random vector in the span of A. However, this
does not hold always as some xi can repeat across multiple key-queries as
each key-indices are set. This is where our restriction of cover-free sets
is essential in this proof. Even after putting the restriction, the matrix A
still is quite complicated in nature and direct computation of determinant
is troublesome. We solve this problem by showing one can get A (or some
similar matrix A′) from another non-singular matrix via row operations
in Lemma 2 and Lemma 3.



z0
z1
...
zm
zm+1

...
zm+q


=



1 1 · · · 1
α1 α2 · · · αm+q+1

α2
1 α2

2 · · · α2
m+q+1

...
...

. . .
...

αm1 αm2 · · · αmm+q+1
β̃·PΘ∗ (α1)
PΩ1

(α1)
β̃·PΘ∗ (α2)
PΩ1

(α2)
· · · β̃·PΘ∗ (αm+q+1)

PΩ1
(αm+q+1)

β̃·PΘ∗ (α1)
PΩ2

(α1)
β̃·PΘ∗ (α2)
PΩ2

(α2)
· · · β̃·PΘ∗ (αm+q+1)

PΩ2
(αm+q+1)

...
...

. . .
...

β̃·PΘ∗ (α1)
PΩq (α1)

β̃·PΘ∗ (α2)
PΩq (α2)

· · · β̃·PΘ∗ (αm+q+1)
PΩq (αm+q+1)



·


r1
r2
...

rm+q+1

 . (3)

Lemma 2. The matrix A in Equation (3) is non-singular.

Proof. From Equation (3), we denote A =

(
B
P

)
where B ∈ Z(m+1)×(m+q+1)

p2

is the first (m + 1) rows of A and P ∈ Zq×(m+q+1)
p2 is last q rows of A.

Each entry of B and P are respectively evaluation of following polynomials
with indeterminant z taking values (α1, α2, · · · , αm+q+1). Therefore for any
l∈ [m+ q + 1], each [i, l]th entry of B and P are respectively:

B[i, l] = zi for i ∈ [0,m],

P[i, l] =
β̃ · PΘ∗(z)

PΩi(z)
for i ∈ [q].

(4)

We simplify the P[i, l] polynomial in Equation (4) next. Due to natural re-
striction, for all queries, Ωi 6⊂ Θ∗. Therefore, the polynomial PΩi(z)6 | PΘ∗(z)
for all i ∈ [q] where z is indeterminant. However, both the polynomials
PΩi(z) and PΘ∗(z) are splitting polynomial. Precisely, PΘ∗(z) =

∏
j∈[l]

(z+ yj)

and PΩi(z) =
∏

j∈[ki]
(z + xj). Then, the rational function,

R =
PΘ∗(z)

PΩi(z)
=

∏
yj∈Θ∗

(z + yj)∏
xj∈Ωi

(z + xj)
=

∏
yj∈C′i

(z + yj)∏
xj∈Ci

(z + xj)
= A ·B (5)
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where A =
∏

yj∈C′i

(z + yj) = PC′i(z) and B = 1∏
xj∈Ci

(z+xj)
. Due to Equa-

tion (1), B = 1∏
xj∈Ci

(z+xj)
=

∑
xj∈Ci

1∏
xk∈Ci
j 6=k

(xk−xj) ·
1

z+xj
. In other words,

B =
∑

xj∈Ci
Rj,i · 1

z+xj
where Rj,i are non-zero scalar values that can be

computed from the set Ci. The polynomial R from Equation (5) therefore is

R =
∑
xj∈Ci

Rj,i ·
PC′i(z)

z + xj
. (6)

For any i ∈ [q] and l∈ [m+ q + 1],

P[i, l] = β̃ ·
∑

xj∈Ci
Rj,i ·

PC′
i
(z)

z+xj
(from Equation (4) and Equation (6))

= β̃ ·
∑

xj∈Ci
Rj,i

(
KC′i,xj

(z) +
tj

z+xj

)
(tj is scalar)

=
∑

xj∈Ci

(
R̃j,iKC′i,xj

(z) +
R′j,i
z+xj

)
(R̃j,i = β̃ · Rj,i, R′j,i = β̃ · Rj,i · tj scalar)

=
∑

xj∈Ci

( ∑
k∈[0,`′i]

R̃j,i · bj,ik zk +
R′j,i
z+xj

)
(KC′i,xj

(z) =
∑

k∈[0,`′i]
bj,ik z

k polynomial expansion)

=
∑

xj∈Ci

( ∑
k∈[0,`′i]

R̃′j,i,kz
k +

R′j,i
z+xj

)
(R̃′j,i,k = R̃j,i · bj,ik scalar).

=
∑

k∈[0,`′i]

ˆ̃R′j,i,kz
k +

∑
xj∈Ci

R′j,i
z+xj

( ˆ̃R′j,i,k =
∑

xj∈Ci
R̃′j,i,k scalar).

Hence, we represent Equation (4) as, for any l∈ [m+ q + 1],

B[i, l] = zi for i ∈ [0,m],

P[i, l] =
∑

k∈[0,`′i]

ˆ̃R′j,i,kz
k +

∑
xj∈Ci

R′j,i
z + xj

for i ∈ [q].
(7)

Notice that, in Equation (7), ˆ̃R′j,i,kz
k in P[i, l] is in linear span of B[i, l] for

i ∈ [0,m]. Therefore, elementary row operations removes such dependency

to define a new matrix A′ =

(
B
P′

)
such that |det(A)| = |det(A′)| where for

any l∈ [m+ q+ 1], z takes value from {α1, . . . , αm+q+1}, each [i, l]th entry
of B and P′ are respectively

B[i, l] = zi for i ∈ [0,m],

P′[i, l] =
∑
xj∈Ci

R′j,i
z + xj

for i ∈ [q].
(8)
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Lemma 3. The matrix A′ =

(
B
P′

)
, where B and P′ are as defined in Equa-

tion (8), is non-singular.

To prove that A′ as defined above is non-singular, we start from the claim
that the matrix D (in Equation (9)) is non-singular if all xj 6= xl for l, j ∈ [Q]
for l 6= j and all γi 6= γk for i, k ∈ [m + Q + 1] for i 6= k. This result was
proved in [16, Lemma 3] where Q was number of key-queries (i.e. distinct xj).

We here set Q to be cardinality of

( ⋃
i∈[q]

Ωi

)
i.e. total number of distinct

xj that is queried as a part of some key query Ωi.

Lemma 4. det(D) = δ ·
∏

1≤l<j≤Q(xl−xj)
∏

1≤i<k≤m+Q+1(γi−γk)∏m+Q+1
k=1

∏Q
l=1(γk+xl)

where δ is

some non-zero scalar in Zp2 where D is given in Equation (9).

D =



1 1 · · · 1
γ1 γ2 · · · γm+Q+1

γ21 γ22 · · · γ2m+Q+1
...

...
. . .

...
γm1 γm2 · · · γmm+Q+1
1

γ1+x1

1
γ2+x1

· · · 1
γm+Q+1+x1

1
γ1+x2

1
γ2+x2

· · · 1
γm+Q+1+x2

...
...

. . .
...

1
γ1+xQ

1
γ2+xQ

· · · 1
γm+Q+1+xQ


(9)

Performing elementary row operations on each xj ∈ Ci using R′j,i as scalar,
one can get the polynomial P′[i, l] in Equation (8). One can perform such
transformation if Q ≥ q which is the case due to the restriction we im-
posed on relation between query sets. Precisely, the cover-free property of
the query sets ensures that Q ≥ q as informally speaking each Ωi should
contain some new xj . In other words, we perform elementary row operations
on D in Equation (9) to get to matrix D′ such that all the rows in A′ are
also present in D′. Since, D is non-singular due to Lemma 4, D′ is also non-
singular and therefore all the (m+Q+1) rows of D′ are linearly independent.
Let us denote the last Q rows of D′ by d = (d1,d2, . . . ,dQ). Notice that,
there are (Q− q) many rows in d that are not present in A′ (Equation (8)).

Next we remove these rows to get a matrix D̃′ ∈ Z(m+q+1)×(m+Q+1)
p2 of rank

(m+ q + 1) as D̃′ has m+ q + 1 many linear independent rows. Among the
m+Q+ 1 many columns of D̃′, m+ q+ 1 many will be linearly independent
as rank of D̃′ is m+ q + 1. These columns form a full-rank matrix of order
(m + q + 1) × (m + q + 1). Notice that, this matrix is exactly the same as
A′. Therefore, the matrix A′ is non-singular. This ensures that the matrix
A in Equation (3) is also non-singular.
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Due to the fact that each Ωi will have some new xj (in the s∗IND-CPA model
(Ωi)i∈[q] are cover-free sets) and Lemma 2, it is evident that det(A) 6= 0

as long as αl 6= αk mod p2 for l, k ∈ [m + q + 1] and l 6= k. Therefore,
|Pr[E6]− Pr[E5]| ≤ (m+ q)(m+ q + 1)/p2.

Game7. Here we replace κ0 = H(e(C0, U0)) by a uniform random choice from
K . The reason behind this is U0 now is u · gz02 · R3. As we saw in the last
game, z0 is an uniformly random quantity independent of all (zi)i∈[q+m].

Thus e(C0, U0) = e(C0, u) · e(C0, g
z0
2 ) has log p2 bits of min-entropy due to

z0 mod p2. Due to left-over hash lemma, κ0 = H(e(C0, U0)) is at most 2−λ

distant from uniform distribution on K provided Gp2 component in C0 is
not 1. The probability that the Gp2 component of C0 is 1 is 1/p2. Therefore
|Pr[E7]− Pr[E6]| ≤ 1/p2 + 2−λ. κ0 now is a random choice and it hides b
completely i.e. Pr[E7] = 1/2.

This completes the proof of Theorem 1.

Remark 2. Here, we mention that, the value is Q is in general lower-bounded
by logq and upper-bounded by mq. By putting our restriction, we push the
lower-bound up to q + t (where t = min

i
|Ωi|) and ensure each key-index Ωi to

have a distinct xj that was not present in rest of the key-indices.

Proof of Lemma 4. Gong et al. [16, Lemma 3] proved this statement. For the
sake of completeness, we reproduce it here. The matrix in Equation (9) is of
order (m+Q+ 1)× (m+Q+ 1).

Each of the monomials of P = det(D) ·
∏m+Q+1
k=1

∏Q
l=1(γk + xl) is of degree

m(m+ 1)

2
+Q(m+Q+ 1)−Q =

m(m+ 1)

2
+Q(m+Q).

Notice that, det(D) = 0 if

– ∃i, j ∈ [m+Q+ 1] such that αi = αj for i 6= j then columns i and j is same.

– ∃i, j ∈ [m + 2,m + Q + 1] such that xi = xj mod p2 for i 6= j then rows i
and j is same.

Therefore, the polynomial P must be a multiple of T =
∏

1≤l<j≤Q(xl − xj) ·∏
1≤i<k≤m+Q+1(γi − γk) of degree Q(Q−1)

2 + (Q+m+1)(Q+m)
2 same as deg(P).

The proof of lemma thus follows.

5 SPE2: An Adaptive Secure Construction

Our second and main construction is instantiated in the prime order bilinear
groups and achieves adaptive security under SXDH assumption.
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5.1 Construction

SPE2 is defined as following four algorithms.

– Setup(1λ,m) : The asymmetric bilinear group generator outputs (p,G1,G2,
GT, e)← Gabg(1λ) where G1,G2,GT are cyclic groups of order p. Choose gen-
erators g1 ←↩ G1 and g2 ←↩ G2 and define gT = e(g1, g2). Choose α1, α2, c, d,

(uj , vj)j∈[0,m] ←↩ Zp and b ←↩ Z×p . For j ∈ {0, . . . ,m}, define g
wj
1 = g

uj+bvj
1

and gw1 = gc+bd1 . Then define α = (α1+bα2) and therefore gαT = e(g1, g2)α1+bα2 .
Define the msk = (g2, g

c
2, α1, α2, d, (uj , vj)j∈[0,m]) and the public parameter

is defined as
mpk =

(
g1, g

b
1,
(
g
wj
1

)
j∈[0,m]

, gw1 , g
α
T

)
.

– KeyGen(msk,Ω) : Given a set Ω, such that |Ω| = k ≤ m choose r ←↩ Zp.
Compute the secret key as SKΩ = (K1,K2,K3,K4,K5) where

K1 = gr2 ,K2 = gcr2 ,K3 = g

α1+r
∑
x∈Ω

(u0+u1x+u2x
2+...+umx

m)

2 ,

K4 = gdr2 ,K5 = g

α2+r
∑
x∈Ω

(v0+v1x+v2x
2+...+vmx

m)

2 .

– Encrypt(mpk,Θ) : Given a set Θ, such that |Θ| = l ≤ m. Choose s ←↩ Zp
and compute κ and CTΘ = (C0,C1, (C2,i, ti)i∈[l]) where (ti)i∈[l] ←↩ Zp and

κ = e(g1, g2)αs ,C0 = gs1 ,C1 = gbs1 ,C2,i = g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)

1 .

– Decrypt((SKΩ,Ω), (CTΘ,Θ)): Computes κ = B/A where

A = e

∏
yi∈Ω

C2,i,K1

 , B = e

C0,K3

∏
yi∈Ω

Kti2

 e

C1,K5

∏
yi∈Ω

Kti4

 .

Correctness. As Ω ⊆ Θ,

B = e

(
C0,K3

∏
yi∈Ω

Kti2

)
e

(
C1,K5

∏
yi∈Ω

Kti4

)
,

= e

C0, g

α1+r
∑
yi∈Ω

(u0+u1yi+u2yi
2+...+umyi

m)

2 ·
∏
yi∈Ω

grcti2


· e

C1, g

α2+r
∑
yi∈Ω

(v0+v1yi+v2yi
2+...+vmyi

m)

2 ·
∏
yi∈Ω

grdti2



= e

C0, g

α1+r
∑
yi∈Ω

(u0+u1yi+u2yi
2+...+umyi

m)

2 ·
∏
yi∈Ω

grcti2


18



· e

C0, g

bα2+rb
∑
yi∈Ω

(v0+v1yi+v2yi
2+...+vmyi

m)

2 ·
∏
yi∈Ω

grbdti2



= e

(
C0, g

(α1+bα2)+r
∑
yi∈Ω

((u0+bv0)+(u1+bv1)yi+...+(um+bvm)ymi )

2 ·
∏
yi∈Ω

g
r(c+bd)ti
2

)

= e

C0, g

α+r
∑
yi∈Ω

(w0+w1yi+w2yi
2+...+wmyi

m)

2 ·
∏
yi∈Ω

grwti2



= e

gs1 , gα+r
∑
yi∈Ω

(w0+w1yi+w2yi
2+...+wmyi

m+wti)

2



A = e

( ∏
yi∈Ω

C2,i,K1

)

= e

gs
∑
yi∈Ω

(w0+w1yi+w2yi
2+...+wmyi

m+wti)

1 , gr2


Then B/A = e(gs1 , g

α
2 ) = κ.

Remark 3. We observe that our SPE2 construction has a pair encoding [3] embed-
ded. One can utilize the generic technique of Chen et al. [11] to get corresponding
predicate encryption. The public parameter and ciphertext size, however, will be
significantly larger than that of SPE2. Precisely, both the public parameter and
ciphertext contain additional m G1 elements. Although the secret key requires
one less G2 element, the decryption is costlier as it takes one extra pairing eval-
uation. In addition, one can apply such pair encoding on framework by Chen
and Gong [12] to generalize our SPE2 construction further in terms of security.

5.2 Security

Theorem 2. For any adversary A of SPE construction SPE2 in the IND-CPA
model that makes at most q many secret key queries, there exist adversary B1,
B2 such that

AdvSPE2

A,IND-CPA(λ) ≤ Adv
DDHG1

B1
(λ) + q · Adv

DDHG2

B2
(λ) + 2/p.

Proof Sketch. We propose a hybrid argument based proof that uses dual system
proof technique [24] at its core. This hybrid argument follows the proof strategy
of [22]. In this sequence of game based argument, in the first game (Game0)
both the challenge ciphertext and secret keys are normal. The ciphertext is
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changed first to semi-functional in Game1. Then all the keys are changed to
semi-functional via a series of games (Game2,k)k for k ∈ [q]. Precisely, in any
Game2,k where k ∈ [q], all the previous (i.e. 1 ≤ j ≤ k) secret keys are semi-
functional whereas all the following (i.e. k < j ≤ q) secret keys are normal. We
continue this till Game2,q where all the keys are semi-functional. In the final
game Game3, the encapsulation key κ is replaced by a uniform random choice
from K . We show that the semi-functional components of challenge ciphertext
and secret keys in Game3 supply enough entropy to hide the encapsulation key
κ; hence it is distributionally same as random choice from K . Note that, we
denote Game1 by Game2,0.

We first recall the crucial tactics [22] used to prove their IBBE adaptive
CPA-secure as we already have mentioned that our large-universe SPE2 construc-
tion uses IBBE [22] as a starting point. The crux of the proof of IBBE in [22]
is a linear map that reflects the relation between tags (t1, . . . , tl) which encoded
(y1, . . . , yl) respectively and semi-functional component (π) in the secret key SKx
that encoded queried key-index x. This scenario occurs when a normal secret key
is translated into corresponding semi-functional form. At this point, [22] showed
that such linear map is non-singular following Attrapadung and Libert [5]. Such
a property of the linear map effectively ensures that semi-functional component
of the key has enough entropy to hide the encapsulation key κ.

However, following their proof technique verbatim does not work out as the
semi-functional component π no longer encodes only one identity rather it has
to encode multiple identities belonging to the queried set Ω. Let us consider a
case where, x ∈ (Θ∗ ∩ Ω), i.e. ∃j ∈ [l], x = yj . In other words ∃j ∈ [l] such that
tag tj encodes yj(= x) where x ∈ Ω. As the semi-functional component π, that
encodes queried set Ω, will also contain some information about x (i.e. yj), it is
not clear if (t1, . . . , tl) and π are still independent.

The novelty in our proof technique is that we proceed in a different manner
where we argue independence of (t1, . . . , tl) and π∗ as well as the independence
of π̂ and π∗ where π∗ encodes x∗ ∈ Ω\Θ∗ and π̂ encodes all x ∈ Ω\{x∗}. Notice
that such a x∗ will always exist as Ω 6⊂ Θ∗. This therefore ensures that the linear
map reflecting the relation between (t1, . . . , tl) and π to be non-singular.

Now, We define the semi-functional ciphertext and semi-functional secret
keys.

5.2.1 Semi-functional Algorithms

– SFKeyGen(msk,Ω): Let the normal secret key be SK′Ω = (K′1,K
′
2,K
′
3,K
′
4,

K′5) ← KeyGen(msk,Ω) where r is the randomness used in KeyGen. Choose
r̂, π ←↩ Zp. Compute the semi-functional trapdoor as SKΩ = (K1,K2,K3,
K4,K5) such that

K1 = K′1 = gr2 ,K2 = K′2 · g
r̂
2 = gcr+r̂2 ,

K3 = K′3 · g
r̂π
2 = g

α1+r
∑
x∈Ω

(u0+u1x+u2x
2+...+umx

m)+r̂π

2 ,

K4 = K′4 · g
−r̂b−1

2 = gdr−r̂b
−1

2 ,
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K5 = K′5 · g
−r̂πb−1

2 = g

α2+r
∑
x∈Ω

(v0+v1x+v2x
2+...+vmx

m)−r̂πb−1

2 .

– SFEncrypt(mpk,msk,Θ): Let the normal encapsulation key and normal ci-
phertext be (κ′,CT′Θ) ← Encrypt(mpk,msk,Θ) where s is the randomness
and (ti)i∈[l] are the random tags used in Encrypt such that CT′Θ = (C′0,C

′
1,

(C′2,i, ti)i∈[l]). Choose s ←↩ Zp. Compute the semi-functional encapsulation
key κ and semi-functional ciphertext CTΘ = (C0,C1, (C2,i, ti)i∈[l]) as follows:

κ = κ′ · gα1ŝ
T = e(g1, g2)αs+α1ŝ ,C0 = C′0 · g

ŝ
1 = gs+ŝ1 ,C1 = gbs1 ,

C2,i = C′2,i · g
ŝ(u0+u1yi+u2yi

2+...+umyi
m+cti)

1 ,

= g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(u0+u1yi+u2yi

2+...+umyi
m+cti)

1 .

5.2.2 Sequence of Games The idea is to change each game only by a small
margin and prove indistinguishability of two consecutive games.

Lemma 5. (Game0 to Game1) For any efficient adversary A that makes at most
q key queries, there exists a PPT algorithm B such that

∣∣Adv0A(λ)− Adv1A(λ)
∣∣ ≤

Adv
DDHG1

B (λ).

Proof. The solver B is given the DDHG1 problem instance D = (g1, g2, g
b
1, g

bs
1 )

and the target T = gs+ŝ1 where ŝ = 0 or chosen uniformly random from Z×p .

Setup. B chooses α1, α2, (ui, vi)i∈[0,m] , c, d←↩ Zp. As both α1 and α2 are avail-

able to B, it can generate gαT = e(gα1
1 · (gb1)α2 , g2). Hence, B outputs the

public parameter mpk. Notice that the master secret key msk is available
to B.

Phase-I Queries. Since B knows the msk, it can answer with normal secret
keys on any query of Ω.

Challenge. Given the challenge set Θ∗ = (y1, . . . , yl) for l ≤ m, B chooses
(ti)i∈[l] ←↩ Zp. It then computes the challenge as κ0 and CTΘ∗ = (C0,C1,
(C2,i, ti)i∈[l]) using the problem instance as follows.

κ0 = e(C0, g2)α1 · e(C1, g2)α2 ,C0 = T,C1 = gbs1 ,

C2,i = Cu0+u1yi+u2yi
2+...+umyi

m+cti
0 · Cv0+v1yi+v2yi

2+...+vmyi
m+dti

1

where i ∈ [l]. B then chooses κ1 ←↩ K and returns (κb,CTΘ∗) as the challenge
ciphertext for b←↩ {0, 1}.

Phase-II Queries. Same as Phase-I queries.
Guess. A output b′ ∈ {0, 1}. B outputs 1 if b = b′ and 0 otherwise.

Notice that, if ŝ in DDHG1
problem instance is 0, then the challenge ciphertext

CTΘ∗ is normal. Otherwise the challenge ciphertext CTΘ∗ is semi-functional. If
A can distinguish these two scenarios, the solver B will use it to break DDHG1

problem. Thus,
∣∣Adv0A(λ)− Adv1A(λ)

∣∣ ≤ εDDHG1
.
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Lemma 6. (Game2,k−1 to Game2,k) For any efficient adversary A that makes

at most q key queries, there exists a PPT algorithm B such that |Adv2,k−1A (λ)−
Adv2,kA (λ)| ≤ Adv

DDHG2

B (λ).

Proof. The solver B is given the DDHG2 problem instance D = (g1, g2, g
c
2, g

r
2)

and the target T = gcr+r̂2 where r̂ = 0 or chosen uniformly random from Z×p .

Setup. B chooses b←↩ Z×p , α, α1, w, (pi, qi, wi)i∈[0,m] ←↩ Zp. It sets α2 = b−1(α−
α1), d = b−1(w−c), ui = pi+cqi, vi = b−1(wi−ui). Note that, as c explicitly
is unknown to B, all but α2 assignment has been done implicitly. The public
parameters mpk are generated as (g1, g

b
1, g

wi
1 , gw1 , g

α
T) where gT = e(g1, g2).

Here note that, not all of msk is available to B. Still we show that, even
without knowing (d, (ui, vi)i∈[0,m]) explicitly, B can simulate the game.

Phase-I Queries. Given the jth key query on Ωj s.t. |Ωj | = kj ≤ m,

– If j > k: B has to return a normal key. We already have mentioned
that (d, (ui, vi)i∈[0,m]) of msk are unavailable to B. Thus B simulates the
normal secret keys as follows.
B chooses rj ←↩ Zp. Computes the secret key SKΩj = (K1,K2,K3, K4,K5)
where,
K1 = g

rj
2 ,K2 = (gc2)rj ,

K3 = gα1
2 · K

∑
x∈Ωj

(p0+p1x+p2x
2+...+pmx

m)

1 · K

∑
x∈Ωj

(q0+q1x+q2x
2+...+qmx

m)

2 ,

= g

α1+rj
∑

x∈Ωj
(u0+u1x+u2x

2+...+umx
m)

2 ,

K4 = Kb
−1w

1 · K−b
−1

2 = g
drj
2 ,

K5 = gb
−1α

2 · K
b−1 ∑

x∈Ωj
(w0+w1x+w2x

2+...+wmx
m)

1 · K−b
−1

3

= g

b−1α+rjb
−1 ∑

x∈Ωj
(w0+w1x+w2x

2+...+wmx
m)

2

· g
−b−1(α1+rj

∑
x∈Ωj

(u0+u1x+u2x
2+...+umx

m))

2 ,

= g

α2+rj
∑

x∈Ωj
(v0+v1x+v2x

2+...+vmx
m)

2 .
Notice that SKΩj is identically distributed to output of KeyGen(msk,Ωj).
Hence B has managed to simulate the normal secret key without knowing
the msk completely.

– If j < k: B has to return a semi-functional secret key. It first creates
normal secret keys as above and chooses r̂, π ←↩ Zp to create semi-
functional secret keys following SFKeyGen.

– If j = k: B will use DDHG2
problem instance to simulate the secret key.

It sets,

K1 = gr2 , K2 = T = gcr+r̂2 = K′2 · g
r̂
2 ,

K3 = gα1
2 · K

∑
x∈Ωj

(p0+p1x+p2x
2+...+pmx

m)

1 · K

∑
x∈Ωj

(q0+q1x+q2x
2+...+qmx

m)

2 ,
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= g

α1+r
∑

x∈Ωj
(u0+u1x+u2x

2+...+umx
m)+r̂

∑
x∈Ωj

(q0+q1x+q2x
2+...+qmx

m)

2 ,

= K′3 · g
r̂

∑
x∈Ωj

(q0+q1x+q2x
2+...+qmx

m)

2 .

K4 = Kb
−1w

1 · K−b
−1

2 = gdr2 · g
−b−1r̂
2 = K′4 · g

−b−1r̂
2 .

K5 = gb
−1α

2 · K
b−1 ∑

x∈Ωj
(w0+w1x+w2x

2+...+wmx
m)

1 · K−b
−1

3 ,

= g

α2+r
∑

x∈Ωj
(v0+v1x+v2x

2+...+vmx
m)

2 ·g
−b−1r̂

∑
x∈Ωj

(q0+q1x+q2x
2+...+qmx

m)

2

= K′5 · g
−b−1r̂

∑
x∈Ωj

(q0+q1x+q2x
2+...+qmx

m)

2 .
Here, B has implicitly set π =

∑
x∈Ωj

(q0+q1x+q2x
2+ . . .+qmx

m). Notice

that if r̂ = 0 then the key is normal; otherwise it is semi-functional secret
key.

Challenge. Given the challenge set Θ∗, of size l ≤ m, B chooses s, ŝ ←↩ Zp.
It then defines the challenge as κ0 and CTΘ∗ = (C0,C1, (C2,i, ti)i∈[l]) such

that,

κ0 = g
(αs+α1ŝ)
T , C0 = gs+ŝ1 , C1 = gbs1 ,

C2,i = g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(u0+u1yi+u2yi

2+...+umyi
m+cti)

1 ,

= g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(p0+p1yi+p2yi

2+...+pmyi
m)

1

· gcŝ(q0+q1yi+q2yi
2+...+qmyi

m+ti)
1 .

However, gc1 is not available to B. We here implicitly set ti = −(q0 + q1yi +
q2yi

2 + . . .+ qmyi
m) for each i ∈ [l].

Then, C2,i = g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(p0+p1yi+p2yi

2+...+pmyi
m)

1 where
ith element of the challenge set Θ∗ is denoted by yi. B then chooses κ1 ←↩ K
and returns

(
κb,C0,C1, (C2,i, ti)i∈[l]

)
as the challenge ciphertext. Notice

that, the challenge ciphertext (κ0,CTΘ∗) is identically distributed to the
output of SFEncrypt(mpk,msk,Θ∗). Hence, the ciphertext is semi-functional.

Phase-II Queries. Same as Phase-I queries.
Guess. A output b′ ∈ {0, 1}. B outputs 1 if b = b′ and 0 otherwise.

As noted earlier, if r̂ in DDHG2
problem instance is 0, then the kth secret key is

normal. Otherwise the kth secret key is semi-functional. The challenge ciphertext
is also constructed semi-functional.

However, we need to argue that the tags (ti)i∈[l] output as the challenge
ciphertext component are uniformly random to the view of adversary A who
has got hold of the semi-functional kth secret key containing π. This is because,
according to Section 5.2.1, the tags that are used in the semi-functional secret
key and semi-functional ciphertext, should also be uniformly random and inde-
pendent.

Recall that, π =
∑
x∈Ωk

(q0 + q1x+ q2x
2 + . . .+ qmx

m) and ti = −(q0 + q1yi +

q2yi
2 + . . .+ qmyi

m) for all yi ∈ Θ∗. As Ωk 6⊂ Θ∗, due to natural restriction of the
security game, there exists an x∗ ∈ Ωk but x∗ /∈ Θ∗. Then, π =

∑
x∈Ωk

(q0 + q1x+
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q2x
2+. . .+qmx

m) =
∑
x∈Ωk
x 6=x∗

(q0+q1x+q2x
2+. . .+qmx

m)+(q0+q1(x∗)+q2(x∗)
2
+

. . .+ qm(x∗)
m

). Let us denote π∗ = (q0 + q1(x∗) + q2(x∗)
2

+ . . .+ qm(x∗)
m

) and
π̂ =

∑
xi∈Ωk\{x∗}

πi where πi = (q0 + q1xi + q2xi
2 + . . .+ qmxi

m).

Next we argue that π∗ is independent of all the tags (ti)i∈[l]. The relation

between π∗ and (t1, t2, . . . , tl) can be expressed as the following linear system of
equations t = Vq.

π∗

t1
t2
...
tl

 =


1 x∗ (x∗)2 · · · (x∗)m
1 y1 (y1)2 · · · (y1)m

1 y2 (y2)2 · · · (y2)m

...
...

...
. . .

...
1 yl (yl)

2 · · · (yl)
m

 ·

q0
q1
q2
...
qm

 (10)

Notice that V is Vandermonde matrix of rank (l+1) as x∗ 6∈ Θ∗ = {y1, y2, . . . , yl}.
The vector q is completely hidden from adversary A and was chosen uniformly
at random. Therefore, π∗ is independent of (t1, t2, . . . , tl) and uniformly random
in the view of A.

Recall that, π = π̂ + π∗ where π̂ is linear combination of (k− 1) many m-
degree polynomials as |Ωk| = k. The collection π1, . . . , πk−1 and π∗ also result
in a full rank matrix as each encodes m-degree polynomial evaluated on distinct
k points. This effectively ensures that π∗ is independent of π̂ as well. Thus,
π = π̂ + π∗ is now a one-time-pad evaluation in the view of A. Hence, π is
uniformly random and independent choice from Zp. This completes the proof as
(π, (ti)i∈[l]) are uniformly random quantities. Thereby, the ciphertext and kth

secret key is properly simulated.
If A can distinguish normal and semi-functional secret keys, the solver B will

use it to break DDHG2
problem. Thus,

∣∣∣Adv2,k−1A (λ)− Adv2,kA (λ)
∣∣∣ ≤ εDDHG2

.

Lemma 7. (Game2,q to Game3) For any efficient adversary A that makes at

most q key queries,
∣∣∣Adv2,qA (λ)− Adv3A(λ)

∣∣∣ ≤ 2/p.

Proof. In Game2,q, all the queried secret keys and the challenge ciphertext are
transformed into semi-functional. To argue that the challenge encapsulation key
κ is identically distributed to uniformly random GT element, we perform a con-
ceptual change on the parameters of Game2,q.

Setup. Choose b←↩ Z×p , α1, α, c, w, (ui, wi)i∈[0,m] ←↩ Zp. It sets α2 =b−1(α−α1),

d = b−1(w − c), vi = b−1(wi − ui). The public parameters are generated as
(g1, g

b
1, g

wi
1 , gw1 , g

α
T) where gT = e(g1, g2). Notice that gT is independent of

α1 as α was chosen independently.
Phase-I Queries. Given key query on Ω, choose r, r̂, π′ ←↩ Zp. Compute the

secret key SKΩ = (K1,K2,K3,K4,K5) as follows.

K1 = gr2 ,K2 = gcr+r̂2 ,K3 = gπ
′

2 · g
r

∑
x∈Ω

(u0+u1x+u2x
2+...+umx

m)

2 ,
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K4 = gdr−r̂b
−1

2 , K5 = g
b−1(α−π′)
2 · g

r
∑
x∈Ω

(v0+v1x+v2x
2+...+vmx

m)

2 .
The reduction sets π′ = α1 + r̂π. Therefore, if r̂ = 0, π can take any uni-
formly random value from Zp. On the other hand, if r̂ 6= 0, due to the
independent random choice of both π′ and α1, π is uniformly random and
independent. Therefore no matter what value r̂ takes, π is uniformly random
and independent. As a result, the secret keys are simulated properly.
Here the point of focus is that both K3 and K5 are generated using randomly
chosen π′ that is independent of α1 as long as r̂ 6= 0 and none of the other
key components contain α1. The secret key SKΩ therefore, is independent of
α1 if r̂ 6= 0. This happens with probability 1− 1/p.

Challenge. On challenge Θ∗, choose s, ŝ ←↩ Zp and (ti)i∈[l] ←↩ Zp. Compute

the ciphertext CTΘ = (κ0,C0,C1, (C2,i, ti)i∈[l]) where,

κ0 = e(g1, g2)αs+α1ŝ = gαsT · g
α1ŝ
T ,C0 = gs+ŝ1 ,C1 = gbs1 ,

C2,i = g
s(w0+w1yi+w2yi

2+...+wmyi
m+wti)+ŝ(u0+u1yi+u2yi

2+...+umyi
m+cti)

1 .
Phase-II Queries. Same as Phase-I queries.
Guess. A output b′ ∈ {0, 1}. Output 1 if b = b′ and 0 otherwise.

All the scalars used in mpk and (SKΩi)i∈[q] are independent of α1 as we already
have seen. Notice that none of the ciphertext components but κ0 contain α1. The
entropy due to α1 thus makes κ0 random as long as ŝ 6= 0. In fact, this allows the
replacement of κ0 by a uniform random choice κ1 ←↩ K provided ŝ 6= 0. Recall

that, this exactly is the situation of Game3. Thus,
∣∣∣Adv2,qA (λ)− Adv3A(λ)

∣∣∣ ≤ Pr[r̂ =

0] + Pr[ŝ = 0] ≤ 2/p.
Notice that, κb output in Game3 completely hides b. Thus, for any adversary A,
the advantage Adv3A(λ) = 0.

5.3 Applications

Katz et al. [20] described a few black-box transformations from SPE to well
known cryptographic protocols. We can perform those transformations on our
adaptive-secure SPE2 construction. Note that, all these transformations were
designed for small-universe SPE. We therefore restrict our large-universe SPE2

construction to small universe. This is done by considering the universes U =
{1, · · · , n} and U ′ = {1, · · · , n} where U is universe for protocol to be designed
and U ′ is the universe for underlying SPE2 for some n ∈ N. Note that, we
formalize the black-box transformation [20] as a function called Encode.

WIBE. The generic transformation of [20] allows construction of WIBE [1] which
supports presence of wildcard in the data-index. Here, any index (key-index,
data-index alike) will be first processed bit-wise into a ordered set of double
size (i.e. n = 2n). Informally, Encode expands z ∈ {0, 1, ∗}n to T ∈ {0, 1}n
where T [2i− 1] stores zi and T [2i] stores z̄i if zi ∈ {0, 1}. In case of zi = ∗, both
T [2i−1] and T [2i] stores 1. Then S(z) is defined as the set that stores all indexes
that are set in T . The WIBE KeyGen and Encrypt is defined as SPE2.KeyGen and
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SPE2.Encrypt running on such set S respectively. We can achieve a WKD-IBE [2]
in a similar way with the exception that now, the wildcard is present in the key-
index.

CP-ABE. As [20] mentions, the most interesting black-box transformation of
SPE is that it can achieve a secure CP-ABE (though restricted to DNF formula
only) with constant-size key. Intuitively, an attribute set A can satisfy a DNF
formula C1∨C2∨· · ·Ct where each Cj represents a conjunction over some subset
of the attributes if ∃j ∈ [t] such that Cj ⊆ A. This is done by associating the
clauses Cj as well as A to corresponding revocation list i.e. U \Cj and U \A and
perform the subset predicate evaluation: U \ A ⊆ U \ Cj where U denotes the
attribute universe of size n. Precisely, Encode takes input Z ∈ {C1, · · · , Ct,A}
and outputs S(Z) =

{
i ∈ U ′ : T (Z)[i] = 1

}
where for all i ∈ {1, 2, · · · , n} (here

n = n).

T (Z)[i] =

{
0 if i ∈ Z,
1 if i 6∈ Z.

We now compare the black-box transformation [20] applied on SPE2 in terms
of performance to previous WIBE and DNF schemes (both dedicated and due
to black-box transformation [20]). From Table 1, we see that both adaptive
secure BBG-WIBE and Wa-WIBE attain much bigger secret key size. Although,
other parameter sizes are quite competitive to ours, Wa-WIBE is proved secure
under parameterized assumption. In case of the second one however, the all the
parameters blow up. Our construction not only attains similar parameter size as
the selective secure constructions due to black-box transformation [20], is also
proved adaptive secure under standard assumption. In case of DNF in Table 2,
ours is the only scheme that achieve adaptive security and still enjoy constant-
size key and constant number of pairing evaluations during decryption. Again,
as compared to black-box transformation [20], our parameter sizes are quite
competitive. We denote size of public key by |mpk|, size of secret key by |SK|,
size of ciphertext by |CT|, number of primitive operations required in Decrypt.
Here n denotes depth of hierarchy, ` is bit-length of identity in Wa-IBE [23], γ
is number of disjunctive clauses in a DNF formula and [P] denotes number of
pairing operations.

WIBE Schemes |mpk| |SK| |CT| Decrypt Security Assumption
BBG-WIBE [1] (n+ 4)G (n+ 2)G (n+ 2)G + GT 2[P] adaptive n-BDHI
Wa-WIBE [1] ((`+ 1)n+ 3)G (n+ 1)G ((`+ 1)n+ 2)G + GT (n+ 1)[P] adaptive DBDH
SPE-1 [20] (2n+ 2)G1 + GT G2 + Zp (2n+ 1)G1 + GT 1[P] selective q-BDHI
SPE-2 [20] (2n+ 1)G1 + 2G2 G1 + G2 2nG1 + G2 + GT 2[P] selective DBDH

SPE2 (2n+ 6)G1 + GT 5G2 (n+ 2)G1 + GT + nZp 3[P] adaptive SXDH

Table 1 Comparison of efficient standard model WIBE schemes.
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DNF Schemes |mpk| |SK| |CT| Decrypt Security Assumption
SPE-1 [20] (n+ 2)G1 + GT G2 + Zp γ((n+ 1)G1 + GT) 1[P] selective q-BDHI
SPE-2 [20] (n+ 1)G1 + 2G2 G1 + G2 γ(2nG1 + G2 + GT) 2[P] selective DBDH

SPE2 (n+ 3)G1 + GT 5G2 γ((n+ 2)G1 + GT + nZp) 3[P] adaptive SXDH

Table 2 Comparison of efficient standard model DNF schemes.

6 Conclusion

We presented two large universe constructions of subset predicate encryption
(SPE). Both the constructions achieve constant-size secret key and efficient
decryption. First construction achieves constant-size ciphertext as well and is
proven selectively secure in a restricted model. Our second and main construc-
tion achieves adaptive security in the asymmetric prime order bilinear group
setting under the SXDH assumption. The ciphertext size in this construction is
of O(|Θ∗|). It is an interesting open problem to design an SPE with constant-size
ciphertext without the kind of restriction we imposed in the selective security
model so is any improvement of our second construction in terms of the cipher-
text size.
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