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Abstract

Algorithm substitution attack (ASA) on signatures should be treated seriously as the authenti-
cation services of numerous systems and applications rely on signature schemes and compromising
them has a significant impact on the security of users. We present a somewhat alarming result
in this regard: a highly efficient ASA on the Digital Signature Algorithm (DSA) and its imple-
mentation. Compared with the generic ASAs on signature schemes proposed in the literature,
our attack provides fast and undetectable subversion, which will extract the user’s private sign-
ing key by collecting maximum three signatures arbitrarily. Moreover, our ASA is proven to be
robust against state reset. We implemented the proposed ASA by replacing the original DSA in
Libgcrypt (a popular cryptographic library used in many applications) with our subverted DSA.
Experiment shows that the user’s private key can readily be recovered once the subverted DSA is
used to sign messages. In our implementation, various measures have been considered to signifi-
cantly reduce the possibility of detection through comparing the running time of the original DSA
and the subverted one (i.e. timing analysis). To our knowledge, this is the first implementation of
ASA in practice, which shows that ASA is a real threat rather than only a theoretical speculation.

1 Introduction

Algorithm Substitution Attack (ASA). We trust cryptography expecting that it will provide a maxi-
mum level of security. If cryptography turns out to be subverted so that it leaks the critical information
of a user to the third party surreptitiously, we would seriously be concerned about its impact on secu-
rity and privacy. For this reason, many were surprised and even shocked by Snowden’s revelation that
the subversion of certain cryptographic algorithms really happened [13]. In response to this, the re-
search community investigated subversion of cryptography closely and Bellare, Paterson and Rogaway
came up with the formal notion called “algorithm substitution attack (ASA)”[6]. Roughly, the ASA
enables an adversary, often called “big brother”, to replace some parts of a legitimate cryptographic
scheme or protocol with a modified one in order that it subliminally leaks the crucial information
about a secret key or a confidential message to the adversary.
ASA on signatures. The focus of this paper is ASA on signature schemes. One of the possible real-
world scenarios can be described as follows: It is common nowadays that a crypto library is embedded
as a subcomponent of commercial software or hardware, which is installed and patched by the vendor.
A problem is that if the vendor is malicious or enforced to act maliciously by an external party, it can
easily replace the regular crypto library with a subverted one to obtain the victim’s private key. If
the subverted library does not require any hidden communication channel nor result in degradation
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of performance, the victim cannot detect any difference and will be deceived into using the subverted
library.

Although “kleptography” proposed by Young and Yung dealt with the subversion of signature
schemes [30], the first formal treatment of the subject matter in the context of ASA was made by
Ateniese et al [2]. Their subverted signature scheme is generic but inefficient. A more efficient ASA
on a certain group of signatures was proposed very recently by Liu et al [16]. (Note that these
related works will be discussed in greater detail in the next section.) However, there still remain some
important problems to address, which we discuss in what follows.
Realizing ASA. We came to the realization that none of the ASAs proposed in the literature has
been implemented although the original motivation for ASA is closely related to the practice of cryp-
tographic algorithms in the real world. Moreover, discovering ASAs on widely-used cryptographic
algorithms is important as they are already deployed in numerous applications and their ASA vul-
nerability has deep impact on the security of those applications. These have motivated us to pursue
research with two directions: how to come up with practical ASAs on known cryptographic schemes
and how to realize them efficiently.
State reset. According to [6], subverted cryptographic schemes are classified into statefull and stateless
ones. As stateless schemes do not maintain state, there is no need to concern about state resets, which
usually happen with rebooting or cloning to create a virtual machine. They, however, can lead to
detection when it comes to stateful schemes. Nevertheless, state reset has not been captured by the
definition of detectability for ASA on signature schemes, previously considered in the literature. Our
detectability notion for stateful subverted signature schemes includes state reset and our subverted
schemes are analyzed based on it.

Our contributions. We present an efficient ASA on the DSA [10], which we sometimes refer to as a
“subverted DSA scheme”. As follows is a summary of our results:

• By making use of the randomized component of a signature contiguous to the current one as a
source of randomness, we were able to design a conceptually simple yet highly efficient subversion
on the DSA: It only takes a maximum of any three consecutive signatures to extract a private
signing key, which makes our subversion remarkably practical.

• We refined the formal definition of the undetectability for ASA on signatures so that it can
incorporate state reset. We proved that our subverted DSA is undetectable and robust against
state reset. To our knowledge, this is the first work dealing with state reset for ASA on signatures
formally.

• We implemented the proposed ASA by substituting the original DSA provided in the Libgcrypt
library [12] with our subverted DSA. Our implementation carefully considered countermeasures
against the possible detection of subversion by comparing the running time of the subverted
signature with that of the original DSA.

On Generalization. We are aware that the proposed subversion technique can be generalized to cover
the signature schemes that have a structure similar to the DSA, such as Schnorr and the ECDSA. (We
did show in this paper that our ASA can be applied to the Schnorr signature [24].) However, we do not
present a complete specification of generalization in this version of the paper as its focus is an efficient
realization of ASA on the mentioned signature schemes rather than a theoretical generalization, which
may result in some redundancy.

Organization. The rest of this paper is organized as follows. In the following section, we review
and discuss the related work in detail. In Section 3, we provide definitions of key extraction and
undetectability for subverted signature schemes. In Section 4, we present our subverted DSA scheme.
Our implementation of the subverted scheme and its analysis are presented in Section 5. Concluding
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remarks will follow in Section 6. As an additional instance of the proposed ASA, we present an ASA
against the Schnorr signature scheme in Appendix .1.

2 Related Work

The consequences of ASA on signature schemes can be catastrophic [2]. – The attacker’s goal in this
case may be to forge signatures on particular messages. Perhaps his intention goes beyond this and
may want to steal signers’ private keys, e.g., to impersonate individuals or to forge certificates. In
this section, we elaborate on the previous work on subverting signature schemes.

Early work. Young and Yung pioneered research on ASA, which they called “kleptography” [29]. In
their series of work [29][30][31][32], they presented kleptographic attacks, described as SETUP (Se-
cretly Embedded Trapdoor with Universal Protection) against various cryptographic schemes includ-
ing RSA encryption, Diffie-Hellman key exchange, Schnorr, ElGamal and DSA signatures. Our ASA
is inspired by their work, especially through exploiting the arithmetic structure of discrete-logarithm
based signatures to extract a private key. (More discussion on this will follow in the beginning of
Section 4.) Their basic idea is to exploit the structural vulnerability of many discrete-logarithm
based signatures. – Security problems can arise in those signatures if a non-uniform value for an
ephemeral component (nonce) in the signature is used [31][32]. This exploit has been known for a
long time. Notable results include Simmons’ seminal work on subliminal channel [25][26] and Nguyen
and Shparlinski’s attack on DSA using partially known nonces [19].

The kleptographic attacks from [30] and [32] require the adversary to locate one particular sub-
verted signature (possibly from many) to extract a private key. To achieve this, the subverted scheme
needs to maintain state to “flag” such a signature and transmit it to the adversary. We envision that
in practice, this is harder than it looks since there are many subverted signatures that the victim will
have generated and the adversary has to closely monitor them to locate one particular signature.

We also point out that their attack uses a deterministic subversion key, which can lead to detection
of ASA if a state reset occurs through a reboot or cloning a virtual machine [6][4]. In other words, the
same signature can be outputted twice in the case of a state reset, which renders the attack detectable
as the non-subverted scheme should be randomized.

Ateniese et al.’s work. Ateniese et al. presented two generic ASAs on any randomized signature
schemes [2]. Their first attack is based on Bellare et al.’s ASA technique [6], whereby the adversary
can extract each bit of the secret key from a vector of ciphertexts generated by a subverted encryption
algorithm using biased randomness. Ateniese et al. applied this technique to mount ASA on signature
schemes which possess sufficient randomness (i.e. the signature schemes that contain as many random
bits as the size of the secret signing key). The second attack that Ateniese et al. proposed is applicable
to a group of signature schemes which have little randomness.

Although Ateniese et al.’s ASAs can be applied to a large class of signature schemes, compared
with theirs, our ASA on discrete-logarithm based signature schemes has the following merits.

(1) The adversary needs to collect (much) fewer subverted signatures to recover a signing key:
Even though Ateniese et al.’s first attack applies to generic randomized signature schemes, the
adversary needs to collect as many as |sk| signatures (where |sk| is the bit-length of a private key).
Their second attack, applicable only to “coin extractable” signature schemes which exclude DSA
and Schnorr schemes, requires `/d signatures to be collected, where 2d is the size of randomness
space and ` is the size of the signing key. (Note that in the coin extractable signature schemes,
the randomness used in the signature generation is publicly available.) On the other hand,
our ASA requires only a maximum of any three consecutive signatures to ensure the successful
recovery of a private signing key.
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(2) State is managed much more efficiently in our ASA: The above two attacks need to maintain
state, i.e., they are stateful. In the first attack, the state needs to locate at least the first and
last signatures (among the collected signatures), which will be used to exfiltrate the first and
last bit of a private key respectively. Similarly, the state of the second attack needs to locate
the first and last signatures, which will be used to extract the first and last chunks of bits of
a private key respectively. Although Ateniese et al. [2] claim that their attack can be made
stateless by providing the state as a message to the subverted signing algorithm, we point out
that this is only possible when the adversary has control over inputs to the subverted signing
algorithm, which may not always be the case in practice. In contrast, our ASA does not require
this assumption. Even though the state should also be maintained in our ASA (i.e., our ASA is
also stateful), its purpose is not to locate or flag (subverted) signatures to extract signing keys
but rather to perform alternate operations for subverted signature generation.

(3) Moreover, our subverted signature scheme is proven to resist the state reset while it is not
considered in Ateniese et al.’s schemes. – We suspect that achieving provable robustness against
state reset seems hard as their subversion methods are based on Bellare et al.’s subversion
method which exploits the “coin-injectiveness” that cannot be shown to resist the state reset as
discussed in [6].

Liu et al’s work. Liu et al. recently proposed a generic ASA that improves Ateniese et al.’s ASA
on signature schemes [16]. Although their ASA uses a similar idea to divide the subverted signing
algorithm into two parts to boost efficiency of the attack, we point out the following difference and a
flaw in their argument.

1. The key difference between Liu et al’s work and ours is that our ASA is symmetric subversion
[6][2][4] while their is asymmetric one, which was proposed by Young and Yung [30][32] to prevent
the loss of a subversion key. (That is, by generating a subversion public and private key pair and
embedding the public key only in the subverted algorithm, the adversary can conduct subversion
more securely as the embedded public key does not reveal anything about its matching private
key.) However, what we realized is that the asymmetric subversion is prone to “timing analysis”
since it will usually involve heavy public operations in the subverted algorithm and make the
subverted algorithm run slower than the original one. Our experiment shows this is the case as
presented in Section 5. On the other hand, our cryptomalware based on symmetric subversion
is resilient to the timing analysis as compared with Liu et al.’s.

2. Liu et al. makes a wrong claim that their attack is stateless. In their subverted signature scheme,
the randomness used in the current signature generation depends on the randomness used to
generate a signature previously, which clearly shows that their subversion is stateful.

3. As is with the case of Ateniese et al.,’s work, the security against a state reset was not considered
in Liu et al.’s work.

Other related work. Apart from signatures, active research on ASA against encryption and its preven-
tion has been conducted since Bellare et al.’s seminal work [6]. Various types of ASAs on symmetric
encryption schemes have been proposed by Bellare et al. [6][4]. In particular, the ASA presented in
[4] is a stateless attack, which removes the limitation of stateful ASAs presented in [6].

As a prevention measure for ASA on symmetric encryption, the works [3][4][6] recommended de-
terministic algorithms. Bellare and Hoang extended the result to public key encryption [3]. (Ateniese
et al. also proposed a deterministic solution for ASA against signatures [2].) Others developed some-
what different approaches including the cryptographic reverse firewall (RF), which resides between the
user’s computer and the outside environment to protect cryptographic schemes and protocols from
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insider attacks [17]. More recently Russell at al. proposed a generic technique for designing pub-
lic key encryption that is semantically secure against ASA, which utilizes inter-component checking
techniques with offline component [21].

Though a number of attempts have been made to guard against ASAs, each solution has its own
merits and shortcomings. Hence, we can cautiously state that no perfect solution for ASA has emerged
yet.

3 Notions of Subverted Signature

Syntax for subverted signature schemes. We now provide the precise syntax for a subverted signature
scheme.

Definition 1. Let SIG = (Gen, Sign, Verify) be a regular (non-subverted) signature scheme. The Gen
algorithm takes a security parameter λ as input and produces a private and public key pair (sk, pk).
The Sign algorithm generates a signature σ on a message m. The Verify algorithm checks whether
a given signature σ on the message m is valid or not, outputting 1 or 0 respectively. A subverted
signature scheme for SIG, which we denote by SIG = (Gen,Sign) is defined as follows.

• The subversion key generation algorithm subk ← Gen(1`): On input a security parameter `, this
algorithm generates a subversion key subk.

• The subverted signing algorithm (σ̄, ι) ← Sign(subk, sk,m, ι): On input a subversion key subk,
a private key sk, a message m and a state ι, this algorithm produces a subverted signature σ̄ on
the message m with an updated state ι.

We require that the subverted signature σ̄ (on the message m) can be verified in the same way as
the non-subverted signature scheme is verified, i.e., 1/0← Verify(pk, σ̄,m).

The above definition is similar to Ateniese et al.’s [2] but we have made the generation of a
subversion key and its presence as input to a subverted signing algorithm more explicit (rather than
assuming the presence of “hard-wired arbitrary auxiliary information“ as described in [2]), following
the description style of Bellare et al.’s work in [6] and [4].

Note that in the definition above the subverted signing algorithm is defined as stateful by default,
taking state ι as input and returning the updated state. (In our subverted schemes which will be
presented later, state is only used internally and is never returned externally by the signing algorithm.)
Key extraction. The most serious attack against a signature scheme may be the private key extraction.
Usually extracting a private signing key from regular signature schemes is deemed infeasible but this
is not the case when it comes to a subverted signature scheme. – The adversary (Big Brother) should
be able to recover the private signing key efficiently from the number of subverted signatures obtained.
In the formal definition below, we formulate the key extraction in the subverted signature scheme.

Definition 2. Let B be an adversary. Let SIG = (Gen, Sign, Verify) be a signature scheme. Suppose
that SIG = (Gen,Sign) is a subverted signature scheme for SIG. Let QS be the number of signing
queries. Consider the following game:

KeyExtractB,SIG,SIG(λ)

1. Run Gen(1λ) to generate (pk, sk).

2. Run Gen(1`) to generate subk.

3. For i = 1, . . . QS , do the following:

If B queries each message mi, compute
(σ̄i, ιi)← Sign(subk, sk,mi, ιi−1) and return (σ̄i, ιi) to B.
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4. B(pk, subk, {σ̄1, . . . , σ̄QS
}) outputs sk′.

5. If sk′ = sk, return 1. Otherwise return 0.

We define Advextract
B,SIG,SIG(λ) = Pr[KeyExtractB,SIG,SIG(λ) = 1], where the probability is taken over

the random coins used by B, as well as the random coins used in the game.

We remark that the notion of key extraction is not formally defined in [2], even though their attack
implies it. Another remark is that the key extraction is not mandated as a security goal but as an
attack goal, which is a reasonable requirement for subversion as the similar notion for encryption is
defined in [4].
Undetectability under state reset. We now define what it means for a subverted signature scheme to
be secure from the adversary’s (Big Brother’s) point of view. Intuitively, an ordinary user, who does
not possess the adversary’s subversion key, should not be able to detect that a signature has been
created by a subverted signing algorithm. On the other hand, it is natural to assume that the user,
who is trying to detect subversion, has access to the private signing key since the user of a concerned
signature scheme (not an outsider) is usually more interested in detecting subversion. Therefore, in
the following definition of undetectability, a user (any party that is interested in detecting subversion)
is given the private key sk that corresponds to a public key pk.

Another aspect one can consider in the definition of undetectability is state reset [6][4]. This can
be achieved by giving the user access to a reset oracle. – When this oracle is invoked, state used in the
subverted signature scheme is initialized (reset). State reset obviously makes the user more powerful
but it was not considered in the previous undetectability notions of subverted signatures presented [2]
and [16].

As follows is our formal definition of undetectability.

Definition 3. Let A be a user (represented as an algorithm). Let SIG = (Gen, Sign, Verify) be a
signature scheme. For a subverted signature scheme SIG = (Gen,Sign), consider the following game:

DetectA,SIG,SIG(λ)

1. Run Gen(1λ) to generate (sk, pk).

2. Run Gen(1`) to generate subk.

3. b ∈ {0, 1} is chosen at random.

4. ASignOb(·),Reset(·)(sk, pk) outputs its guess b′ ∈ {0, 1}.
5. If b′ = b, return 1. Otherwise return 0.

−−−−−−−−−−−−−−−−
SignOb(mi)

If b = 0, σ′i ← Sign(sk,mi)

Else (σ′i, ιi)← Sign(subk, sk,mi, ιi−1)

Return σ′i

−−−−−−−−−−−−−−−−
Reset(rti) // rti is a reset query

ιi ← ∅
−−−−−−−−−−−−−−−−

We define Advdetect
A,SIG,SIG(λ) =

∣∣Pr[DetectA,SIG,SIG(λ) = 1]− 1
2

∣∣, where the probability is taken over

the random coins used by A, as well as the random coins used in the game. We say that SIG is
undetectable if for all probabilistic polynomial-time users A, there exists a negligible function ε(λ)
such that Advdetect

A,SIG,SIG(λ) ≤ ε(λ).
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Note that the undetectability of a subverted signature scheme implies that the verification algo-
rithm Verify should output the same result regardless of whether a subverted signature or a non-
subverted one on the same message is provided as input, i.e. Verify(pk, σ̄,m) = Verify(pk, σ,m).

The above definition is related to Bellare et al.’s detection notion for a subverted symmetric
encryption scheme [6]. It is also closely related to the similar notion “secret undetectability” presented
in Ateniese et al.’s work [2] (which was used in [16]), but the key difference is that in our definition,
the generation and presence of the subversion key subk is more explicit as mentioned earlier in this
section.

It should be remarked that while the above undetectability definition provides a good theoretical
framework for designing subversion for signature schemes, it does not capture other possible practical
attacks such as the timing analysis whereby a user can detect subversion by analyzing the execution
time of given signature schemes.

4 Our Subverted DSA Scheme

Our subverted DSA scheme exploits the random nonce generation of the original DSA: A nonce of
every (j + 1)-th DSA signature (for j mod 2 = 0) is generated not by choosing a uniform element but
by computing a PRF output taking the subversion key and the first component of the j-th signature
as input. This technique leads to highly efficient subversion.

Description of the proposed subverted DSA scheme. First, we describe the original DSA scheme as fol-
lows. Let DSA = (GenDSA,SignDSA,VerifyDSA) denote the DSA scheme. The key generation algorithm
GenDSA produces pk = (G, q, g, y,G,H) and sk = (G, q, g, x,G,H), where G is a cyclic group of prime
order q, generated by g, y = gx for the uniform x ∈ Zq; G : {0, 1}∗ → Zq and H : {0, 1}∗ → Zq are cryp-
tographic hash functions. On input a message m and a private key x, the signing algorithm SignDSA

generates a signature σ = (r, s) such that r = G(gk) for random k ∈ Zq and s = k−1(H(m)+xr) mod q.
On input pk = (G, q, g, y,G,H) of DSA, a message m, a signature σ = (r, s), VerifyDSA returns 1 if

r = G(gH(m)s−1

yrs
−1

) and 0 otherwise.
We now describe our subverted DSA scheme DSA = (GenDSA, SignDSA) as follows:

• Subversion key generation GenDSA: On input 1`, select a PRF F : {0, 1}` × {0, 1}∗ → {0, 1}n,
pick κ ∈ {0, 1}` uniformly at random and return subk = (descF, κ), where “descF” denotes the
description of F .

• Subverted sign SignDSA: On input sk = (G, q, g, x,G,H) of DSA, a message m, a private signing
key x and a subversion key subk and state ι = (j, τ), where j and τ are initialized to 0, perform
the following:

If j = 0 mod 2

Pick k ∈ Zq at random and compute r = G(gk) and s = k−1(H(m) + xr) mod q

Set τ = r and σ̄ = (r, s)

Else

Compute k̃ = F (κ, τ) mod q and r′ = G(gk̃)

Set σ̄ = (r′, s′)

j = j + 1

Set ι = (j, τ)

Return (σ̄, ι)
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Note that the ASAs on DSA presented in [31] and [32], and the generic subverted signature schemes
from [2] all require state to be communicated to the adversary in order to extract the private key.
(The state is used to indicate which signature or bit is needed for private key extraction.) In many
circumstances, this will not be trivial. In contrast, by collecting any three consecutive signatures
maximum, the adversary can easily extract of the private key from our subverted DSA.

Moreover, our subverted DSA resists a state reset. The intuition for it is as follows. Whenever a
reset query is made, j is set to 0, which causes the subverted signing algorithm to output a regular
DSA signature upon receiving a signing query. Hence a sequence of the subverted signatures always
starts with a valid DSA signature in which r is always an uniform element even after the reset. This
is proven formally in the proof of Theorem 2.

Finally we remark that the technique used to construct the above subverted DSA scheme can
readily be applied to other discrete-logarithm based signature schemes including the Schnorr signature
[24], whose subverted scheme is presented in Appendix .1. It is also possible that the technique can
further be generalized to cover all the signature schemes of a similar type but we do not pursue it
in this work since the main goal of cryptomalware is to realize efficient ASA rather than to design a
generic framework, which often does not result in optimized efficiency of (subverted) cryptographic
schemes.

Key extraction. We show that the private signing key of the DSA scheme can easily be extracted from
utilizing our subverted DSA. Any pair of consecutive subverted signatures that starts with even index
j (i.e. j = 0 mod 2) can reveal the private signing key x. Even in the event that j is odd, by selecting
a signature that immediately comes after the failed pair, it can be used to extract the private signing
key with probability close to 1. A formal proof is as follows.

Theorem 1. Suppose that three consecutive signatures output by the subverted DSA scheme DSA are
given. Then, the signing key of the DSA signature scheme can be extracted with probability 1.

Proof. Suppose that an adversary B obtains three consecutive subverted DSA signatures for three
arbitrary messages. Denote the three signatures for message m, m′ and m′′ by σ̄j = (r, s), σ̄j+1 =
(r′, s′) and σ̄j+2 = (r′′, s′′) respectively. Suppose that j = 0 mod 2. Then B can recover the secret
signing key x using its subversion key subk = (κ, F ) as follows:

Compute k̃ = F (κ, r);

Compute x̄ = k̃s′−H(m′)
r′ mod q;

Return x̄;

Note that since

gx̄ = g
k̃s′−H(m′)

r′ = g
H(m′)+xr′−H(m′)

r′ = gx = y,

the above algorithm succeeds in extracting the private key x. Hence, B extracts the signing key with
probability 1.

Now, suppose that j mod 2 6= 0. Then, (j + 1) mod 2 = 0 and hence B can use the last two
consecutive subverted signatures σ̄j+1 = (r′, s′) and σ̄j+2 = (r′′, s′′) to extract the signing key with
probability 1 in exactly the same way it was done with σ̄j+1 and σ̄j+2. Thus, Advextract

B,DSA
(λ) = 1.

Undetectability. We show that the subverted DSA scheme is undetectable. As a preliminary, we review
the definition of a pseudorandom function (PRF).

Definition 4. Let F : {0, 1}` × {0, 1}∗ → {0, 1}n be a function taking a key µ ∈ {0, 1}` and an input
x ∈ {0, 1}ρ. Let A be an adversary with oracle access. Assume that Funcnρ be a set of all functions
from {0, 1}ρ to {0, 1}n. Consider the following two games:
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RealA,F (`)

1. Pick µ ∈ {0, 1}` uniformly at random

2. AF (µ,·)(`) outputs b ∈ {0, 1}
3. Return b

RandA,F (`)

1. Pick f ∈ Funcnρ uniformly at random

2. Af(·)(`) outputs b ∈ {0, 1}
3. Return b

A’s advantage is defined as Advprf
A,F (`) =

∣∣Pr[RealA,F (`) = 1]−Pr[RandA,F (`) = 1]
∣∣. F is said to be

a pseudorandom function if there exits a negligible function ε(`) such that AdvA,F (`) ≤ ε(`), where the
probabilities are taken over the randomness used in A and the randomness used in the experiment.

Now we prove the following theorem.

Theorem 2. The detection advantage of the subverted DSA signature scheme DSA is negligible as-
suming that the function F is a PRF.

Proof. The proof proceeds with the following sequence of games.
Game 0. This game is the same as the real undetectability game DetectA,DSA,DSA(λ). For complete-
ness, we describe it as follows.

Let A be an adversary making QS signing queries as described in Definition 3. Suppose that A is
given pk = (G, p, g, y,G,H) and sk = (x, pk).

After setting up the private and public key pair, the game specifies a PRF F : {0, 1}` × {0, 1}∗ →
{0, 1}n, initializes j = 0 and τ = ∅. The game then picks b ∈ {0, 1} at random.

If b = 0, on receiving each signing query m from A, the game responds A with a valid DSA
signature. On receiving a reset query rt, set j = 0 and τ = ∅.

If b = 1, the game does the following:

If A submits a signing query m,

If j = 0 mod 2

Choose k ∈ Zq uniformly at random, compute r = G(gk) and s = k−1(H(m)+xr) mod
q, and set τ = r and σ̄ = (r, s)

Else

Compute k̃ = F (κ, τ) mod q, compute r′ = G(gk̃) and s′ = k̃−1(H(m) + xr′) mod q,
and set σ̄ = (r′, s′)

j = j + 1

Return σ̄

If A submits a reset query rt, set j = 0 and τ = ∅

Finally A outputs its guess b′ ∈ {0, 1}.
Let S0 be an event that b′ = b.
From now on, we define Si for i = 1, 2, ... be events that b′ = b.

Game 1. This game modifies the previous game in such a way that when b = 0, it answers A’s
queries in the same way as the previous game but when b = 1, k̃ (when j = 1 mod 2) is not computed
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using the PRF but by selecting a uniform random string. As follows is the detailed description of the
modified game:

Set T = ∅.
If b = 0, on receiving each signing query m from A, the game responds A with a valid DSA

signature. On receiving a reset query rt, set j = 0 and τ = ∅.
If b = 1, the game does the following:

If A submits a signing query m,

If j = 0 mod 2

Choose k ∈ Zq uniformly at random, compute r = G(gk) and s = k−1(H(m)+xr) mod
q, and set τ = r and σ̄ = (r, s)

Else

If (τ, t) /∈ T , pick t ∈ {0, 1}n uniformly at random, otherwise extract (τ, t) from T ,

compute k̃ = t mod q, r′ = G(gk̃) and s′ = k̃−1(H(m) + xr′) mod q, and set T =
T ∪ {(τ, t)} and σ̄ = (r′, s′)

j = j + 1

Return σ̄

If A submits a reset query rt, set j = 0 and τ = ∅

Note that other parts of Game 0 remain unchanged.
Observe now that one can construct a PRF adversary B, which is able to simulate the subverted

signing oracle in Game 0 and Game 1, having access to an oracle O ∈ {F (κ, ·), f(·)}. (When the
oracle is the real PRF F , k̃ is produced in the same way as Game 0 is described. On the other hand if
the oracle is the random function f , k̃ is produced in the same way as Game 1.) Hence, the difference
between the probabilities that the events S0 and S1 happen respectively leads to the distinguishing
the PRF from the random function. Then, we have

|Pr[S1]− Pr[S0]| = Advprf
A,F (`). (1)

Game 2. This game modifies the subverted signing algorithm in the previous game in a way that
when j = 1 mod 2, the existence of (τ, t) in T is not checked and t ∈ {0, 1}n is chosen uniformly at
random and k̃ = t mod q is computed.

Let Col be an event that τj = τl for some l ≤ QS .
Then, we have

|Pr[S2]− Pr[S1]| ≤ Pr[Col] ≤ Q2
S

|q|
(2)

since τ ’s are uniform in Zq.
Game 3. This game is identical to the previous game except that when A issues a reset query rt,
the game does not reset j and τ (to 0 and ∅ respectively) but continues answering A’s other queries
in the same way it does in Game 2.

Note that in this game, the uniform t ∈ {0, 1}n is generated and assigned to k̃ without depending
on the value of τ , (i.e. k̃ is uniform and independent from anything else), the distribution of subverted
signatures σ̄ is identical to that of the real DSA signatures regardless of whether j = 0 mod 2 or
j = 1 mod 2. This means that even if the game does not do anything upon receiving the reset query,
the distribution of subverted signatures in this game is the same as those in Game 2. Thus, we have

Pr[S3] = Pr[S2]. (3)
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Note also that in this game, due to the fact that k̃ is uniform and independent from anything else,
regardless of whether b = 0 or b = 1, upon submitting signing queries, A will obtain signatures whose
distribution is the same as that of DSA. This means A does not get any advantage in guessing b by
querying the signing oracle. Therefore, we have

Pr[S3] = 1/2. (4)

Since |Pr[S0]− 1/2| = Advdetect
A,DSA,DSA

(λ), by combining (1), (2), (3) and (4), we obtain

Advdetect
A,DSA,DSA

(λ) ≤ Advprf
B,F (`) +

Q2
S

q
,

which concludes the proof.

5 Implementation

In this section, we present the implementation of the subverted DSA scheme presented in the pre-
vious section. Our implementation is based on the recent version of Libgcrypt (v1.8.2), a popular
cryptographic library developed for the GNU Privacy Guard (GPG) [11].

Our implementation was performed on Ubuntu 16.04L running on a virtual machine of 2 CPU
cores, in which 4096 MB memory was allocated. The CPU of the host PC was Intel(R) Core(TM)
i5-7440HQ @ 2.80 GHZ. The OS of the host PC was 64-bit Windows 10 and the memory size was 16
GB. We used primes p and q, whose bit-lengths are 1024 and 160, respectively.

As a benchmark, we performed the signing and verification operations of the original (non-
subverted) DSA scheme from Libgcrypt 200,000 times and measured the running time. The result
is provided in Table 1.

Table 1: Execution time of the Original DSA
Algorithm Exec. Times (µs)

Average Signing Time 311.7
Average Verification Time 379.5

Algorithm 1 describes the original signing algorithm of the DSA, denoted DSA SIGN. We sepa-
rated the signing procedure of the original DSA into two functions, GenkDSA and SignDSA, to easily
compare with the subverted signing algorithm, which will be described shortly. GenkDSA denotes the
generation of randomness k using one of the random number generators, gcry dsa gen rfc6979 k

and gcry dsa gen k, provided by the original Libgcrypt. SignDSA is the rest of signing process,
which mainly consists of simple arithmetic operations.

Algorithm 1 DSA Signing (Not Subverted)

1: procedure DSA Sign(Message, Sigkey)
2: m← Hash(Message)
3: k ← GenkDSA(Sigkey → q)
4: (r, s)← SignDSA(Sigkey,m, k)
5: return (r, s)

We then describe our subverted DSA from Section 4 as Algorithm 2.
In Algorithm 2, the static global variables κ, τ and j represent the subversion key, the variable

for saving a previous signature value and the counter, respectively. When j%2 = 0, the randomness
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Algorithm 2 DSA Subversion Plain

1: κ← 0x10234...
2: τ ← 0
3: j ← 0
4: procedure DSA Sub Sign(Message, Sigkey)
5: k ← 0
6: m← Hash(Message)
7: if j%2 = 0 then
8: k ← GenkDSA(Sigkey → q)
9: else

10: k ← GenkAES256(κ, τ, Sigkey → q)

11: (r, s)← SignDSA(Sigkey,m, k)
12: if j%2 = 0 then
13: τ ← r
14: j = j + 1
15: return (r, s)

variable k is generated in exactly the same way as done in Algorithm 1, which uses the random
number generator provided by Libgcrypt for the regular DSA. On the other hand when j%2 = 1, k
is generated by the algorithm GenkAES256 based on the pseudorandom function of our choice (AES),
taking κ and τ as input.

We ran the above Algorithm 2 200,000 times (100,000 times each for the cases j%2 = 0 and
j%2 = 1) and then measured the average signing time for both cases, which is presented in Table
2. Notice that the signing time when j%2 = 1 is faster than when j%2 = 0. This should not be
considered as abnormal since the original random generator in Libgcrypt requires more complex
operations to generate secure randomness than the AES encryption, which we chose to implement the
PRF F in our subverted DSA scheme.

Table 2: Execution times of subverted DSA (Plain)
Algorithm Exec. Times (µs)

Average Signing Time When j%2 = 0 313.2
Average Signing Time When j%2 = 1 292.0

Average Signing Time (All Cases) 302.6

5.1 Preventing Timing Analysis

The proven undetectability of the subverted DSA (Theorem 2) guarantees that no party can distinguish
the real signatures from subverted ones. However, what this theoretical result does not capture is
timing analysis, whereby anyone tries to detect subversion by comparing the running time of a given
algorithm, which is supposed to be subverted, with that of the non-subverted one, which is provided as
a benchmark. (Note that there is a similar concept in the literature called “timing attack” [15], which
makes it possible for an attacker to measure a time difference between two computational operations
in a cryptographic scheme to obtain confidential information such as a secret key.)

The timing analysis might be possible against our implementation of the subverted DSA since
in the subversion, k and k̃ are generated differently depending on the evaluation of state j: When
j%2 = 0, k is created by the random number generator provided by Libgcrypt (i.e. it is generated
by GenkDSA). Otherwise, k̃ is generated by the AES function, which sources randomness from the
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previous signature value. This difference might lead to a simple detection based on timing analysis.
Obviously, the time difference between j%2 = 0 and j%2 = 1 is present in Table 2. Although the
difference is not significant overall, observing a large number of signatures might lead to detection.

A simple way to prevent the timing analysis is to make all operations in the algorithm take the
same amount of time [15]. For example, we can run both GenkDSA and GenkAES256 to generate k and
k̃, then take one of those values depending on the current state j%2. However, this approach will
make the signature generation slower since the random values are generated twice, which can lead to
detection while the subverted DSA is running. Since our purpose is to make the subversion remain
undetectable even at runtime, we cannot take this approach.

Therefore, we suggest new methods to prevent the timing analysis on our subverted DSA, such
as inserting dummy operation and resetting the statue index. The rest of this subsection will explain
each method in detail.

Dummy-Operation method. We were able to reduce the running time difference between the cases
j%2 = 0 and j%2 = 1 by adding some dummy operation when j%2 = 1. (Fortunately because the
running in this case is faster, we could easily “slow down” the signature generation.) To achieve this,
we carefully measured the extra time required to reduce the time difference and added three extra AES
encryptions as a “dummy operation”, denoted by Dummy() in Algorithm 3. Introducing Dummy()
did reduce the difference as shown in Table 3. It also made the overall signature generation time very
close to that of the original DSA (cf. Table 1).

Table 3: Execution times of subverted DSA (Dummy Operation)
Algorithm Exec. Times (µs)

Average Signing Time When j%2 = 0 314.9
Average Signing Time When j%2 = 1 311.3

Average Signing Time (All Cases) 313.1

Algorithm 3 DSA Subversion Dummy

1: κ← 0x10234...
2: τ ← 0
3: j ← 0
4: procedure DSA Sub Sign(Message, Sigkey)
5: m← Hash(Message)
6: if j%2 = 0 then
7: k ← GenkDSA(Sigkey → q)
8: else
9: Dummy()

10: k ← GenkAES256(κ, τ, Sigkey → q)

11: (r, s)← SignDSA(Sigkey,m, k)
12: if j%2 = 0 then
13: τ ← r
14: j = j + 1
15: return (r, s)

Index-Reset method. The dummy operation method reduces the time gap between j%2 = 0 and
j%2 = 1. In principle, one can “tune” the dummy operation to reduce the time difference further,
but we found that it is hard to realize this in practice.
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To achieve our goal, we introduce an “index-reset” method, which sometimes resets the index j
to 0. As described in Algorithm 4, every Φ-th index is set to 0, where Φ is a random integer of a
certain size. (As shown in Algorithm 4, the value of j is set to −1 when j%2 = 0 to reset the index
j. Since j is increased by 1 in line 15, it will reset the index j to 0 at the end of the procedure.) This
effectively skips the faster signature generation with AES256 when the index is odd (i.e., j%2 = 1)
and replaces it with a slower signature generation with the random number generator provided by the
original DSA in Libgcrypt.

This idea is based on our observation that when a small number of signatures are generated, the
difference between execution time of signature generations when j is even or odd is not significant,
however if the number of generated signatures becomes bigger, say more than 100,000, the difference
becomes noticeable. Therefore, by omitting the faster subverted signature generation based on AES,
we could make the average signature generation time very much close to that of the original DSA.
Note that this does not mean that the subverted signing algorithm omits to sign a particular message,
but it rather means that a message is signed by a different subroutine in the algorithm.

Algorithm 4 DSA Subversion IndexReset

1: κ← 0x10234...
2: τ ← 0
3: j ← 0
4: procedure DSA Sub Sign(Message, Sigkey)
5: Φ← N
6: m← Hash(Message)
7: if j%2 = 0 then
8: k ← GenkDSA(Sigkey → q)
9: (r, s)← SignDSA(Sigkey,m, k)

10: if j%Φ = 0 then

11: j = −1

12: else
13: Dummy()
14: k ← GenkAES256(κ, τ, Sigkey → q)
15: (r, s)← SignDSA(Sigkey,m, k)

16: j = j + 1
17: return (r, s)

Table 4 shows the running time of signature generation when both the dummy operation and
index-reset methods are applied.

Table 4: Execution times of subverted DSA operation (Index-Reset)
Algorithm Exec. Times (µs)

Average Generation Time of Every Other Signature 312.3
Starting with Index = 0

Average Generation Time of Every Other Signature 311.2
Starting with Index = 1

Average Signing Time (All Cases) 311.8

It should be noted that the index-reset method merely affects the performance of the implemen-
tation and still allows us to extract a private signing key from consecutive subverted signatures. This
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can be shown as follows. If our subverted DSA scheme is reset during the execution, there are only
two cases depending on whether j%2 = 0 or j%2 = 1 for index j for the current state. If the algorithm
is reset after it generates the signature with index j%2 = 0, the next two signatures are generated
with indices j%2 = 0 and j%2 = 1, respectively, since we choose because the reset make the signing
operation start from j = 0. (We assume that the resets do not occur immediately one another by
choosing Φ of a certain size.) Therefore, the sequence of j%2 is as follows:

· · · 0 1 0 1 0 0 1 0 1 · · · ,

where the sequences after the reset are boldfaced. This implies that the longest sequence of j%2
which is absent from subverted signatures that can lead to the private key extraction is 1 0 0, where
0 denotes the index that has been reset. If one more signature immediately after “0” is collected,
one can extract the private key. Therefore, if maximum four subverted signatures are collected, the
private key can be extracted.

If the algorithm is reset after it generates the signature with index j%2 = 1, it is obvious that it
does not affect the private key extraction as the sequence of j%2 will be the following:

· · · 0 1 0 1 0 1 0 1 · · · ,

which is the same as the original sequence of index for subverted signatures.
To sum up, even when the index-reset is in place, the private key can readily be extracted.
We remark that as proven in Theorem 2, state resets do not affect the undetectability of the

subverted DSA. This implies that the index-reset method, which essentially triggers resets on purpose,
does not affect the undetectability either.

Summary of the performance. Note that the average running time for signature generation of the
original DSA is 311.7 µs as shown in Table 1. Using the dummy-operation method, we achieved the
running time 313.1 µs (Table 3). This is slightly slow, but it cannot easily be noticeable and could be
regarded as a system noise. The index-reset method gave the better result of running time 311.8 µs as
shown in Table 4. Note that under this method, the signature generation time for each message does
not vary depending on state, as compared with the implementation without timing analysis prevention
measure (Algorithm 2). To sum up, our methods effectively prevent the timing analysis giving the
signature generation time very close to the benchmark signing time, 311.7 µs of the original DSA.

Comparison with asymmetric subversion. Compared with our subversion on the DSA, the subversion
proposed in [16] could naturally be detectable by timing analysis. Although their subverted signa-
tures are theoretically indistinguishable from the original signatures, the signing algorithm exhibits
a noticeable delay because their subverted singing algorithm needs to perform extra exponentiation
over a group every time a signature is generated for asymmetric subversion. We estimated that due
to the extra exponentiation operation, their subverted signing would take well above 500 µs when the
Libgcrypt is used. This is almost 1.5 times slower than the original signing time of DSA. Therefore,
in practice, their subversion can easily be detected by measuring the signature generation time and
comparing with a benchmark for the DSA. Our subverted DSA scheme does not have this problem.

5.2 Considering Signature Loss

In the next experiment, we consider the real world situation in which the adversary has some difficulty
in collecting consecutive signatures. If the adversary can obtain three consecutive signatures, he
can definitely recover the private key. However, in practice, he may not be able to get consecutive
signatures easily. He can only eavesdrop on a few channels among many, which will make it hard for
him to obtain consecutive signatures out of all the distributed signatures. We adopt a probabilistic
model to reflect this situation. In our model, we assign a certain probability to each subverted
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signature (from the victim’s machine). This probability is represented by a loss rate. For example,
if the loss rate is 95%, many signatures are marked as “loss” and do not arrive at the adversary’s
computer. Then the adversary needs to collect more subverted signatures to successfully extract the
private key. Our result shows that in reality, collecting enough signatures (two or three signatures
depending on the j value) is not a very restrictive requirement.

Figure 1: Extraction Results by Quantiles

Fig. 1 shows the relationship between a probability that one can successfully recover a private
key and the number of required subverted signatures. It shows the experimental quantiles of the
number of signatures required to extract a signing key in each probabilistic scenario. Each curve
in the graph represents a probability of successful extractions. The required number of subverted
signatures increases as the loss rate increases. For example, if the adversary has gathered about 56
subverted signatures under 95% loss rate, he can recover the private key x with probability 0.8 (80%),
which is represented by the first square dot in the green line in Fig. 1. The number of required
signatures to be collected decreases rapidly as the loss rate does as shown in Fig. 1.

Fig. 2 demonstrates the number of subverted signatures that are required on average to successfully
recover a signing key depending on various loss rates. This result can be used to demonstrate the
expected resources to extract a private key and it shows that even with high loss rate of 95%, only
about 36 signatures are needed for an extracted signing key on average. Consequently, it takes the
adversary only about 25.9 ms to work out a signing key. It should be noted that this is computed using
average signing, verification and extraction times. For each trial, the adversary signs any message and
verifies the signature using a known verification key. If it is verified successfully, then the adversary
gets a valid signing key. The time taken to extract the key from two subverted signatures is 50.1 µs.
The execution time will decrease rapidly as the adversary gathers signatures more reliably without
big losses (i.e., the loss rate decreases).

To summarize, our experiment demonstrates that requiring at most three consecutive signatures
does not limit the practicality of our subverted DSA scheme. Even in the environment where many
subverted signatures are lost in transmission, the adversary can still extract private signing keys
utilizing a relatively small number of collected signatures.
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Figure 2: Overall Extraction Results

6 Concluding Remarks

We have presented our subverted DSA scheme which realizes ASA on the DSA and provided its
implementation based on the Libgcrypt library. We have demonstrated that subverted signatures
generated from the subverted DSA scheme can be utilized to recover the private signing key from very
few signatures. Our experiment shows that even if many subverted signatures are lost en route to the
adversary, the private key can still be extracted efficiently.

As with the case of other ASAs in the literature, a lesson learned from our result is that care must
be taken to employ black box cryptography. Our result also confirms that randomized cryptographic
schemes can be more vulnerable to subversion attacks since the randomness used in such schemes can
be a vehicle for Big Brother to embed a backdoor, as demonstrated in a number of subversion attacks
in the literature. Moreover, our result demonstrates that the structures of the discrete-logarithm based
signatures are particularly vulnerable to exploitation. (Note that the structural fragility of DSA was
well demonstrated by the attack on the DSA implementation in the Sony PlayStation3, in which a
new ephemeral exponent, say k, failed to be uniformly random [7].) We expect that other similar
discrete-logarithm based signatures can be subverted in a similar way as presented in this paper.

As discussed in Section 2, the research community has come up with a few solutions to defend
cryptography against ASA, which include using deterministic cryptographic primitives and offline
components. Our concern, however, is that solutions based on ASA framework may not cover all kind
of the attempts that weaken cryptographic protocols as elaborated by Schneier et al. [23]. Another
concern is that many cryptographic algorithms (such as RSA, ElGamal and DSA) are widely deployed
and it will be hard to persuade users to replace what they are currently using, in a short period of
time.

As a short-term solution, we then suggest that a proper self-test routine to detect any unauthorized
changes in cryptographic implementations should be added. Also, it is important to remind the users
of cryptographic libraries 1) to use the versions of software which are legitimately distributed and 2)
to check the integrity of sources or binaries proactively before using them.

In the long term, we envision that such a discipline as “software engineering for cryptography”,
which was put forward by Schneier et al. [23], is urgently needed to extend the efforts on providing
implementation security [1][8] and finding bugs or problems [14] to preserve the security and privacy
that cryptography can bring us.
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.1 Our Subverted Schnorr Signature

As an additional application of our technique, we present an ASA on Schnorr by constructing a
subverted Schnorr scheme. The main idea of the construction is similar to the subverted DSA scheme:
A nonce of every (j+1)-th DSA signature (for j mod 2 = 0) is generated by computing a PRF output
taking the subversion key and the first component of the j-th signature (generated legitimately) as
input. A formal description follows.

Let SNR = (GenSNR,SignSNR,VerifySNR) denote the Schnorr signature scheme. The key generation
algorithm GenSNR produces pk = (G, q, g, y,H) and sk = (G, q, g, x,H), where G is a cyclic group
of prime order q, generated by g, y = gx for uniform random x ∈ Zq and H : {0, 1}∗ → Zq is a
cryptographic hash function. (This is assumed as a random oracle [5] in the security analysis [20].)
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On input a message m and a private key x, the signing algorithm SignSNR generates a signature
σ = (r, s) such that e = H(m, r), where r = gk for uniform k ∈ Zq, and s = k+ xe mod q. On input a
message m, a signature σ = (r, s) and a public key pk, the verification algorithm VerifySNR computes
gsy−e and checks whether e = H(m, gsy−e).

Using this scheme, we can construct a subverted Schnorr signature scheme SNR = (GenSNR, SignSNR,
VerifySNR) as follows:

• Subversion key generation GenSNR: On input 1`, select a PRF F : {0, 1}` × G → Zq, pick
κ ∈ {0, 1}` uniformly at random and return subk = (descF, κ), where “descF” denotes the
description of F .

• Subverted sign SignSNR: On input sk = (G, q, g, x,H) of SNR, a message m, a private signing
key x and a subversion key subk = (F, κ) and state ι = (j, τ), where j and τ are initialized to 0,
perform the following:

If j = 0 mod 2

Pick k ∈ Zq uniformly at random and compute r = gk, e = H(m, r) and s = (k +
xe) mod q

Set τ = r and σ̄ = (r, s)

Else

Compute k̃ = F (κ, τ), r′ = gk̃, e′ = H(m, r′) and s′ = (k̃ + xe′) mod q

Set σ̄ = (r′, s′)

j = j + 1

Set ι = (j, τ)

Return (σ̄, ι)

Note that the above scheme maintains state j (meaning it is stateful) but the subverted signing
algorithm never outputs the state nor does it take the state as input. – It is only used internally. Unlike
the subverted signature schemes in the literature [2], [31], [30], the state need not be communicated
to the adversary to conduct further attacks like key extraction.

Note also that the subverted verification algorithm is exactly the same as the original verification
algorithm of the Schnorr signature scheme, which is a required property to prove undetectability in
the next subsection.
Key extraction. The key extraction process is highly efficient in that any pair of consecutive subverted
signatures, which starts with even index j can reveal the private signing key x. (Recall that consecutive
signatures are the signatures generated one after another.) If j is an odd number, i.e. j = 1 mod 2,
extraction will fail. However, this can easily be overcome by sampling three consecutive subverted
signatures so that if the first two signatures fail to extract the signing key and last pair can be chosen
to extract it successfully. The following theorem formally proves the above argument.

Theorem 3. Suppose that three consecutive signatures output by the subverted Schnorr signature
scheme SNR are given. Then, the signing key of the SNR signature scheme can be extracted with
probability 1.

Proof. Suppose that an adversary B obtains three consecutive subverted Schnorr signatures for three
messages. Denote the three signatures for message m, m′ and m′′ by σ̄j = (r, s), σ̄j+1 = (r′, s′) and
σ̄j+2 = (r′′, s′′) respectively. Suppose that j = 0 mod 2. Then B can recover the secret signing key x
as follows:

Compute e = H(m, r) and e′ = H(m, r′);
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Compute k̃ = F (κ, gsy−e);

Compute x̄ = s′−k̃
e′ mod q;

Return x̄;

Since

gx̄ = g
s′−k̃
e′ = g

k̃+xe′−k̃
e′ = gx = y

by the subverted signing algorithm, the above algorithm succeeds in extracting the private key x.
Hence, B successfully extracts the signing key with probability 1.

When j 6= 0 mod 2, B can use σ̄j+1 and σ̄j+2 to extract the signing key in a similar way as shown
in the proof of Theorem 1. Hence, Advextract

B,SNR (λ) = 1.

Undetectability. We were also able to show that the proposed subverted Schnorr signature scheme is
undetectable as stated in the following theorem.

Theorem 4. The detection advantage of the subverted Schnorr signature scheme SNR is negligible
assuming that the function F is a PRF.

The proof is very similar to that of Theorem 2, which will be provided in the full version of the
paper.

21


	Introduction
	Related Work
	Notions of Subverted Signature
	Our Subverted DSA Scheme
	Implementation
	Preventing Timing Analysis
	Considering Signature Loss

	Concluding Remarks
	Our Subverted Schnorr Signature


