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Abstract

The field size 891+5 for elliptic curve cryptography offers simplicity,
security, and efficiency.

1 Introduction
This report describes parameters for elliptic curve cryptography (ECC).
Specifically, it focuses on the field size, the prime 891 + 5. This field size has
several advantages, and a few disadvantages. The main advantage is weak
and theoretical protection against exhaustive weakening.

The appendices of the report include an example curve defined over this
field size.

1.1 Background

Theoretically, a cryptographic algorithm’s parameters are possibly the out-
put of an exhaustive search for secretly weak values of the parameters, ren-
dering the parameters exhaustively weakened by their author. Bernstein and
several of his co-authors [BCC+14] list some ways this might occur in the
elliptic curve cryptography (ECC).

In elliptic curve cryptography, several standards—NIST, Brainpool, and
CFRG—partially counter the theoretical threat of exhaustively weakened
parameters, including the parameter of field size.

Ideally, a countermeasure to this theoretical threat does not sacrifice
efficiency (or other security properties). None of the currently standardized
field sizes for ECC are ideal.

∗Certicom/BlackBerry. dbrown@certicom.com

1



1.1.1 A general countermeasure

A general countermeasure to the concern of parameters exhaustively weak-
ened is to choose compact values for the parameters. In other words, highly-
compressible, or low-complexity, or simple-as-possible, parameters partially
resist exhaustive weakening.

The heuristic reasoning of this countermeasure is that exhaustive weak-
ening means traversing a large space of candidate parameters. By Shan-
non’s theory of information a large space of values requires a large set of
information to be encoded. So, exhaustively weakened parameters must be
non-compact in that they must be encoded with an amount of information
sufficient to encode the entire search space of the hypothetical attack.

Historical precedents for compactness Choosing compact parameters
is quite an old concept, with plenty of historical precedence.

In cryptography, compact parameters have often been called called nothing-
up-my-sleeve (NUMS) parameters.

Often, NUMS parameters are also intended to be random, and as such
are selected using some kind of simple pseudorandom function applied to a
compact value. With regard to field size, choosing a pseudorandom field has
a large cost in software performance. Since this decreases the usability for
a given security level, the performance lost can also be viewed as a security
loss.

More recently, in ECC, the term rigid has been used (introduced by
Bernstein and Lange [BL13]). This new term is used in contexts devoid of
pseudorandomness, which, among other things, helps distinguish it from the
usual pseudorandom NUMS approach.

In more general context, such as science and philosophy, the strategy
of compact parameters is an instance of the principle often called Occam’s
razor. This principle is to do nothing more complicated than necessary. In
other words, choose the simplest suitable option.

Choosing compact parameters is an effort to minimize the amount of
information used to encode parameters, while still remaining secure against
known attacks.

Parameter compactness provides no protection against parameter weak-
nesses that are positively correlated with the compactness of the parameters.
For an example in ECC, smaller field sizes are generally weaker and gen-
erally more compact (at least when represented in plain decimal). As we
shall see, there are reasonable systems of representing (compressing) primes
in which compactness potentially helps in finding more secure and more
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efficient primes.

1.1.2 The ECC field size parameter

A fundamental parameter in elliptic curve cryptography is the field size.
As we will be seen in later in the report restricting compact values of this
parameter, leads one to some secure and efficient choices of the parameters.
Nonetheless, it also is reasonable to ask about the converse: is there a need
to seek to compact parameters in their own right? In other words, is the
field size, as a parameter, susceptible to exhaustive weakening?

Some weak evidence of the need for possibility of exhaustively weakened
ECC field sizes are some the NIST prime field sizes. For example, Bernstein
seems to suggest [Ber14] that some NIST field sizes, such as NIST P-256,
are more difficult to implement securely than other similar prime field sizes
(Curve25519): “What is a few copies? . . . Variable time. . . . Trouble . . . Even
worse.” It has also been argued that the NIST field sizes are slower than
similar field sizes (such as Curve25519) without offering a substantial in-
crease in security: thereby indirectly hindering the availability of security
to efficiency-constrained users.

Regarding the affected NIST prime fields, it is much less clear that these
minor security defects could have been a result of an exhaustive search.
For evidence of exhaustive weakening, one should exhibit a large space of
candidate parameters, and a search criterion. It is not quite clear how
to do this for NIST prime fields, because they can be characterized as a
belonging to a small class of generalized Mersenne primes. In the unlikely
case that the weaknesses of these NIST prime were intentional, rather than
accidental, the attackers were more likely to have honed into the weakness
rather exhaustively search for it. Against such direct attacks, compactness
of parameters are mostly ineffective: only astute insight in identifying the
weakness is effective.

Disregarding the NIST curve examples, perhaps stronger evidence for
susceptibility of the field size in ECC to exhaustive weakening can be con-
trived as follows. Again, the ideal form of evidence is a large set of candidate
primes, of which a small portion are vulnerable to a security flaw, and further
that the vulnerable primes are best found by exhaustive search. Hypothet-
ically, consider a security flaw in which just a few field values are likely to
induce an hardware word overflow in a typical implementation, similarly to
the Izu–Takagi attack [IT03]. These faulty field values, being so few and
unsuspected, would not be detected during normal operation or by random
testing. The adversary, though, supply these faulty value induced faults in
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the target implementation, and then potentially learn some secret bits.

1.2 A fast and compact field size for ECC

The prime field size 891 + 5 can be represented using decimal integers and
basic number-theoretic operations (including an exponential operation), as:

8^91+5 (1)

meaning it has a decimal-exponential complexity (DEC) of 6 symbols (or
less, if it has a shorter expression).

An earlier version of this notion was discussed by Bernstein, Hamburg,
Krasnova and Lange [BHKL13] when they introduced the curve Curve1174
and pointed out that “it is even more concisely expressible than the existing
Curve25519 curve”, seeming to suggest that concision is a good thing.

This prime is very close to a power of two: differing just by five. Primes
close to a power of two, are generally known to yield efficient modular arith-
metic, mainly because computer hardware deals most efficiently with powers
of two.

The prime 891 +5 is larger than 2256. Field size of about 2256 is currently
considered the approximate minimum threshold of adequate security against
Pollard rho attacks, at least under simplified arguments. A field size meeting
this minimum can be used to establish a 128-bit symmetric, without under-
mining the security of 128-bit symmetric encryption scheme. A field size
meeting this minimum is believed to withstand all currently-implemented
attack algorithms under all future foreseeable computing power1.

2 Simplified and sophisticated comparisons
Keep it simple. Simplify if possible. As simple as possible. No unnecessary
complications.

All these sayings suggest a strategy for cryptographic algorithm selec-
tion. Choose the simplest parameter among the suitable parameters. Any
simpler parameter must be rejected for some simple reason.

2.1 Extract simplified rules in general

Unfortunately, cryptology is a sophisticated subject. Claims about the supe-
riority (in efficiency or security) of one cryptographic algorithms can require
sophisticated arguments. Sophisticated arguments can be.

1Excluding quantum computing power, if you regard that as foreseeable.
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• difficult for non-experts to verify,

• dependent on variable inputs (such as computer hardware character-
istics),

• susceptible to sabotage by subtle subterfuge.

Fortunately, in some cases, even sophisticated arguments in cryptogra-
phy have parts that are simple. If these simpler principles play a significant
role, then they should be isolated and extracted for clarity.

Simplified arguments are often only a rule of thumb, providing only an
approximate answer. They can be applied as a first step, to be refined with
more sophisticated arguments. Sometimes, simplified arguments give good
answers, but cause one to miss some other good answers.

More sophisticated arguments might overturn simplified arguments. A
simplified argument is strong if such overturns are the exception. In that case
the simplified argument can be called a heuristic. Sometimes the underlying
justification for a heuristic is largely coincidence, accident, or serendipity.

Of course, it can be argued that any simplifications identified, including
the ones below, are actually a sophistication in their own right. There may
be many sophisticated way to simplify a sophisticated argument.

This report searches for the simplest primes of a minimum size, and
preliminarily rejects some of them a heuristic efficiency analysis. The search
itself is slightly sophisticated, but does not truly undermine simplicity of
the resulting primes. Their simplicity is established in two ways:

• by an intrinsic, self-evident compactness, requiring only a few basic
symbols to represent,

• by the absence of proposal with similar properties.

The searching discussed in the report is an approach to verify the latter
absence.

2.2 Simplified rules for ECC

Elliptic curve cryptography is especially sophisticated. We try to limit the
sophistication by identifying some simplified rules.

2.2.1 Simplified number-theoretical rules

A basic understanding ECC seems to require some knowledge of finite fields,
which in turn, requires knowledge of prime numbers. In other words, this in-
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volves a small amount of understanding of number theory, but for simplicity,
we try to keep this to minimum.

The number theory involved in ECC also involves modular arithmetic,
and, usually, computing powers of numbers (exponentiation). So, we include
modular arithmetic and powers in a minimal set of sophistications. Most
numerate people, and even number theorists, have primarily learned to use
decimal notation for arithmetic with small integers.

One can easily argue that binary notation, or another base, is more
natural, but we resort to these bases only as needed, viewing it as an extra
sophistication, being something taught outside of primary school.

So, for this reason, we first seek out prime field sizes that can be expressed
using the fewest symbols in a basic number-theoretical language of decimal-
exponential expressions.

For example, the prime field size 891 +5 can be expressed in 6 symbols as
8^91+5. Of course, many other primes can be expressed 6 or fewer symbols
as decimal exponential expressions. More sophisticated arguments may be
needed to decide between these many choices.

2.2.2 Simplified efficiency considerations

Efficient implementation of ECC software requires somewhat sophisticated
understanding of computer hardware. This may vary with the type of hard-
ware, but it is good to extract a simplified argument. If possible, we should
try to simplify these considerations, and distill some simple common prin-
ciples to efficient implementation, to be applied as a rule of thumb.

A simplified argument in efficient implementation is that computer hard-
ware uses binary integer arithmetic, and therefore arithmetic involving pow-
ers of two is generally arithmetic than powers of odd integers. A slightly
more sophisticated variant of this argument is that much computer hardware
offers efficient bit-shift operations, which provide multiplication by powers
of two, and bit-wise and operations, which provide modular reduction by a
power of two.

This simplified argument can sometimes be applied at a glance to elim-
inate prefer the prime 891 + 5 over the prime 798 + 2. A more sophisticated
analysis might reverse this preliminary conclusion.

2.2.3 Simplified minimum and maximum field sizes

A too small field size will be insecure; a too large field will be too inefficient.
Therefore, we should seek simplified rule (and argument) for a minimum
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and maximum field size.
Under the most basic understanding of ECC, a minimum field size is

a security condition, needed to avoid making Pollard rho attack feasible.
Accordingly, a simplified strategy places a priority on the rule for a minimum
field size, letting the maximum field size have a secondary importance.

Minimum field size We first consider some simplified rules for minimum
field sizes, to be followed by some simplified justifications of these rules.

• The prime field size is at least 2256.

• The prime field size is at least approximately 2256.

• The prime field size is at least approximately 2224.

• The prime field size is at least 280.

The second rule is a little vague, but one can hope that the other simplified
rules are sufficient to resolve the resulting ambiguity. The second rule allows
for curves like Curve25519.

The simplified justifications for these simplified minimum field size rules.
These justifications are given simplest first, and roughly the support the
corresponding simplified rules above.

• ECC is often used to establish a 128-bit symmetric key, which takes
2128 steps to attack by exhaustive search. Pollard rho attacks against
ECC is approximated most simply as taking square root of the field size
steps. Using an ECC field size smaller 2256 would then take fewer than
2128 steps to find the symmetric key, decreasing its effective security.

• The size of the ECC steps is usually larger than the size of the steps
used to attack the symmetric key. So, ECC can actually tolerate
field sizes smaller than 2256 without undermining the effective secu-
rity of the symmetric key. (Furthermore, ECC has a more secure
than symmetric-key trade-off between an adversary’s success rate and
amount of computation.)

• The actual number of steps Pollard rho depends is larger than just a
simple square root, by a constant factor.

• Matching the symmetric key sizes, to avoid decreasing security, is ir-
relevant, if the total amount of adversary computation to attack the
ECC remains infeasible. Some sort of computational estimate of how
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large a field an ECC adversary could feasibly attack may be used to
establish a minimum field rather than matching the attack cost against
the symmetric cipher (which is also infeasible, one hopes).

Maximum field size A maximum field size is an efficiency condition.
In this report, we take a simplified rule of preferring a more efficient field
given a choice between two sufficient secure field sizes, but not imposing any
maximum field size. This simplified maximum field size rule has the obvious
effect that we will never reject a curve under maximum field size rule.

More sophisticated rules might impose a maximum field size, based on
some estimate of minimum efficiency, or perhaps some other reason such as
minimum data usage efficiency, or even just as an arbitrary way to converge
towards interoperability and ultimately deployment.

For example, the SEC1 standard required primes p at the 128-bit security
level to belong to the interval [2255, 2256], perhaps largely under its stated
goal of promoting interoperability. In hindsight, this interval might be too
narrow, and too arbitrary.

2.3 Formalizing complexity

A task here is to formally define the set of decimal (or binary, octal or
hexadecimal) exponential expressions. This task can be broken into two
sub-tasks:

• defining the syntax of expressions (what strings qualify as a decimal
exponential expression), and

• defining the semantics of the expressions (how to evaluate the strings
as integers).

Given the syntax of expressions, one can count the number of expres-
sions of a given length. Given the semantics, one can further refine this
information to study the the distribution of the integers of a given length,
and using some heuristic to estimate how many ought to be prime, and so
on, and then, finally, enumerating the primes of a given complexity.

2.3.1 Syntax

We treat the decimal case. For other bases, the analysis is similar.
A decimal exponential expression is a string consisting of the alphabet

of 17 characters,

1 2 3 4 5 6 7 8 9 0 ( ) + - * ^ / (2)
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and obeying certain syntactical rules defined below. The rules for a valid
expression are recursively defined.

The characters fall into three classes. The first 10 are digits, with 0
having a special syntactical role. The next two characters are parentheses,
which must be nested and matched as usual and as implied by the following
rules. The last five characters are operators.

A numeric expression is consists of digits only, with the first digit nonzero.
Numeric expressions are included among valid expression.

A closed expression is either a numeric expression or a valid expression
that is enclosed in parenthesized.

A string is valid expression if and only if it is the concatenation of an
odd number of sub-strings where the odd-order sub-strings (first, third, fifth,
. . . ) are closed expressions and the even-order sub-strings (second, fourth,
. . . ) are just operators, a single-character each.

One can use generating series to count numeric, closed, and valid expres-
sions of a given length:

N(x) = 9x+ 90x2 + 900x3 + . . . (3)
C(x) = N(x) + x2V (x) (4)
V (x) = C(x)(1− 5xC(x))−1 (5)

Using this system of equations to calculate lower-degree terms seem to yield:

V (x) = 9x+ 90x2 + 1314x3 + 17190x4 + 231849x5 + 3100140x6 + . . . (6)

with possibly 41572305 (over forty million) valid DEC-7 expressions.
Taking the base-2 logarithm of the coefficients of the series V provides

a calibrate idea of how much Shannon entropy is encoded into a decimal
expression. This may also allow calibration between decimal exponential
complexity and the complexity to other bases.

Typical mathematical notation allows one to optionally omit the opera-
tor for multiplication when clear from context. Such omission slightly com-
plicates the syntax, and increase the number expressions of a given length.

An even richer class of expressions (and numbers) can be obtained by
allowing the right unary operator ! to mean a factorial. One might also
consider other standard math functions.

To aid in our analysis it is help to have a notion of the shape of a decimal
exponential expression. The shape is obtained by replacing each digit by #
and each operator by ?. Proofs about the decimal exponential can then be
divide into cases by shape.
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Table 1 lists all 13 possible shapes of DEC-6 numbers. In the second
column of 8 shapes uses parentheses trivially, which will evaluate to DEC-4
of DEC-2 numbers. The top five elements of the first column use one or less
operations, which will likely give a composite or a too small number.

###### (####)
####?# (##)?#
###?## (#)?##
##?### ##?(#)
#?#### #?(##)
##?#?# (##?#)
#?##?# (#?##)
#?#?## ((##))

Table 1: The sixteen shapes of DEC-6 numbers

Using the generating series approach above suggests that the number of
shapes of DEC-1 to DEC-7 number are 1, 1, 3, 4, 10, 16, 37.

2.3.2 Semantics

The evaluation of some valid expressions (as defined above) is quite unam-
biguous, while for others it is a little unclear. To fully formalize the system,
one must resolve this lack of clarity. Ideally, one can either dictate a unique
way to evaluate each expression into an integer (or a rational number, or a
complex number), or else concede the expressions have multiple interpreta-
tions. Here are some issues:

• How to decide an order of evaluation between two or more top-level
operations:

– Which operators have precedence over others?
– How to similar adjacent operators associate?

• How to handle division?

– Require exact division (with errors returned otherwise)?
∗ Allow fractions to appear temporarily?
∗ Allow irrational and imaginary numbers to appear temporar-
ily?

– Allow rounded division?
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∗ Towards zero?
∗ Towards negative infinity?

For example, Table 2 lists some rules for evaluating an alternating sequence
of operands and operators. Consecutive ^ operators are to be evaluated first,
from right to left. Replace the resulting sub-expressions by the values (now
quite large, generally), resulting in a partially evaluated expression with any
^ operators. Next look for group of consecutive operators consisting of the
operators * and / only. In each sub-expression evaluate the operators from
left to right.

Operators Associativity
^ right

* / left
+ - left

Table 2: Order of precedence and associativity

Many of the semantic questions above only apply to longer expressions,
so it is quite possible to reason about DEC-6 primes without answering all
of the questions exactly.

For simplicity, we will assume that the / operator requires exact divi-
sion, and inexact division is invalidates the expression. Similarly, a negative
result in the - also invalidates the expression (which helps to avoid raises
an integers to an negative power).

For example, regardless of these semantic detail, a heuristic analysis,
suggests that only the operator ^ helps to make expressions much larger
than numeric expression of similar length. Consequently, although they are
very many valid expressions, many will be too small to be use for elliptic
curve cryptography. Only those with at least one occurrence of the operator
^ will be interesting. For primes, one also needs a + or -, since products of
perfect powers are not generally prime. (Ignoring rounded division, here.)

Note that straight line programs (SLP) are another way to measure
integer complexity, and do not use exponentiation. Instead, a SLP can
record intermediate variables and multiply them without re-copying them.
In this way, an SLP can be also shorter than a numeric expression.

At least for short expressions, such as six or seven symbols, these con-
siderations are very limiting on the expressions. For longer expressions,
which are most relevant in the binary setting, useful expression can be more
complicated.
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Once one develops an idea of how many expressions yield integers in the
target range, one can next try to estimate how many of these are prime.
Then one can evaluate the expressions and test them for primality.

The number of primes in the target range gives a somewhat normalized
measure of uniqueness, that is somewhat less arbitrary than the number of
symbols. (The number of symbols varies between the base.)

Lemma 1. All DEC-1 to DEC-6 primes of size at least 280 have a decimal
exponential expression of shape #^##?#.

Proof. First we can eliminate parentheses from the shape. Parentheses can
be removed if they surround no operators, meaning a numeric expression
(digits only). Otherwise parentheses surround at least one operator, which
has at least two operands. So, a parenthetic sub-expression requires at least
five symbols (the two parentheses, the operator and the two operands). For
DEC-6 or less expressions, this leaves only one more symbol, which violates
the syntax, since one symbol is not enough to hold an operator and operator.
(If we allow elided multiplication operators, then we see the value must be
composite.)

Expressions without parenthesis have a shape consisting of # and ? sym-
bols with no two of the latter adjacent. One can easily check that the number
of such shapes of a given length is a Fibonacci number.

The largest DEC-6 or less expression with no operators is 999999, which
is less than 220 < 280.

An expression with only one operator cannot be prime if the operator
is ^ or * unless one of the operands is one and the other a prime with an
expression of shorter length. If the single operator is + or - or /, then it is
not too hard to verify that the largest DEC-6 expression if 9999+9, which
is less than 214 < 280.

The only remaining expression have two operators, because three oper-
ators require four operands and hence seven or more symbols.

By the earlier reasoning, we do not expect both operators to be in the
set of * and ^, because that would result in a composite number, or equal
prime expression of shorter length.

If neither of the operators is ^ then the largest possible expression seems
to be 99*9*9, which is too small again.

So one of the operators is ^ and the other one of + or - or /.
If the second operator is ^ the expression will be too small, or the first

operator will be + and the expression can be re-arranged by commutativity.
If the remaining expression have form ##^#?#, the largest possible ex-

pression seems to 99^9+9 which is less than 1289 + 1289 = 264 < 280.
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The leaves only expression of the form #^##?#.

Continuing the proof slightly: if we still insist on exact division, then the
second operator must be + or -, otherwise the result would be composite. If
we allow division with rounding, then the primes that result (if any) have
no known efficiency advantages, so should be preliminarily rejected.

2.3.3 DEC-5 field sizes

The largest DEC-5 (or less) prime that I could find was 69− 7, which is too
small (as expected by the previous lemma).

Some suitably large composite finite field sizes are DEC-5 or less num-
bers. For example, 2283. But these all seem to be low-characteristic finite
fields, which is both a security risk, due to improved index calculus attacks,
and an efficiency defect, due hardware support of integer multiplication.

2.4 Some DEC 6 primes

Because no suitable DEC5 or less primes were found, our simplified rules
indicate to next look for suitable DEC6 primes.

The following six DEC-6 primes are at least approximately 2256, which
is our second simplified rule for minimum field size.

698 − 7 (≈ 2253.3) (7)
891 + 5 (≈ 2273.0) (8)
798 − 2 (≈ 2275.1) (9)
987 + 4 (≈ 2275.8) (10)
895 − 9 (≈ 2285.0) (11)
999 + 4 (≈ 2313.8) (12)

These are all probable primes. As expected, these all have the shape #^##?#.
I did not find other sufficiently large primes, though I did not do a full
exhaustive search, or a proof.

Note that (non-thorough) searches for DEC-6 numbers allowing rounded
division did not yield primes in this range.

2.4.1 Rejecting four of the six field sizes

The two of the six primes with base b = 8 are probably most efficient, under
our simplified efficiency rule of being close to a power of two. The other four
primes are quite far from a power of two.
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Perhaps sophisticated arguments can salvage the other primes, but pre-
liminarily they should be rejected, at least until such sophisticated argu-
ments arise.

A theoretical argument to focus on base 4 and 8 More generally,
when considering primes of the form bm + d, for small b, d,m, one does not
expect the prime to very close to a power of two unless, b is also a power
of two, due to the famous abc conjecture in number theory. The conjecture
generalized Fermat’s last theorem, and predicts, among many other things,
that perfect powers cannot be too close.

Assuming this conjecture, it would be extremely surprising to find bm +
d = 2n + t for small numbers b,m, d, n, t. Of course, resorting to this con-
jecture is highly sophisticated, so it cannot form part of the simplicity argu-
ment. Rather, it is merely an aid to those searching for simple primes close
to a power of two.

2.4.2 Ways to verify the search results

The user may want to independently verify the claim that 891 +5 and 895−9
are the only DEC-6 primes larger than 2256 of the efficient form 8m + d.
In particular, the user wants to be sure that no primes have been falsely
excluded, and further test these two numbers are actually prime.

Fortunately, tests for compositeness, with proofs, and probabilistic pri-
mality tests are quite easy. For example, the J programming language snip-
pet

(#~1 p:({:+8x^{.)"1)>,{(85+i.15);i:9 (13)

will report only these two probable primes among 8m + d with 85 ≤ m ≤ 99
and −9 ≤ d ≤ 9. A user might also try to use NTL or Sage, or some other
software that has primality testing.

Formulaic composites For the excluded composites, a user can also try
to identify small or structured prime factors, just to be extra sure. Clearly
two divides 8m + d for even d. One can see immediately that 8m − 1 is
divisible by 7 and 8m + 1 = (2m + 1)(4m − 2m + 1) is divisible by 2m + 1.
Therefore, when seeking primes, one can restrict to d = ±3,±5,±7,±9,
leaving eight possible values for d. Taking 85 ≤ m ≤ 99, since 885 = 2255,
leaves fifteen possible values for m. The leaves 8 × 15 = 120 candidates
8m + d.
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Heuristic expectations The famous prime number theorem, suggests a
heuristic that the expected number of primes out of these 120 candidates is
about 120/ log(2256) ≈ 0.7. The fact that two probable primes were found
is slightly more than this heuristic prediction, but is within the range of
plausibility.

Small integer factors Using the first small ten small primes (up to 29),
eliminates 69 of these numbers. This would be a feasible, but tedious, hand-
verifiable calculation. If one wants to find small factors without using a big
integer software, one can eliminate quite a few more numbers. For example,
105 candidates have a factor less than 105 and 109 of the candidates have a
factor less than 107.

Composite witnesses It seems that for all the candidates n = 8m + d,
other than the two probable primes, 891 + 5 and 895 − 9, it holds that
2n−1 6= 1 mod n, proving that each such n is composite. This calculation
requires 120 modular exponentations modulo 300-bit or less integers.

2.4.3 Tiebreakers between the best DEC-6 primes

Our the simplified rules have now reduced the decision down to just field
sizes for ECC. Unfortunately, our simplified rules do not provide a way to
choose between. Consequently, we must extend our rules, becoming a little
more sophisticated, but still trying to be as simple as possible.

Complexity in other bases In binary and octal, instead of decimal, the
complexity of 891 − 9 seems to be one greater than that of 891 + 5, mainly
due to 9 requiring more symbols than 5 (in binary and octal).

This argument is sophisticated in that it invokes other bases, and like
decimal exponential complexity is still only heuristic. It seems unfair to
resolve a heuristic with another heuristic. Rather, heuristic seem better as
a simplified way to resolve gaps in the simplified arguments.

Field speed Both field’s elements can be represented in five 64-bit inte-
gers. This gives a simplified argument suggests that the fields should have
similar speeds in software.

If one follows the conventional practices of using a curve of size close to
the field size, with a low co-factor, then using field 891 + 5 should be slightly
faster, because the scalar multipliers will be smaller integers.
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If we accept that principle that a minimum field size of 2256, is adequate
for security, then the better speed of 891 + 5 makes it preferable.

The prime 895 − 9 is just below a power of two, meaning that Fermat
inversion is not as optimal as for 891 + 5, which is just above a power of a
prime. Perhaps 895 − 9 does have a Fermat inversion algorithm nearly as
efficient as 891 + 5, but I expect it to be somewhat more complicated.

Pollard rho The prime 895−9 is larger than 891+5, so potentially provides
a greater security against Pollard rho.

However, if one wants a more secure Pollard rho as a security precaution,
then one might also wish to re-consider one’s other security precautions. For
example, one might put a greater priority on having a larger field size, so
might extend one’s search to DEC-7 primes.

Implement-ability In a five-limb implementation, 895− 9 requires larger
limb values, so it might need more work to avoid overflow of the 64-bit
words. In other words, it might suffer from greater overflow pressure. Future
implementations should resolve this issue more clearly.

2.4.4 Smaller DEC-6 primes

Upon decreasing the minimum field size, the number of available DEC-6
primes increases. Seven remaining DEC-6 primes with base 4 or 8 which are
at least 2160 are:

480 + 7, 483 − 5, 487 − 3, 487 + 7 (14)
868 + 7, 871 + 3, 881 − 9. (15)

Only the last of these seven primes, 881−9, also exceeds approximately 2224,
thereby complying with our third simplified rule.

The prime 881 − 9 could likely be implement in four limbs of 64-bit
integers, so it is not unreasonable to hope it can be faster than 891 + 5,
which requires five limbs. On the other hand, its limb sizes may be around
261, which is closer to overflowing. The extra reduction steps needed to
prevent overflow might outweigh the gain from using fewer limbs.

2.5 Select DEC-7 primes

If DEC-6 primes are unsuitable, perhaps because they are: too small to
resist Pollard rho to sufficiently degree of precaution, or else too inefficient
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(compared to alternatives of similar size), or else too difficult to implement
correctly, then, under our simplified argument for choosing field sizes, we
should next look for a DEC-7 prime.

As one might expect, DEC-7 primes are considerably more plentiful
than DEC-6 primes. Using DEC-7 primes gives one far more options. It
seems that decimal exponential complexity exhausts its utility as a simpli-
fied heuristic for ECC field sizes once we get to DEC-7 primes.

2.5.1 Alternative bases for exponential complexity

Instead of giving up, one can try to extend the simplified heuristic of expo-
nential complexity by leaving decimal turning to other bases. The natural
choices are base 2 (binary), 16 (hexadecimal), or 8 (octal). These bases are
those used most often in computer software development. Larger bases such
as, 32, 60, 64, 256 and 232 might even be worth looking at.

Some interesting DEC-7 primes have been proposed for ECC: including
2521−1, 2255−19 = 885−19 and 2336−3. Most of these have some efficiency
advantages (relative to their size), and perhaps also security in the sense of
implementation-fault resistance.

One can then ask how the alternative-base exponential complexity heuris-
tics fare compared to these more sophisticated recommendations. Perhaps
future work can carry out such a comparison.

A few interesting primes are highlighted in Table 3. The expressions in
the table are not proven to be minimal. In particular, the binary expression
are longest, and seem to have most potential for shortening.

The rather large prime 236−9 was added to Table 3 because it has quite
a low binary exponential complexity (BEC) of 14 symbols, mainly due to the
low binary exponential complexity of the exponent 729. I am not aware of
low complexity of this exponent contributing to either security or efficiency.
So, this prime 2729 − 9, may serve to illustrate that the binary exponential
complexity is not a good heuristic for ECC.

2.5.2 The “competitive” pseudo-Mersenne primes

Bernstein and his co-authors [BCC+14] wrote:

For pseudo-Mersenne primes larger than 2224 the only possi-
bly competitive ones are: 2226 − 5; 2228 + 3; 2233 − 3; 2235 − 15;
2243− 9; 2251− 9; 2255− 19; 2263 + 9; 2266− 3; 2273 + 5; 2285− 9;
2291−19; 2292+13; 2295+9; 2301+27; 2308+27; 2310+15; 2317+9;
2319 + 9; 2320 + 27; 2321− 9; 2327 + 9; 2328 + 15; 2336− 3; 2341 + 5;
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Bit-security Decimal Binary Hexadecimal Octal
243 8^81-9 10^11^101-1001 8^51-9 2^3^5-11

6 14 6 8
255 8^85-19 10^11111111-10011 2^FF-13 2^377-23

7 17 7 8
273 8^91+5 1000^1011011+101 8^5B+5 2^421+5

6 16 6 7
285 8^95-9 1000^1011111+1001 8^5F-9 2^435-11

6 17 6 8
336 2^336-3 1000^1110000-11 8^70-3 2^520-3

7 15 6 7
521 2^521-1 10^1000001001-1 2^209-1 2^1011-1

7 15 7 8
729 2^729-9 10^11^110-1001 8^F3-9 2^3^6-11

7 14 6 8

Table 3: Some primes with some of their shorter exponential expressions

2342 + 15; 2359 + 23; 2369 − 25; 2379 − 19; 2390 + 3; 2395 + 29;
2401 − 31; 2409 + 29; 2414 − 17; 2438 + 25; 2444 − 17; 2452 − 3;
2456 + 21; 2465 + 29; 2468 − 17; 2488 − 17; 2489 − 21; 2492 + 21;
2495 − 31; 2508 + 15; 2521 − 1.

The justification for their list presumably includes some argument more
sophisticated than just decimal-exponential complexity. For example, all
the primes above are within distance 31 to a power of two, while one expects
to many primes of similar decimal-exponential complexity not meeting this
condition.

Peering at their list through the lens of decimal exponential complexity,
one sees that each prime is specified in decimal exponential notation with an
expression of complexity of 7 or 8. However, in each case, the base is fixed
to 2, whereas some of the complexity-8 expressions can be re-expressed as
complexity 7 by changing the base from 2 to 8, but only if the exponent of
two is below 300. Furthermore, some primes in their list can be represent
with decimal exponential complexity of 6, which are the three primes dis-
cussed earlier in this report: 881 − 9, 891 + 5 and 895 − 9, which are written
as 2243 − 9, 2273 + 5 and 2285 − 9 in their list.

The DEC-7 primes in their list appear to be: 2226− 5; 2228 + 3; 2233− 3;
2251 − 9; 885 − 19; 2263 + 9; 2266 − 3; 897 − 19; 2295 + 9; 2317 + 9; 2319 + 9;
2321 − 9; 2327 + 9; 2336 − 3; 2341 + 5; 2390 + 3; 2452 − 3; 2521 − 1. This list
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includes the 2255 − 19 and 2291 − 19.
The DEC-8 primes in their list seem to be: 2235−15; 2292 +13; 2301 +27;

2308 + 27; 2310 + 15; 2320 + 27; 2328 + 15; 2342 + 15; 2359 + 23; 2369 − 25;
2379 − 19; 2395 + 29; 2401 − 31; 2409 + 29; 2414 − 17; 2438 + 25; 2444 − 17;
2456 + 21; 2465 + 29; 2468 − 17; 2488 − 17; 2489 − 21; 2492 + 21; 2495 − 31;
2508 + 15.

If future implementation work shows that the DEC-6 or DEC-7 primes
in this list are more efficient (or more secure) than the similar-sized DEC-8
primes in this list, then one might conclude the decimal exponential com-
plexity is better vindicated as a heuristic than intuition suggest it deserves.

Regardless, if a DEC-8 prime is superior to a DEC-7 prime, it is rea-
sonable for a novice to seek a strong argument for the superiority, on the
grounds of avoiding unnecessary complexity.

A Comparison to standard curves
To be completed.

A.1 Comparison to Curve25519

Bernstein introduced Curve25519 in 2005. After about a decade, it has
now been adopted by CFRG and deployed in various ways. Its field size
is usually expressed as though it were DEC-8 prime: 2^255-19, which is
of course, fine. But from the perspective of this paper, we seek a shorter
expression to convey its lack of complexity. The exponent of two is divisible
by three, so we may re-write the prime as 885 − 19, suggesting that it is
actually a DEC-7 prime, which minimal expression 8^85-19.

Furthermore, the field 2255 − 19 is about 222 times smaller the field of
size 881 + 5 = 2273 + 5. This means that Pollard rho is expected to be about
211 times faster in Curve25519 than in an elliptic curve defined over the field
of size 891 + 5.

Of course, Curve25519 has some advantages over the field of size 891 +5.
In particular, elements of the field of size 2255 − 19:

• can fit into 32 bytes, which might be a convenient number of bytes for
network communications;

• can fit into four 64-bit words, which might help to reduce the number
of 64-bit multiplications (in hardware with very fast addition);

19



• can fit into five 64-bit double-floating point numbers (each holding 53
bits), which might help in hardware with faster floating point arith-
metic,

• can fit with lots of room to spare into five 64-bit integer, with the extra
spare allowing for fewer reductions operations (such as after additions
operations).

As usual in ECC, these efficiency advantages of Curve25519, largely due to
its smaller size, can be weighed against the security advantage of the larger
field size.

A.2 Comparison to NIST P-256

NIST curve P-256 uses the prime:

2256 − 2224 + 2192 + 296 − 1 ≈ 2256.0 (16)

which has a decimal exponential complexity of at most 24 symbols, as in
2^256-2^224+2^192+2^96-1. Perhaps it has a shorter decimal exponential
expression: it seems like an interesting to find the shortest expression.

Arguably, P-256 fares poorly under the decimal exponential complexity
to the point of being unfair. Perhaps, it is only a coincidence that the field
size P-256 has been claimed to be a little too complex to implement [Ber14]
and also too complex in terms of decimal exponential expressions.

Obviously, the P-256 prime has some special structure that is not cap-
tured well by the decimal exponential complexity. For example, in the J pro-
gramming language it can be expressed in 17 symbols, as -/2x^32*8 7 6 0 3,
which includes space symbols. Nevertheless, since this is still ten more than
the mere J symbols 5+8x^91 needed to express 891 +5, so it is not clear how
to get the complexity under other measures even close to that of 891 + 5, or
even 2255 − 19.

A.3 Comparison to secp256k1

Recall that SEC1 imposes the requirement that 2255 < p < 2256. The SEC2
recommended curve secp256k1 uses the prime

p = 2256 − 232 − 977 (17)

Note that the curve secp256k1 has j-invariant 0, and therefore has complex
multiplication by a cube root of unity. Presumably, p was chosen in a way
to take this into account.
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Unfortunately, SEC2 does not fully explain how p was derived. If p
chosen to be as close as possible to 2256, so that it has a prime size, when
one would it to be much closer to 2256. Basically, the term 232 does not
have a clear role. Perhaps, under some sophisticated analysis, this term
aids efficiency.

So this p seems to have a decimal exponential complexity of 14 symbols.
But it seems quite likely that a prime of decimal exponential complexity of 9
or 10 (by dropping the term −232 and adjusting the term 977 accordingly),
would serve just as well. Of course, there are far more 256-bit DEC-14
primes than 256-bit DEC-9 primes, but to be fair, the secp256k1 p has some
special structure among those DEC-14 primes.

B A simplified implementation strategy
This section applies some well-known algorithmic implementation techniques
to the to the field size of p = 891 + 5. It uses a simplified model of the
computer hardware.

This strategy is not necessarily optimal in efficiency or security.

B.1 Simplified computer hardware model

Consider computer hardware that uses 64 bits to represent any integer x
with |x| < 263. Call this a 64-bit signed integer. Two such integers x and
y can be added by the hardware, provided that the result is also represent-
able: if |x+ y| < 263. When |x+ y| ≥ 263, the computer hardware addition
is said to overflow. Overflow might generated an error, or may be handled
using arithmetic modulo 264. Either way, our implementation is strategy is
use algorithms guaranteed to avoid overflow.

Subtraction of 64-bit signed integers is similar.
We further presume that the computer hardware has an ability to mul-

tiply two 64-bit signed integers, yielding a 128-bit signed integer, with no
possibility of an overflow. The 128-bit signed integers may be internally
represented as two 64-bit integers.

We further assume that that computer hardware, or the programming
language of the implementation can realize addition and subtraction of these
128-bit signed integer (in the same way as 64-bit signed integers.).

For example, a C compiler might implement 64-bit signed integers as
type long and 128-bit signed integers as type long long, but most use
long long for 64-bit integers. The compiler GCC (version 4.6 and up) uses
type __int128 for 128-bit integers.
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Alternative computer hardware models may be more appropriate, or
superior, depending on the computer hardware. For example:

• Unsigned integers may be better than signed integers for some hard-
ware.

• 32-bit (or smaller) integers may be the only hardware option on hard-
ware, or may offer greater efficiency due to better parallelism2.

• Floating point values may be better than the integers for some hard-
ware.

An unconfirmed guess was that these alternatives do not work well for field
size 891 + 5.

B.2 Field element representation

Map Z5 to Fp by sending vector x to the dot product

x · (1, 255, 2110, 2165, 2220) mod p. (18)

In other words, use a radix (base) 255. (Side note: I tried a mixed radix
implementation, but it was slightly slower and more complicated.)

By linearity of the representation, conventional vector operations corre-
spond to field operations, including addition, subtraction and scaling (by
integers).

Field elements are usually represented as 5-tuples of 65-bit signed in-
tegers. An exception is that during multiplication of field elements, an
intermediate format 5-tuples of 128-bit signed integers will be used.

B.3 Multiplication

For multiplication using the fact that 4p = (255)5 + 20 seems helpful. (I
also tried a mixed-radix multiplication, which was slightly slower and more
complicated.)

2Tung Chou (NIST workshop on ECC, 2015) discusses using 32-bit vector instruction
for field size 2255 − 19 on 64-bit hardware.
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B.3.1 Cyclic schoolbook multiplication

One way to multiply vectors x and y is with a cyclic convolution variant of
schoolbook multiplication, where z = xy has coordinates:

z0 = x0y0 −20x1y4 −20x2y3 −20x3y2 −20x4y1, (19)
z1 = x0y1 +x1y0 −20x2y4 −20x3y3 −20x4y2, (20)
z2 = x0y2 +x1y1 +x2y0 −20x3y4 −20x4y3, (21)
z3 = x0y3 +x1y2 +x2y1 +x3y0 −20x4y4, (22)
z4 = x0y4 +x1y3 +x2y2 +x3y1 +x4y0. (23)

The following lemmas establish some conditions under which overflow
does not occur when using the cyclic schoolbook formulas above.

Lemma 2. If |xi|, |yj | < 260 for all i and j, then |zk| < 2127 for all k.

Proof. If |xi|, |yj | < 260 for all i, j, then |xiyj | < 260260 = 2120 for all i, j.
Then |zk| < (1 + 20 + 20 + 20 + 20)2120 < 272120 = 2127.

The next lemma may be helpful to optimize the multiplication of field ele-
ments by pre-multiplying 20xi, in other words computing 20xiyj as (20xi)yj .
This may help optimize if 20xi can be computed entirely with 64-bit integer
operations.

Lemma 3. If |xi| < 258 for all i, then |20xi| < 263 for all i.

Proof. If |xi| < 258, then |20xi| < |25258| = 263.

B.4 Reduction

The arithmetic operations described above tend to increase the magnitudes
of the coordinates of the tuples. If this operations were iterated repeatedly,
eventually the entries in the tuples would overflow the computer hardware
integers.

So some form of reduction operation is needed to avoid overflow.
A second type of reduction helps to give each field element a unique

representation. These unique representations are vital at the final stages of
ECC calculations to ensure interoperability, but they are not necessary for
the intermediate calculations.
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B.4.1 Partial reduction

In partial reduction, we only try to avoid overflow, and forgo uniqueness.
Suppose |zi| < 2127. Let zi = 2110qi + 255ui + ri, with |ri| < 255 and

|ui| < 255, and |qi| < 217. Let v be the vector with coordinates:

v0 = r0 −20u4 −20q3, (24)
v1 = r1 +u0 −20q4, (25)
v2 = r2 +u1 +q0, (26)
v3 = r3 +u2 +q1, (27)
v4 = r4 +u3 +q2. (28)

One might hope that the computer hardware is able do some of the additions
above in parallel since the additions used to compute vi do not depend on
the results of the additions used to compute vj .

The following lemma shows the reduced vectors v is ready to be used in
various arithmetic operations without overflow.

Lemma 4. If |zi| < 2127, then |vi| < 260.

Proof. Now |vi| ≤ |ri| + 20|ui−1| + 20|qi−2| < 255 + 20(255) + 20(217) <
(22)255 < 25255 = 260.

Unfortunately, this lemma is not ideal, for two reasons:

• It does not ensure that adding partially reduced numbers are multiplication-
ready.

• It does not ensure that 5-tuple v is ready for the pre-multiplication
optimization.

In other words, this form of partial reduction might lead to errors.
A caution: I must admit that I preliminarily implemented a version of el-

liptic Diffie–Hellman using the Montgomery with partial reduction as above.
Such a preliminary implementation is likely vulnerable to an implementation-
fault attack. An adversary could generate field values that would cause an
overflow, which in turn would leak bits of a secret key. Therefore, a case
can be made that field size 891 + 5 is susceptible to implementation faults.

It seems that we should do a further reduction of v0, to ensure a better
readiness for follow-up operations. To that end, let v0 = 255s0 + w0 with
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|w0| < 255, and |s0| < 28. Let:

w0 = w0, (29)
w1 = v1 + s0, (30)
w2 = v2, (31)
w3 = v3, (32)
w4 = v4, (33)

Lemma 5. If |zi| < 2127, then |wi| < 257.

Proof. By definition |w0| < 255 < 257.
For i ∈ 2, 3, 4, we have |wi| = |vi| ≤ |ri|+ |ui|+ |qi| < 3(255) < 257.
Finally, |w1| = |r1 +u0−20q4 + s0| ≤ |r1|+ |u0|+ 20|qi|+ |s0| < 4(255) =

257.

B.4.2 Full reduction (finalization)

A fully reduced vector w has wi ≥ 0, but each wi as small as possible. A
unique representation is generally needed so that Alice and Bob can inter-
operate.

If we assume a computer hardware model that compute non-negative re-
mainders of negative integers modulo powers of two, then a straightforward
method is to compute quotients and remainders starting from the least sig-
nificant limb. The quotient from the most significant limb is scaled by −5
before being added to the least significant limb.

One cycle of these limb reductions can result in the first (least signficant)
limb (limb zero in an array implementation) either negative, or exceeding its
positional radix 255. A simple fix is to do a second cycle. After the second
cycle, exceeding the radix is impossible, because the last limb was reduced
in the first cycle, and can now only cause a negative carry to the first limb.

If this least significant limb is negative, then one undoes this last step.
This looks correct to me now, but I must admit that it took me few tries to
get this right.

B.5 Inversion and square roots

Inversion in finite fields is needed for ECC operations. For public values,
some variant of extended Euclidean algorithm is often the fastest, but this
algorithms are variable-time. A variance in time depending on the secrets
is a potential weakness. A commonly proposed countermeasure is to use
Fermat inversion, compute x−1 as xp−2.
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Fermat inversion for our field, has p − 2 = 891 + 3. Computing xp−2 is
therefore very fast. Just compute:

x2, x4, x8, . . . , x2273
, x2273+2, xp−2 (34)

where ellipsis indicates repeated squaring. This takes 273 squarings and 2
multiplications, which is nearly optimally efficient for modulus of this size.

To compute square root, the usual method for primes with p ≡ 5 mod 8
can be used. The first step is raise the field element to the power of (p +
5)/8 = 2270 + 1. This simple and fast, like inversion, mostly involving
repeated squarings. As usual for primes p ≡ 5 mod 8, one may need to
adjust this power by multiplication by

√
−1 if the the power obtained is not

a square root of the input. Finally, on inputs that do not have square roots
at all, the square root procedure should indicated a failure result.

C Sample code
The sample code described below follows the algorithmic strategies discussed
earlier in this paper. It aims for simplicity, like the field size 891 + 5 itself.
It is naively written, and unlikely to be optimal in any respect. Using the
sample code may require a license.

The sample code is not hardened against various pitfalls to secure ECC
implementation: I do not claim accurate knowledge of these pitfalls. Indeed,
the code has not even been subjected to any quality control, so may not even
be fully functional, let alone secure.

The sample code uses a non-portable variant of the C programming
language, making it more portable than machine-specific assembler code,
yet still quite efficient (because C instructions often closely correspond to
machine instructions). Two non-portable features of the C sample code are:

• an 128-bit signed integer type __int128 (this type is available in GCC,
version 4.6 and up, but is not part of standard C), and

• negative integer operands for the C operators bit-wise operators >> and
<< and & (strictly speaking standard C says these operators undefined
on negative integers, but two’s complement and arithmetic shifts are
now very common).

The sample code uses (without permission or understanding) some, but
not all, of the C coding techniques in Bernstein and team’s TweetNaCl
library and in M. Scott’s implementation of NIST P-521.
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/*
smpl_8 ^91+5. c

A compact field for ECC .

(c) 2016 , Dan Brown , Certicom / BlackBerry

Sample code only : unfit for real - world use .

Needs gcc 4.6 (or later ).
*/

typedef signed long long int i ;
typedef i f[5];

# define FUN inline void
# define FOR(S) {i j;for(j=0;j <5;j +=1){ S;}}

FUN add(f z, f x, f y){ FOR (z[j]=x[j]+y[j]); }

FUN sub(f z, f x, f y){ FOR (z[j]=x[j]-y[j]); }

FUN mal(f z, i s, f y){ FOR (z[j]=s*y[j]); }

typedef __int128 ii ; /* gcc 4.6+ */
typedef ii ff [5];

static FUN med(f z, ff zz)
{
# define QUA(x) (x >>55)
# define MAD(x) ((((( i)1) < <55) -1)&x)
# define Q(j) QUA(QUA(zz[j]))
# define U(j) MAD(QUA(zz[j]))
# define R(j) MAD(zz[j])

z[0] = R(0) - 20*U(4) - 20*Q(3);
z[1] = R(1) + U(0) - 20*Q(4);
z[2] = R(2) + U(1) + Q(0);
z[3] = R(3) + U(2) + Q(1);
z[4] = R(4) + U(3) + Q(2);
z[1] += QUA(z [0]);
z[0] = MAD(z [0]);

}

FUN fix(f x)
{

i q, j ;
# define FIX(j,r,k) \

q = x[j] >> r;\
x[j] -= q << r;\
x[(j +1)%5] += q * k;
for(j=0 ; j <2; j+=1) {

FIX (0, 55, 1); FIX (1, 55, 1);
FIX (2, 55, 1); FIX (3, 55, 1);
FIX (4, 53, -5);

}
q = (x[0] <0) ;
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x[0] += q * 5 ;
x[4] += q << 53 ;

}

FUN mil(f z, i s, f y)
{

ff zz ;
FOR( zz[j] = s * (ii)y[j] );
med(z,zz) ;

}

# define CYC(M)\
ff zz ;\
zz [0] = M(0 ,0) - 20*M(1 ,4) - 20*M(2 ,3) - 20*M(3 ,2) - 20*M(4 ,1);\
zz [1] = M(0 ,1) + M(1 ,0) - 20*M(2 ,4) - 20*M(3 ,3) - 20*M(4 ,2);\
zz [2] = M(0 ,2) + M(1 ,1) + M(2 ,0) - 20*M(3 ,4) - 20*M(4 ,3);\
zz [3] = M(0 ,3) + M(1 ,2) + M(2 ,1) + M(3 ,0) - 20*M(4 ,4);\
zz [4] = M(0 ,4) + M(1 ,3) + M(2 ,2) + M(3 ,1) + M(4 ,0);\
med(z,zz );

FUN mul(f z, f x, f y)
{
# define MUL(j,k) x[j] * (ii)y[k]

CYC(MUL) ;
}

FUN squ(f z, f x)
{
# define SQR(j,k) x[j] * (ii)x[k]
# define SQU(j,k) SQR(j>k?j:k, j<k?j:k)

CYC(SQU );
}

void inv(f y, f x)
{

f z ; i j;
fix(x);
squ(z,x) ;
mul(y,x,z) ;
for(j=2; j <=273; j +=1){ squ(z,z);}
mul(y,z,y) ;

}

D Example curves
The field of size 891 + 5 can be used with any equation defining a secure
elliptic curve.
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D.1 A curve with a compact equation and an efficient endo-
morphism

The curve with equation:
2y2 = x3 + x (35)

has size 72q for a prime q, with q ≈ 2266.8.
This curve equation is quite compact, expressible as 2*y^2=x^3+x in 11

symbols.
The factorization of q − 1 seems to be

23 × 101203× 23810182454264420359
× 10934784357463776473342498062299965925956115086976992657 (36)

(obtained from Sage). It seems that p(q−1)/u 6≡ 1 mod q for u = 4 and each
of the odd prime factors of q−1, which means that the embedding degree of
the order q subgroup is (q − 1)/2. This renders the MOV attack infeasible
(and also any pairings).

This curve equation permits the use Montgomery’s efficient differential
addition formulas. Of course, any curve with order divisible by four can
be transformed into a similar shape. Also, this curve, and any other with
co-factor divisible by four, can be transformed into an Edwards curve if
needed.

Using Cornacchia’s algorithm finds p = u2 + v2 with

u = 104303302790113346778702926977288705144769 (37)
v = 65558536801757875228360405858731806281506. (38)

Then 72q = (u+ 1)2 + v2 = p+ 2u+ 1.

D.1.1 Conjectured attack?

It is commonly conjectured that an attack exists against curves with efficient
endomorphisms (or, more generally, complex multiplication by low discrim-
inant, which in this example 4). On the other hand, efficient-endomorphism
curves

• were introduced by Miller at the same time as he introduced elliptic
curve cryptography, and

• have been used in BitCoin.
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No major attacks have been discovered since then. So, the fact that the
remain unbroken despite their early proposal and deployment large-incentive
target suggests that the common conjecture is perhaps too fearful.

To be completed.

D.1.2 Not ideal for static Diffie–Hellman

The elliptic curve 2y2 = x3 + x is not ideal for use with static keys, for
the reasons given further below. In other words, it is best used only for
ephemeral static Diffie–Hellman key exchange.

Twist security The twist of the curve has order with prime factorization:

22 × 5× 1526119141× 788069478421× 182758084524062861993
× 3452464930451677330036005252040328546941. (39)

The prime factorization of the twist affects certain types of security. The
main implementations that are affected are those that

1. use static Diffie–Hellman key exchange,

2. without public key validation,

3. use the Montgomery ladder (or similar x-only coordinate algorithm)
for scalar multiplication.

4. use the Diffie–Hellman shared secret key before verifying proof-of-
possession of the other entity’s key (such as decrypted a ciphertext
without checking the associated message authentication code).

Such an implementation potentially allows an attacker to send the static DH
victim just five invalid public keys, and then do a computation of about 268

group operations to the extract the static private key. If the implementation
also exposes the raw shared secret, which is a requirement of some esoteric
protocols, then the attacker’s work is further reduced to about 265 steps. If
the static Diffie–Hellman implementation requires proof-of-posssion of the
other parties’ private key, then it seems that the attack is resisted, unless
that
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Cheon security The factorization of q + 1 is

2× 3× 11× 21577× 54829× 392473× 854041
× 8054201530811151253753936635581206856381779711451564813041

(40)

which suggests that the curve is a little more vulnerable to Cheon’s attack
than is typical for a random curve, because q + 1 has many small factors.
Cheon’s attack is only relevant for static Diffie–Hellman keys. Cheon’s at-
tack is thwarted by secure key derivation functions, but it is nonetheless
desirable to have curves that better resist Cheon’s attack on their own,
without relying on the key derivation function.

den Boer security The presence of smallish prime factors in q + 1 leads
to a variant of den Boer’s reduction (see [Bro14] for some details).

Let D be the minimum cost of the solving Diffie–Hellman problem in
the order q subgroup of the elliptic curve, and let L be the minimum cost of
solving the discrete logarithm problem in the same subgroup. LetM be cost
of a scalar muliplication in the elliptic curve group. Then the approximate
inequality:

D ≥ L− 2100M

213 (41)

seem to hold, for the reasons outlined below (following a variant of den
Boer’s reduction).

Convert the elliptic curve subgroup into the field Fq by using a Diffie–
Hellman solver to implement multiplication, and the elliptic curve group
operation for addition. In other words, if G is the base point over which
Diffie–Hellman problem is defined, then aG represents the field element with
standard integer representation a. Solving the discrete logarithm is therefore
equivalent to determine the standard integer representation from the elliptic
curve point representation of a field element. The opposite direction is much
cheaper, just corresponding to scalar multiplication.

Sometimes, multiplication in Fq can be done without using a Diffie–
Hellman solver: if one of the elements has a known standard integer repre-
sention, in other words, its logarithm to the base G is known, then we can
use a convential scalar multiplication to compute the product in Fq.

Implement the field Fq2 reprepresenting field elements in Fq2 as pairs
of field elements in Fq. Implement Fq2 addition using two Fq additions.
Implement Fq2 using Karatsuba’s algorithm, so with three Fq multiplications
and some number of additions. Note that the multiplicative group F∗q2 has
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order q2− 1, and in particular, has a subgroup of order q+ 1. Let H be this
group.

Given a field element as a point P , the discrete logarithm problem is find
an integer d such that P = dG. The strategy to these is to solve a discrete
logarithm depending on d in the subgroup of size q + 1 in Fq2 . Doing so,
allows us to determine a standard integer representation of d in terms of Fq2

discrete logarithm found.
Solving discrete logs in H, can done as follows. Let h be the target (a

value depending on P ), and let g be the base (not depending on P ). We
aim to find l such that h = gl. For each of the seven small prime factor
p of q + 1, do the following. Compute hp = h(q+1)/p, by solving about
about 3 × 1.5 × 273 ≈ 1228 Diffie–Hellman problems in the elliptic curve
group. Now hp belongs to an order p subgroup, so its discrete log (to base
gp = g(q+1)/p) can be found using baby-step giant-step in about 2√p group
operations in H. Each such group operation in H can be implemented as
a scalar mulitplication in the elliptic curve group, so does not require the
use of a Diffie–Hellman solver. The log of hp determines l mod p. Doing
these for each the seven primes, requires a total of about 213 Diffie–Hellman
solvers.

Use the Chinese remainder theorem to solve for l modulo P where P is
the product of the small primes. Now hg−l mod P is an element of H with
order (q+1)/P , which is a large prime of size approximately 2192. As above,
one can use baby-step giant-step to solve to find its discrete log, using on
sclar muliplication. This uses about 2100 scalar muliplications.

To illustrate what (41) implies consider the following situations:

• If L ≥ 2124M , approximately, which we would expect3 if Pollard rho is
the best algorithm to solve the elliptic curve discrete logarithm, then
D ≥ 2110M .

• If we only have the much weaker bound L ≥ 2108M , because of some
surprise attack faster than Pollard rho, then we still have a decent
bound of D ≥ 296.

Of course, it is possible to just simply conjecture that D ≥ L. The point
of using reductionist security, such as the den Boer arguments, is to avoid
just assuming security. One can still make that case, the conjecture D ≥ L
is old and studied enough (it has aegis), to render the den Boer reduction
redundant.

3Roughly, Pollard rho should √q ≈ 2133 group operations, while Scalar multiplication
should take approximately 29 group operations, giving Pollard rho a cost of 2124M .
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D.1.3 Hashing into the curve (elligator)

Preliminary—to be verified.
Bernstein, Hamburg, Krasnova and Lange [BHKL13] define a map, which

they call Elligator 2, which transforms finite field elements into elliptic curve
points. Their map works for any field, any curve with a point of order two,
unless it has j-invariant 1728. Unfortunately, their map does not work for
the curve 2y2 = x3 + x.

So, briefly, here is an alternative map. It is a minor modification of
the Elligator 2 map, so for lack of a better name, call the resulting map
Elligator i. Let i be a fourth root of one modulo p. Let r be any field
element. Let:

x = r2 − 2i
1− ir2 = i− 3i

1− ir2 . (42)

The key property of this x is that x+ 2i = ir2(x− i).
If there is no solution y to 2y2 = x3 + x for the x computed above, then

add i to x and try again. There is guaranteed to be a solution for y on the
second try because:

(x+ i)3 + (x+ i) = (x+ 2i)(x+ i)x = ir2(x− i)(x+ i)x = ir2(x3 +x). (43)

Note that, in Elligator 2, x is replaced by −a− x instead of x+ i (and the
curve equation has the form y2 = x3 + ax2 + bx instead of 2y2 = x3 + x).
The step of choosing x or x+ i can, of course, be expressed as an algebraic
equation rather than a branching statement, by computing the Legendre
symbol of x3 + x, just the way it is done for Elligator 2.

For the y-coordinate, just set y = ±
√

(x3 + x)/2, using some canonical
square root function, and choosing the sign according to whether one had
to the step of shifting x and x+ i. Retaining this sign ensures that r maps
to x and stays there, while r′ maps to x− i and then shifts to (x− i)+ i = x,
that the resulting y-coordinates will be different.

It seems that the benefits of Elligator 2 can also be achieved with Elli-
gator i, because of the similarity of the two maps. The map ψ above from
r to x has the property that ψ(r) = ψ(−r), and ψ−1(ψ(r)) = {r,−r}.

The map ι : {0, 1, . . . , 255}34 → X first maps a byte string b of length
34 into a field element r of Fp such that r < 2272 < p/2, then it applies map
φ above a curve point. The function ι is injective and easily inverted, much
like Elligator 2 map.

The map ι is not surjective. Its image has about p/2 points, which is
only about half the points on the curve.

To be verified.
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D.1.4 Using an efficient endomorphism in Bernstein’s ladder

This curve has an efficient endomorphisms. For example, complex multipli-
cation by i, given by:

[i](x, y) 7→ (−x, iy) (44)

This efficient endomorphism is potentially useful to forms of simultaneous
multiplication. For example, Bernstein’s two-dimensional differential addi-
tion chains [Ber06], an enhancement of Montgomery’s ladder. Of course,
sometimes the overhead of an optimization strategy outweighs its benefits.
The task then becomes to minimize the overhead.

Rather than conventionally starting from the notion of integer multiplier,
we observe that ephemeral Diffie–Hellman can be achieved without explic-
itly representing the integer multipliers. Instead, it is sufficient to have a
sequence of elliptic curve operations that can be applied at least twice: the
first time to generate the public keys, the second time to generate the shared
secret. Of course, these sequence of operations do indeed implicitly corre-
spond to a scalar multiplication by some integer, and one has to be sure
that the integer is sufficiently large.

To this end, we first review a variant Bernstein’s ladder, using a rather
abstract perspective of linear algebra on the multipliers. The aim of this
theoretical preparation is to identify some simple bit operations that can
minimize the overhead of the ladder. Define square matrices:

D =

1 −1 0
1 0 −1
0 1 −1

 , T0,0 =

2 0 0
1 1 0
1 0 1

 , T0,1 =

0 2 0
1 1 0
1 0 1

 , (45)
T1,0 =

0 0 2
0 1 1
1 0 1

 , T1,1 =

0 2 0
0 1 1
1 0 1

 . (46)

The matrices Tu,v represent an elliptic curve double and two elliptic curve
differential additions. The matrix D is used to determine the differences
needed in the elliptic curve differential additions.

Our ladder will apply an arbitrary sequence of the four matrices. It is
hoped that the implicit corresponding scalar multiplication by an integer
has the integer with sufficient security.
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Define column matrices (thought of as vectors):

A =

1
1
1

 , E0,0 =

1
0
0

 , E0,1 =

−1
0
0

 , (47)

C0 =

0
1
0

 , C1 =

 0
−1
0

 , E1,0 =

0
0
1

 , E1,1 =

 0
0
−1

 . (48)

Bernstein’s ladder will act on two column matrices simultaneously, by ap-
plying the matrices Tu,v and D as needed. But first we focus on the action
of the square matrices single column. The action of the square matrices on
A is simple:

DA = 0, Tu,vA = 2A, (49)

for all index pairs (u, v). Using modulo two arithmetic on the indices [in
brackets], we can summarize the action of the square matrices Tu,v on the
elementary column matrices Ef,g as:

Tu,vEf,g = E[f+u], [g+v(f+u+1)] + (−1)g[f + u+ 1]A. (50)

Consequently, column matrices of the form nA + Ef,g are closed under the
action of the matrices Tu,v. More precisely:

Tu,v(nA+ Ef,g) = (2n+ h′)A+ Ef ′,g′ (51)

where h′ ∈ −1, 0, 1 and f ′, g′, h′ are determined from (50), as f ′ = [f + u]
and g′ = [g + v(f + u+ 1)] and h′ = (−1)g[f + u+ 1].

The action of the square matrix D on the elementary matrices of the
form nA+ Ef,g is given by:

D(nA+ Ef,g) = (−1)(f+g)(Ef,g + Cf ) (52)

There are only four values of the column matrices distinct column matrices
Ef,g + Cg. The result of applying D only depends on the bit indices f, g,
and these can be tracked simply using (50).

Now consider a two-column matrix B = (bi,j) with first column n0A +
Ef0,g0 and second column n1A + Ef1,g1 . We insist that [f0 + f1] = 1, so f0
and f1 have opposite parity.

Suppose we have a triple (x0, x1, x2) of x-coordinates of three elliptic
curve points R0, R1 and R2 corresponding to the three rows of the matrix
B, in the sense Ri = bi,0P0 + b0,1P1 for some points P0 and P1.
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Let B′ = Tu,vB. Our task is to compute the corresponding triple of
triple (x′0, x′1, x′2) of x-coordinates of the points points R′i corresponding to
the rows of B′.

For convenience, now write F = f0 + 2f1 and G = g0 + 2g1, and further-
more (U, V ) = (3u, 3v). The purpose of this is to use bit-wise operations
on integers to perform parallel bit operations. Of course, since f0 and f1
have opposite parity, we must have F ∈ {1, 2}. We also write E+

F,G for the
two-column matrix whose columns are Ef0,g0 and Ef1,g1 .

After application of a matrix Tu,v, an updated (F ′, G′) is derived using
the bit operations from (50) above, now using bit-wise integer operations.

Define two functions, x-coordinate doubling and x-coordinate differential
addition such that:

δ : x(P ) 7→ x(2P ) (53)
α : (x(P ), x(Q), x(P −Q)) 7→ x(P +Q) (54)

for any points P and Q, where x(P ) means the x-coordinate. In practice,
one use projective coordinates, to avoid division. Then we have:

x′0 = δ(xv+2u(1−v)), (55)
x′1 = α(x1, x2u, y), (56)
x′2 = α(x2, x0, z), (57)

where the index arithmetic is now not done modulo two. The values y and z
are field elements extracted from a small pre-computed table as determined
based on the current value of the pairs (u, v) and (F,G).

We first treat z. It corresponds to the middle row of the matrix DE+
F,G.

Just crunching through the tedious calculations, it seems the pattern is
determined by the modulo sum of the bits of F + 4G. If the sum is zero,
then z = x(P0 + P1) and otherwise it is z = x(P0 − P1). Since F ∈ {1, 2},
we may write this as

z = x( P0 − (−1)|G|P1 ), (58)

where |G| is the Hamming parity of G.
Finally, y is to be determined. If u = 0, then y is determined from

the top row of the matrix DE+
F,G. If y = 1, then it is the bottom row.

The tedious calculations of all eight possible matrices DE+
F,G, leads to the

following rule:
y = x(P[F +u]). (59)
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For the difference table, if we take P0 = P and P1 = [i](P ), and set
x = x(P ). Then x(P0) = x and x(P1) = −x, and:

x(P0 + P1) = x([1 + i]P ) = −i(x
2 + 1)

2x = − i2

(
x+ 1

x

)
(60)

which we would represent in projective coordinates. Finally, x(P0 − P1) =
x([1− i]P ) = −x([1 + i]P ) is just the negative of the above.

Initialize the triple (x0, x1, x2) and the pair (F,G) as follows. Put
(F,G) = (2, 0). Initialize B as

B =

2 0
1 0
1 1

 =

1 0
1 0
1 0

+ E+
2,0 (61)

This means that x0 should be the x-coordinate of x([2]P ) = δ(x). I think
that we cannot have the first row of B be all zeros, because the usual dif-
ferential addition laws are not well-defined if one of the inputs is the point-
at-infinity.

D.1.5 Sample code

The sample code below uses the strategy above. I have not tested it sub-
stantially. In particular, I have not proved that overflow is avoided.

The sample code uses secret array indices, which potentially results
cache-timing attacks. Therefore, the sample code should be hardened to
avoid this problem.

I bench-marked this code to similar code for the standard Montgomery
ladder. This version seems slightly faster.
/* ecdh_bern_8 ^91+5. c */

# include " smpl_8 ^91+5. c"

// A Montomgery & Gallant -- Lambert -- Vanstone curve : 2*y^2 = x^3 + x.
// Montgomery differential addition laws [ hyperelliptic . org/ EFD]
// Bernstein uniform differential addition chain ( ladder )

typedef f p[2] ; /* XZ coordinates ( projective ) */

FUN double_xz (p p2 , p p1)
{

f a,aa ,b,bb ,c,d ;
add(a,p1 [0] , p1 [1]);
sub(b,p1 [0] , p1 [1]);
squ(aa ,a);
squ(bb ,b);
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sub(c,aa ,bb );
add(d,bb ,aa );
mul(p2 [0] ,aa ,bb );
mal(p2 [0] ,2 , p2 [0]); /* mil? */
mul(p2 [1] ,c,d);

}

FUN diff_add (p p5 , p p3 , p p2 , p p1)
{
# define DIFF_ADD_PREP ()\

f a,b,c,d,da ,cb ;\
add(a, p2 [0] , p2 [1]);\
sub(b, p2 [0] , p2 [1]);\
add(c, p3 [0] , p3 [1]);\
sub(d, p3 [0] , p3 [1]);\
mul(da , d, a );\
mul(cb , c, b );\
add(p5 [0] ,da , cb );\
sub(p5 [1] ,da , cb );\
squ(p5 [0] , p5 [0] );\
squ(p5 [1] , p5 [1] );

DIFF_ADD_PREP ();
mul(p5 [0] , p5 [0] , p1 [1]);
mul(p5 [1] , p5 [1] , p1 [0]);

}

FUN diff_add_1 (p p5 , p p3 , p p2 , p p1)
{

DIFF_ADD_PREP ();
mul(p5 [1] , p5 [1] , p1 [0]);

}

# define MAKE(I) i j;\
static f I = {2 ,0 ,0 ,0 ,0};\
static i have_I = 0;\
if (! have_I ) {\

for(j=1; j <=271; j +=1){ squ(I,I);}\
mal(I,2,I); fix(I);\
have_I = 1;\

}

void endo_1i (p p1i , f px)
{

f xx ;
MAKE(I);
squ(xx ,px );
add(xx ,(f){1} , xx );
mul(p1i [0] , I,xx );
mal(p1i [1],-2,px ); /* mil? */

}

typedef struct rung {i x0; i x1; i y; i z;} k [137] ;

void bern (f ps , k sk , f px)
{
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i h; i j ;
p w[3] , x[3] , y [2]={{{} ,{1}}} , z[2] ;

fix(px ); mal(y[0][0] ,1 , px ); endo_1i (z[0] , px );

# define COPY(q,r) mal(q[0] , 1,r [0]); mal(q[1] ,1 ,r [1]);
# define ENDO(q,r) mal(q[0],-1,r [0]); mal(q[1] ,1 ,r [1]);

ENDO(y[1] ,y [0]); ENDO(z[1] ,z [0]);
COPY(x[1] ,y [0]); COPY(x[2] ,z [0]);
double_xz (x[0] ,y [0]);

for (j=0 ; j <137; j +=1){

# define S sk[j]

/* CACHE - UNSAFE : Replace secret array indexing by cache - safe
selection */

double_xz (w[0] , x[S.x0] );
diff_add_1 (w[1] , x[1] , x[S.x1], y[S.y]);
diff_add (w[2] , x[2] , x[0] , z[S.z]);

for(h=0; h <3; h+=1) { COPY(x[h],w[h]);}
}
inv(ps ,x [1][1]);
mul(ps ,x[1][0] , ps );
fix(ps );

}

void weak_key (k sk , unsigned char * s)
{

i j,u,v;
i b=1, f=2, g=0;
for (j=0 ; j <137; j +=1){

u = !! (s[j/4]&((1 < <(j%4)) ));
v = !! (s[j/4]&((1 < <(j %4))+1));
b *= ('\0 ' != s[j/4]) ;
u *= b; v *= b;
sk[j]. x0 = v + 2*u*(1 -v);
sk[j]. x1 = 2*u;
sk[j].y = (f+u)%2;
sk[j].z = (g ==0)||( g==3) ;
u *= 3; v *= 3;
g ^= v & (f^u^3) ;
f ^= u;

}
}
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