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Abstract. In recent years, there has been enormous research attention
in privacy-preserving biometric authentication, which enables a user to
verify him or herself to a server without disclosing raw biometric informa-
tion. Since biometrics is irrevocable when exposed, it is very important
to protect its privacy. In IEEE TIFS 2018, Zhou and Ren proposed a
privacy-preserving user-centric biometric authentication scheme named
PassBio, where the end-users encrypt their own templates, and the au-
thentication server never sees the raw templates during the authentica-
tion phase. In their approach, it takes about 1 second to encrypt and
compare 2000-bit templates based on Hamming distance on a laptop.
However, this result is still far from practice because the size of tem-
plates used in commercialized products is much larger: according to NIST
IREX IX report of 2018 which analyzed 46 iris recognition algorithms,
size of their templates varies from 4,632-bit (579-byte) to 145,832-bit
(18,229-byte).
In this paper, we propose a new privacy-preserving user-centric biomet-
ric authentication (HDM-PPBA) based on Hamming distance, which
shows a big improvement in efficiency to the previous works. It is based
on our new single-key function-hiding inner product encryption, which
encrypts and computes the Hamming distance of 145,832-bit binary in
about 0.3 seconds on Intel Core i5 2.9GHz CPU. We show that it satis-
fies simulation-based security under the hardness assumption of Learning
with Errors (LWE) problem. The storage requirements, bandwidth and
time complexity of HDM-PPBA depend linearly on the bit-length of bio-
metrics, and it is applicable to any large templates used in NIST IREX
IX report with high efficiency.

Keywords: privacy-preserving biometric authentication, inner prod-
uct encryption, learning with errors.



1 introduction

Biometrics is gaining popularity in the field of authentication due to its usability
and high entropy. We can see at least two use cases: one is a user authentication
in a device, such as device unlock using fingerprint, face, and/or iris, which are
commercialized in many smartphones. Another is to provide an access control of
private keys for a public-key based authentication, such as FIDO UAF (Universal
Authentication Framework) [1]. One of the most important things for biometric
authentication is privacy. Biometrics is unique and irrevocable in its permanent
nature so that its privacy issues are much more severe than those of passwords
or tokens [2]. Obviously, storing raw biometric template in a central database or
smart cards can be a risky choice, due to several threats in the literatures [3, 4].
For example, it happened that 5.6 million finger prints from U.S. government
were stolen by hackers in 2015 [5], and 1 billion user’s biometrics of Aadhaar
were reported to be hacked [6].

To protect privacy of biometrics, there has been a great amount of research
attention in privacy-preserving biometric authentication [7, 8, 9, 10, 11, 12, 13,
14, 13, 15]. We focus on one of typical authentication systems composed of two
phases; enrollment and authentication phases, which proceeds as follows [16].
In enrollment phase, the service provider stores an enrolled biometric template
sent from an end-user along with the end-user’s ID in a database. In authen-
tication phase, the service provider compares the stored template with a fresh
template sent by an end-user, and authenticates the user if two templates are
similar enough with respect to a certain measure of similarity. This approach is
called server-centric in [15] as it heavily relies on the server’s responsibility for
the biometric privacy, and end-users should trust the service provider for their
biometric data. Hence, if the service provider is malicious or compromised, there
is no guarantee for the biometric privacy. For this reason, Zhou and Ren [15]
proposed a user-centric biometric authentication system in which biometric tem-
plates are passed to the service provider only in encrypted forms. Their solution
shows some possibilities to get over the limitations of server-centric systems,
but the performance is not sufficient to be applied in practice when the size
of templates are large, since their solution suffers from the quadratic to triple
dependency of cost on the size of templates (it takes over 1 second to encrypt
and compute Hamming distance of 2000-bit templates on an ordinary laptop
without precomputations).

In fact, to build a user-centric or other secure authentication system, cryp-
tographic tools such as secure Multi-Party Computation (MPC), Homomorphic
Encryption (HE), Predicate Encryption, and Inner Product Encryption (IPE)
have been employed. For example, in a recent work of Gasti et al. [13] using
HE, it takes 3.29 seconds to compute Hamming distance (HD) of two 1600-bit
inputs.4 IPE with function privacy a.k.a. Function-Hiding Inner Product Encryp-

4 Measured on “Samsung Galaxy S4 smartphone 4-Core 1.9GHz CPU (Qualcomm
Snapdragon), 2GB RAM” (for client), and “Intel Xeon E5-2430L v2 6-Core 2.4GHz
CPU, 64GB RAM” (for server & cloud)



tion (FH-IPE) was noticed as a simple and secure primitive for secure biometric
authentication computing HD in [17] due to the close relationship of HD and in-
ner product in binary strings. Despite its conceptional simplicity and suitability
for biometric authentication, known constructions [18, 19, 17] are yet too slow
to be used in the real applications. In [17], their implementation results show
that it takes 1.6 seconds to compute HD between two 750-bit strings. Overall, as
far as we know, there is no known practical authentication system that provides
privacy of the large sized templates of hundreds or kilo bytes, in high efficiency.

In this paper, we propose a new user-centric privacy-preserving biometric
authentication system with Hamming distance (HD) as a measure for similarity,
i.e., a service provider authenticates a user if HD between a queried biometric
template and stored template is less than a threshold. Note that this is usual
in many cases, including fingercode for fingerprint [20] and all iris recognition
algorithms analyzed in [21].

The most outstanding feature of our system is that it can manage large size of
biometric template with high efficiency, due to the linear dependency of cost on
the size of biometric template without sacrificing any privacy of biometric data.
We showed that our system takes only about 300ms to encrypt and compute HD
of 18KB binary templates on ordinary personal laptop. Since our system is simply
constructed with our new primitive named FFB-IPE for secure computation
of HD, it implies that usual fingercode template (whose typical template size
varies from 8-byte to 640-byte according to [22]), or any iris template analyzed
in NIST IRES IX report of 2018 [21] (whose template size varies from 579-
byte (FotoNation 4) to 18,229-byte (Decature 5, Decature 6, TigerIT 5, TigerIT
6)) can be secured by our primitive without significantly deteriorating their
performance in speed.

The novel primitive FFB-IPE proposed by this paper is a single key Function-
hiding Inner Product Encryption for Binary strings, in which a ciphertext of
IPE can be generated many times, while generation of secret key for a function
is allowed only once. It is a weaker primitive than a general FH-IPE, but we
remark that it can be used for privacy-preserving biometric authentication be-
cause the enrollment phase occurs only once, while the authentication phase held
many times. The security of our primitive is based on the hardness of Learning
with Errors (LWE) problem [23] on which security of various recent genuine
cryptographic primitives are based. Our idea is to use a one-time pad to achieve
function-hiding property when generating a secret key (for function) correspond-
ing to a vector x, and to generate an LWE instance for hiding a vector y as a
ciphertext corresponding to y. To allow a decryptor (or a service provider) to
calculate 〈x,y〉, we publish an additional value in our ciphertext, and prove
that it does not lessen the hardness of LWE: More precisely, the security of our
primitive is reduced to the hardness of a new variant of LWE problem, “Weak-
HintLWE” which is proved by us that a polynomial-time reduction from LWE
to Weak-HintLWE exists, hence to the hardness of the original LWE problem.

FFB-IPE can be easily exploited to construct biometric authentication sys-
tem as follows. In enrollment phase, an end-user registers its identity with a



biometric template secured by FFB-IPE to a service provider who stores it for
authentication phase. In authentication phase, end-user sends its identity with
fresh biometric template encrypted by FFB-IPE to the service provider who com-
putes HD of two templates with FFB-IPE and proceeds authentication based on
it. Note that the service provider can not disclose any information of biometric
templates other than the HD between them due to the security of FFB-IPE. For
more details, please refer to Section 5.

We implement our FFB-IPE and authentication system based on it on Intel
Core i5 CPU running at 2.9GHz processor with 8GB of memory, and the result-
ing performance is highly practical. With 18, 229-Byte biometrics under 128-bit
security, authentication phase takes only a single round, 304 milliseconds and
125 microseconds on end-user and service provider, respectively. The communi-
cation cost is 1.178MB. Our source code written in C++ is very simple, and is
disclosed on github (https://github.com/dwkim606/IPPBA).

Our contributions can be summarized as follows:

– We propose a new cryptographic primitive named FFB-IPE with standard
simulation-based security under the hardness of a new variant of LWE prob-
lem “Weak-HintLWE”. We then show the Weak-HintLWE problem is as
hard as the original LWE problem. It can be used to secure HD-based bio-
metric authentication system, and is highly efficient in terms of asymptotic
computational cost which depends linearly on the size of biometric template.

– We propose HDM-PPBA built on FFB-IPE, a new practical and secure pri-
vacy preserving biometric authentication method, and implement it to show
its high efficiency: a running time for HD (or equivalently, inner product)
computation of 2,048-bit or 18KB binary strings are 3.12 milliseconds or 304
milliseconds, respectively on Intel Core i5 CPU at 2.9GHz with 8GB RAM.
This is several orders of magnitude faster than primitives used in previous
work.

– We show that our HDM-PPBA is secure against active attack which is anal-
ogous to the user-centric security model proposed in [15].

The outline of the paper is as follows. In Section 2, we present notations
and some backgrounds of the LWE problem. In Section 3, we describe our au-
thentication system and security model. In Section 4, we describe a primitive
named FFB-IPE, and prove its security under the hardness assumption of LWE.
In Section 5, we propose a PPBA system with FFB-IPE, and prove its security.
In Section 6, we present actual parameters and implementation results of our
authentication system. In Section 7, we present some other works related to ours.
In Section 8, we give a summary.

2 Preliminaries

2.1 Notations

R and Z denotes the set of real numbers and integers, respectively. Rn is the n-
dimensional vector space over R. Zq and Rq denote Z/qZ and R/qZ, respectively,



with representatives in the range (−q/2, q/2]. We denote vectors in bold lower
cases, and scalar elements in usual letters. 〈·, ·〉 denotes the usual inner product
(dot product) in Rn. b·c denotes the largest integer which is not larger than the
input, and b·e denotes the nearest integer rounding upwards in case of a tie.
For a (finite) set X, we denote the uniform distribution over X by U(X). For a
distribution D, x← D denotes sampling x following the distribution D. For the
simplicity, we write x← U(X) as x← X. For an integer n ≥ 1, Dn denotes the
product of i.i.d. random variables Di ∼ D.

2.2 Lattices and Gaussian distribution

A (full rank) n-dimensional lattice Λ ⊆ Rn is the set of all Z−linear combinations
of n linearly independent vectors (hence, R−basis) B = {b1, b2, . . . , bn} of Rn.
The n-dimensional Gaussian function ρσ,c with the width σ > 0 and center
c ∈ Rn is defined as:

for x ∈ Rn, ρσ,c(x) := exp(−π‖x− c‖2/σ2).

The (continuous spherical) Gaussian distribution Dc,σ is the distribution of
which the probabilistic density function is proportional to ρσ,c. When c = 0,
we omit c in the subscript, and add n on the superscript, i.e., Dn

σ .

2.3 The Learning with Errors Problem

In these days, there are a plenty of cryptosystems based on the LWE problem
introduced by Regev [23]. The LWE problem and its ring variant exploit math-
ematical reductions from the worst-case of the lattice problems. The problem
has been offering various functionalities for the cryptosystems, exhibiting its
versatility.

For a secret vector s ∈ Znq and an error distribution χ over Rq, denote the

LWE distribution over Znq × Rq by ALWE
n,q,χ(s) obtained by choosing a vector a

randomly from Znq and e from χ, and outputting (a, b = 〈a, s〉+ e) ∈ Znq × Rq.
For a distribution D over Znq , the decision-LWE problem is to distinguish, given

arbitrary many samples, the distribution ALWE
n,q,χ(s) for a fixed s ← D from the

uniform distribution over Znq × Rq with non-negligible advantage. We denote
the decision-LWE problem by LWEn,m,q,χ(D) where D is a distribution for the
secret vector, n is the dimension of the secret vector, q is the modulus, and
m is the number of samples. In this paper, we will consider multi-secret LWE
problem, which is the LWE problem with secret matrix other than a vector.
The multi-secret LWE distribution ALWE

n,q,χ,k(S) over Znq ×Rkq is obtained by, for a

secret matrix S ∈ Zn×kq , choosing a vector a randomly from Znq , and e from χk,

and outputting (a, b = Sta + e) ∈ Znq × Rkq . For a distribution D′ over Zn×kq ,
the multi-secret LWE problem is to distinguish between the uniform distribution
over Znq × Rkq and ALWE

n,q,χ,k(S) for a fixed S ← D′. As in the case of LWE, we

denote the decision multi-secret LWE problem by LWEkn,m,q,χ(D′), where k is



the number of secret vectors. In this paper, we consider χ = Dσ for some σ > 0.
In this case, we substitute χ by σ in the subscript of LWE. In this paper, the
term “LWE assumption” means the hardness assumption of LWE.

3 System Model and Security Considerations

3.1 Hamming Distance and Inner product of Binary strings

We start with a simple note on the Hamming distance (HD) of two binary strings.
We encode a k-bit binary string x as an k-dimensional vector x = (x1, · · · , xk)
whose components are ±1 such that

xi =

{
1 if the i-th bit of x is 1,

−1 otherwise.

Let x and y be k-bit binary strings, and x and y be their encodings, respectively.
Then, HD between two binary strings x and y is 1

2 (k − 〈x,y〉) so that an inner
product 〈x,y〉 of x and y represents HD between binary strings.

In this paper, we assume that biometric templates are represented by bi-
nary strings, and identify them with their vector encodings as above. We also
assume that the similarity between two biometric templates is measured by HD,
or equivalently, the inner product of their corresponding vector encodings. It is
one of the most typical cases which can be found in many biometric recogni-
tion algorithms, including FingerCode for fingerprint [20] and all iris recognition
schemes analyzed in [21].

3.2 Biometric Authentication System

We consider biometric authentication system composed of two phases: en-
rollment and authentication whose participants are service provider and a set
of end-users as in [15]. An end-user is a person with his/her own device which
scans the end-user’s biometric information as a binary vector and generates an
encrypted template from it. The service provider can be an authentication server
or an online service provider whose goal is to discriminate legitimate user ac-
cording to the encrypted biometric template.

In the enrollment phase, an end-user Ui retrieves his/her biometric bit string
xi and sends it in an encrypted form, say Enc(xi) along with the end-user’s
identifier IDi. Server stores (IDi, Enc(xi)) in the database. In the authentication
phase, a user Ui generates his/her fresh biometric templates yi’s, and sends
encrypted forms of them Enc(yi)

′s with its identifier IDi to the service provider.
The service provider finds (IDi, Enc(xi)) with the same IDi in its database and
determines whether Ui is a legitimate user or not according to the similarity
between xi and yi which can be derived from Enc(xi) and Enc(yi). An example
of the whole process is shown in Fig. 1.



Fig. 1: Our biometric authentication system.

3.3 Adversarial Model

We follow the approach in [15] to deal with an adversarial model. We assume
that the end-user is fully trusted in the enrollment phase, and the secret key of
the end-user is kept secret at the local storage of the end-user’s device during the
whole enrollment/authentication phases. An adversary is allowed to pass her own
biometric templates to the devices so that the devices act as oracles to encrypt
them and send the encrypted templates to the service provider. The service
provider can be malicious, that is, it may collude with an adversary and query
biometric templates through the devices, watching the matching scores according
to them. Eventually, there are two considered attack scenarios as follows:

– (Passive attack) The only information the service provider knows is the
record {(Enc(xi), IDi)}, where xi is a registered biometric of the i-th user
Ui. In this case, the service provider does not know xi’s in their plaintext
forms.

– (Active attack) The service provider knows {(Enc(xi), IDi)} as in the pre-
vious case, but it also generates queries for the authentication phase yji for

j = 1, · · · , Q, and sees all pairs {(yji , Enc(y
j
i )}.

The first attack, which is a passive one, corresponds to the Ciphertext-Only
attack, while the second attack corresponds to the Chosen-Plaintext Attack in
the cryptographic context. We will give a formal definition of these attack models
in Section 5.2.



4 Single Key Function-hiding Inner Product Encryption
for Binary Strings from Lattice

In this section, we introduce a cryptographic primitive, single key Function-
hiding Inner Product Encryption for Binary strings (hereafter, FFB-IPE), which
is specialized for biometric authentication, and present a concrete construction
of which security is based on the hardness assumption of LWE.

4.1 Overview

We first provide a brief sketch of our approach in this subsection: we discuss what
brought us to define a new primitive FFB-IPE, and how we construct FFB-IPE
based on the LWE assumption.

We adapt and relax the definition of FH-IPE to be sufficient in HD-based
biometric authentication, and propose a new practical construction based on the
LWE assumption. In a high-level, biometric authentication with FH-IPE includes
the following procedures: (i) In the enrollment phase, the end-user generates
and sends a secret key corresponding to x to the service provider, using the
stored master secret key. (ii) In the authentication phase, the end-user sends a
ciphertext corresponding to y to the service provider so that the service provider
decrypts it and achieves 〈x,y〉 which directly implies HD between x and y. Note
that, in the HD-based biometric authentication, the secret key generation for x is
done only for once (in enrollment), the vectors x and y are bit strings (i.e., x,y ∈
{−1, 1}k), and the inner product value 〈x,y〉 has to be calculated in Z. Since we
focus on the biometric authentication with HD matcher, we set the new primitive
FFB-IPE to be FH-IPE for a single key query with binary function/message
spaces, where inner products are calculated in Z. The FFB-IPE definition allows
us to construct a scheme followed by a record-breaking performance.

We briefly explain how we solve the problem of constructing FFB-IPE in
three steps as follows.

Step 1: Basic Scheme – Single Key Construction for Efficiency and
Functionality. We first draw a basic scheme which is not function-hiding even
for a single key query, and then show how to convert it to FFB-IPE. In the basic

scheme (not secure), msk is a matrix T of structure T t = [Ik||St] ∈ Zk×(k+n)q

where Ik is the k×k identity matrix. For a binary vector x, the secret key is set
to be Tx. Encryption of zero is a multi-secret LWE sample (b = −Sta + e,a)
with secret matrix S, where a is uniform randomly sampled from Znq , and e is
an error vector from some distribution. Encryption of y is obtained by adding
an encoding of y ( = ((q/p) · y,0)) to encryption of zero. In this way, it can be
seen by a simple calculation that we can derive 〈x,y〉 from the inner product of
the secret key corresponding to x and the ciphertext corresponding to y. This
scheme enables decryptor to calculate the inner product; however, it is obviously
not function-hiding since the secret key shows x in raw.

Step 2: Full Scheme – Use One-Time Pad in Key Generation. To modify
the basic scheme to be function-hiding for a single key query, we additionally



generate one more uniform random vector u together with the matrix T setting
the master secret key as msk := [u||T ], and use u as one time pad in the key
generation: we define secret key corresponding to x by sk := Tx + u, instead
of Tx. For correctness, a ciphertext contains one additional component which is
probabilistically close to the inner product of u and the original ciphertext (of
the basic scheme).

Step 3: Security Proof – A Reduction from LWE to Weak-HintLWE.
The additional component of a ciphertext eventually gives an additional infor-
mation for the LWE secret matrix S which can be also seen as an information for
the error vector (in one sample of multi-secret LWE) generated in encryption.
Hence, the security of our construction is reduced to the LWE problem with an
additional published value, which we call Weak-HintLWE. Informally speaking,
a Weak-HintLWE sample contains a multi-secret LWE sample together with an
approximate linear combination of the errors which correspond to the respec-
tive secrets of the multi-secret LWE. Needless to say, to prove the hardness of
Weak-HintLWE is very crucial in our security proof. We resolve it by suggesting
a polynomial-time reduction from LWE to Weak-HintLWE under the reasonable
condition for the error distributions. Consequently, the security of our construc-
tion is based on the LWE assumption, and our proposed parameters in Section 6
are also set to make the original LWE problem as hard as desired.

4.2 Formalization of the Primitive

The proposed primitive FFB-IPE Π consists of four probabilistic polynomial-
time algorithms Setup, KeyGen, Enc and Dec. Then FFB-IPEΠ = (Setup,KeyGen,Enc,Dec)
is described as below.

– Setup(1λ): The setup algorithm outputs public parameter pp and a master
secret key msk for the security parameter λ.

– KeyGen(pp,msk,x ∈ {−1, 1}k): The key generation algorithm on the inputs
of the public parameter pp, the master secret key msk and a vector x ∈
{−1, 1}k outputs a secret key sk.

– Enc(pp,msk,y ∈ {−1, 1}k): The encryption algorithm takes in the public
parameter pp, the master secret key msk and a vector y ∈ {−1, 1}k, and
returns a ciphertext c.

– Dec(pp, sk, c): The decryption algorithm takes as the input a public param-
eter pp, a ciphertext c, and a secret key sk. It returns a decrypted value
z ∈ Z.

Correctness. We define the correctness of the primitive FFB-IPEΠ = (Setup,KeyGen,Enc,Dec)
as follows.

Definition 1. FFB-IPE Π = (Setup,KeyGen,Enc,Dec) is said to be correct if
for all (msk, pp)← Setup(1λ) and x,y ∈ {−1, 1}k,

Pr

〈x,y〉 = v

∣∣∣∣∣∣
sk← KeyGen(pp,msk,x)

c← Enc(pp,msk,y)
v ← Dec(pp, sk, c)

 > 1− 2−λ



where λ is the security parameter.

Security. We define the security of FFB-IPE as follows. Our definition is similar
to the simulation-based security definition in [17] with some relaxation in the
sense that the oracle for KeyGen can be queried only once and beforehand.

Definition 2. A FFB-IPE scheme Π = (Setup,KeyGen,Enc,Dec) is called 1-
sSIM-secure if for all polynomial-time adversary A, there exists a polynomial-
time simulator S = (S1,S2,S3) such that the outputs of the following two exper-
iments are computationally indistinguishable.

Table 1: The Real-world Experiment and the Ideal-world Experiment

RealA(1λ) : IdealA,S(1λ) :

1. (pp,msk)← Setup(1λ) 1. (pp, st)← S1(1λ)

2. b←AOKeyGen(msk,·),OEnc(msk,·)(1λ) 2. b←AÕKeyGen(·),ÕEnc(·)(1λ, pp)

3. output b 3. output b

where OKeyGen(msk, ·), OEnc(msk, ·), ÕKeyGen(·), ÕEnc(·) are defined as follows:

– OKeyGen(msk,x) = KeyGen(msk,x) only for the first query, and aborts other-
wise.

– OEnc(msk, ·) aborts if OKeyGen(msk, ·) has not been queried before. Otherwise,
OEnc(msk,y) = Enc(msk,y).

– ÕKeyGen(·), ÕEnc(·) are stateful, and shares a simulator state st and a collec-

tion P = {〈x,y(i)〉}i, where i is a counter for ÕEnc(·) initialized to 0 at the
beginning, and x and y(i) are the inputs for invocation of ÕKeyGen(·) and i-th

invocation of ÕEnc(·), respectively (At the beginning, P is set to be empty).

• On the adversary’s invocation of ÕKeyGen(·) with input x, ÕKeyGen(·)
aborts unless it is the first query. Otherwise, ÕKeyGen(·) invokes the sim-
ulator S2 on input st. The simulator responds with a tuple (sk, st′) ←
S2(st). The oracle updates the state st← st′ and replies to the adversary
with sk.

• On the adversary’s i-th invocation of ÕEnc(·) with input y(i), the oracle
aborts unless ÕKeyGen(·) is queried before. Otherwise, it updates the collec-
tion P ← P

⋃
{〈x,y(i)〉}, sets i← i+1, and invokes the simulator S3 on

input P and st. The simulator responds with a tuple (c, st′)← S3(P, st).
The oracle updates the state st← st′ and replies to the adversary with c.

Our security definition aims to capture that all adversaries that have both
sk and c ’s cannot obtain any information about x or y(i) other than the inner
products 〈x,y(i)〉: Note that simulator in the ideal world does not take any of x
or y as inputs, and it instead takes P = {〈x,y(i)〉}i as inputs.



4.3 Our Construction

In this subsection, we propose a concrete instantiation of FFB-IPE, which satis-
fies the correctness and security conditions defined in the previous subsection. For
a pre-determined threshold value T ∈ Z, our FFB-IPEΠ = (Setup,KeyGen,Enc,Dec)
is described as follows:

– Setup(1λ): Choose parameters q(λ), p(λ), n(λ), k(λ), m = n + k, and set a
distribution DS over Zn×kq . Sample a random vector u← Zmq and a random
matrix S ← DS , and return the master secret key msk = (u, S) and a set

of public parameters pp = (q, p, n, k,m). Let us denote T :=

[
Ik
S

]
∈ Zm×kq

where Ik is the k × k identity matrix.
– KeyGen(pp,msk,x): For given x ∈ {−1, 1}k, return sk = u + Tx ∈ Zmq .

– Enc(pp,msk,y): For y ∈ {−1, 1}k, do the following.
1. Sample a random vector a← Znq and an error vector e← Dk

σ. Let

b = −Sta + (q/p) · y + e ∈ Rkq ,

and c1 = (b,a) ∈ Rkq × Znq . Note that T tc1 = (q/p) · y + e.
2. Sample an error e∗ ← Dσ∗ and compute c0 = −〈u, c1〉+ e∗ ∈ Rq.
3. Return c := (c0, c1) ∈ Rq × (Rkq × Znq ).

– Dec(pp, sk, c,T): Parse c = (c0, c1) ∈ Rq × (Rkq ×Znq ). Compute and output
v = b(p/q) · (c0 + 〈sk, c1〉)e ∈ Zp.

Correctness. The following theorem shows that the correctness holds for our
construction with certain conditions.

Theorem 1 (correctness). For x,y ∈ {−1, 1}k, let 2k < p, and msk and c

are legitimately generated, i.e., msk := (u, S)← Zmq ×Zn×kq , T :=

[
Ik
S

]
∈ Zm×kq ,

sk← u+Tx, and c = (c0, c1 = (b,a)), where a← Znq , b = −Sta+(q/p) ·y+e,
and c0 = −〈u, c1〉 + e∗. Then the resulting value v ← b(p/q) · (c0 + 〈sk, c1〉)e
equals to 〈x,y〉 except with probability 2−λ for the security parameter λ, as long
as the following inequality holds:

Pr

[∣∣∣∣∣
k∑
i=1

ei + e′

∣∣∣∣∣ ≥ q

2p
: ei ← Dσ, e

′ ← Dσ∗

]
< 2−λ.

proof. Note that
〈Tx, c1〉 = 〈x, T tc1〉.

The LHS is 〈sk−u , c1〉 = 〈sk, c1〉−〈u, c1〉, and the RHS is 〈x, (q/p) ·y+e〉 =
(q/p) · 〈x,y〉+ 〈x, e〉. Hence,

〈sk, c1〉 = 〈u, c1〉+ (q/p) · 〈x,y〉+ 〈x, e〉.

Therefore, we have c0 + 〈c1, sk〉 = (q/p) · 〈x,y〉 + 〈x, e〉 + e∗, which implies
v = 〈x,y〉 (mod p) if and only if |〈x, e〉 + e∗| is bounded by q/2p. Note that
v = 〈x,y〉 if and only if v = 〈x,y〉 (mod p) since 2k < p.



4.4 Security Proof

In this subsection, we prove the security of our construction of FFB-IPE in
Section 4.3. The security of the primitive relies on the hardness of a variant of
LWE, called Weak-HintLWE. We denote this problem by WHintLWEkn,q,σ1,σ2

(D)
in the rest of the paper for positive integers n, q, k, real numbers σ1, σ2 > 0, and
the secret distribution D. The definition of WHintLWEkn,q,σ1,σ2

(D) is as follow.

Definition 3 (Weak-HintLWE). Let n, q and k be positive integers, σ1, σ2 >
0 be real numbers, z be a vector in {−1, 1}k and S be a matrix in Zn×kq . The

Weak-HintLWE distribution, denoted by AWHintLWE
n,q,σ1,σ2,k

(z, S), is the distribution of

(a, Sta+e, 〈z, e〉+f) ∈ Znq×Rkq×Rq where a← Znq , e← Dk
σ1

and f ← Dσ2 . The

Weak-HintLWE problem WHintLWEkn,q,σ1,σ2
(D) is to distinguish, given arbitrary

many independent samples for z ← {−1, 1}k chosen by an adversary, between
AWHintLWE
n,q,σ1,σ2,k

(z, S) for a fixed S ← D and the distribution of (a,u, 〈z, e〉 + f)
where u← Rq.

We discuss about the hardness of WHintLWE in Section 4.5. To be precise, we
prove that there exists a reduction from LWE to WHintLWE so that WHintLWE is
at least as hard as worst-case lattice problems such as the shortest independent
vectors problem.

The following theorem is the security proof of our scheme under the hardness
assumption of WHintLWE.

Theorem 2. Assuming that WHintLWEkn,q,σ,σ∗(DS) is hard, our construction
Π in Section 4.3 is a 1-sSIM-secure FFB-IPE.

Proof. Fix an efficient adversary who makes a single query to the oracle for
KeyGen and at most Q = poly(λ) queries to the oracle for Enc. Note that an
adversary has to query the oracle for KeyGen first, since otherwise the queries
for Enc will be aborted. We construct a simulator S as follows:

– On adversary’s query x ∈ {−1, 1}k to the oracle for KeyGen, the simulator
receives as input a new collection P ′ of inner products and sets P ← P ′.
The simulator generates sk← Zmq and responds with it.

– On adversary’s query y(i) ∈ {−1, 1}k to the oracle for Enc, the simulator
receives as input a new collection P ′ of inner products and updates P ← P ′
(retrieving 〈x,y(i)〉). The simulator samples b(i) ← Rkq , a(i) ← Znq , and

c
(i)
1 ← (b(i),a(i)). It also samples e

(i)
j ← Dσ for 1 ≤ j ≤ k and e∗(i) ← Dσ∗ ,

and then sets c
(i)
0 ← −〈sk, c(i)1 〉 + (q/p) · 〈x,y(i)〉 +

∑k
j=1 e

(i)
j + e∗(i) and

c(i) ← (c
(i)
0 , c

(i)
1 ). The simulator responds with c.

Let Expt 0 be the real world experiment. That is, for an efficient adversary
A, we generate msk := (u, S) from Setup to answer the oracle queries with the
legitimate KeyGen and Enc outputs consistently in Expt 0. We show that Expt
0, real world experiment, is indistinguishable from the simulated one which is



numbered by Expt 3, using a hybrid argument. We define Expt 1 and Expt 2 as
follows.

Expt 1. substitutes sk = u + Tx in Expt 0 with sk ← Zmq . Generates c
(i)
1 by

c
(i)
1 := (b(i) = −Sta(i) + (q/p) · y(i) + e(i),a(i)) where a(i) ← Znq , e(i) ← Dk

σ (as

in the Enc algorithm). Replaces c
(i)
0 with c

(i)
0 ← −〈sk, c

(i)
1 〉 + (q/p) · 〈x,y(i)〉 +

〈x, e(i)〉+ e∗(i), where e∗(i) ← Dσ∗ .
Observe that u involved in generating sk is uniformly random and is used

for only one time. Hence, the distributions of (sk, {c(i)}i) in Expt 0 and Expt 1
are the same in the adversary’s view.

Expt 2. substitutes c
(i)
1 in Expt 1 with uniformly chosen c

(i)
1 = (b(i),a(i)) ←

Rkq × Znq , and sets c
(i)
0 ← −〈sk, c

(i)
1 〉 + (q/p) · 〈x,y(i)〉 + 〈x, e(i)〉 + e∗(i), where

e← Dk
σ, e∗(i) ← Dσ∗ .

The distributions of (sk, {c(i)}i) in Expt 1 and Expt 2 are computation-
ally indistinguishable when assuming the hardness of the WHintLWEkn,q,σ,σ∗(DS)

problem. The distributions of (sk, {c(i)}i) in Expt 2 and Expt 3 are identical,
since e(i) in Expt 2 is independent from other variables.

4.5 The Hardness of HintLWE and Weak-HintLWE

We first define another variant of (multi-secret) LWE, the HintLWE problem,
which additionally publishes a full-dimensional hint on the error of original LWE.
Contrary to the Weak-HintLWE problem, instead of publishing 〈z, e〉 + f for
some known vector z and a Gaussian error f , the HintLWE problem gives the
whole vector e + f for a Gaussian vector f which contains much more infor-
mation. We will first reduce LWE to HintLWE, and then reduce HintLWE to
Weak-HintLWE which is relatively a simple step.

Definition 4. Let n, q and k be positive integers, σ1, σ2 > 0 be real numbers,
and S be a matrix in Zn×kq . The HintLWE distribution, denoted by AHintLWE

n,q,σ1,σ2,k
(S),

is the distribution of (a, Sta+e, e+f) ∈ Znq ×Rkq ×Rkq where a← Znq , e← Dk
σ1

and f ← Dk
σ2

.

Definition 5 (HintLWE). For positive integers n, q, k, real numbers σ1, σ2 >
0, σ =

√
σ2
1 + σ2

2 and a distribution D over Zn×kq , the HintLWE problem HintLWEkn,q,σ1,σ2
(D)

is to distinguish, given arbitrary many independent samples, between U(Znq ) ×
U(Rkq )×Dk

σ and AHintLWE
n,q,σ1,σ2,k

(S) where S ← D.

When k = 1 in Definition 5, we omit the superscript k and substitute the
capital letter S by the small letter s.

Now, we present a theorem about a polynomial-time reduction from LWE
to HintLWE. Before introducing the theorem, we describe a crucial lemma on a
conditional Gaussian distribution which will be exploited in the hardness proof.
The proof of the lemma is given in Appendix A.



Lemma 1. For real numbers σ1, σ2 > 0, let e and f be variables of distributions
Dσ1

and Dσ2
, respectively. Let σ =

√
σ2
1 + σ2

2, then (e+ f, e|(e+ f)) follows the
distribution (Dσ, DLσ2

1/σ
2, σ1σ2/σ) where L denotes the value of e+ f .

Proof. In Appendix A.

Theorem 3. Let n, q, k be positive integers, σ1, σ
′
1, σ
′
2 be positive real numbers

satisfying σ1 = σ′1σ
′
2/
√
σ′21 + σ′22 , and D be a distribution over Zn×kq . Then there

exists a polynomial-time reduction from LWEkn,q,σ1
(D) to HintLWEkn,q,σ′1,σ′2(D)

which preserves the advantage.

Proof. We first prove the case k = 1. For a given LWEn,q,σ1(D) sample (a, b), we
transform the sample to (a, b+f, κf) where f ← Dσ2 for σ2 = σ1σ

′
1/σ
′
2 and κ =

(σ′21 +σ′22 )/σ′21 . We now claim that (a, b+f, κf) is exactly the HintLWEn,q,σ′1,σ′2(D)
sample we want.

First we think of the case b = 〈a, s〉 + e where e ← Dσ1
for a fixed s ← D.

Then we can check

(a, b+ f, κf) = (a, 〈a, s〉+ e+ f, κf).

Note that it is enough to show that the distribution of (κf, (e+ f)|f) equals to
the distribution of (e′ + f ′, e′|(e′ + f ′)) where e′ ← Dσ′1

and f ′ ← Dσ′2
, which

implies that (a, b+ f, κf) is distributed exactly as same as (a, b+ e′, e′ + f ′).
It is easy to check that the distribution of (κf, (e+f)|f) isD1 = (Dκσ2 , DL/κ,σ1

)

where L denotes the value of κf . Let σ′ =
√
σ′21 + σ′22 , then by Lemma 1,

(e′+f ′, e′|(e′+f ′)) follows the distribution D2 = (Dσ′ , DL′σ′21 /σ
′2, σ′1σ

′
2/σ
′) where

L′ denotes the value of e′ + f ′. By the condition σ1 = σ′1σ
′
2/
√
σ′21 + σ′22 and the

definitions of σ2, κ and σ′, we obtain κσ2 = σ′, 1/κ = σ′21 /σ
′2 and σ1 = σ′1σ

′
2/σ
′

so that distributions D1 and D2 are identical.
In case that b is uniform over Rq, the distribution of (a, b+f, κf) equals to the

distribution of (a, b, kf), which is exactly U(Znq )×U(Rq)×Dσ for σ =
√
σ2
1 + σ2

2 .
Therefore, the reduction is correct for the case k = 1, and obviously preserves
the advantage.

For the case of arbitrary k, the reduction process is exactly the transformation
from a multi-secret LWE sample (a, b) to (a, b + f , κf) where f ← Dk

σ2
. For

1 ≤ i ≤ k, we have already proved that (κfi, (ei+fi)|fi) and (e′i+f
′
i , e
′
i|(e′i+f ′i))

are equally distributed where e′i ← Dσ′1
and f ′i ← Dσ′2

, which are all mutually
independent cases (for i). Therefore, in case of b = Sta + e′, the distribution of
(a, b + f , κf) equals to the distribution of (a, Sta + e′, e′ + f ′). In case that b
is uniform over Rkq , it is just the analogue of the case k = 1.

One simple case of Theorem 3 is the case of σ′1 = σ′2. Then, we can check
that σ1 = σ2 = σ′1/

√
2 and κ = 2.

Theorem 4. Let n, q, k be positive integers, σ1, σ2, σ
′
2 be positive real num-

bers satisfying σ′2 =
√
kσ2, and D be a distribution of a secret matrix over

Zn×kq . Then there exists a polynomial-time reduction from HintLWEkn,q,σ1,σ2
(D)

to WHintLWEkn,q,σ1,σ′2
(D) which preserves the advantage.



Proof. Assume that we are asked to provide samples for a vector z ∈ {−1, 1}k,
and get a HintLWEkn,q,σ1,σ2

(D) sample (a, b, e+f). Then, we transform (a, b, e+

f) to (a, b, 〈z, e + f〉) ∈ Znq × Rkq × Rq. Since each component of z is 1 or −1,
the distribution of 〈z,f〉 is identical to the Gaussian distribution D√kσ2

. Also,
since e and f are independent, the distribution of 〈z, e + f〉 is actually the
distribution of 〈z, e〉+ f ′ where f ′ ← D√kσ2

. From this point, the output of the

reduction is exactly the WHintLWEkn,q,σ1,σ′2
(D) sample.

We fixed the domain of the vector z to {−1, 1}k, but actually our reduction
does not depend on the domain.

From Theorem 3 and Theorem 4, we finally obtain the hardness of the
WHintLWE problem under the hardness assumption of the LWE problem.

Corollary 1. Let n, q, k be positive integers, σ1, σ
′
1, σ
′
2 be positive real numbers

satisfying σ1 = σ′1σ
′
2/
√
σ′21 + σ′22 , and D be a distribution over Zn×kq . Then there

exists a polynomial-time reduction from LWEkn,q,σ1
(D) to WHintLWEk

n,q,σ′1,
√
kσ′2

(D)

which preserves the advantage.

5 HDM-PPBA

In this section, we formally introduce a new user-centric privacy-preserving bio-
metric authentication for HD matcher called HDM-PPBA derived from FFB-IPE
in Section 4.3, and analyze its security.

5.1 HDM-PPBA protocol

Our protocol consists of two phases: enrollment, and authentication. The pro-
tocol is based on the proposed FFB-IPE Π = (Setup,KeyGen,Enc,Dec) con-
structed in Section 4 for a secure computation of HD.

5.2 Security Analysis

We formally define the attack models in Section 3.3 following the approach in [15]
and prove that our HDM-PPBA equipped with 1-sSIM-secure FFB-IPE is secure
against both attacks.

Security Against Passive Attack According to the attack experiment depicted in
Figure 2, we define the security of FFB-IPE against passive attack as follows.

Definition 6. The FFB-IPE is secure against passive attack if, for all polynomial-
time adversary A, there exists a cryptographically negligible function negl such
that

|Pr(PassiveFFB-IPE
A (λ) = 1)− 1

2
| < negl(λ).



Protocol 1 Our HDM-PPBA system

Input: x,y ∈ {−1, 1}k, T ∈ R
Output: res ∈ {authenticate, reject}
Registration: An end-user U registers with his/her identity ID and a biometric
template x to the service provider S.

1: An end-user U sets the parameters of FFB-IPE according to the security
parameter λ.

2: U generates a master secret key (msk, pp)← Setup(1λ), and stores it.
3: U generates a key sk ← KeyGen(pp,msk,x) with the end-user’s biometrics

(x), and sends (IDU , sk, pp) to the service provider S.
4: S stores (IDU , sk, pp).

Authentication: An end-user U retrieves a fresh biometric template, and sends
a ciphertext of it to the service provider S for an authentication.

1: U computes a ciphertext c← Enc(pp,msk,y), and sends it along with user’s
ID IDU to S.

2: S retrieves the stored values (IDU , sk, pp) at the enrollment phase, computes
an inner-product value z ← Dec(pp, sk, c), and gets the hamming distance
d = (k–z)/2 between the biometrics x and y.

3: S output authenticate if a distance d is less than a given threshold T (d < T ),
and reject otherwise (d ≥ T ).

Theorem 5. The proposed HDM-PPBA scheme in Section 4.3 is secure against
passive attack.

We skip the proof of Theorem 5 since the security against passive attack is
implied by the security against active attack.

Security Against Active Attack

Definition 7. The FFB-IPE is secure against active attack if, for all polynomial-
time adversary A, there exists a cryptographically negligible function negl such
that ∣∣∣∣Pr(ActiveFFB-IPE

A (λ) = 1)− 1

2

∣∣∣∣ < negl(λ).

Theorem 6. The proposed HDM-PPBA scheme in Section 4.3 is secure against
active attack.

Proof. The proposed FFB-IPE is proven to achieve the 1-sSIM-security de-
fined in Definition 2. The security of HDM-PPBA against active attack is an
indistinguishability-based version of the simulation-based security in Definition 2,
so is straightforward.



Experiment 2 Passive Attack Experiment PassiveFFB-IPE
A (λ):

1: Given a security parameter λ, the challenger C outputs pp.
2: Given λ and pp, the adversary A generates and outputs x0, x1, and two

sequences of messages in {−1, 1}k, say Y0 = (y
(1)
0 ,y

(2)
0 , · · · ,y(Q)

0 ) and Y1 =

(y
(1)
1 ,y

(2)
1 , · · · ,y(Q)

1 ) such that 〈x0,y
(i)
0 〉 = 〈x1,y

(i)
1 〉 for all i’s.

3: Given λ, C runs Setup(1λ) to obtain msk.
4: C chooses a uniform random bit b ∈ {0, 1} and computes sk ←

KeyGen(pp,msk,xb) and ci = Enc(msk, pp,y
(i)
b ) for all i’s. C sends the se-

quence C = (c1, c2, · · · , cQ) and sk to A.
5: A outputs b′ ∈ {0, 1}.
6: The output of the experiment is 1 if b = b′, and 0 otherwise.

Experiment 3 Active Attack Experiment ActiveFFB-IPE
A (λ):

1: Given a security parameter λ, the challenger C runs Setup(1λ) to obtain
(msk, pp), and sends pp to the adversary A.

2: A generates and sends x0,x1 ∈ {−1, 1}k to C.
3: C chooses a uniform random bit b ∈ {0, 1}, calculates sk ←

KeyGen(pp,msk,xb), and sends sk to A.
4: for i = 1→ Q do

5: A is queries with y
(i)
0 and y

(i)
1 such that 〈x0,y

(i)
0 〉 = 〈x1,y

(i)
1 〉.

6: C computes and sends c← Enc(pp,msk,y
(i)
b ).

7: end for
8: A outputs b′ ∈ {0, 1}.
9: The output of the experiment is 1 if b = b′, and 0 otherwise.

6 Performance Evaluation

In this section, we only evaluate the performance of FFB-IPE because (1) a lot
of works have been done for the performance evaluation of TLS, for example,
the one showing a fast implementation of TLS reports that the running time
of a TLS handshake is less than 10 milliseconds on Intel Core 2 Duo E8400 at
3.0 GHz with 4GB RAM [24], and (2) TLS is widely used to protect network
communications and https, a secure http protocol protected by TLS, will now be
the default for all Android Apps as announced by Google [25], so there will be a
high possibility that TLS is applied to services before adopting our HDM-PPBA.

6.1 Experimental Setup

Our primitive was implemented in C++ 11 standard, and performed on Intel
Core i5 CPU running MacOS (64 bit) at 2.9GHz processor with 8GB of memory.
We used g++ compiler of Apple LLVM version 9.1.0.

As an optimization for the implementation, we used power-of-2 moduli p <
q ≤ 264. To be precise, we store elements of Zq and Rq in uint64 t type while



scaling them up for (64− log q) bits. Then, the modulo q operation is automat-
ically done without any overhead, which makes the implementation very simple
and fast overall. Note that the elements in Rq are rounded off to the (64− log q)-
th bit after the radix point. Furthermore, the rounding operation b(p/q) · xe for
x ∈ Zq included in the Dec algorithm is efficiently done by adding a constant
and bit-wise shifting. Since b(p/q) · xe = b(p/q) · (x+ q/2p)c, it is done by right-
shifting for (log q− log p) bits after adding a constant q/2p. The source code can
be found in github (https://github.com/dwkim606/IPPBA).

6.2 Parameters Setting with LWE Estimator

We present several parameter sets in case that DS = U({0, 1}n×k), that is, each
component of the secret matrix is binary. In Table 2, parameter sets I and II
correspond to the case that k = 2048 and k = 145832 (for about 18KB biometric
templates), respectively.

By Corollary 1, there exists a reduction from LWEkn,q,σ1
(DS) to WHintLWEkn,q,σ,σ∗(DS),

where σ1 = σ ·σ∗/
√
kσ2 + (σ∗)2. For the simplicity, we set σ =

√
2σ1 = σ∗/

√
k.

Rather than considering direct attacks on WHintLWEkn,q,σ,σ∗(DS), we select the
parameters following the reduction from LWE. That is, we set the parameters
which make LWEkn,q,σ1

(DS) to be secure against the best attacks, which is more
conservative approach in parameter selection.

Note that k denotes the number of secret vectors in the LWE problem, and
it corresponds to the bit length of a biometric in our scheme. A positive integer
n denotes the dimension of secret in the LWE problem. To analyze concrete
hardness of LWE problem for certain parameters, we used Albrecht’s LWE esti-
mator [26]5. It estimates the bit security of certain LWE problems considering
known attacks (dual attack [27], primal attack [28], etc.) on the LWE prob-
lem. We also set our parameters to achieve the correctness of our construction
described in Theorem 1, i.e., the Dec algorithm in Section 4.3 computes the
exact inner product v = 〈x,y〉 except for a negligible probability in the security
parameter λ.

Table 2: Proposed Parameters for our construction satisfying 128-bit security on
LWEk

n,q,σ/
√
2
(U({0, 1}n×k))

λ Name k n q p σ σ∗

128
I 2048 928 232 220 2.39 108

II 145832 1368 264 232 2.96× 105 1.12× 108



Table 3: Implementation results of our FFB-IPE

Parameter Set Biometric
Master Secret Key Secret Key Ciphertext Running Time

(bits) msk (MB) sk (KB) c (KB) KeyGen (ms) Enc (ms) Dec (ms)

I 2048 0.24 23.81 23.82 15 + 0.33 3.12 0.0021

II 145832 26.11 1177.60 1177.61 1535 + 115 304 0.125

6.3 Implementation Results

Here follows the implementation results of our FFB-IPE for each of the param-
eter sets in Table 3. The size of a master secret key msk, a secret key sk, a
ciphertext c, and the running time of KeyGen, Enc, and Dec algorithms are pre-
sented. Note that the running times for KeyGen (resp. Enc and Dec) was averaged
over 100 times of measurements.

Adapting this result into our PPBA protocol, the master secret key is stored
by end-user, and a secret key (resp. a ciphertext) is sent from the end-user to the
service provider as an enrollment message (resp. a query message). As described
in Section 5, KeyGen, Enc, and Dec algorithms are included in the enrollment
phase, the query phase, and the authentication phase, respectively.

The size ratio of sk to x, and that of c to y is no larger than 100 which
is somewhat reasonable to be used in practice. The most notable point of our
implementation result is running time of algorithms: for a 2048-bit message
(parameter set I), it takes only several milliseconds for both key generation and
encryption, and the decryption takes only 2 microseconds. The running-time
result for the indicates that our primitive is highly efficient, and is capable of
handling large templates of NIST IREX IX report considering the result for the
parameter set II.

6.4 Comparison & Complexity analysis

In this subsection, we compare our performance with known PPBAs secure in
malicious model. More precisely, there are some PPBAs secure in malicious
model in which the server stores encrypted biometric templates, and we arrange
recent efficient methods regarding authentication using HD of binary biometric
to compare with ours.

Karabat et al. [29] proposed a PPBA named THRIVE exploiting Goldwasser-
Micali’s threshold (XOR-) homomorphic encryption [30]. The XOR homomor-
phic encryption enables computing HD of biometrics without revealing their
exact value, and decryption key for the threshold encryption is distributed to
client and server so that the server can not disclose any information from the

5 https://bitbucket.org/malb/lwe-estimator



Table 4: Comparison of various schemes with malicious server model for authen-
tication phase

Protocol Primitive
Biometric Communication Client Server

(bits) Cost (KB) (ms) (ms)

THRIVE [29]a Threshold HE 2048 787 2051 6146

Gasti et al. [13]b (Outsourced) MPC 1600 490 1130 + (1150)c 1010

PassBio [15]d,? TPE 2000 500?? 600 + (600)c 0.3??

Kim et al. [17]e,? FH-IPE 750 96 556 1600

This Work (I, II)f,? FFB-IPE
2048 24 3.12 0.0021

145832 1177.61 304 0.125
a Benchmarked on “Intel Core 3.2 GHz processor”.
b Benchmarked on

- Client: “Samsung Galaxy S4 smartphone 4-Core 1.9GHz processor (Qualcomm Snapdragon),
2 GB RAM”.
- Server & Cloud: “Intel Xeon E5-2430L v2 6-Core 2.4GHz processor, 64 GB RAM”.

c Offline precomputation.
d Benchmarked on “Intel Core i5 1.60 GHz processor, 4 GB RAM”.
e Benchmarked on “Intel Core i7 4.00 GHz processor, 16 GB RAM”.
f Benchmarked on “Intel Core i5 2.90 GHz processor, 8 GB RAM”.
? The performance is measured for the primitive without using TLS: Communication Cost is

the size of a ciphertext, and Client and Server denotes the running times of encryption and
decryption, respectively.

?? We estimated the expected values from the asymptotic values proposed in [15].

encrypted biometric. However, since biometric is encrypted bitwisely, and signa-
ture is necessary to prevent malicious behavior of each participants, its efficiency
is quite doubtful when the size of biometric is large.

Recently, Gasti et al. [13] proposed an outsourced PPBA improving GC and
OT technique in MPC. In their system, computational burden of client (mod-
eled as a smart phone) is mitigated by an (untrusted) cloud with more compu-
tational power. It is secure against malicious participants, and is more efficient
than other state-of-the-art general purpose outsourced MPC [31, 32, 33] offer-
ing security under the presence of malicious participants. The security of [13] is
highly satisfiable since it is secure even if the server is malicious or client hire
malicious cloud or they collude.

Recently, Zhou and Ren [15] proposed a privacy preserving biometric au-
thentication with a new primitive called Threshold Predicate Encryption (TPE)
which can be applied to authentication based on Euclidean metric or Hamming
distance. It has a remarkable feature that the server can only see the result of
comparison if the distance between two template is bigger than the threshold
or not. The primitive is based on simple matrix randomization, and shows a



simple implementation only composed of matrix multiplication and random per-
mutation. However, it suffers inefficient asymptotic complexity on Client, Server,
Communication such as O(k3), O(k2), O(k2l) where k is the dimension of a bio-
metric vector, l is the size of each component, and is only feasible for k near
2000 or a little more.

We can compare our primitive with Kim et al. [17]’s FH-IPE. It offers a
security of biometric by the security of FH-IPE under the presence of malicious
server, and is practical for small-size biometric. Also, it does not have any key
management problem contrary to SHE, since the function key directly reveals
the result of computation. However, it accompanies inefficient decryption process
disclosing computation result by calculating discrete logarithm over a group, and
will be quite hard to be applied in systems regarding biometrics of larger bit size
such as 18KB. It shows the impracticality of the pairing (bilinear map)-based
FH-IPE constructed so far.

On the other hand, our authentication system provides the same security
of biometric as usual FH-IPE, and is highly efficient since it is algorithmically
simple, and is based on simple LWE problem which shows outstanding scalability.
More precisely, we can easily see that the asymptotic complexities for operations
of Client, Server, Communication are O(k), O(k), O(kl), where k is the bit length
of a binary biometric, l is the size of Rq or Zq. Note that n of FFB-IPE is
the dimension of (secret vector of) LWE problem, which depends only on the
security and correctness, is much smaller than k as k increases, and omitted as
a constant. It grants our FFB-IPE an outstanding efficiency and scalability for
large biometric as seen by Table 4 where we summarized the performance of
other schemes and ours. Note that other schemes satisfy 80-bit security, ours
satisfies 128-bit security for both parameter sets I and II.

7 Related Works

There are many researches related to Privacy Preserving Biometric Authentica-
tion. Since Jarrous and Pinkas [7] first used MPC to achieve HD-based PPBA,
there have been similar approaches [8, 10] which improve the performance achiev-
ing efficient MPC for HD in Honest-but-Curious (HBC) model,6 where adversary
follows the protocol honestly but attempts to deduce additional information from
it.7 However, as Simoens et al. [9] pointed out, PPBA secure in HBC model is
not sufficient since malicious adversary will try any attempts to get biometric in-
formation stored in a server or to be authenticated by the server. More seriously,
in many previous works regarding PPBA, biometric templates are stored in the
server in plain forms, so they can be leaked in the case of server compromise.

There have been active studies [34, 35, 36, 37, 38, 39] regarding MPC in
malicious model. However, as [13] pointed out, MPC in malicious model accom-

6 It takes only 0.05 seconds or less for 900-bit inputs, and computation time depends
linearly on the bit size.

7 They also proposed theoretic construction and security proof in the malicious model,
but without implementation result.



panies inefficiency making it impractical to be applied to biometric authentica-
tion. Recently, outsourcing some computations of MPC [31, 40, 32, 41, 33, 13]
have been proposed to resolve efficiency and/or security issues. However, they
achieved practical performance on some small-sized circuits only. In a recent work
of Gasti et al. [13], computing HD of two 1600-bit inputs takes 3.29 seconds.8

On the other hand, Somewhat Homomorphic Encryption (SHE) can be used
in biometric authentication. Yasuda et al. [11, 12] proposed efficient HD-based
biometric authentications in three-party setting and HBC model that exploit
SHE based on ideal lattices [42, 43] or the Ring Learning with Errors prob-
lem [44]. The efficiency comes from their packing technique encrypting 2048-bit
biometric into one ciphertext and representation of HD by one multiplication of
ciphertexts. The later one [12] takes only 5.31 ms for 2048-bit matching. How-
ever, the security highly depends on the honest behavior of computation server,
and suffers from simple hill-climbing attack [45] which enables malicious compu-
tation server to learn biometric templates. Abidin et al. [14] proposed another
way to use HE with XOR-linear Message Authentication Code, and the proto-
col is held by three parties which are client, service provider, and cloud server,
assuming the former two are semi-honest, but the cloud server is malicious. Im-
plementation result is not reported in the paper, but the performance is expected
to be much worse than those in [11, 12].

Fuzzy extractors or Secure sketches [46] can be used for template protection
and authentication by handling noisy (or fuzzy) property of biometrics with
error correcting techniques. Particularly, fuzzy extractor enables to extract reli-
able key from noisy biometrics. Only legitimate user with similar biometric to
the pre-enrolled biometric can retrieve the valid key. However, due to its power-
ful functionality (both authentication and reliable key extraction), it has some
deficiencies. It requires some conditions (e.g. sufficient min entropy) on the dis-
tribution of biometric, and has some security issues when used multiple times.
Recently, Canetti et al. [47] mitigated the conditions on the distributions and
resolved the security issues proposing reusable fuzzy extractors. However, the
error correction rate (sublinear in [47]) tolerated by fuzzy extractors are still
quite severe to be applied to some biometrics (especially, for iris which requires
linear error tolerance [48, 49]).

Cancellable biometrics or biohashing [50, 51, 52, 53, 54] have been proposed
to protect biometrics and to deal with the noisy nature of biometrics. It ex-
tracts features from raw biometric using non-invertible transformation with ran-
domized token for cancellability, and provides low error rates and quick au-
thentication process. However, the privacy of biometric in this methods is not
completely provided as cryptographic hash function, and several analysis or at-
tacks [55, 56, 57, 58] are known. Especially, the authentication accuracy (FAR or
FRR) highly depends on the randomized token which is different among users,

8 Measured on
client: “Samsung Galaxy S4 smartphone 4-Core 1.9GHz CPU (Qualcomm Snap-
dragon), 2GB RAM.”
server & Cloud: “Intel Xeon E5-2430L v2 6-Core 2.4GHz CPU, 64GB RAM”



and the quality of authentication is deteriorated when the token is leaked [59].
Therefore, each user should keep their own token secretly, which weakens the ver-
satility of biometric authentication. On the contrary, the authentication quality
of our primitive is not deteriorated by an illegitimate user encrypting his/her
biometric template with the same key (msk) as the legitimate user.

Many renowned researches we have not mentioned are classified to Pri-
vacy Preserving Biometric Identification (PPBI). They are usually based on
MPC [60, 61, 62, 63, 64, 65], and enables a client to match his/her biometric
to the database of server without revealing his/her input. We remark that they
should be distinguished from biometric authentication which allows the server
to check the matching result. One major difference is that authentication system
is highly necessary to be secure under the presence of malicious client, since an
adversary will actively attempt to be accepted by the server as a legitimate user
or to capture the biometric data stored in the server during the authentication
phase. In this sense, many PPBIs which are secure under the HBC model is not
appropriate to be regarded as a solution for PPBA. In addition, many PPBIs
consider that it is allowable for the server to manage biometric database in a
plaintext form, and many PPBIs don’t work efficiently if this is not allowed.
However, storing raw biometric data in a server is a serious threat these days as
we pointed out in Section 1.

8 Conclusion

Privacy-preserving biometric authentication is a protocol to authenticate users
with their biometrics while preserving the privacy of biometric information. Due
to the usability and high entropy of biometrics, many of the researches on PPBA
has been done recently. However, currently proposed PPBAs with sufficient ac-
curacy have drawbacks especially in speed to be applied in practice. In this
work, we propose a new practical PPBA for Hamming distance matcher, which
is secure against active attack under the standard LWE assumption. Our exper-
imental results support the practical feasibility of our protocol toward the real
world.

A Proof of Lemma 4.8

lemma 4.8. For real numbers σ1, σ2 > 0, let e and f be variables of distributions
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√
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We can check it by a direct computation as follow:
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