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Changing Points in APN Functions
Lilya Budaghyan, Claude Carlet, Tor Helleseth, Nikolay Kaleyski

Abstract

We investigate the differential properties of a construction in which a given function F : F2n → F2n is modified

at K ∈ N points in order to obtain a new function G. This is motivated by the question of determining the minimum

Hamming distance between two APN functions and can be seen as a generalization of a previously studied construction

in which a given function is modified at a single point. We derive necessary and sufficient conditions which the

derivatives of F must satisfy for G to be APN, and use these conditions as the basis for an efficient filtering

procedure for searching for APN functions whose value differs from that of a given APN function F at a given set of

points. We define a quantity mF related to F counting the number of derivatives of a given type, and derive a lower

bound on the distance between an APN function F and its closest APN neighbor in terms of mF . Furthermore, the

value mF is shown to be invariant under CCZ-equivalence and easier to compute in the case of quadratic functions.

We give a formula for mF in the case of F (x) = x3 which allows us to express a lower bound on the distance

between F (x) and the closest APN function in terms of the dimension n of the underlying field. We observe that

this distance tends to infinity with n. We also compute mF and the distance to the closest APN function for a

representative F from each of the switching classes over F2n for 4 ≤ n ≤ 8.

For a given function F and value v, we describe an efficient method for finding all sets of points {u1, u2, . . . , uK}
such that setting G(ui) = F (ui) + v and G(x) = F (x) for x 6= ui is APN.

I. INTRODUCTION

A vectorial (n,m)-Boolean function is any mapping F : F2n → F2m , where F2n is the finite field with 2n

elements. Such a function can also be seen as mapping sequences of n bits (zeros and ones) to sequences of m

bits, which more clearly underlines their practical importance. Vectorial Boolean functions are of central interest in

cryptography since they represent the most important part of many encryption algorithms: for instance, the Advanced

Encryption Standard (AES) and algorithms based on Feistel networks such as the Data Encryption Standard (DES),

all utilize vectorial Boolean functions in the role of so-called “substitution boxes” (see e.g. [18] for basic background

on cryptography and encryption schemes). The resistance of the encryption to various categories of cryptanalytic

attacks then directly depends on the properties of the underlying Boolean functions.

Almost Perfect Nonlinear (APN) functions were introduced by Nyberg [16] as the functions that provide optimal

resistance to the so-called differential attack invented by Biham and Shamir [2]. More precisely, we say that a

function F : F2n → F2n is APN if the equation F (x) +F (x+a) = b in x has at most 2 solutions for any a ∈ F∗2n

and any b ∈ F2n . Despite the simplicity of this definition, finding new examples of APN functions, even in finite

fields of relatively low dimension and investigating their properties is a challenging task, due to which various

methods of constructing such functions have been examined by researchers.

In [5], a construction in which a given function F : F2n → F2n is modified at one point is examined, motivated

by the open problem of whether an APN function over F2n can have algebraic degree equal to n. A number of
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nonexistence results are obtained in that paper, which support the conjecture that this is impossible. The idea of

this construction is interesting in its own right, however, and it can naturally be generalized to the modification of

more than one point.

The particular case of swapping, or exchanging, two points of a given function is already studied [19] in the

context of constructing differentially 4-uniform permutations. The more general question of arbitrarily modifying

the values of a given function at two points, as well as the construction of swapping two points in a more general

context is investigated in [14]. Two main characterizations of the APN-ness of the modified function are obtained,

one in terms of the power moments of the Walsh transform, and one in terms of the differential properties of the

original function. We observed that if F and G are at distance two, then at most one of F and G can be AB,

and at most one of them can be plateaued; furthermore, if the algebraic degree of say F is less than n − 1, then

G can be neither AB nor plateaued (except for some trivially small dimensions of the finite field). In the case of

swapping the values of a function at 0 and 1, we obtained a sufficient condition for disproving the APN-ness of G

by computing a lower bound on the sum
∑
y∈F2n

∆F (y, F (y) + 1) + ∆F (y + 1, F (y)). We also showed how to

compute a lower bound on this quantity in the case of power functions.

In this paper, we consider the general case of arbitrarily changing K points. To be more accurate, given a function

F : F2n → F2n , some K distinct field elements u1, . . . , uK ∈ F2n and some K elements v1, v2, . . . , vK ∈ F∗2n ,

we define G as

G(x) =

F (ui) + vi x = ui

F (x) x /∈ {u1, u2, . . . , uK}

and try to find some correlation between the properties of F and those of G. We derive sufficient and necessary

conditions that the derivatives of F must satisfy in order for G to be APN, and obtain an efficient filtering procedure

for finding all possible values of v1, v2, . . . , vK in the case that u1, u2, . . . , uK are known. In the case when F is

itself APN, we define the value mF , which counts the number of derivatives of F satisfying a certain condition,

and express a lower bound on the distance between F and the closest APN function in terms of mF . We further

demonstrate that mF is invariant under CCZ-equivalence and that its computation is particularly efficient when F

is quadratic. In addition, we show how an exact formula for mF can be computed in the case of F (x) = x3, and

experimentally compute mF for representatives from all switching classes in [13].

In the case when v1 = v2 = · · · = vK , we show how all possible combinations of points u1, u2, . . . , uK

can be found (for all values of K) by solving a system of linear equations. Note that constructions of the form

G(x) = F (x) + vf(x) for f : F2n → F2 have been investigated in [6], [13].

II. PRELIMINARIES

A. Representation of Vectorial Functions

Given two positive integers n and m, a vectorial Boolean (n,m)-function, or simply (n,m)-function, is any

function F : Fn2 → Fm2 . It can be uniquely expressed in the so-called algebraic normal form (ANF) as follows [8]:

F (x1, x2, · · · , xn) =
∑

I⊆{1,2,...,n}

aI(
∏
i∈I

xi) =
∑

I⊆{1,2,...,n}

aIx
I , aI ∈ Fm2 .
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The algebraic degree of F (x1, x2, · · · , xn) is defined as the degree of its ANF, namely

deg(F ) = max{|I| : aI 6= (0, 0, · · · , 0), I ⊆ {1, 2, · · · , n}}.

Clearly, deg(F ) ≤ n.

Vectorial Boolean (n, 1)-functions, i.e. functions of the form f : F2n → F2, are called simply Boolean functions.

When m = n it is often more convenient to identify the vector space Fn2 with the finite field F2n . Note that

any basis {e1, e2, · · · , en} for F2n , viewed as a vector space over F2, determines a correspondence between F2n

and Fn2 via x =
∑n
i=1 xiei. The algebraic degree does not depend on the choice of the basis since any change

of basis corresponds to a linear permutation. Then any (n, n)-function has a unique representation as a univariate

polynomial over F2n of the form

F (x) =

2n−1∑
i=0

aix
i, ai ∈ F2n .

Let x =
∑n
i=1 xiei and i =

∑n−1
s=0 is2

s where is ∈ {0, 1}. Then F can be rewritten as

F (x) =

2n−1∑
i=0

ai

(
n∑
i=1

xiei

)i
=

2n−1∑
i=0

ai

n−1∏
s=0

(
n∑
i=1

xie
2s

i

)is
which is exactly the ANF of F . Moreover, let w2(i) =

∑n−1
s=0 is denote the 2-weight of i, where 0 ≤ i ≤ 2n − 1

has binary expansion i =
∑n−1
s=0 2sis. Then the algebraic degree of F in univariate polynomial form is equal to

deg(F ) = max{w2(i) : ai 6= 0, 0 ≤ i ≤ 2n − 1}.

B. Almost Perfect Nonlinear Functions and Bent Functions

Let F be a function from F2n to itself. The derivative of F in direction a for any a ∈ F2n is the function

DaF : F2n → F2n defined as

DaF (x) = F (x) + F (a+ x).

The differential sets HaF are the image sets of the derivatives of F , i.e. the sets

HaF = {DaF (x) : x ∈ F2n} = {F (x) + F (a+ x) : x ∈ F2n}.

Alongside the derivatives DaF , we define the shifted derivative Dβ
aF of F in direction a with shift β, which is

a function over F2n defined as

Dβ
aF (x) = DaF (x) + F (a+ β) = F (x) + F (a+ x) + F (a+ β)

for any fixed a, β ∈ F2n . The shifted differential sets Hβ
aF are then the image sets of the shifted derivatives, i.e.

Hβ
aF = {Dβ

aF (x) : x ∈ F2n} = {F (x) + F (a+ x) + F (a+ β) : x ∈ F2n}.

For any a, b ∈ F2n , define ∆F (a, b) = |{x ∈ F2n : F (x + a) + F (x) = b}|; that is, ∆F (a, b) is the number of

solutions x of the equation DaF (x) = b for some given a and b. Then the differential uniformity of F is defined

as

∆F = max{∆F (a, b) : a, b ∈ F2n , a 6= 0}.

DRAFT



4

A function F from F2n to itself is called differentially δ-uniform if ∆F ≤ δ. If δ = 2, then F is called almost

perfect nonlinear (APN). Note that this is optimal in the case of a finite field of characteristic two, since if some

x solves F (x) + F (a+ x) = b, then so does (a+ x), and thus the numbers ∆F (a, b) are always even.

Note that the same definition of differential uniformity can be extended to functions F : F2m → F2n between

fields of different dimensions. A perfect nonlinear (PN) function is one whose differential uniformity is 2n−m;

as observed above, for n = m such functions cannot exist. In fact, PN functions are the same as bent functions

(briefly discussed below) and do not exist whenever m > n/2 [17].

APN functions over F2n can be characterized in several different ways. In this paper, we mainly focus on

characterizations by means of the differential properties of the functions but also using the power moments of their

Walsh transform. The Walsh transform of a Boolean function f : F2n → F2 is defined as

Wf (a) =
∑
x∈F2n

(−1)f(x)+Trn1 (ax), a ∈ F2,

where Trnk (x) =
∑n−1
i=0 x

2ki

is the trace function from F2n to its subfield F2k . Also useful is the inverse Walsh

transform formula, namely ∑
a∈F2n

Wf (a) = 2n(−1)f(0). (1)

The Walsh transform of an (n,m)-function is defined in terms of the Walsh transform of its component functions

Trm1 (bF (x)) for b ∈ F∗2m as

WF (a, u) =
∑
x∈F2n

(−1)Tr
m
1 (uF (x))+Trn1 (ax).

For convenience, we introduce the “equality indicator” I(A,B), where A and B are some arbitrary expressions,

defined as

I(A,B) =

1 A = B

0 A 6= B.

The characteristic function of the set S is denoted by 1S(x) and is defined as

1S(x) =

1 x ∈ S

0 x /∈ S.

For a finite set S = {s1, s2, . . . , sk} we will use 1s1,s2,...,sk(x) as shorthand for 1{s1,s2,...,sk}(x).

The following characterizations of APN functions by means of the power moments of their Walsh transform are

often very useful in the investigation of APN functions.

Lemma 1 (see e.g. [12]). Let F be an (n, n)-function. Then F is APN if and only if∑
a∈F2n

∑
u∈F∗

2n

W 4
F (a, u) = 23n+1(2n − 1).

Lemma 2 ([8]). Let F be an APN function over F2n satisfying F (0) = 0. Then∑
a,b∈F2n

W 3
F (a, b) = 3 · 23n − 22n+1.
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Note that while Lemma 2 expresses only a necessary condition for F to be APN in the general case, in the case

of a plateaued function F this condition becomes necessary and sufficient [9].

The following lemma provides an alternative characterization of the APN-ness of a vectorial Boolean function

in terms of the second power moments of its derivatives.

Lemma 3. [1] A function F over F2n is APN in and only if for all a ∈ F∗2n we have∑
b∈F2n

WDaF (0, b)2 = 22n+1. (2)

The nonlinearity NF of an (n,m)-function F is the minimum Hamming distance between its component functions

and the affine functions. The nonlinearity of any (n,m)-function satisfies the so-called covering radius bound

NF ≤ 2n−1 − 2n/2−1. The nonlinearity can be expressed as

NF = 2n−1 − 1

2
max

a∈F2m ,u∈F∗2n
|WF (a, u)|. (3)

Functions meeting this bound are called bent. These coincide with the class of PN functions and exist only for

m ≤ n/2 [17]. In particular, for m = n, which is our case of interest, bent functions do not exist.

When n is odd, the optimal (n, n)-functions from the point of view of nonlinearity are the almost bent functions.

An (n, n)-function F is called almost bent (AB) if it satisfies WF (a, u) ∈ {0,±2(n+1)/2} for all a ∈ F2n and

nonzero u ∈ F∗2n . Any AB function is APN, but not vice versa. However, for n odd, every quadratic APN function

is also AB [10]; more generally, every plateaued APN function is also AB.

C. Plateaued Functions

A plateaued Boolean function is a function from F2n to F2 whose Walsh transform takes values from {0,±µ}

for some positive integer µ, which is called the amplitude of the plateaued Boolean function. Plateaued Boolean

functions were introduced by Zheng and Zhang and were shown to possess various desirable cryptographic char-

acteristics [20]. More generally, for an (n, n)-function, Carlet introduced the following two notions in [8], [9].

Definition 1. An (n, n)-function F is called plateaued if all its component functions Trn1 (uF (x)), u 6= 0, are

plateaued, with possibly different amplitudes.

Definition 2. An (n, n)-function F is called plateaued with single amplitude if all its component functions are

plateaued with the same amplitude.

Note that the amplitude of a plateaued Boolean function f should be a power of two whose exponent is at least n2
due to the well-known Parseval’s identity

∑
a∈F2n

W 2
f (a) = 22n. Moreover, the distribution of its Walsh transform

can be determined as follows.
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Lemma 4. ([5]) Let f be a plateaued Boolean function over F2n with amplitude 2λ. Then the distribution of its

Walsh transform values is given by

Walsh Transform Value Frequency

0 2n − 22n−2λ

2λ 22n−2λ−1 + (−1)f(0) 2n−λ−1

−2λ 22n−2λ−1 − (−1)f(0) 2n−λ−1

and we have
∑
a∈F2n

W 3
f (a) = (−1)f(0) 2n+2λ and

∑
a∈F2n

W 4
f (a) = 22n+2λ.

Since the algebraic degree of a Boolean plateaued function in n variables with amplitude 2λ is upper bounded

by n−λ+1 [15] the algebraic degree of a plateaued (n, n)-function F is upper bounded by maxu∈F∗
2n

(n−λu+1)

where 2λu is the amplitude of Trn1 (uF (x)), u 6= 0. Since there exists no bent (n, n)-function, this maximum is

less than or equal to n− (n+ 1)/2 + 1 = (n+ 1)/2. Hence a plateaued function can have algebraic degree n only

if n ≤ 1 and algebraic degree n− 1 only if n ≤ 3.

Lemma 5. Let F be a plateaued function over F2n . If deg(F ) = n then n ≤ 1, and if deg(F ) = n−1 then n ≤ 3.

D. Equivalence Relations of Functions

There are several equivalence relations of functions for which differential uniformity and nonlinearity are invariant.

Due to these equivalence relations, having only one APN (respectively, AB) function, one can generate a huge class

of APN (respectively, AB) functions.

Two functions F and F ′ from F2n to F2n are called

• affine equivalent (linear equivalent) if F ′ = A1 ◦ F ◦ A2, where the mappings A1 and A2 are affine (linear)

permutations of F2n ;

• extended affine equivalent (EA-equivalent) if F ′ = A1◦F ◦A2+A, where the mappings A,A1, A2 : F2n → F2n

are affine, and A1, A2 are permutations;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permutation L of F2n×F2n the image

of the graph of F is the graph of F ′, that is, L(GF ) = GF ′ where GF = {(x, F (x)) : x ∈ F2n} and

GF ′ = {(x, F ′(x)) : x ∈ F2n}.

Although different, these equivalence relations are related. It is obvious that linear equivalence is a particular

case of affine equivalence, and that affine equivalence is a particular case of EA-equivalence. As shown in [10],

EA-equivalence is a particular case of CCZ-equivalence and every permutation is CCZ-equivalent to its inverse. The

algebraic degree of a function (if it is not affine) is invariant under EA-equivalence but, in general, it is not preserved

by CCZ-equivalence. Let us recall why the structure of CCZ-equivalence implies this: for a function F from F2n

to F2n and an affine permutation L(x, y) =
(
L1(x, y), L2(x, y)

)
of F2n × F2n , where L1, L2 : F2n × F2n → F2n ,

we have

L(GF ) = {
(
F1(x), F2(x)

)
: x ∈ F2n} (4)

where F1(x) = L1(x, F (x)) and F2(x) = L2(x, F (x)).
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Note that L(GF ) is the graph of a function if and only if F1 is a permutation. The function CCZ-equivalent to

F whose graph equals L(GF ) is then F ′ = F2 ◦F−11 . The composition by the inverse of F1 modifies the algebraic

degree in general, except, for instance, when L1(x, y) depends only on x, which corresponds to EA-equivalence of

F and F ′ [7].

Proposition 1. [7] Let F and F ′ be functions from Fn2 to itself. The function F ′ is EA-equivalent to the function

F or to the inverse of F (if it exists) if and only if there exists an affine permutation L = (L1, L2) on F2n
2 such

that L(GF ) = GF ′ and L1 depends only on one variable, i.e. L1(x, y) = L(x) or L1(x, y) = L(y).

It is worth examining some properties that remain invariant under CCZ-equivalence. Let the functions F and F ′

be CCZ-equivalent. Then

• {∆F (a, b) : a, b ∈ F2n , a 6= 0} = {∆F ′(a, b) : a, b ∈ F2n , a 6= 0} [4];

• if F is APN then F ′ is APN too;

• NF = NF ′ [10];

• if F is AB then F ′ is AB too;

• if F is plateaued with single amplitude λ then F ′ is plateaued with the same single amplitude λ.

If F is plateaued with different amplitudes then F ′ is not necessarily plateaued: it can happen that F ′ has no

plateaued components at all. However, if F and F ′ are EA-equivalent then F ′ is plateaued with the same multi-set

of amplitudes.

III. CHANGING POINTS IN GENERAL

The properties of a construction that involves changing the value of a given function F at one point in order to

obtain a new function G are investigated in [5]. More precisely, given a function F over F2n , the construction is

performed by defining a new function G over the same field by

G(x) =

F (x) x 6= u

v x = u

for some fixed elements u, v ∈ F2n . Since G can be written as G(x) = F (x) + (F (u) + v)(1 + (x+ u)2
n−1), it is

easy to see that the algebraic degree of F or G must be equal to n; furthermore, any function G of algebraic degree

n can be written in this form for some F of algebraic degree less than n. Indeed, the motivation behind the study

of this construction is the unresolved questions of whether APN functions of algebraic degree n can exist over

F2n ; the authors investigate the possibility of obtaining an APN function G using the construction, with particular

attention being paid to the case when F is itself APN. Two main characterizations for the APN-ness of G are

obtained in [5], one involving the Walsh coefficients of F , and one based on the properties of the derivatives DaF

of F . These characterizations are then applied in order to conclude that any G obtained by such a one-point change

from a given F which is a power, plateaued, quadratic or almost bent function cannot be APN, except possibly for

n ≤ 2 in the case of plateaued functions. For instance, F (x) = x is plateaued and G(x) = F (x) +x2
n−1 = x3 +x

is APN over F22 ; in the case of power, quadratic and almost bent functions, we only have trivial examples over
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F2, e.g. F (x) = x and G(x) = 0. A number of additional non-existence results are also shown, which support the

conjecture that no APN function of algebraic degree n may exist over F2n ; nonetheless, the question in general

remains open.

The idea of investigating pairs of functions at a small distance to one another is interesting per se, and the

aforementioned construction can be naturally extended so that the value of F is changed at more than one point.

In the following we investigate whether, and under what conditions, it is possible to obtain an APN function by

changing the values of multiple points in a given APN function F . More precisely, given K distinct elements

u1, u2, . . . , uK from F2n and K arbitrary elements v1, v2, . . . , vK from F2n , we are interested in the APN-ness of

the function

G(x) = F (x) +

K∑
i=1

1ui
(x)vi = F (x) +

K∑
i=1

(1 + (x+ ui)
2n−1)vi (5)

whose value coincides with the value of F on all points x /∈ {u1, u2, . . . , uK} and satisfies G(ui) = F (ui) + vi

for i ∈ {1, 2, . . . ,K}.

In order to facilitate the following discussion, we introduce some notation related to the construction. We denote

by U the set U = {u1, u2, . . . , uK} of points whose value will change. For a given element a ∈ F2n , we denote

by a + U the set {a + u : u ∈ U}. For any given natural number n, we denote [n] = {1, 2, . . . , n}; in particular,

[K] is the set of indices of the points from U . Given some derivative direction a ∈ F∗2n , we define Pa as the set

of pairs

Pa = {(i, j) ∈ [K]2 : i < j, ui + uj = a}. (6)

Note that every set Pa for a ∈ F∗2n defines a partition of the set of all pairs {(i, j) ∈ [K]2 : i < j}.

For the purpose of the following discussion, we want to partition the elements u from U satisfying a + u ∈ U

into two sets, say U1 and U2, such that x 7→ a+ x is a bijection between U1 and U2. Then in the analysis we are

going to use only one of those sets, say U1. One convenient way of performing such a partition is by means of the

domain and range of the function pa as defined below.

The set Pa can be viewed as the graph of a function (since a given index i clearly cannot belong to more

than one pair in Pa) whose domain and range are subsets of [K]. Let pa be the function corresponding to this

graph. We denote by Dom(pa), resp. Rng(pa) the domain, resp. range of pa. For convenience, we also define

All(pa) = Dom(pa) ∪Rng(pa).

Given some index i ∈ Dom(pa), i.e. such that a + ui = uj for some j ∈ [K], we can express the index j as

j = pa(i). However, if i ∈ Rng(pa) instead, we have to express j as j = p−1a (i). Due to the domain and range of

pa being disjoint, we can define a mapping pa : All(pa)→ All(pa) as

pa(i) =

pa(i) i ∈ Dom(pa)

p−1a (i) i ∈ Rng(pa)

(7)

with Dom(pa) = Rng(pa) = All(pa) which provides us with a more natural notation.

Since the definition of an APN function is given in terms of differential equations, a natural way to investigate

the properties of G is to examine the derivatives DaG and their relation to the derivatives DaF of F . From the

definition of G given by (5) we can immediately see that for any a ∈ F∗2n , the derivative DaG takes the form
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DaG(x) = DaF (x) +

K∑
i=1

1ui,a+ui(x)vi. (8)

Although all the points ui are assumed distinct, it is possible that for some i 6= j we will have a+ ui = uj and

the sets {ui, a+ ui} and {uj , a+ uj} will coincide. This can be seen more easily if (8) is written in the form

DaG(x) = DaF (x) +
∑

i∈Dom(pa)

1ui,upa(i)
(x)(vi + vpa(i)) +

∑
i/∈All(pa)

1ui,a+ui
(x)vi. (9)

A characterization of the conditions under which G is APN can be derived immediately from (8) and the

definition of an APN function by examining under what conditions a triple of elements (a, x, y) ∈ F3
2n with a 6= 0,

DaG(x) = DaG(y) and x+ y 6= 0, a may exist.

Proposition 2. Let F : F2n → F2n be a vectorial Boolean function, let u1, u2, . . . , uK be K distinct points from

F2n and let v1, v2, . . . , vK be K arbitrary elements from F2n . Then the function

G(x) = F (x) +

K∑
i=1

1ui(x)vi

is APN if and only if all of the following conditions are satisfied for every derivative direction a ∈ F∗2n :

(i) DaF is 2-to-1 on F2n \ (U ∪ a+ U);

(ii) DaF (ui) +DaF (uj) 6= vi + vj + vpa(i) + vpa(j) for i, j ∈ All(pa) unless ui = uj or ui + uj = a;

(iii) DaF (ui) +DaF (uj) 6= vi + vj + vpa(i) for i ∈ All(pa), j /∈ All(pa);

(iv) DaF (ui) +DaF (uj) 6= vi + vj for i, j /∈ All(pa) unless ui = uj ;

(v) DaF (ui) +DaF (x) 6= vi + vpa(i) for i ∈ All(pa), x /∈ (U ∪ a+ U);

(vi) DaF (ui) +DaF (x) 6= vi for i /∈ All(pa), x /∈ (U ∪ a+ U).

Proof. Recall that G is APN if and only if there does not exist a triple (a, x̄, ȳ) ∈ F3
2n such that

DaG(x̄) = DaG(ȳ)

with a 6= 0 and x̄ /∈ {ȳ, a+ ȳ}. Suppose that such a triple does exist. Then:

1) If neither x̄ nor ȳ belong to (U ∪a+U), then DaG(x̄) = DaF (x̄) and DaG(ȳ) = DaF (ȳ) so that DaG(x̄) =

DaG(ȳ) implies DaF (x̄) = DaF (ȳ). Thus DaF cannot be 2-to-1 over F2n \ (U ∪ a + U). Conversely, if

DaF is 2-to-1 over F2n \ (U ∪ a+ U), this guarantees that no such triple can exist with x̄, ȳ /∈ (U ∪ a+ U).

This leads to the first condition.

2) If both x̄ and ȳ are points from U , say x̄ = ui and ȳ = uj , we examine three different cases depending on

whether one, both or none of i and j are in All(pa):

a) If DaG(ui) = DaG(uj) with i, j ∈ All(pa), then we have DaF (ui) + vi + vpa(i) = DaF (uj) + vj + vpa(j)

from the definition of G. If G is APN, this is possible only if ui = uj or ui = a+ uj , which leads to the

second condition.
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b) If say i is in All(pa) but j is not, then DaG(ui) = DaG(uj) becomes DaF (ui)+DaF (uj) = vi+vj+vpa(i).

Note that we cannot have ui = uj since i is in All(pa) and j is in its complement, and neither can we have

ui + a = uj since we assume j /∈ All(pa). This leads to the third condition.

c) If neither i nor j is in All(pa), then DaG(ui) = DaG(uj) becomes DaF (ui) +DaF (uj) = vi + vj ; this

can occur if ui = uj , but ui = a+ uj is impossible due to uj /∈ U . This yields the fourth condition.

3) In the remaining case, we assume that we have x̄ = ui but ȳ /∈ (U ∪ a+ U). We examine two sub-cases:

a) If DaG(ui) = DaG(ȳ) with i ∈ All(pa), then DaF (ui) +DaF (ȳ) = vi + vpa(i). Since both ui and ui + a

are in U , we cannot have ui ∈ {y, a+ y}. This yields the fifth condition.

b) If, conversely, DaG(ui) = DaG(ȳ) but i /∈ All(pa), then we have DaF (ui) + DaF (ȳ) = vi. As before,

we cannot have ui ∈ {ȳ, a+ ȳ}. This gives us the sixth and last condition.

The above conditions are clearly necessary for G to be APN, and they are also sufficient since if we have

DaG(x̄) = DaG(ȳ), then one of these conditions shows that x̄ = ȳ or x̄ = a+ ȳ.

Condition (vi) of Proposition 2 can be equivalently expressed in terms of the shifted derivatives of F as in the

following observation. This is slightly more intuitive in the sense that it allows us to consider the image of a single

shifted derivative (instead of the sum of two derivatives as in the original formulation) and is used throughout the

next section.

Observation 1. Assume the same notation as in Proposition 2. Then, if G is APN, any derivative direction a ∈ F∗2n

for which Dui
a F maps to F (ui) + vi must satisfy either

DaF (ui) +DaF (uj) = Dui
a F (uj) = F (ui) + vi

for some i 6= j ∈ [K], or

a+ ui ∈ U.

Characterizing the APN-ness of G is difficult in the general case due to the large number of choices for the

points u1, u2, . . . , uK and shifts v1, v2, . . . , vK . For this reason, in the following sections we concentrate on various

simplifications of this problem, e.g. by assuming that the points u1, u2, . . . , uK or the number K are fixed.

IV. THE CASE OF FIXED u1, u2, . . . , uK

If we fix the set U of points to change, we can use Observation 1 to dramatically reduce the number of potential

candidate values for the shifts v1, v2, . . . , vK . Besides filtering out impossible candidates for the shifts vi, this allows

us to obtain a lower bound on the distance between a given APN function F and its closest APN neighbor. This

lower bound is given in terms of the number of shifted derivatives of F that map to the different elements of F2n .

This quantity can be computed efficiently in practice and can be used to bound from below the number of points

K that need to be changed in order to obtain an APN function G from such an F . Finally, we observe that this

lower bound is invariant under CCZ-equivalence.
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A. Filtering out shift candidates

We can immediately apply Observation 1 in practice by fixing some function F over F2n along with K points

u1, u2, . . . , uK and then, for every i ∈ [K], making a list of all values v̄ ∈ F2n for which setting vi = v̄ violates

the necessary condition from the proposition. Then only values vi which are not in this list have to be examined,

and their number is typically much smaller than the number 2n of all possible values. In many cases, no values at

all are left for some vi, which then immediately indicates that no APN functions can be obtained by shifting the

points in U .

A more precise description of this procedure is given below.
Algorithm 1: Reducing the domains of vi using Observation 1

Data: A function F : F2n → F2n and a set of K distinct points U = {u1, u2, . . . , uK} ⊆ F2n .

Result: A domain Di ⊆ F2n for every vi such that if G(x) is APN, then vi ∈ Di for every i ∈ [K].

begin

for every i ∈ [K] do

set Di ← F2n

compute A← {Dui
a F (x) + F (ui) : x, a ∈ F2n , a 6= 0, a+ ui /∈ U, x /∈ (U ∪ a+ U) }

update Di ← Di \A

As already mentioned, the efficiency of this method is particularly prominent in the cases when the points

u1, u2, . . . , uK do not lead to an APN function (in the sense that G is never APN regardless of the choice of

v1, v2, . . . , vK). For example, given the function F (x) = x3 over F25 and the set of points U = {αi : i ∈ {0}∪ [5]},

where α is a primitive element of F25 , checking every combination of shifts (v1, . . . , vK) ∈ F6
25 using an exhaustive

search (that is, generating G as defined in (5) and testing whether it is APN for every such combination of shifts)

is estimated to take about 75 hours; using the filtering approach described above, however, we can conclude that

no APN function G can be obtained by any combination of shifts after only about 0.140 seconds of computation.

On the contrary, in some situations (especially when the set of points U can produce an APN function) the filtering

procedure may leave rather large domains for the shift candidates, which necessitates intensive computations. As

two contrasting examples, we examine the function x3 over F25 and over F26 . In the case of F25 , taking the set

U of the eight points generated (in the sense of additive closure) by {αi : i ∈ {0} ∪ [2]} leaves the singleton

domain {α25} for all vi; indeed, the function G obtained by shifting every point from U by α25 is APN and

is CCZ-equivalent to x5 (so that it belongs to a different equivalence class than F ). When we take F (x) = x3

over F26 with U being generated by {1, α, α4, α21}, however, the domains for each vi after filtering become

D = {α7, α14, α28, α35, α49, α56}. Taking v1 = v2 = · · · = v16 = v for any v ∈ D then yields an APN function G

that is CCZ-equivalent to x6 + x9 + α7x48. Conversely, if at least two different values are selected for the shifts,

the resulting function is not APN; thus, there are only |D| = 6 possible shift combinations that lead to an APN

function, but 616 potential combinations that are left after filtering and need to be “manually” checked. Therefore,

although our method reduces the size of the domains from 26 = 64 to just 6, the resulting search space is still

quite large and requires a lot of time in order to be completely explored.
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However, additional restrictions may be imposed on the values of vi by applying conditions (i)-(v) from Propo-

sition 2 which allow this search to be performed more efficiently than by iterating over all possible combinations.

More precisely, condition (iv) allows us to remove pairs, condition (iii) allows us to remove triples and condition

(ii) allows us to remove quadruples of incompatible elements from the domains. Condition (i) depends entirely on

the function F and the set U and can be used to reject a given set U entirely, although we cannot use it for filtering

the domains.

These conditions do not allow us to remove any values from the domains of vi directly, but they do make it

possible to restrict some domains after a first few initial choices. For example, having selected a concrete value v̄i

for vi from its domain, we can remove all values v̄j from the domain of vj for which condition (iv) is violated.

It is worth noting that this is the most useful of the three conditions given above in the case that the number of

points U is relatively small, since it encompasses the greatest number of derivative directions; as the number K

of points that we change increases, the latter two conditions become more useful. In any case, ensuring that all

the conditions from Proposition 2 are satisfied is sufficient to ensure that the function G constructed from an APN

function F is APN itself.

Coming back to the example of F (x) = x3 over F26 discussed above, we can see how much this improves the

search efficiency: evaluating all combinations of shifts from the domains would require approximately 110 years;

applying conditions (i)-(iv) from Proposition 2 as described, however, finds all six possibilities in about two seconds.

B. Lower bound on the distance between APN functions

Note that in the statement of Observation 1, we assume that the resulting function G is APN but we do not make

any assumptions on F . If, in addition to the hypothesis of the theorem, we assume that F is itself APN, we can

obtain the following corollary which gives a lower bound on the Hamming distance between a given APN function

and its nearest APN “neighbor”.

Corollary 1. Let F and G be as in the statement of Observation 1 and assume, in addition, that F is APN; consider

some fixed i ∈ [K]. Then no more than 3(K − 1) derivatives of the form Dui
a F map to G(ui).

Proof. First, consider all derivative directions a ∈ F∗2n with a+ ui /∈ U . By Observation 1 we must have

Dui
a F (uj) = G(ui)

for some j 6= i if Dui
a F maps to G(ui). We now determine for how many a ∈ F2n we may have Dui

a F (uj) = G(ui)

for fixed i and j. Suppose that we have both Dui
a F (uj) = G(ui) and Dui

a′ F (uj) = G(ui) for some a 6= a′. Then

we have the equality

Dui
a F (uj) = Dui

a′ F (uj). (10)

This can be explicitly written as

F (uj) + F (a+ uj) + F (a+ ui) = F (uj) + F (a′ + uj) + F (a′ + ui) (11)

so that we have

Dui+ujF (a+ ui) = Dui+ujF (a′ + ui). (12)
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Since i and j (and therefore ui and uj) are fixed and since F is APN, this implies either a = a′ or a+a′ = ui+uj .

In other words, at most two distinct shifted derivatives may map uj to G(ui). Note that this must be true for any

pair of derivatives a, a′ for which Dui
a F and Dui

a′ F both map to G(ui).

Now suppose that only i (but not j) is fixed. Since we consider only j 6= i and since there are K indices in total,

there are (K − 1) choices for j for any fixed i. For each such j, there are at most two shifted derivatives Dui
a F

mapping uj to G(ui). Therefore, at most 2(K − 1) shifted derivatives may take G(ui) as value when a+ ui /∈ U .

We now consider the derivative directions a ∈ F2n for which a+ ui ∈ U . There are precisely K such directions

a, viz. u1 + ui, u2 + ui, . . . , uK + ui. Furthermore, Dui
0 F cannot map to G(ui) unless vi = 0, so that there are

at most (K − 1) derivatives of this type which may map to G(ui).

Thus, in total, there can be no more than 2(K − 1) + (K − 1) = 3(K − 1) derivative directions a for which

Dui
a F maps to G(ui).

Note that in the proof above, the number of derivative directions a (with a+ui /∈ U ) such that Dui
a F (uj) = G(ui)

for some fixed i and j is limited to two because all such derivative directions are the solutions to a differential

equation and F is assumed to be APN. If F is assumed to be differentially δ-uniform instead, the upper bound on

the number of derivatives Dui
a F mapping to G(ui) will be (δ + 1)(K − 1).

Corollary 1 can now be used to compute a lower bound on the distance between a given F and its nearest APN

“neighbor” as follows. Suppose that we would like to construct a function G at distance K from F . We are free

to select both the set U = {u1, u2, . . . , uK} ⊆ F2n of points to change as well as the values G(ui) for i ∈ [K]

(which is equivalent to selecting the shifts v1, v2, . . . vK ∈ F∗2n ). In doing so, we try to select the set U and the

values G(ui) in such a way that the number of shifted derivatives Dui
a F mapping to any given G(ui) is at most

3(K − 1); otherwise, by Corollary 1, the resulting function G cannot be APN.

In order to facilitate the following discussion, we introduce some notation related to the shifted derivatives. In

particular, we define Πβ
F (b) to be the set of derivative directions a for which Dβ

aF maps to b, i.e.

Πβ
F (b) = {a ∈ F2n : b ∈ Hβ

aF} = {a ∈ F2n : (∃x ∈ F2n)(Dβ
aF (x) = b)}. (13)

As discussed above, we only need to count the numbers |Πui

F (G(ui))| for i ∈ [K] and have to ensure that none

of them is greater than 3(K−1). The minimum value of |Πβ
F (b)| through all possible values of β and b is certainly

a lower bound on mini∈[K] |Πui

F (G(ui))|; if this minimum value is greater than 3(K − 1) for some given K, then

no function G within distance K of F can be APN.

Thus, we can apply the lower bound from Corollary 1 by computing the minimum value of |Πβ
F (b)| through

all β, b ∈ F2n . In certain cases, such as for quadratic functions (see Proposition 5 below), it suffices to consider a

fixed value of β and to only go through all b ∈ F2n . For this reason, we define the set Πβ
F as the spectrum of the

values of |Πβ
F (b)| for a fixed shift β, i.e.

Πβ
F = {|Πβ

F (b)| : b ∈ F2n} (14)
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and ΠF as the spectrum of |Πβ
F (b)| for all shifts β and all values b:

ΠF =
⋃

β∈F2n

Πβ
F = {|Πβ

F (b)| : β, b ∈ F2n}. (15)

For convenience, we also denote by mF the minimal element of ΠF , i.e.

mF = min{|Πβ
F (b)| : β, b ∈ F2n}. (16)

The lower bound on the distance between APN functions can now be stated as follows.

Corollary 2. Let F be an APN function over F2n and let mF be the number

mF = min ΠF = min
b,β∈F2n

|Πβ
F (b)| = min

b,β∈F2n

|{a ∈ F2n : (∃x ∈ F2n)(Dβ
aF (x) = b)}|.

Then for any APN function G 6= F over F2n , the Hamming distance d(F,G) between F and G satisfies

d(F,G) ≥
⌈mF

3

⌉
+ 1. (17)

C. Invariance Properties

As discussed above, the lower bound on the Hamming distance between a given APN function F and its closest

APN “neighbor” is given in terms of the number mF which in turn can be expressed via the sets Πβ
F (b), Πβ

F

and ΠF . It is therefore interesting to observe that the set ΠF is invariant under CCZ-equivalence, as shown in the

following proposition. This then makes the lower bound obtained via Corollary 2 for some given function F valid

for all members of its CCZ-equivalence class.

Proposition 3. Suppose F is APN and is CCZ-equivalent to F ′ via the affine permutation L = (L1, L2) of F2
2n .

Then

Πβ
F (t) = Π

L1(β,t)
F ′ (L2(β, t)) (18)

for any β, t ∈ F2n .

Consequently, the set ΠF is invariant under CCZ-equivalence.

Proof. To show the first part of the statement, define F1(x) = L1(x, F (x)) and F2(x) = L2(x, F (x)) as in (4);

then F1 is a permutation and F ′ = F2 ◦ F−11 .

If we consider the set of all pairs (a, x) such that Dβ
aF (x) = t, we can obtain using the affinity of L:

|{(a, x) ∈ F2n : F (x) + F (a+ x) + F (a+ β) = t}| =

|{(x, y, z) ∈ F3
2n : (x, F (x)) + (y, F (y)) + (z, F (z)) = (β, t)}| =

|{(x, y, z) : (F1(x), F2(x)) + (F1(y), F2(y)) + (F1(z), F2(z)) = L(β, t)}| (1)
=

|{(x, y, z) : (x, F ′(x)) + (y, F ′(y)) + (z, F ′(z)) = (L1(β, t), L2(β, t))}| =

|{(a, x) : F ′(x) + F ′(a+ x) + F ′(a+ L1(β, t)) = L2(β, t)}|. (19)
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In the step marked (1) we use the fact that F1 is a permutation and go through all triples (F−11 (x), F−11 (y), F−11 (z))

instead of (x, y, z).

Now, since |Πβ
F (t)| counts the number of derivative directions a such that Dβ

aF maps to t, and since all (shifted)

derivatives of F and F ′ are 2-to-1 due to F and F ′ being APN, we have

2|Πβ
F (t)| = |{(a, x) ∈ F2n : F (x) + F (a+ x) + F (a+ β) = t}| =

|{(a, x) : F ′(x) + F ′(a+ x) + F ′(a+ L1(β, t)) = L2(β, t)}| = 2|ΠL1(β,t)
F ′ (L2(β, t))|. (20)

The invariance of ΠF then follows from the fact that L = (L1, L2) is a permutation and

ΠF = {|Πβ
F (t)| : β, t ∈ F2n}

so that when computing ΠF we go through all possible pairs (β, t).

As EA-equivalence is a special case of CCZ-equivalence, it is evident that EA-equivalence leaves the set ΠF

invariant as well. Under EA-equivalence, however, a stronger invariance holds:

Proposition 4. For any fixed β ∈ F2n , if F ′ and F are EA-equivalent APN functions via F ′ = A1 ◦ F ◦A2 +A,

we have

(∀t ∈ F2n)(|Πβ
F ′(t)| = |Π

A2(β)
F (A−11 (t+A(β)))|). (21)

Consequently,

Πβ
F ′ = Π

A2(β)
F . (22)

Proof. Suppose we have F ′ = A1 ◦F ◦A2 +A, where A1, A2 and A are affine and A1, A2 are bijective. Then we

have, thanks to F and F ′ being APN and their derivatives being 2-to-1 functions,

2|Πβ
F ′(t)| = |{(a, x) ∈ F2

2n : F ′(x) + F ′(a+ x) + F ′(a+ β) = t}| =

|{(a, x) : A1(F (A2(x))) +A1(F (A2(a+ x)))+

A1(F (A2(a+ β))) +A(x) +A(a+ x) +A(a+ β) = t}| (1)
=

|{(a, x) : A1(F (A2(x)) + F (A2(a)) + F (A2(a+ x+ β))) = t+A(β)}| (2)
=

|{(a, x) : A1(F (x) + F (a) + F (a+ x+A2(β))) = t+A(β)}| =

|{(a, x) : F (x) + F (a) + F (a+ x+A2(β)) = A−11 (t+A(β))}| = 2|ΠA2(β)
F (A−11 (t+A(β)))|. (23)

In the step marked (1) we use that for any affine function A we have A(x+ y + z) = A(x) +A(y) +A(z) for

any x, y, z, and also count through (x, a + x) instead of (x, a) so that A2(a + x) on the left-hand side becomes

A2(a) on the right-hand side, and similarly A2(a + β) becomes A2(x + a + β). In step (2) we use the fact that

A2 is a permutation and count through all pairs (A2(a), A2(x)) instead of (a, x); then A2(x) becomes x, A2(a)

becomes a and A2(x+ a+ β) = A2(x) +A2(a) +A2(β) becomes x+ a+A2(β).

Then clearly

Πβ
F ′ = {|Πβ

F ′(t)| : t ∈ F2n} = {|ΠA2(β)
F (A−11 (t+A(β)))| : t ∈ F2n} = {|ΠA2(β)

F (t)| : t ∈ F2n} = Π
A2(β)
F , (24)
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thereby concluding the proof.

D. The case of quadratic functions

For a quadratic function F , the set Πβ
F does not depend on the choice of β, which greatly reduces the amount

of computation needed to calculate mF .

Proposition 5. Let F be a quadratic Boolean vectorial function over F2n . Then

Πβ
F = Πβ′

F (25)

for any β, β′ ∈ F2n .

Proof. Since F is quadratic, its derivatives DaF for any a 6= 0 are affine functions, i.e. they satisfy

DaF (x) +DaF (y) = DaF (x+ y) +DaF (0)

for any x, y ∈ F2n . We thus have

Dβ
aF (x) +D0

aF (x+ β) = DaF (x) +DaF (x+ β) + F (a+ β) + F (a) =

DaF (β) +DaF (0) + F (a+ β) + F (a) =

F (β) + F (a+ β) + F (0) + F (a) + F (a+ β) + F (a) = F (β) + F (0) (26)

so that we have

Dβ
aF (x) = D0

aF (x+ β) + s

for some constant s which depends only on F and β.

We have then

|Πβ
F (t)| = |Π0

F (t+ s)|

so that, indeed

Πβ
F = {|Πβ

F (t)| : t ∈ F2n} = {|Π0
F (t+ s)| : t ∈ F2n} = Π0

F (27)

as claimed.

E. Examples

In some cases, the value mF can be computed mathematically. As an example, we consider the function F (x) =

x3 over the finite field F2n . Its shifted derivative Dβ
aF takes the form

Dβ
aF (x) = x3 + (x+ a)3 + (a+ β)3 = a2(x+ β) + a(x+ β)2 + β3

for any a, β ∈ F2n .
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Recall that the value of |Πβ
F (b)| is the number of derivative directions a ∈ F2n for which Dβ

aF maps to b. Since

F is APN, |Πβ
F (b)| can be expressed as

|Πβ
F (b)| = 1

2
|{(a, x) ∈ F∗2n × F2n : a2(x+ β) + a(x+ β)2 + β3 = b}|+ I(b, β3) =

1

2
|{(a, x) ∈ F∗2n × F2n : a2x+ ax2 = b+ β3}|+ I(b, β3) (28)

by substituting x+ β for x.

Note that for a = 0 the equation from (28) becomes b = β3, so that the number of solutions x is 2nI(β, b3);

however, all of these solutions correspond to the same derivative direction a = 0, which is why this has to be

treated as a special case. For any fixed a 6= 0, we can divide both sides of the equation

a2(x+ β) + a(x+ β)2 = b+ β3

by a3 and substitute x+ β for x in order to obtain(x
a

)2
+
(x
a

)
︸ ︷︷ ︸

g(x)

=
b+ β3

a3
. (29)

If we denote by g(x) the left-hand side of (29) as indicated above, we can make two important observations.

First, we have Trn(g(x)) = 0 for any x ∈ F2n . Second, the function g is 2-to-1 on F2n since g(x) = g(y) is

equivalent to (
x+ y

a

)2

+

(
x+ y

a

)
= 0

and if x 6= y, the expression x+y
a is non zero, so we can divide both sides of the above equation by it in order to

obtain
x+ y

a
= 1.

Thus, g(x) = g(y) occurs if and only if x ∈ {y, a+ y}.

Thus, the image set of g over F2n is precisely the set of all elements with zero trace, i.e. {g(x) : x ∈ F2n} =

{x ∈ F2n : Trn(x) = 0}. Therefore, for a fixed a 6= 0, equation (29) has two solutions if Trn

(
b+β3

a3

)
= 0, and no

solutions otherwise. Consequently, if we define the function h : F2n → F2 as

h(a) =

Trn

(
b+β3

a3

)
+ 1 a 6= 0

0 a = 0,

we can express |Πβ
F (b)| as

|Πβ
F (b)| = I(b = β3) + wt(h) (30)

where wt(h) is the Hamming weight of h, i.e. the number of elements a ∈ F2n for which h(a) is non-zero.

The weight of the Boolean function f : F2n → F2 defined as

f(a) = Trn(λa3) (31)

for some given constant λ ∈ F2n is known from [11]. More precisely, wt(f) takes the following values:
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wt(f) =



0 λ = 0;

2n−1 n odd , λ 6= 0;

2n−1 − 2n/2 n even, n/2 odd, λ is a cube, λ 6= 0;

2n−1 + 2n/2−1 n even, n/2 odd, λ is not a cube, λ 6= 0;

2n−1 + 2n/2 n even, n/2 even, λ is a cube, λ 6= 0;

2n−1 − 2n/2−1 n even, n/2 even, λ is not a cube, λ 6= 0.

(32)

Note that in the case of a 6= 0 we can express the weight of h as

wt(h) = 2n − wt(f)− 1 (33)

for f(a) = Trn(λa3) with λ = (b+ β3); we have to subtract 1 in the expression above in order to account for the

case a = 0. We can thus derive the following explicit formula for the value of |Πβ
F (b)|.

Proposition 6. Let F (x) = x3 be over F2n and let b, β ∈ F2n be arbitrary. Then

|Πβ
F (b)| =



2n b = β3;

2n−1 − 1 b 6= β3, n odd;

2n−1 + 2n/2 − 1 b 6= β3, b+ β3 is a cube, n even, n/2 odd;

2n−1 − 2n/2−1 − 1 b 6= β3, b+ β3 is not a cube, n even, n/2 odd;

2n−1 + 2n/2−1 − 1 b 6= β3, b+ β3 is a cube, n even, n/2 even;

2n−1 − 2n/2 − 1 b 6= β3, b+ β3 is not a cube, n even, n/2 even.

(34)

The value minb∈F2n
|Πβ
F (b)| is then equal to

min
b∈F2n

Πβ
F =


2n−1 − 1 n is odd;

2n−1 − 2n/2−1 − 1 n is even, n/2 is odd;

2n−1 − 2n/2 − 1 n is even, n/2 is even

(35)

and the lower bound on the distance to the closest APN function G can be explicitly written as

d(F,G) ≥


2n−1+2

3 n is odd;

2n−1−2n/2−1+2
3 n is even, n/2 is odd;

2n−1−2n/2+2
3 n is even, n/2 is even.

(36)

From this we can easily see that the distance d(F,G) tends to infinity with n. Observe that the value Πβ
F does

not actually depend on the shift β; this is true for all quadratic functions as per Proposition 5.

Table I gives the values of mF (for F (x) = x3) and the lower bound on the distance between x3 and the nearest

APN function for all dimensions n in the range 1 ≤ n ≤ 20. Note that for 1 ≤ n ≤ 4 the bound is tight as

witnessed by:
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• u1 = 0, v1 = 1 for n = 1;

• u1 = 0, v1 = α for n = 2, where α is a primitive element of F22 ;

• u1 = 0, u2 = 1, v1 = 1, v2 = α for n = 3, where α is a primitive element of F23 ;

• u1 = 0, u2 = 1, v1 = 1, v2 = 1 for n = 4.

In the case of n = 5, we have experimentally verified that the smallest distance to an APN function is equal to

8, which shows that the lower bound is not tight. It is worth noting, furthermore, that in this case all possible APN

functions at distance 8 from x3 were obtained by shifting 8 points from F2n by the same value v ∈ F2n .

TABLE I

VALUES OF mF AND LOWER BOUNDS ON d(F,G) FOR ANY G APN FOR F (x) = x3 OVER F2n

Dimension mx3 Lower bound on minimum distance

1 0 1

2 0 1

3 3 2

4 3 2

5 15 6

6 27 10

7 63 22

8 111 38

9 255 86

10 495 166

11 1023 342

12 1983 662

13 4095 1366

14 8127 2710

15 16383 5462

16 32511 10838

17 65535 21846

18 130815 43606

19 262143 87382

20 523263 174422

1) Minimum distance between APN functions: By Proposition 3, we know that the value mF for some given

APN function F and the lower bound K on the distance to the closest APN function derived from it are valid

not only for F itself, but for all functions belonging to its CCZ-equivalence class. Since all APN functions of

dimensions four and five have been classified up to CCZ-equivalence [3], Corollary 2 can now be used to obtain a

lower bound on the Hamming distance between any two APN functions over F2n with n ∈ {4, 5} by examining a

single representative from each. For higher dimensions, we can compute the lower bound for some of the known

CCZ-classes; since the problem of classifying all APN functions in those cases is still open, however, this gives

only a partial result.

Table II gives the values of mF for representatives from all switching classes [13] for dimension n ∈ {4, 5, 6, 7, 8}.

In the case of n ∈ {4, 5} the selected functions encompass representatives from all CCZ-equivalence classes of the
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corresponding dimension. In the case of n ∈ {6, 8}, the functions from are given and indexed according to Table

5 from [13]. For n = 7, we obtain the same bound for all functions listed in [13].

The last column of the table gives the minimum distance from a given function F to the nearest APN function;

this can be computed simply as dmF /3e+ 1 but is explicitly given here for convenience.

V. SINGLE SHIFT

A significantly simplified construction involves shifting all the points u1, u2, . . . , uK by the same value v ∈ F∗2n .

In this case, characterizing the APN-ness of

G(x) = F (x) + v

∑
i∈[K]

1ui
(x)


becomes quite easy regardless of whether F is assumed to be APN or not.

For a given triple (a, x, y) ∈ F3
2n , let us denote by Na,x,y the parity of the number of elements from {x, y, a+

x, a+ y} that are in U , i.e.

Na,x,y = |{x, y, a+ x, a+ y} ∩ U | mod 2.

Observe that some differential equation of the form DaG(x) = b for given a ∈ F∗2n , b ∈ F2n can have more than

two solutions if and only if

DaF (x) +DaF (y) = vNa,x,y

for x, y ∈ F2n with x+ y 6= a.

Given some initial function F over F2n , the following procedure can then be used to find all APN functions G

that can be obtained from F by shifting some set of points U by a given shift v ∈ F∗2n :

1) assign a Boolean variable ux ∈ F2 to every field element x ∈ F2n ; the value of ux will indicate whether x is

in U or not;

2) find all tuples (x, y, a) ∈ F3
2n for which DaF (x) +DaF (y) = v with a 6= 0, x 6= y, a+ y;

3) for every such tuple, consider the equation ux + uy + ua+x + ua+y = 0;

4) find also all tuples (x, y, a) ∈ F3
2n for which DaF (x) +DaF (y) = 0 with a 6= 0, x 6= y, a+ y;

5) for every such tuple, consider the equation ux + uy + ua+x + ua+y = 1;

6) solve the system of all such equations; this can be done by e.g. constructing an e× (2n) matrix over F2, where

e is the number of tuples of both types considered above;

7) the solutions to this system now correspond to precisely those sets U ⊆ F2n for which G is APN.

Note that in the case that F is APN, no equations of the type DaF (x) + DaF (y) = 0 exist for x + y 6= a so

that steps four and five above can be skipped.

This method is quite useful in practice, as it can be applied rather efficiently (the main part of the computations

consists of finding all tuples (x, y, a) satisfying one of the conditions given above) and since it can be applied to

an arbitrary function F (not only APN). Note that the same method can be obtained from Theorem 9 in [13] for

the case that F is APN, where it is presented as a special case of the so-called “switching construction”.
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TABLE II

VALUES OF mF AND LOWER BOUNDS ON d(F,G) FOR ANY G 6= F APN FOR F (x) FROM [13]

Dimension F mF Distance

4 x3 3 2

5 x3 15 6

5 x5 15 6

5 x15 9 4

6 1.1 27 10

6 1.2 27 10

6 2.1 15 6

6 2.2 27 10

6 2.3 27 10

6 2.4 15 6

6 2.5 15 6

6 2.6 15 6

6 2.7 15 6

6 2.8 15 6

6 2.9 21 8

6 2.10 21 8

6 2.11 15 6

6 2.12 15 6

7 all 63 22

8 1.1 111 38

8 1.2 111 38

8 1.3 111 38

8 1.4 111 38

8 1.5 111 38

8 1.6 111 38

8 1.7 111 38

8 1.8 111 38

8 1.9 111 38

8 1.10 111 38

8 1.11 111 38

8 1.12 111 38

8 1.13 111 38

8 1.14 99 34

8 1.15 111 38

8 1.16 111 38

8 1.17 111 38

8 2.1 111 38

8 3.1 111 38

8 4.1 99 34

8 5.1 105 36

8 6.1 105 36

8 7.1 111 38
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VI. CONCLUSION

We examined a construction in which a given vectorial Boolean function F is modified at K different points

in order to obtain a new function G. We obtained sufficient and necessary conditions for G to be APN, from

which we derived an efficient procedure for searching for APN functions at a given distance from F as well as a

lower bound on the distance to the closest APN function in terms of the quantity mF . Some properties concerning

the computation and invariance of mF were shown, and its values were experimentally computed for all known

switching classes [13], suggesting that this value grows proportionally with the dimension of the underlying finite

field. An additional method for characterizing the APN-ness of G was given for the special case when all the shifts

v1, v2, . . . , vK are identical.

There is lot of room for future work, and a number of questions and research directions remain open. The

methods used here for the characterizations of APN functions may be applied to other classes such as differentially

4-uniform functions. A theoretical lower bound on the value mF would be valuable, as well as additional results

related to its computation. Finding relations between mF and other properties of F may be very important, and

applying the filtering procedure in practice may lead to new examples of APN functions.

ACKNOWLEDGEMENTS

We would like to thank Nian Li for his support and advice and for his contribution to our research.

REFERENCES

[1] Thierry P. Berger, Anne Canteaut, Pascale Charpin, and Yann Laigle-Chapuy. On Almost Perfect Nonlinear Functions Over Fn
2 . IEEE

Transactions on Information Theory, 52(9):4160–4170, 2006.

[2] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology, 4(1):3–72, Jan 1991.

[3] Marcus Brinkmann and Gregor Leander. On the Classification of APN Functions up to Dimension Five. Designs, Codes and Cryptography,

49:273–288, 2008.

[4] Lilya Budaghyan. The Equivalence of Almost Bent and Almost Perfect Nonlinear Functions and Their Generalizations. PhD thesis,

Otto-von-Guericke-University Magdeburg, 2005.

[5] Lilya Budaghyan, Claude Carlet, Tor Helleseth, Nian Li, and Bo Sun. On Upper Bounds for Algebraic Degrees of APN Functions. IEEE

Transactions on Information Theory, 64(6):4399–4411, 2018.

[6] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Constructing New APN Functions from Known Ones. Finite Fields and Their

Applications, 15(2):150–159, 2009.

[7] Lilya Budaghyan, Claude Carlet, and Alexander Pott. New Classes of Almost Bent and Almost Perfect Nonlinear Polynomials. IEEE

Transactions on Information Theory, 52(3):1141–1152, 2006.

[8] Claude Carlet. Vectorial Boolean Functions for Cryptography. Boolean models and methods in mathematics, computer science, and

engineering, 134:398–469, 2010.

[9] Claude Carlet. Boolean and Vectorial Plateaued Functions and APN Functions. IEEE Transactions on Information Theory, 61(11):6272–

6289, 2015.

[10] Claude Carlet, Pascale Charpin, and Victor A. Zinoviev. Codes, Bent Functions and Permutations Suitable for DES-like Cryptosystems.

Designs, Codes and Cryptography, 15(2):125–156, 1998.

[11] Leonard Carlitz. Explicit Evaluation of Certain Exponential Sums. Mathematica Scandinavica, 44:5–16, 1979.

[12] Florent Chabaud and Serge Vaudenay. Links between Differential and Linear Cryptanalysis. In Workshop on the Theory and Application

of Cryptographic Techniques, EUROCRYPT 94, volume 950, pages 356–365, 1994.

[13] Yves Edel and Alexander Pott. A New Almost Perfect Nonlinear Function which is not Quadratic. Advances in Mathematics of

Communications, 3(1):59–81, 2009.

DRAFT



23

[14] Nikolay Kaleyski. Changing apn functions at two points. Cryptography and Communications.

[15] Philippe Langevin. Covering Radius of RM(1, 9) in RM(3, 9). EUROCODE ’90, Proceedings of the International Symposium on Coding

Theory and Applications, pages 51–59, 1990.

[16] Kaisa Nyberg. Differentially Uniform Mappings for Cryptography. Lecture Notes in Computer Science, 765:55–64, 1994.

[17] Kaisa Nyberg. S-boxes and round functions with controllable linearity and differential uniformity. In International Workshop on Fast

Software Encryption, pages 111–130, 1994.

[18] Lawrence C. Washington and Wade Trappe. Introduction to Cryptography with Coding Theory. Prentice Hall, 2002.

[19] Yuyin Yu, Mingsheng Wang, and Yongqiang Li. Constructing differentially 4 uniform permutations from known ones. Chinese Journal

of Electronics, 22(3):495–499, 2013.

[20] Yuliang Zheng and Xian-Mo Zhang. Plateaued Functions. In ICICS ’99 Proceedings of the Second International Conference on Information

and Communication Security, 1999.

DRAFT


