
Tight Reductions for Diffie-Hellman Variants in the

Algebraic Group Model

Taiga Mizuide∗, Atsushi Takayasu†, Tsuyoshi Takagi‡

December 20, 2018

Abstract

Fuchsbauer, Kiltz, and Loss (Crypto’18) gave a simple and clean definition of an alge-
braic group model (AGM) that lies in between the standard model and the generic group
model (GGM). Specifically, an algebraic adversary is able to exploit group-specific structures
as the standard model while the AGM successfully provides meaningful hardness results as the
GGM. As an application of the AGM, they show a tight computational equivalence between
the computing Diffie-Hellman (CDH) assumption and the discrete logarithm (DL) assumption.
For the purpose, they used the square Diffie-Hellman assumption as a bridge, i.e., they first
proved the equivalence between the DL assumption and the square Diffie-Hellman assumption,
then used the known equivalence between the square Diffie-Hellman assumption and the CDH
assumption. In this paper, we provide an alternative proof that directly shows the tight equiv-
alence between the DL assumption and the CDH assumption. The crucial benefit of the direct
reduction is that we can easily extend the approach to variants of the CDH assumption, e.g., the
bilinear Diffie-Hellman assumption. Indeed, we show several tight computational equivalences
and discuss applicabilities of our techniques.

∗Department of Creative Informatics, The University of Tokyo, Tokyo, Japan.
†Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan, and National Institute of

Advanced Industrial Science and Technology, Tokyo, Japan. (takayasu@mist.i.u-tokyo.ac.jp)
‡Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan.

Contents

1 Introduction 3
1.1 Background . 3
1.2 Our Contributions . 4
1.3 Organization . 4

2 Preliminaries 5
2.1 Computational Problems . 5
2.2 Algebraic Group Model . 7

3 Reduction from DL in Cyclic Groups 9
3.1 Basic Reduction: From DL to CDH . 9
3.2 Master Theorem in Cyclic Groups . 10

4 Reduction from BDL in Bilinear Groups 11
4.1 Algebraic Bilinear Group Model . 11
4.2 From BDL to BDH . 12
4.3 Master Theorem in Bilinear Groups . 13

5 DL to k-Lin Reduction 15

6 Conclusion 17

1 Introduction

1.1 Background

Diffie-Hellman Problem in the Generic Group Model. The discrete logarithm (DL) as-
sumption and the computational Diffie-Hellman (CDH) assumption including its variants have been
devoted to constructing numerous cryptographic protocols. Hence, estimating the computational
hardness of solving the problems is a fundamental research topic in cryptography. For the pur-
pose, the generic group model (GGM) [Nec94, BL96, Sho97, MW98, Mau05] over cyclic groups is
a wonderful tool and has successfully provided several fantastic results in the context. Generic al-
gorithms are not able to exploit specific structures of cyclic groups in the sense that the algorithms
are given group elements only via abstract handles. Then, the algorithms are able to output only
group elements which are computed by interacting with an oracle and applying group operations
to given elements. Therefore, generic algorithms such as a baby-step giant-step algorithm, the
Pohlig-Hellman algorithm [PH78] (in composite-order groups), and Pollard’s rho algorithm [Pol78]
work in any cyclic groups.

Furthermore, the most substantial benefit of the GGM is that we are able to derive information
theoretic lower bounds of computational problems, where analogous analyses seem infeasible in the
standard model. For example, any generic algorithms require at least O(

√
p) group operations to

solve the DL problem in cyclic groups of a prime-order p. Analogous analyses have also been made
for the CDH problem and its variants in an ad-hoc manner. Thus far, the GGM has been extended
and used for studying computational problems in bilinear (and multilinear) groups [BB08, Boy08,
KSW13, MRV16, EHK+17].

One main criticism of the GGM is that computational problems that are generically hard may
not be hard when instantiated in concrete groups. Jager and Schwenk [JS13] proved that computing
a Jacobi symbol of an integer modulo a composite n generically is equivalent to factorization;
however, the computation is easy when given an actual representation of Zn. Similarly, the number
field sieves [Gor93] in specific groups are able to solve the DL problem in subexponential time
in log p, i.e., faster than the generic algorithms. Hence, the GGM gives us certain confidence of
computational hardness while we want to obtain analogous results in the standard model or less
restricted models than the GGM.

Algebraic Group Model. In Crypto’18, Fuchsbauer, Kiltz, and Loss [FKL18] introduced an
algebraic group model (AGM). The definition of the AGM lies in between the standard model and
the GGM. Like the standard model and unlike the GGM, an algebraic algorithm is given an actual
representation of cyclic groups. On the other hand, like the GGM and unlike the standard model,
an algebraic algorithm is able to output only group elements by applying group operations to given
elements. Although the algebraic algorithm is not required to interact with an oracle for the compu-
tation, it should output a record of a group operation which Fuchsbauer et al. called a representa-
tion. Let G := (G, G, p) be a group description, where G is an additive cyclic group of a prime-order

p and G is a generator. When an algebraic algorithm is given
(
G, X⃗ := (X1, . . . , Xℓ) ∈ Gℓ

)
and

outputs Z ∈ G, it has to also output a vector z⃗ := (z0, z1, . . . , zℓ) ∈ Zℓ+1
p as a representation of Z

with respect to X⃗ such that Z =
∑ℓ

i=0 ziXi, where X0 := G. Similar definitions of an algebraic
algorithm are already known in [BV98, PV05]; however, Fuchsbauer et al.’s definition is simpler
and clearer.

The AGM is not allowed to derive computational lower bounds as the standard model. In turn,
as opposed to the standard model, Fuchsbauer et al. showed that the AGM is able to make a
tight reduction from the DL to the CDH. To be precise, they used the square Diffie-Hellman (DH)

3

problem [MW96, BDS98] as an intermediate step. They first proved a tight reduction from the DL
to the square DH in the AGM. Let (G, X) be a DL instance such that X := xG. The reduction
algorithm gives (G, X) to a square DH algorithm and receives an answer Z = x2G along with a
representation vector z⃗. Fuchsbauer et al. showed that the vector z⃗ and the relation z0G+z1X = Z
are sufficient to recover the DL solution x by solving an equation modulo a prime p. Then, due to
the known computational equivalence between the square DH and the CDH [MW99, BDZ03], their
reduction implies a tight reduction from the DL to the CDH in the AGM. Furthermore, a valuable
feature of the result is that the reduction algorithm is generic. Due to the fact, an existence of the
tight reduction implies an information theoretic lower bounds of the CDH as O(

√
p) in the GGM.

Fuchsbauer et al. claimed that a benefit of the AGM is that we are able to derive information
theoretic lower bounds of the CDH in the GGM via quite simple arguments. Indeed, Fuchsbauer
et al.’s reduction in the AGM is much simpler than the analysis in the GGM. Therefore, providing
generic reductions from the DL to other computational problems of the CDH family in the AGM
has to be an interesting open problem.

1.2 Our Contributions

In this paper, we provide generic and tight reductions from the DL to several computational prob-
lems of the CDH family in the AGM. A starting point of our technique is a direct reduction from
the DL to the CDH without using the square DH as the intermediate step. Given the DL instance
(G, X), our reduction algorithm randomly samples r ∈ Zp and gives (G, (X1, X2)) to a CDH algo-
rithm, where X1 := X = xG and X2 := X + rG = (x + r)G. Here, (G, (X1, X2)) is a properly
distributed CDH instance in the sense that x and x + r are independently distributed to uniform
in Zp from the CDH algorithm’s view. Then, the reduction algorithm receives a solution of the
CDH Z = x(x + r)G along with a representation vector z⃗. We show that the vector z⃗ and the
relation z0G+ z1X1 + z2X2 = Z are sufficient to recover x by solving an equation modulo a prime
p. The approach is very simple as Fuchsbauer et al.’s one and easily applicable to several CDH
variants which are not studied in [FKL18]. We believe that the simple approach is a main benefit
of our result. To explain our technique as simple as possible, we consider only tight reductions in
the sense that the reduction algorithm uses an algorithm for CDH variants only once.

Furthermore, we extend the AGM to an algebraic bilinear group model (ABGM) for studying
computational problems in symmetric bilinear groups equipped with a map e : G × G → GT . We
define an algebraic bilinear algorithm so that it is given

(
G := (G,GT , G, e, p), X⃗ := (X1, . . . , Xk) ∈

Gk, Y⃗ := (Y1, . . . , Yℓ) ∈ Gℓ
T

)
and outputs Z ∈ GT along with a representation vector z⃗ that indicates

how Z is computed by the given elements. Then, we extend the approach used in cyclic groups and
provide generic and tight reductions from the DL to several computational problems of the CDH
family including the bilinear Diffie-Hellman problem.

Finally, we provide our master theorems that indicate what kind of computational assumptions
can be reduced to from the DL assumption both in cyclic groups and bilinear groups of a prime-
order.

We should note that the master theorem does not capture the standard k-linear assumption.
Hence, we slightly modify the above approach and successfully provide a tailor-made reduction
from the DL to the k-linear assumption.

1.3 Organization

In Section 2, we recall several computational problems which we study in this paper. Then, we
show a definition of algebraic group models defined by Fuchsbauer et al. In Section 3 and 4, we

4

show our technique to provide generic and tight reductions from the DL to the CDH family in cyclic
groups and bilinear groups along with a master theorem, respectively. In Section 5, we provide a
tailor-made reduction from the DL to the k-linear assumption.

2 Preliminaries

In Section 2.1, we review several computational problems in cyclic groups and in bilinear groups. In
Section 2.2, we recall a basic notion of security games, the generic group model, and the algebraic
group model. The contents of this section heavily refer to [Boy08, KSW13, EHK+17, FKL18].

Notations. We use x
$← Zp to denote a uniformly random sampling from Zp and (x1, . . . , xℓ)

$← Zℓ
p

to denote every element is sampled by xi
$← Zp independently. For a positive integer ℓ > 0, we use [ℓ]

to denote a set of integers {1, 2, . . . , ℓ}. For an (m+n)-variate polynomial f(x1, . . . , xm, y1, . . . , yn),
we use deg f to denote a degree of the polynomial and degx1,...,xm

f to denote a degree of the
polynomial only with respect to variables x1, . . . , xm. As an example for f(x, y, z) := x2yz, we use
the notations deg f = 4, degx f = 2, and degx,y = 3.

2.1 Computational Problems

We first review computational problems in cyclic groups, then do them in bilinear groups.

Computational Problems in Cyclic Groups. We review computational problems in cyclic
groups. Let G := (G, G, p) be a group description, where G is an additive group generated by G
and has a prime-order p.1 We first define a discrete logarithm problem to which other problems
will be reduced.

Definition 1 (Discrete Logarithm (DL) Problem). Given a group description G := (G, G, p) and

a group element X := xG ∈ G;x
$← Zp, compute x ∈ Zp.

Then, we summarize the CDH problem and its variants which we study in this paper.

Definition 2 (Computational Diffie-Hellman (CDH) Problem [DH76]). Given a group description

G := (G, G, p) and group elements (X1 := x1G,X2 := x2G) ∈ G2; (x1, x2)
$← Z2

p, compute Z :=
x1x2G ∈ G.

Definition 3 (k-party Diffie-Hellman (k-PDH) Problem [Bis08]). Given a group description G :=

(G, G, p) and group elements (X1 := x1G, . . . ,Xk := xkG) ∈ Gk; (x1, . . . , xk)
$← Zk

p, compute
Z := x1 · · ·xkG ∈ G.

The following k-exponent Diffie-Hellman assumption for k = 2 called the square Diffie-Hellman
assumption was used in [MW96, BDS98].

Definition 4 (k-exponent Diffie-Hellman (k-EDH) Problem). Given a group description G :=

(G, G, p) and a group element X := xG ∈ G;x
$← Zp, compute Z := xkG ∈ G.

The following k-th root Diffie-Hellman problem for k = 2 called the square root Diffie-Hellman
problem was used in [KMS04].

1 To construct a reduction, we solve an equation modulo an order of G. Hence, if the order is composite, we do
not know how to solve it in general. Hence, as [FKL18] we study only a prime-order group in this paper.

5

Definition 5 (k-th Root Diffie-Hellman (k-RDH) Problem). Given a group description G :=

(G, G, p) and a group element X := xkG ∈ G;x
$← Zp, compute Z := xG ∈ G.

Next, we recall a decisional k-linear problem.

Definition 6 (Decisional k-Linear Problem [BBS04]). Given a group description G := (G, G, p)
and group elements (X1 := x1G, . . . ,Xk := xkG,Y1 := x1y1G, . . . , Yk := xkykG,Z) ∈
G2k+1; (x1, . . . , xk, y1, . . . , yk)

$← Z2k
p , distinguish whether Z := (y1 + · · · + yk)G or Z is a ran-

dom element in G.

In this paper, we define computational variants of the k-linear problem in the following two
ways.

Definition 7 (Computational k-Linear (k-Lin(1)) Problem). Given a group description G :=
(G, G, p) and group elements (X1 := x1G, . . . ,Xk := xkG,Y1 := x1y1G, . . . , Yk := xkykG) ∈
G2k+1; (x1, . . . , xk, y1, . . . , yk)

$← Z2k
p , compute Z := (y1 + · · ·+ yk)G.

Definition 8 (Computational k-Linear (k-Lin(2)) Problem). Given a group description G :=
(G, G, p) and group elements (X1 := x1G, . . . ,Xk := xkG,Y1 := x1y1G, . . . , Yk−1 :=

xk−1yk−1G,Y ′ := (y1 + · · ·+ yk)G) ∈ G2k; (x1, . . . , xk, y1, . . . , yk)
$← Z2k

p , compute Z := xkykG.

A natural definition of a computational variant should be k-Lin(1); however, our master theorem
will not capture the problem. Therefore, we also define k-Lin(2) which is included in the master
theorem. The difference may be a good example to give an intuitive understanding of our master
theorem. We will later provide a tailor-made reduction for k-Lin(1) by slightly modifying our
technique.

To provide our master theorem in cyclic groups, we define a generalized version of the Diffie-
Hellman problem as follows.

Definition 9 (Generalized Diffie-Hellman (GDH) Problem). Let f1(x1, . . . , xm, y1, . . . , yn), . . . ,
fℓ(x1, . . . , xm, y1, . . . , yn), and g(x1, . . . , xm) be known fixed non-zero polynomials. Given a group
description G := (G, G, p) and group elements

(X1 := f1(x1, . . . , xm, y1, . . . , yn)G, . . . ,Xℓ := fℓ(x1, . . . , xm, y1, . . . , yn)G) ∈ Gℓ;

(x1, . . . , xm, y1, . . . , yn)
$← Zm+n

p ,

compute
Z := g(x1, . . . , xm)G.

Our master theorem will indicate that when the GDH problem can be reduced to from the DL.

Computational Problems in Bilinear Groups. We review computational problems in bilinear
groups. For simplicity, we focus only on symmetric bilinear maps e : G × G → GT throughout
this paper. Let G := (G,GT , G, e, p) be a bilinear group description, where G is an additive group
generated by G and has a prime-order p, and GT is a multiplicative group of order p associated
with a non-degenerate bilinear map e : G × G → GT , i.e., e(G,G) is a generator of GT and
e(xG, yG) = e(G,G)xy.

We will provide a reduction from the DL in source groups G to CDH variants. Hence, we define
a bilinear discrete logarithm problem as follows.

6

Definition 10 (Bilinear Discrete Logarithm (BDL) Problem). Given a bilinear group description

G := (G,GT , G, e, p) and a group element X := xG ∈ G;x
$← Zp, compute x ∈ Zp.

Then, we summarize the CDH variants in bilinear groups.

Definition 11 (Bilinear Diffie-Hellman (BDH) Problem [BF03, Jou04]). Given a bilinear group
description G := (G,GT , G, e, p) and group elements (X1 := x1G,X2 := x2G,X3 := x3G) ∈
G3; (x1, x2, x3)

$← Z3
p, compute Z := e(G,G)x1x2x3 ∈ GT .

The following ℓ-weak bilinear Diffie-Hellman inversion problem is a parametric problem defined
with a fixed integer ℓ. Although we define the problem with general ℓ, our technique will be able
to provide generic reductions from the DL problem to the parametric problem only for ℓ = 1.

Definition 12 (ℓ-weak Bilinear Diffie-Hellman Inversion (ℓ-wBDHI) Problem [Boy08]). Given a bi-
linear group description G := (G,GT , G, e, p) and group elements (X1 := x1G,X2 := x21G, . . . ,Xℓ :=

xℓ1G,Xℓ+1 := x2G) ∈ Gℓ+1; (x1, x2)
$← Z2

p, compute Z := e(G,G)x
ℓ+1
1 x2 ∈ GT .

To provide our master theorem in bilinear groups, we define a generalized version of the bilinear
Diffie-Hellman problem as follows.

Definition 13 (Generalized Bilinear Diffie-Hellman (GBDH) Problem). Let f1(x1, . . . , xm, y1,
. . . , yn), . . . , fk(x1, . . . , xm, y1, . . . , yn), g1(x1, . . . , xm, y1, . . . , yn), . . . , gℓ(x1, . . . , xm, y1, . . . , yn), and
h(x1, . . . , xm) be known fixed non-zero polynomials. Given a bilinear group description G :=
(G,GT , G, e, p) and group elements(

X1 := f1(x1, . . . , xm, y1, . . . , yn)G, . . . ,Xk := fk(x1, . . . , xm, y1, . . . , yn)G,

Y1 := e(G,G)g1(x1,...,xm,y1,...,yn), . . . , Yℓ := e(G,G)gℓ(x1,...,xm,y1,...,yn)

)
∈ Gk ×Gℓ

T ;

(x1, . . . , xm, y1, . . . , yn)
$← Zm+n

p ,

compute
Z := e(G,G)h(x1,...,xm).

2.2 Algebraic Group Model

In this subsection, we review the GGM and the AGM in cyclic groups.

Algebraic Security Game. Let GG be an algebraic security game relative to a group description
G := (G, G, p); an adversary A receives G and an instance of the problem X⃗ from a challenger, then
returns an output. For example, we use CDHG to denote security games of the CDH problem
relative to G; an adversary A receives G and (X1, X2) from a challenger, then returns an output Z.
We use GA

G to denote an output of a game GG between a challenger and an adversary A. A is said

to win if GA
G = 1; CDHA

G = 1 when Z = x1x2G. We define an advantage and a running time of an

adversary A in GG as AdvGG,A := Pr[GA
G = 1] and TimeGG,A, respectively.

Generic Group Model (GGM). In the GGM, an adversary Agen is not given actual represen-
tations of group elements but the elements via abstract handles. For example, an adversary Agen in
a security game CDHG receives a group description G := (G, 00, p) and (01, 02) from a challenger.
Here, G only contains an information of an additive cyclic group of a prime-order p. The adversary
Agen is able to perform group operations only via oracle queries, e.g., a generic adversary Agen

queries (01, 02,+) to an oracle and obtains 03, where 01 = X1, 02 = X2, and 03 = X1 +X2. Since

7

a behavior of the generic adversary Agen is independent of actual group representations, it works
in any groups.

Some computational problems that are hard in the GGM may not be hard when instantiated
in concrete groups. However, the GGM is still useful since it enables us to obtain information
theoretic lower bounds. We use a notion of (ε, t)-hard if for all generic algorithms Agen in a game
GG

TimeGG,Agen
≤ t ⇒ AdvGG,Agen

≤ ε

holds. The following fact is known for the discrete logarithm problem.

Lemma 1 (Generic Hardness of DL [Sho97, Mau05]). The discrete logarithm problem is (t2/p, t)-
hard in the GGM.

Algebraic Algorithm. Now, we review a notion of an algebraic algorithm defined by Fuchsbauer
et al. [FKL18]. An algebraic algorithm is able to output group elements only via group additions
of given elements. Furthermore, the algebraic algorithm should also output a representation which
indicates how outputted group elements are calculated with respect to given elements.

Definition 14 (Algebraic Algorithm, Definition 2.1 of [FKL18]). An algorithm Aalg executed in
an algebraic security game GG in a cyclic group G := (G, G, p) is called algebraic if for all group
elements Z ∈ G that Aalg outputs, it additionally returns the representation of Z with respect to

given group elements. Specifically, if X⃗ := (X0, . . . , Xℓ) ∈ Gℓ+1, where X0 := G, is the list of group
elements that Aalg has received so far, then Aalg must also return a vector z⃗ := (zi)0≤i≤ℓ ∈ Zℓ+1

p

such that Z =
∑ℓ

i=0 ziXi. We use [Z]z⃗ to denote such an output.

We remark that every generic algorithm Agen can be modeled as an algebraic one. A generic
algorithm Agen is able to output only group elements which are derived from group additions of
given elements as an algebraic algorithm. Furthermore, by keeping a record of all oracle queries, a
generic algorithm Agen is able to output a group element Z along with its representation z⃗. Hence,
a generic algorithm Agen is able to behave as an algebraic algorithm. Moreover, let Aalg and Bgen

be an algebraic and a generic algorithm, respectively. Then, Balg := B
Aalg
gen is also an algebraic

algorithm.

Reduction between Algebraic Security Games. Let GG and HG be two algebraic security
games. Please keep in mind that GG and HG will be the game for the CDH variants and the (B)DL,
respectively. We use HG ⇒alg GG to denote an existence of a generic and tight reduction algorithm
Rgen such that for every algorithm A, an algorithm B := RA

gen satisfies

AdvHG,B = AdvGG,A and TimeHG,B = TimeGG,A.

The crucial point of the definition is that a reduction algorithm Rgen is generic. Hence, if A = Aalg

is algebraic, B = Balg is also algebraic. Furthermore, if A = Agen is generic, B = Bgen is also generic.
Thanks to the generic reduction algorithm Rgen, we are able to obtain information theoretic lower
bounds of CDH variants as follows by combining with Lemma 1.

Lemma 2 (Lemma 2.2 of [FKL18]). Let GG and HG be algebraic security games such that HG ⇒alg

GG and winning HG is (ε, t)-hard in the GGM. Then, GG is (ε, t)-hard in the GGM.

8

3 Reduction from DL in Cyclic Groups

In this section, we show several generic and tight reductions from the DL to the CDH variants in
cyclic groups. We first provide a direct reduction to the CDH in Section 3.1. Then, we provide our
master theorem in Section 3.2.

3.1 Basic Reduction: From DL to CDH

In this section, we show a basic approach of this paper by providing a generic and tight reduction
from the DL to the CDH in the AGM.

Theorem 1. DLG ⇒alg CDHG.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction al-
gorithm Rgen uses an algebraic adversary Aalg on the CDHG only once and construct an algebraic

adversary Balg := R
Aalg
gen on the DLG .

The reduction algorithm Rgen is given a group description G := (G, G, p) and an instance of the
DLG , i.e., X := xG ∈ G for an unknown x ∈ Zp. Then, the reduction algorithm Rgen creates an

instance of the CDHG as follows: Pick a random r
$← Zp and compute

X2 := X + rG = (x+ r)G ∈ G,

then set
(X1 := X,X2) ∈ G2.

The reduction algorithm Rgen gives a group description G := (G, G, p) and group elements
(X1, X2) ∈ G2 to Aalg. Observe that (X1, X2) is a valid CDH instance by implicitly setting

(x1, x2) = (x, x+ r)

since x2 is independently distributed of x1 to uniform in Zp from Aalg’s view. Hence, an algebraic
adversary Aalg outputs a correct solution [Z]z⃗ with an advantage AdvCDH

G,Aalg
and a running time

TimeCDH
G,Aalg

.

Next, the reduction algorithm Rgen uses [Z]z⃗ outputted by an algebraic adversary Aalg on the
CDHG and computes a solution of the DLG . Assume the output is a correct solution of the CDH,
i.e., Z = x1x2G. It holds with probability AdvCDH

G,Aalg
. Then, the representation vector z⃗ := (z0, z1, z2)

satisfies

x1x2G = x(x+ r)G = z0G+ z1X + z2Y

= (z0 + z1x+ z2(x+ r))G.

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

x(x+ r) = z0 + z1x+ z2(x+ r) mod p

⇔ x2 + (r − z1 − z2)x− z0 − z2r = 0 mod p.

Observe that the left hand side is a degree 2 monic polynomial; hence, a non-zero polynomial. Since
the reduction algorithm Rgen knows a value of r, it is able to find all solutions for x in polynomial
time. By checking xG = X, the reduction algorithm Rgen successfully finds a correct solution of
the DLG .

9

Table 1: Applicability of our technique in cyclic groups

problem (fi)i∈[ℓ] g maxdeg fi deg g reduction?

CDH (x1, x2) x1x2 1 2 Yes

k-PDH (xi)i∈[k] x1 · · ·xk 1 k Yes

k-EDH x xk 1 k Yes

k-Lin(1)
(
(xi)i∈[k], (xiyi)i∈[k]

) ∑k
i=1 yi 1 1 No

k-Lin(2)

 (xi)i∈[k], (xiyi)i∈[k−1],∑k
i=1 yi

 xkyk 1 2 Yes

By combining with Lemmas 1, 2, and Theorem 1, we are able to obtain an information theoretic
lower bound for the CDH.

Theorem 2 (Generic Hardness of CDH). The computational Diffie-Hellman problem in Defini-
tion 2 is (t2/p, t)-hard in the generic group model.

3.2 Master Theorem in Cyclic Groups

In this subsection, we provide the following master theorem in cyclic groups to indicate the power
of our technique.

Theorem 3 (Master Theorem in Cyclic Groups). DLG ⇒alg GDHG holds when the following
conditions hold:

(1) degx1,...,xm
fi(x1, . . . , xm, y1, . . . , yn) ∈ {0, 1} for all i ∈ [ℓ],

(2) deg g(x1, . . . , xm) > 1.

Before providing a proof, we summarize the CDH variants which we studied in Section 3 and the
conditions of Theorem 3 in Table 1. As the table shows, CDH, k-PDH, k-EDH, and k-Lin(2) satisfy
the conditions (1) and (2) in Theorem 3. Hence, as immediate corollary of the master theorem, we
are able to provide generic and tight reductions from the DL to the k-PDH, k-EDH, and k-Lin(2).
Unfortunately, the k-Lin(1) does not satisfy the condition (2). Hence, we will provide a tailor-made
reduction for the k-Lin(1) later.

Then, we show a proof of Theorem 3. In advance, we claim that the condition (1) will be used
to ensure that the reduction algorithm is able to produce all group elements of the GDH during a
reduction, while both the conditions (1) and (2) will be used to ensure that the modular equation
never becomes a zero polynomial.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction al-
gorithm Rgen uses an algebraic adversary Aalg on the GDHG only once and construct an algebraic

adversary Balg := R
Aalg
gen on the DLG .

The reduction algorithm Rgen is given a group description G := (G, G, p) and an instance of the
DLG , i.e., X := xG ∈ G for an unknown x ∈ Zp. Then, the reduction algorithm Rgen creates an

instance of the GDHG as follows: Pick random (r2, . . . , rm, s1, . . . , sn)
$← Zm+n−1

p and compute

Xi := fi(x1, . . . , xm, y1, . . . , yn)G ∈ G

10

for all i ∈ [ℓ] by implicitly setting

(x1, x2, . . . , xm, y1, . . . , yn) = (x, x+ r2, . . . , x+ rm, s1, . . . , sn).

The reduction algorithm Rgen is able to compute all the group elements thanks to the condition (1).
Then, the reduction algorithm Rgen gives a group description G := (G, G, p) and group elements
(X1, . . . , Xℓ) ∈ Gℓ to Aalg. Observe that (X1, . . . , Xℓ) is a valid GDH instance since (x2, . . . , xm) is
independently distributed of x1 to uniform in Zm−1

p from Aalg’s view. Hence, an algebraic adversary

Aalg outputs a correct solution [Z]z⃗ with an advantage AdvGDH
G,Aalg

and a running time TimeGDH
G,Aalg

.

Next, the reduction algorithm Rgen uses [Z]z⃗ outputted by an algebraic adversary Aalg on the
GDHG and computes a solution of the DLG . Assume the output is a correct solution of the GDH,
i.e., Z = g(x1, . . . , xm)G. It holds with probability AdvGDH

G,Aalg
. Then, the representation vector

z⃗ := (z0, z1, . . . , zℓ) satisfies

g(x1, . . . , xm)G

= z0G+ z1X1 + · · ·+ zℓXℓ

= (z0 + z1f1(x1, . . . , xm, y1, . . . , yn) + · · ·+ zℓfℓ(x1, . . . , xm, y1, . . . , yn))G.

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

g(x, x+ r2, . . . , x+ rm)

= z0 +

ℓ∑
i=1

zifi(x, x+ r2, . . . , x+ rm, s1, . . . , sn) mod p.

Observe that a degree of the left and the right hand side with respect to a variable x is strictly
larger than 1 and exactly 1 respectively due to the conditions (1) and (2). Hence, the modular
equation never becomes a zero polynomial. Since the reduction algorithm Rgen knows values of
(r2, . . . , rm, s1, . . . , sn), it is able to find all solutions for x in polynomial time. By checking xG = X,
the reduction algorithm Rgen successfully finds a correct solution of the DLG .

By combining with Lemmas 1, 2, and Theorem 3, we are able to obtain an information theoretic
lower bound for the GDH as follows.

Theorem 4 (Generic Hardness of GDH). The generalized Diffie-Hellman problem in Definition 9
is (t2/p, t)-hard in the generic group model.

4 Reduction from BDL in Bilinear Groups

In this section, we show tight reductions from the bilinear discrete logarithm problem to the bi-
linear Diffie-Hellman problem in an algebraic bilinear group model which we define in Section 4.1.
In Section 4.2, we provide a reduction to the BDH. Finally, we provide our master theorem in
Section 4.3.

4.1 Algebraic Bilinear Group Model

In advance of the reduction, we define an algebraic bilinear algorithm. The definition is analogous to
Definition 14 in the sense that the algebraic bilinear algorithm is able to output only group elements
which are derived from group additions in G, group multiplications in GT , and pairing e of given

11

elements. Furthermore, the algebraic bilinear algorithm should also output a representation which
indicates how outputted group elements are calculated. In this paper, we study computational
problems in bilinear groups whose solutions Z are elements in GT . Hence, we define a representation
so that it records how Z is computed by group multiplications of given elements in GT and pairing
of given elements in G. We formally provide a definition as follows.

Definition 15 (Algebraic Bilinear Algorithm). An algorithm Aalg executed in an algebraic se-
curity game GG for G := (G,GT , G, e, p) is called algebraic if for all group elements Z ∈ GT

that Aalg outputs, it additionally return the representation of Z with respect to given group ele-

ments. Specifically, if X⃗ := (X0, . . . , Xk) ∈ Gk+1, where X0 := G, and Y⃗ := (Y1, . . . , Yℓ) ∈ Gℓ
T

are the list of group elements that Aalg has received so far, then Aalg must also return a vector

z⃗ := ((zij)0≤i≤j≤k, (z
′
i)1≤i≤ℓ) ∈ Z

(k+1)(k+2)
2

+ℓ
p such that Z =

(∏
0≤i≤j≤k e(Xi, Xj)

zij
)
·
(∏ℓ

i=1 Y
z′i
i

)
.

We denote such an output as [Z]z⃗.

We note that the BDH and the ℓ-wBDI does not take elements in GT as the input. Therefore,

the algorithm outputs Z along with a vector z⃗ ∈ Z
(k+1)(k+2)

2
p .

4.2 From BDL to BDH

In this subsection, we extend the approach in Section 3 and prove the following reduction.

Theorem 5. BDLG ⇒alg BDHG.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction al-
gorithm Rgen uses an algebraic adversary Aalg on the BDHG only once and construct an algebraic

adversary Balg := R
Aalg
gen on the BDLG .

The reduction algorithm Rgen is given a bilinear group description G := (G,GT , G, e, p) and an
instance of the BDLG , i.e., X := xG ∈ G for an unknown x ∈ Zp. Then, the reduction algorithm

Rgen creates an instance of the BDHG as follows: Pick a random (r, s)
$← Z2

p and compute

(X2 := X + rG = (x+ r)G, X3 := X + sG = (x+ s)G) ∈ G2,

then set
(X1 := X,X2, X3) ∈ G3.

The reduction algorithm Rgen gives a bilinear group description G := (G,GT , G, e, p) and group
elements (X1, X2, X3) ∈ G3 to Aalg. Observe that (X1, X2, X3) is a valid BDH instance since
(x2, x3) is independently distributed of x to uniform in Z2

p from Aalg’s view. Hence, an algebraic

adversary Aalg outputs a correct solution [Z]z⃗ with an advantage AdvBDH
G,Aalg

and a running time

TimeBDH
G,Aalg

.

Next, the reduction algorithm Rgen uses [Z]z⃗ outputted by an algebraic adversary Aalg on the
BDHG and computes a solution of the BDLG . Assume the output is a correct solution of the BDH,
i.e., Z = e(G,G)x1x2x3 . It holds with probability AdvBDH

G,Aalg
. Then, we use X0 := G for notational

convenience and the representation vector z⃗ := (zij)0≤i≤j≤3 satisfies

e(G,G)x1x2x3

= e(G,G)x(x+r)(x+s)

=
∏

0≤i≤j≤3

e(Xi, Xj)
zij

12

= e(G,G)z00+z01x+z02(x+r)+z03(x+s)+z11x2+z12x(x+r)+z13x(x+s)+z22(x+r)2+z23(x+r)(x+s)+z33(x+s)2 .

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

x(x+ r)(x+ s)

= z00 + z01x+ z02(x+ r) + z03(x+ s) + z11x
2 + z12x(x+ r)

+ z13x(x+ s) + z22(x+ r)2 + z23(x+ r)(x+ s) + z33(x+ s)2 mod p

⇔ x3 + (r + s− z11 − z12 − z13 − z22 − z23 − z33)x
2

+ (rs− z01 − z02 − z03 − rz12 − sz13 − 2rz22 − (r + s)z23 − 2sz33)x

− z00 − rz02 − sz03 − r2z22 − rsz23 − s2z33 = 0 mod p.

Observe that the left hand side is a degree 3 monic polynomial; hence, a non-zero polynomial.
Since the reduction algorithm Rgen knows values of r and s, it is able to find all solutions for x in
polynomial time. By checking xG = X, the reduction algorithm Rgen successfully finds a correct
solution of the BDLG .

By combining with Lemmas 1, 2, and Theorem 5, we are able to obtain an information theoretic
lower bound for the BDH.

Theorem 6 (Generic Hardness of BDH). The bilinear Diffie-Hellman problem in Definition 11 is
(t2/p, t)-hard in the generic group model.

4.3 Master Theorem in Bilinear Groups

In this subsection, we provide the following master theorem in bilinear groups to indicate the power
of our technique.

Theorem 7 (Master Theorem in Bilinear Groups). BDLG ⇒alg GBDHG holds when the following
conditions hold:

(1) degx1,...,xm
fi(x1, . . . , xm, y1, . . . , yn) ∈ {0, 1} for all i ∈ [k],

(2) degx1,...,xm
gi(x1, . . . , xm, y1, . . . , yn) ∈ {0, 1, 2} for all i ∈ [ℓ],

(3) deg h(x1, . . . , xm) > 2.

Before providing a proof, we summarize the BDH and the ℓ-wBDHI which we studied in Sec-
tion 4 and the conditions of Theorem 7 in Table 2. Since these problems do not take group elements
in GT as the input, we omit the condition (2) in the table. As the table shows, the BDH which we
provided reductions satisfies the conditions (1) and (3) in Theorem 7. However, the ℓ-wBDHI does
not satisfy the condition (1) for ℓ > 1. Hence, as immediate corollary of the master theorem, we
are able to provide generic and tight reductions from the BDL to the 1-wBDHI. In this paper, we
are not able to provide a tailor-made reduction for ℓ-wBDHI for ℓ > 1.

Then, we show a proof of Theorem 7. In advance, we claim that the conditions (1) and (2)
will be used to ensure that the reduction algorithm is able to produce all group elements of the
GBDH during a reduction, while all the conditions (1), (2), and (3) will be used to ensure that the
modular equation never becomes a zero polynomial.

13

Table 2: Applicability of our technique in bilinear groups

problem (fi)i∈[k] h maxdeg fi deg h reduction?

BDH (xi)i∈[3] x1x2x3 1 3 Yes

ℓ-wBDHI ((xi1)i∈[ℓ], x2) xℓ+1
1 x2 ℓ ℓ+ 2 ℓ = 1

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction algo-
rithm Rgen uses an algebraic adversary Aalg on the GBDHG only once and construct an algebraic

adversary Balg := R
Aalg
gen on the BDLG .

The reduction algorithm Rgen is given a bilinear group description G := (G,GT , G, e, p) and an
instance of the BDLG , i.e., X := xG ∈ G for an unknown x ∈ Zp. Then, the reduction algorithm

Rgen creates an instance of the GBDHG as follows: Pick random (r2, . . . , rm, s1, . . . , sn)
$← Zm+n−1

p

and compute
Xi := fi(x1, . . . , xm, y1, . . . , yn)G ∈ G

for all i ∈ [k] and
Yj := gj(x1, . . . , xm, y1, . . . , yn)G ∈ GT

for all j ∈ [ℓ] by implicitly setting

(x1, x2, . . . , xm, y1, . . . , yn) = (x, x+ r2, . . . , x+ rm, s1, . . . , sn).

The reduction algorithm Rgen is able to compute all the group elements thanks to the con-
ditions (1) and (2). Then, the reduction algorithm Rgen gives a bilinear group description
G := (G,GT , G, e, p) and group elements (X1, . . . , Xk, Y1, . . . , Yℓ) ∈ Gk ×Gℓ

T to Aalg. Observe that
(X1, . . . , Xk, Y1, . . . , Yℓ) is a valid GBDH instance since (x2, . . . , xm) is independently distributed
of x1 to uniform in Zm−1

p from Aalg’s view. Hence, an algebraic adversary Aalg outputs a correct

solution [Z]z⃗ with an advantage AdvGBDH
G,Aalg

and a running time TimeGBDH
G,Aalg

.

Next, the reduction algorithm Rgen uses [Z]z⃗ outputted by an algebraic adversary Aalg on the
GBDHG and computes a solution of the BDLG . Assume the output is a correct solution of
the GBDH, i.e., Z = h(x1, . . . , xm, y1, . . . , yn)G. It holds with probability AdvGBDH

G,Aalg
. Then, the

representation vector z⃗ := (z0, (zij)0≤i≤j≤k, (z
′
i)1≤i≤ℓ) satisfies

e(G,G)h(x1,...,xm,y1,...,yn)

=

 ∏
0≤i≤j≤k

e(Xi, Xj)
zij

 ·
 ∏

1≤i≤ℓ

Y
z′i
i


= e(G,G)

∑
0≤i≤j≤k zijfi(x1,...,xm,y1,...,yn)·fj(x1,...,xm,y1,...,yn)+

∑ℓ
i=1 z

′
igi(x1,...,xm,y1,...,yn).

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

h(x, x+ r2, . . . , x+ rm, s1, . . . , sn)

=
∑

0≤i≤j≤k

zijfi(x, x+ r2, . . . , x+ rm, s1, . . . , sn) · fj(x, x+ r2, . . . , x+ rm, s1, . . . , sn)

+
ℓ∑

i=1

z′igi(x, x+ r2, . . . , x+ rm, s1, . . . , sn) mod p.

14

Observe that a degree of the left and the right hand side with respect to a variable x is strictly
larger than 2 and at most 2 respectively due to the conditions (1), (2), and (3). Hence, the
modular equation never becomes a zero polynomial. Since the reduction algorithm Rgen knows
values of (r2, . . . , rm, s1, . . . , sn), it is able to find all solutions for x in polynomial time. By checking
xG = X, the reduction algorithm Rgen successfully finds a correct solution of the BDLG .

By combining with Lemmas 1, 2, and Theorem 7, we are able to obtain an information theoretic
lower bound for the GBDH as follows.

Theorem 8 (Generic Hardness of GBDH). The generalized bilinear Diffie-Hellman problem in
Definition 13 is (t2/p, t)-hard in the generic group model.

5 DL to k-Lin Reduction

In this section, we provide a generic and tight reduction from the DL to the k-Lin(1) in an ad-hoc
manner.

As described in Section 3.2, our master theorem (Theorem 3) does not capture the k-Lin(1)

problem. The core trick of the above reduction for the CDH consists of the following two steps:

• embedding the DL solution x into group elements of the CDH instance (X1, X2),

• constructing a modular equation with a non-zero polynomial whose solution is x.

In particular, by following the same approach, we are not able to ensure that a modular equation
becomes non-zero. For example, for simplicity we explain how the attempt fails for the 1-Lin(1). To
provide a reduction from the DL to the 1-Lin(1) in the same way, we try to embed the DL solution
x into x1 and/or y1 of the 1-Lin(1) instance. We note that the DL solution x cannot be embedded
into x1 and y1, simultaneously. In particular, the reduction algorithm is not able to create group
elements whose discrete logarithm have a term of x of degree 2, e.g., x2G. The intractability readily
follows from the fact that the square DH is computationally equivalent to the DL.

Hence, we try to continue the approach by embedding the DL solution x into x1 or y1. When we
embed x into x1 and create a 1-Lin(1) instance (X1 = X,Y1 = cX) by implicitly setting (x1, y1) =
(x, c) with a random c ∈ Zp, the 1-Lin(1) algorithm outputs [Z]z⃗ such that Z = z0G+ z1X1 + z2Y1.
When Z is a correct solution Z = y1G,

y1G = cG = z0G+ z1X1 + z2Y1

= (z0 + z1x+ z2cx)G

holds and the reduction algorithm obtains a modular equation

c = z0 + z1x+ z2cx mod p

⇔ (z1 + z2c)x+ z0 − c = 0 mod p.

Observe that the left hand side is a zero polynomial when z1 + z2c = z0 − c = 0. Similarly,
when we embed x into y1 and create a 1-Lin(1) instance (X1 = cG, Y1 = cX) by implicitly setting
(x1, y1) = (c, x) with a random c ∈ Zp,

y1G = xG = z0G+ z1X1 + z2Y1

= (z0 + z1c+ z2cx)G

15

holds and the reduction algorithm obtains a modular equation

x = z0 + z1c+ z2cx mod p

⇔ (z2c− 1)x+ z0 + z1c = 0 mod p.

Observe that the left hand side is a zero polynomial when z2c − 1 = z0 + z1c = 0. Hence, the
reduction algorithm may fail even when the 1-Lin(1) algorithm outputs a correct solution Z = y1G.

The reduction of the CDH (and our master theorem) avoids the problem by using the fact
that the x1 and x2 which are the discrete logarithms of the input (X1, X2) are linear in x while
x1x2 which is the discrete logarithm of the CDH solution Z is quadratic in x. In other words, the
resulting modular equation has to become a monic non-zero polynomial.

However, by modifying the approach, we are still able to provide a generic and tight reduction
from the DL to the k-Lin(1).

Theorem 9. DLG ⇒alg k-Lin
(1)
G .

Here, for simplicity we prove DLG ⇒alg 1-Lin
(1)
G . Note that there is a reduction from the

1-Lin
(1)
G to the k-Lin

(1)
G in the standard model. Hence, the proof for 1-Lin

(1)
G is sufficient to prove

Theorem 9.

Proof. We construct a generic and tight reduction algorithm Rgen. Specifically, the reduction algo-

rithm Rgen uses an algebraic adversary Aalg on the 1-Lin
(1)
G only once and construct an algebraic

adversary Balg := R
Aalg
gen on the DLG .

The reduction algorithm Rgen is given a group description G := (G, G, p) and an instance of the
DLG , i.e., X := xG ∈ G for an unknown x ∈ Zp. Then, the reduction algorithm Rgen creates an

instance of the 1-Lin
(1)
G as follows: Pick random c

$← Zp and compute

Y1 := cG ∈ G,

then set
(X1 := X,Y1) ∈ G2.

The reduction algorithm Rgen gives a group description G := (G, G, p) and group elements (X1, Y1) ∈
G2 to Aalg. Observe that (X1, Y1) is a valid 1-Lin(1) instance by implicitly setting

(x1, y1) = (x, c/x)

since y1 is independently distributed of x1 to uniform in Zp from Aalg’s view. Hence, an algebraic

adversary Aalg outputs a correct solution [Z]z⃗ with an advantage Adv1-Lin
(1)

G,Aalg
and a running time

Time1-Lin
(1)

G,Aalg
.

Next, the reduction algorithm Rgen uses [Z]z⃗ outputted by an algebraic adversary Aalg on the

1-Lin
(1)
G and computes a solution of the DLG . Assume the output is a correct solution of the

1-Lin(1), i.e., Z = y1G. It holds with probability Adv
1-Lin

(1)
G

G,Aalg
. Then, the representation vector

z⃗ := (z0, z1, z2) satisfies

y1G = (c/x)G = z0G+ z1X1 + z2Y1

= (z0 + z1x+ z2c)G

16

Hence, the reduction algorithm Rgen obtains the following univariate equation modulo a prime p:

c/x = z0 + z1x+ z2c mod p

⇔ z1x
2 + (z0 + z2c)x− c = 0 mod p.

Observe that the left hand side is not a monic polynomial. However, it has to be a non-zero
polynomial due to the constant term c. Since the reduction algorithm Rgen knows values of c, it is
able to find all solutions for x in polynomial time. By checking xG = X, the reduction algorithm
Rgen successfully finds a correct solution of the DLG .

By combining with Lemmas 1, 2, and Theorem 9, we are able to obtain an information theoretic
lower bound for the k-Lin(2).

Theorem 10 (Generic Hardness of k-Lin(2)). The computational k-linear problem in Definition 8
is (t2/p, t)-hard in the generic group model.

The DL to k-Lin(1) reduction implies that our master theorem is not perfect in the sense that
there are other ways to provide reductions from the DL to the computational problems.

6 Conclusion

In this paper, we revisited the AGM which Fuchsbauer, Kiltz, and Loss [FKL18] gave a simple
and clean definition to study the computational hardness of the CDH family. The AGM allows us
to study the problem based on very simple arguments. Among their several results, we focused
on the generic and tight reduction from the DL to the CDH. For the purpose, they used the
square DH as the intermediate step. On the other hand, we provided the direct reduction from
the DL to the CDH. We extended the approach and provided several reductions from the DL to
the CDH variants in cyclic groups. By extending the definition of the AGM, we also studied the
computational hardness of the BDH in the same way. Our approach was able to provide these
reduction based on as simple arguments as Fuchsbauer et al.’s one. What is more, we formalized
master theorems to indicate that to what kinds of computational problems can be reduced from
the (B)DL by following our approach.

The additional contents of this paper may be more valuable. We claimed the limit of our master
theorems by showing that we were not able to provide reductions for the standard computational
variant of the k-Lin and the ℓ-wBDHI for ℓ > 1 in the same way. We slightly modified our approach
and provided a generic and tight reduction from the k-Lin to the DL in an ad-hoc manner. On the
other hand, we were not able to provide such reductions for the ℓ-wBDHI.

Studying the CDH variants that were not studied in this paper is an arguably interesting
topic (possibly variants which are not captured by our master theorems). One interesting open
problem is formalizing a new master theorem to capture the reduction from the k-Lin to the DL
simultaneously. Throughout this paper, we focused only on tight reductions so that the approach
becomes as simple as possible. As opposed to our work, studying the computational hardness of
CDH variants by allowing reasonable reduction loss should also be an interesting approach. The
most important future directions of this work are extending the technique to composite-order groups
and/or decisional problems.

Acknowledgement. We would like to thank anonymous reviewers of CT-RSA 2019 for their
helpful comments and suggestions. This research was supported by JST CREST Grant Number
JPMJCR14D6, Japan.

17

References

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew K.
Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual International
Cryptology Conference, Proceedings, volume 3152 of Lecture Notes in Computer Science,
pages 41–55. Springer, 2004.

[BDS98] Mike Burmester, Yvo Desmedt, and Jennifer Seberry. Equitable key escrow with lim-
ited time span (or, how to enforce time expiration cryptographically). In Kazuo Ohta
and Dingyi Pei, editors, Advances in Cryptology - ASIACRYPT ’98, International Con-
ference on the Theory and Applications of Cryptology and Information Security, Pro-
ceedings, volume 1514 of Lecture Notes in Computer Science, pages 380–391. Springer,
1998.

[BDZ03] Feng Bao, Robert H. Deng, and Huafei Zhu. Variations of diffie-hellman problem. In
Sihan Qing, Dieter Gollmann, and Jianying Zhou, editors, Information and Communi-
cations Security, 5th International Conference, ICICS 2003, Proceedings, volume 2836
of Lecture Notes in Computer Science, pages 301–312. Springer, 2003.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3):586–615, 2003.

[Bis08] Gautam Biswas. Diffie-Hellman technique: extended to multiple two-party keys and
one multi-party key. IET Information Security, 2(1):12–18, 2008.

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application
to cryptography (extended abstract). In Neal Koblitz, editor, Advances in Cryptology -
CRYPTO ’96, 16th Annual International Cryptology Conference, Proceedings, volume
1109 of Lecture Notes in Computer Science, pages 283–297. Springer, 1996.

[Boy08] Xavier Boyen. The uber-assumption family. In Steven D. Galbraith and Kenneth G.
Paterson, editors, Pairing-Based Cryptography - Pairing 2008, Second International
Conference, Proceedings, volume 5209 of Lecture Notes in Computer Science, pages
39–56. Springer, 2008.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to
factoring. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, In-
ternational Conference on the Theory and Application of Cryptographic Techniques,
Proceedings, volume 1403 of Lecture Notes in Computer Science, pages 59–71. Springer,
1998.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, 22(6):644–654, 1976.

[EHK+17] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Luis Villar. An
algebraic framework for Diffie-Hellman assumptions. J. Cryptology, 30(1):242–288, 2017.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its appli-
cations. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology

18

- CRYPTO 2018 - 38th Annual International Cryptology Conference, Proceedings, Part
II, volume 10992 of Lecture Notes in Computer Science, pages 33–62. Springer, 2018.

[Gor93] Daniel M. Gordon. Discrete logarithms in GF(P) using the number field sieve. SIAM
J. Discrete Math., 6(1):124–138, 1993.

[Jou04] Antoine Joux. A one round protocol for tripartite diffie-hellman. J. Cryptology,
17(4):263–276, 2004.

[JS13] Tibor Jager and Jörg Schwenk. On the analysis of cryptographic assumptions in the
generic ring model. J. Cryptology, 26(2):225–245, 2013.

[KMS04] Chisato Konoma, Masahiro Mambo, and Hiroki Shizuya. Complexity analysis of the
cryptographic primitive problems through square-root exponent. IEICE Transactions,
87-A(5):1083–1091, 2004.

[KSW13] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. J. Cryptology, 26(2):191–224,
2013.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography. In Nigel P. Smart,
editor, Cryptography and Coding, 10th IMA International Conference, Proceedings, vol-
ume 3796 of Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

[MRV16] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix diffie-hellman
assumption. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
- ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Proceedings, Part I, volume 10031 of Lecture
Notes in Computer Science, pages 729–758, 2016.

[MW96] Ueli M. Maurer and Stefan Wolf. Diffie-Hellman oracles. In Neal Koblitz, editor, Ad-
vances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology Confer-
ence, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 268–282.
Springer, 1996.

[MW98] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms in groups. In Kaisa
Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, International Conference
on the Theory and Application of Cryptographic Techniques, Proceedings, volume 1403
of Lecture Notes in Computer Science, pages 72–84. Springer, 1998.

[MW99] Ueli M. Maurer and Stefan Wolf. The relationship between breaking the Diffie-Hellman
protocol and computing discrete logarithms. SIAM J. Comput., 28(5):1689–1721, 1999.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Math-
ematical Notes, 55(2):165–172, 1994.

[PH78] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing loga-
rithms over gf(p) and its cryptographic significance (corresp.). IEEE Trans. Information
Theory, 24(1):106–110, 1978.

[Pol78] J.M. Pollard. Monte carlo methods for index computation mod p. Mathematics of
Computation, 32:918–924, 1978.

19

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equiv-
alent to discrete log. In Bimal K. Roy, editor, Advances in Cryptology - ASIACRYPT
2005, 11th International Conference on the Theory and Application of Cryptology and
Information Security, Proceedings, volume 3788 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2005.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International Conference on
the Theory and Application of Cryptographic Techniques, Proceedings, volume 1233 of
Lecture Notes in Computer Science, pages 256–266. Springer, 1997.

20

