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Abstract

The security of web communication via the SSL/TLS protocols relies on safe distribu-
tions of public keys associated with web domains in the form of X.509 certi�cates. Certi�cate
authorities (CAs) are trusted third parties that issue these certi�cates. However, the CA
ecosystem is fragile and prone to compromises. Starting with Google's Certi�cate Trans-
parency project, a number of research works have recently looked at adding transparency for
better CA accountability, e�ectively through public logs of all certi�cates issued by certi�ca-
tion authorities, to augment the current X.509 certi�cate validation process into SSL/TLS.

In this paper, leveraging recent progress in blockchain technology, we propose a novel
system, called CTB, that makes it impossible for a CA to issue a certi�cate for a domain
without obtaining consent from the domain owner. We further make progress to equip CTB
with certi�cate revocation mechanism. We implement CTB using IBM's Hyperledger Fabric
blockchain platform. CTB's smart contract, written in Go, is provided for complete reference.

1 Introduction

The overwhelming adoption of SSL/TLS (Secure Socket Layer/Transport Layer Security Proto-
cols) [4, 33] for most HTTP tra�c has transformed the Internet into a communication platform
with strong measures of con�dentiality and integrity. It is one of the most widely deployed cryp-
tographic protocols in practice, protecting majority of network-based �nancial or commercial
transactions every day. The primary goal of SSL/TLS is to enhance a TCP connection between
two communicating peers (usually a client and a server that hosts a domain) with the following
properties: Authentication - the server side of the connection is always authenticated; the client
side is optionally authenticated; Con�dentiality - data sent over the connection after establish-
ment is only visible to the endpoints; and Integrity: data sent over the channel after establishment
cannot be modi�ed by attackers. These properties should be true even in the face of an attacker
who has complete control of the network.

SSL/TLS consists of two primary components: A handshake protocol that allows a client
and a server to authenticate each other and to establish a key, and the subsequent record layer

protocol that provides con�dentiality and integrity for communication of application data. For
server authentication, the SSL/TLS handshake phase requires a server to present its public key to
the client browser. The communication is made secure by this public key. If the client's browser
accepts an incorrect public key for the server, then the communication can be intercepted and
manipulated by an attacker. This warrants a mechanism to help client-browsers accept correct
public keys.

Currently, SSL/TLS heavily relies on trusted third parties to assert the authenticity of a
server's claim to its public key. Certi�cate authorities (CAs) are trusted third parties that
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endorse the public keys of servers by performing checks and issuing X.509 certi�cates. An X.509
certi�cate is a digital document, signed using a CA's secret key, attesting to the binding of a
public key to a server's identity. The client browser is pre-con�gured with the public keys of a
number of known CAs. An X.509 digital certi�cate (signed using a CA's secret key) received over
a TLS handshake session is then veri�ed by the client browser using the CA's public key, if it is
available with the client browser. A typical installation of Firefox has public keys of more than
1000 CAs in its database [26].

The above CA model su�ers from the following major problem. Suppose the key-pair for a
server hosting a domain, say d, is (pkd, skd). Let T be a CA who is having the key pair (pkT , skT )
and who, on the request of d's owner, has issued, using skT , a certi�cate certT→d/pkd

attesting to
the binding between d and pkd. For the certT→d/pkd

to be accepted by any browser, T must be
trusted (in practice a chain of CAs must be trusted), i.e., the public key pkT must be available
with the browser. The communication to d can be intercepted by an adversary A (having key pair
(pkA, skA)) in one of the following ways. As already mentioned, a browser typically has thousands
of CAs registered in it, and the user cannot be expected to have evaluated the trustworthiness
of all of them. A might �rst get an untrusted CA, say U with key pair (pkU , skU ), to issue a
certi�cate certU→d/pkA

attesting to an incorrect binding between its public key pkA and d. Finally
if A manages to insert the public key pkU of U into the client's browser, the malicious certi�cate
certU→d/pkA

gets accepted in turn. And therefore by getting a browser to accept fake keys for
standard services (such as bank web sites and webmail sites), the attacker can intercept and
manipulate the user's tra�c with those sites [11,22,27].

Alternatively, if a trusted CA (say V ) gets dishonest or compromised by A, it may issue
malicious certi�cate certV→d/pkA

asserting fake binding. In recent years there have been high-
pro�le cases of fraudulent certi�cates being issued by well trusted CAs and were used to spoof
legitimate websites. For example, in 2011 an intruder managed to issue itself a valid certi�cate
for the domain google.com and its subdomains from the prominent Dutch Certi�cate Authority
DigiNotar [31]. In another instance, the Comodo Group su�ered from an attack which resulted
in the issuance of nine fraudulent certi�cates for domains owned by Google, Yahoo!, Skype, and
others [7].

Since hundreds of certi�cate authorities (CAs) can issue browser-trusted certi�cates, it can
be di�cult for domain owners to detect, in real time, certi�cates that have been fraudulently
issued attesting to the binding of fake public keys to their domain. The detection is often being
reported long after the fake-certi�cate-assisted attacks are being carried out. For example, the
malicious certi�cate from DigiNotar was issued in July 2011 and may have been used maliciously
for weeks before its eventual detection on August 28, 2011.

In order to combat this threat, there has been some recent e�orts to develop a mechanism for
e�cient detection of fraudulent certi�cates - in almost real time.

1.1 Related Work

The preceding discussion emphasizes the glaring vulnerability in placing trust on certi�cations
authorities under the existing SSL/TLS system. In the current trust model of X.509-based
PKI, a single compromised CA can issue a certi�cate for any domain. Moreover, such malicious
certi�cates can go unnoticed over long periods of time. A variety of proposals have been made
to reduce trust in the CAs.

Trusted certi�cate observatories such as Perspectives [34], Convergence [1], and SSL Observa-
tory [2] con�rms that a TLS certi�cate seen by a client is the same as the one seen by the notary.
Other approaches attempt to reduce the scope of CAs' authority [13,16,18], thereby reducing the
amount of trust and power held by CAs today.
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Another promising approach is to create public-logs of all certi�cate operations. This ap-
proach leverages high-availability servers called public logs that maintain append-only databases
of certi�cates issued by CAs. These databases provide e�cient proofs of a certi�cate's presence in
a log and of the log's temporal consistency. Google's Certi�cate Transparency (CT) project [21]
was among the �rst to propose publicly audit-able logs as a way of providing better CA account-
ability. CT creates a system of public logs, which maintains a database of observed certi�cates
issued by CAs. The log then provides a proof of a certi�cate's presence in the log's database, and
this proof can be checked by clients during the TLS handshake. Additionally, the log is publicly-
auditable so that any party can fetch proofs of presence or consistency from the hash tree of
the log to monitor its operations. Special entities called auditors and monitors may perform
these functions as a service for clients, publishing any evidence of CA misbehavior. The end goal
of Certi�cate Transparency is that web clients should only accept certi�cates that are publicly
logged and that it should be impossible for a CA to issue a certi�cate for a domain without it
being publicly visible.

Google's Certi�cate Transparency works on top of the existing X.509 PKI assisted SSL/TLS.
Therefore it is not a disruptive technology and only creates an additional layer of security. Unlike
CT, some of the other proposals in this �eld seek to recommend fundamental changes to the
existing system and therefore a considerable analysis must be carried out for them to be applied
in practice. The Accountable Key Infrastructure (AKI) [19], like CT, adds new entities such as
public log servers (called Integrity Log Servers (ILS) ) and Validators. Validators are entities that
monitor ILS operations, by downloading the entire ILS data structure and performing consistency
checks. Additionally, AKI certi�cates contain several extensions over standard X.509 certi�cates.
Among others, it recommends multiple CAs to sign a single certi�cate and the domain can
specify in its certi�cate which CAs and logs are allowed to attest to the authenticity of the
certi�cate. Attack Resilient Public-key Infrastructure (ARPKI) [8] is a system inspired by AKI,
which redesigns and improves many aspects of AKI. PoliCert [32] extends the AKI by giving the
domain owner a way to describe its own certi�cates and properties of TLS connections.

The crucial property that many of these log-based approaches seek is the detectability of a
log's misbehavior, i.e., if the log presents a di�erent set of certi�cates to di�erent clients at a given
point of time, or if, it does not respect the append-only property. A somewhat necessary solution
to this problem would be verifying whether all (possibly worldwide) clients share a consistent
view of the log. A couple of gossip protocols for Certi�cate Transparency that aim at detecting
several types of attacks by log servers were proposed in [10].

The ideas underpinning the requirement of consistent view of logs are strongly related to
blockchain technology that is widely regarded as a promising technology to operate distributed
applications. A blockchain can be de�ned as an immutable ledger for recording transactions,
maintained within a distributed network of mutually untrusting peers. Every peer maintains
a copy of the ledger. Multiple copies of this ledger are kept consistent with every other copy
through a process called consensus.

Namecoin blockchain [3] is one of the �rst forks of Bitcoin [25] and it was created to provide
alternate DNS-like system that replaces DNS root servers with a blockchain for mapping domain
names to DNS records. Namecoin readily provides the infrastructure to be used as a PKI.
Blockstack [5] leverages the Bitcoin blockchain to provide a name registration service that also
allows entities to bind public keys to their names. However, Blockstack uses its own namespace
and a pricing rule based on the name length and the presence of nonalphabetic characters, and
does not attempt to secure names that exist in today's DNS. IKP [23] extends the standard TLS
architecture with the Ethereum blockchain [35]. Central to the IKP Ethereum network is its smart
contract for detecting, publicizing, and automatically responding to CA misbehavior. To use IKP,
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certi�cation authorities and domain owners must register themselves with its network. Domain
owners also register domain certi�cate policies (DCP) (available as Ethereum contract accounts)
with the IKP, providing a public policy that de�nes CA misbehavior (i.e., issuing an unauthorized
certi�cate). Any violation of these policies constitutes CA misbehavior and consequently triggers
automatic execution of reaction policies (RPs) (available as Ethereum contract accounts) which
specify �nancial transactions. IKP allows participating CAs to sell, in addition to certi�cates,
reaction policies (RPs) to domains. Domain a�ected by an unauthorized certi�cate, the detector
(these are entities responsible for reporting suspicious certi�cates), and the CA receive payments
via these transactions. The payment amounts are set such that CAs expect to lose money by
issuing unauthorized certi�cates, and detectors expect to gain money by reporting unauthorized
certi�cates.

1.2 Our Contribution

The transparency in Google's Certi�cate Transparency (CT) refers to the end goal that it should
be impossible for a CA to issue a certi�cate for a domain without it being publicly visible.
Subsequent proposals, in order to achieve better transparency, concentrated fundamentally on
the role of domain owners in determining validation of their certi�cates. This line of thought
is apparent through concepts such as Domain Certi�cate Policies (DCP) in [23] and Subject
Certi�cate Policies (SCP) in [32]. But, like CT, these proposals follow a reactive approach.
Unauthorized certi�cates may be accepted by browsers before its validity is �nally determined -
quicker and with certainty in advanced systems [23, 32] . In this paper we propose for domain

owners to have absolute control in authorizing certi�cates for their domains. Domain owners
are directly involved in the certi�cate issuance process for their domains - thus following an
pre-emptive approach.

We observed that it is important for any new system design to exhibit �exibility in coexisting
with the current X.509 PKI based certi�cate validation. Indeed, X.509 PKI is nearly impossible to
replace even though it has many issues. Since its introduction in 1988, the X.509 PKI has become
ubiquitous, serving important networking protocols and applications including SSL/TLS, IPSec,
S/MIME, document authentication, and software updates. In part because of this ubiquity, the
X.509 PKI is averse to quick change. Given this structural inertia it is important that any
new system design must o�er �exibility to augment-and-not-replace the existing system. This is
further evident with the widespread deployment of CT. Since its initial March 2013 deployment,
CT has publicly logged over 2 billion certi�cates [12]. This wouldn't have been possible without
CT's ability to work on top of the existing certi�cate validation infrastructure. Sharing the
same spirit, our proposed system o�ers seamless integration with the current X.509 PKI assisted
certi�cate validation in SSL/TLS.

Since April 2018, Google's Chrome browser requires all new certi�cates to be published in a
CT LogServer [30]. Though it is not far-fetched to imagine further increase in the deployment of
CT (perhaps because of Google's in�uence in the WWW), but it is also true that CT is complex,
ine�cient on several counts such as log server's communication cost, ine�cient revocation mech-
anism, and the fact that its security analysis is still a work in progress. With this in mind, we
review Certi�cate Transparency in detail and propose to evaluate our system in comparison with
CT on all these counts.

In summary, this paper makes the following contributions:

• We design and propose a simple blockchain-based certi�cate validation mechanism (§ 4.).
Our proposal is called Certi�cate Transparency using Blockchain (CTB).
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• We use Hyperledger Fabric blockchain to instantiate CTB. The instantiation is denoted by
CTBhf (§ 4.1).
• CTBhf works on top of the current certi�cate validation mechanism present in X.509-assisted
SSL/TLS system.
• The underlying blockchain platform provides domain owners absolute authority over their
certi�cates. Certi�cate updates are not allowed unless consent from its domain is pre-
sented. The overall security of this process is bootstrapped by the underlying blockchain,
in particular the CTBhf smart contract (chaincode).
• We further modify CTBhf to enable it with certi�cate revocation mechanism (§ 4.2). This
is our �nal proposal combining both transparency and revocation. For completeness the un-
derlying chaincode (written in Go) is hosted at https://www.dropbox.com/sh/vne21wpusk6yaq1/
AABy8pB4jd14tIXdo1WFyO8Ra?dl=0&preview=ca-blockchain.go.

2 Preliminaries

2.1 Certi�cate Transparency (CT)

Certi�cate transparency is a technique invented by Google that aims to prevent SSL/TLS cer-

ti�cate authorities from issuing certi�cates for a domain without being visible to the owner of

the domain. It was among the �rst logbased approaches to employ a Merkle hash tree, in order
to build a publicly veri�able database of certi�cates. The technology is being built into Google
Chrome.

Certi�cate Transparency adds three new functional components to the current SSL certi�cate
system: LogServers, Auditors, and Monitors.

LogServer lie at the center of the CT system. A LogServer is a simple network service that
maintains a record of X.509 certi�cates. These certi�cates mostly will be submitted by certi�cate
authorities. LogServers exhibit the following important properties: they are append-only (certi�-
cates can only be added to a log; certi�cates cannot be deleted, modi�ed, or retroactively inserted
into a log); and they are publicly auditable - anyone can query a LogServer for a consistency proof
and verify that it is well behaved, or verify that a certi�cate has been legitimately appended
to the log by querying an audit path. For every submitted certi�cate (usually by CAs), the log
server responds with a promise to incorporate the certi�cate into the log within a time period
referred to as the maximum merge delay (MMD). This promise takes the form of a so-called
signed certi�cate timestamp (SCT). A SCT is later issued to the server which is hosting a domain
for which the certi�cate was issued.

The SCT accompanies the certi�cate throughout the certi�cate's lifetime. In particular, a
server hosting a domain must deliver the SCT with the certi�cate during the SSL/TLS handshake
to any client browser that has initiated https to access this domain. As usual, the client validates
the certi�cate as per the current practice. In addition, it can verify that the corresponding
certi�cate is indeed present in the log by asking for an audit path to the LogServer.

Auditors verify the overall integrity of LogServers. Auditors can use consistencyproofs (provided
by LogServers) to verify that a log's new entries have always been added to the log's old entries,
and that nobody has ever corrupted a log by retroactively inserting, deleting, or modifying a
certi�cate. In particular consistency proofs allow an Auditor to verify that its current view of a
particular log is consistent with its past view.

Monitors watch for suspicious certi�cates in the logs of LogServers. Monitors also verify that
all logged certi�cates are visible in the log. They do this by periodically fetching all the new
entries that have been added to a log. As a result, most Monitors have complete copies of the
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logs they monitor.
In the following �gure, we provide a speci�c con�guration �ow of the CT assisted SSL/TLS

system.

Figure 1: Certi�cate Transparency

0. Certi�cate Signing Request (CSR).
1. Request to append certT→d/pkd

to Log.
2. SCT Issuance.
3. Returning SCT + certT→d/pkd

.
4. SSL/TLS hello.
5. Return certT→d/pkd

+ SCT for Server
Authentication.

6. Query Auditor an audit path for
certT→d/pkd

.
7. Query LogServer an audit path for

certT→d/pkd
.

8. Returning a valide audit path.
9. Veri�cation of audit path.

Finally, as discussed above - LogServers have three important functionalities to implement,
and in the following implementation details of these, i.e., how LogServers maintain certi�cates,
produce audit paths and consistency proofs, are provided for completeness.

Appending Certificates to Log: LogServers in CT use Merkle hash trees to facilitate public
auditing of certi�cates. A Merkle hash tree is a binary tree in which each leaf node contains
hashes of individual certi�cates that have been appended to the log, and each non-leaf node
contains the hashes of its child nodes [24]. In the following the hashing algorithm used is SHA-
256. The input to the Merkle hash tree is a list of data (certi�cates) entries. We denote by cl[n]
an ordered list of certi�cates. Indexing is 0-based: cl[n] = (cl0, . . . , cln−1). These entries will
be hashed to form the leaves of the Merkle hash tree. Each intermediate node is the hash of
its two child nodes; the root of the tree, denoted by MTH(cl[n]), acts as a �ngerprint of all the
data contained in the tree and is the output of the algorithm in Figure 2. A LogServer appends,
periodically, all of its newly acquired certi�cates by creating a new Merkle hash tree combining
the existing and the newly acquired certi�cates. This process continues over and over, creating
an ever-growing Merkle tree of all certi�cates ever submitted to the log. Figures 3�6 illustrate an
instance of the above incremental process of Merkle hash tree construction.

Audit Path Generation: A Merkle audit proof lets you verify that a speci�c certi�cate has been
included in a log. The audit path generation algorithm is shown in Figure 7. The Merkle audit
path for a leaf node is the missing node hashes required to compute all of the nodes between the
leaf and the tree root. For example, as per this algorithm, the audit path for the certi�cate x3 in
Stage 4 Merkle tree (Figure 6) is the tuple (h(x2), a, g). Consequently, the veri�cation works by

computing h(x3), `2 = h(h(x2), h(x3)), `1 = h(a, `2), and checking if MTH(cl[7])
?
= h(`1, g).

Consistency Proof Generation: A Merkle consistency proof lets you verify that any two ver-
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input : cl[n] = (cl0, . . . , cln−1)
output: Returns the Merkle hash tree head MTH(cl[n])

1 return MTH(cl[n])
2

3 Function MTH(cl[n]):
4 if cl[n] = {} then
5 return MTH(cl[n]) = SHA256()
6 else if |cl[n]| = 1 then
7 return MTH(cl[n]) = SHA256(0x00‖cl[n](0))
8 end

9 Compute k = 2d(log2 n)−1e a

10 return MTH(cl[n]) = SHA256(0x01‖MTH(cl[0 : k])‖MTH(cl[k : n])) b

aThe expression 2d(log2 n)−1e corresponds to setting k to be the largest power of two less than n
bcl[r : s] denotes the list (clr, clr+1, . . . , cls−1) of length (s− r) and ‖ is concatenation

Figure 2: Adding Certi�cates to Log

a = MTH(cl[2])

h(x0) h(x1)

Figure 3: Stage 1

d = MTH(cl[5])

c

a

h(x0) h(x1)

b

h(x2) h(x3)

h(x4)

Figure 4: Stage 2
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f = MTH(cl[6])

c

a

h(x0) h(x1)

b

h(x2) h(x3)

e

h(x4) h(x5)

Figure 5: Stage 3

h = MTH(cl[7])

c

a

h(x0) h(x1)

b

h(x2) h(x3)

g

e

h(x4) h(x5)

h(x6)

Figure 6: Stage 4

input : cl[n],m (0 ≤ m ≤ n− 1)
output: Returns a membership witness for (m+ 1)th certi�cate clm

1 return wit(m, cl[n])
2

3 Function wit(m, cl[n]):
4 if |cl[n]| = 1 then
5 return wit(m, cl[n]) = {}
6 Compute k = 2dlog2 n−1e

7 if m < k then
8 return wit(m, cl[n]) = wit(m, cl[0 : k]))‖MTH(cl[k : n])
9 else if m ≥ k then
10 return wit(m, cl[n]) = wit(m− k, cl[k : n]))‖MTH(cl[0 : k])
11 end

Figure 7: Issuance of Audit Path
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input : cl[n],m (0 < m ≤ n),MTH(cl[0 : m]),MTH(cl[0 : n])
output: Consistency Proof

1 Set ogl = m
2 return CP(m, cl[n]) = CSP(m, cl[n], true, ogl)
3

4 Function CSP(m, cl[n], b, ogl):
5 if (m == n) ∧ (m == ogl) ∧ (b == true) then
6 return CSP(m, cl[n], b, ogl) = {}
7 else if (m == n) ∧ (m 6= ogl) ∧ (b == true) then
8 return CSP(m, cl[n], b, ogl) = MTH(cl[0 : m])
9 else if (m == n) ∧ (b == false) then
10 return CSP(m, cl[n], b, ogl) = MTH(cl[m])
11 end

12 Compute k = 2dlog2 n−1e

13 if m ≤ k then
14 return CSP(m, cl[n], b, ogl) = CSP(m, cl[0 : k], b, ogl) ‖ MTH(cl[k : n])
15 else if m > k then
16 return CSP(m, cl[n], b, ogl) = CSP(m− k, cl[k : n], false, ogl) ‖ MTH(cl[0 : k])
17 end

Figure 8: The Consistency Proof Algorithm: CP(cl[n],m,MTH(cl[0 : m]),MTH(cl[0 : n]))

sions of a log are consistent. Algorithm in Figure 8 documents how LogServers in CT generates
consistency proofs. A consistency proof, say between the log in Figure 4 and the log in Figure 6,
is the minimum set of intermediate nodes in the Merkle hash tree (MHT) of Figure 6 that lets
you verify that 1. MHT of Figure 4 is a subset of Figure 6 MHT, and 2. Figure 6 MHT is the
concatenation of Figure 4 MHT and all the new certi�cates. In particular, the consistency proof
here is the following nodes from Figure 6 MHT: (c, h(x4), h(x5), h(x6)). Veri�cation works by �rst

checking if MTH(cl[5])
?
= h(c, h(x4)), thereby verifying that the old tree exists and is unchanged.

Finally, compute θ2 = h(h(x4), h(x5)) and θ1 = h(θ2, h(x6)) and check if MTH(cl[7])
?
= h(c, θ1),

thereby verifying that the current log has been consistently built.

3 Blockchain and Hyperledger Fabric

In the current section, we provide a short overview of Hyperledger Fabric blockchain network,
which is necessary to follow the ideas that we develop further.

3.1 Hyperledger Fabric (HF)

Hyperledger Fabric (HF) [6,15] is an open-source blockchain platform. HF is one of the projects
within the Hyperledger umbrella project [17]. In the following we describe entities that constitute
Fabric network; ledger; chaincodes and endorsement policies that together de�n any distributed
application running on Fabric network; and the transaction �ow in Fabric network following
execute-order-validate cycle.
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3.1.1 Network

A Hyperledger Fabric (HF) blockchain consists of a set of nodes that form a network. As HF
is permissioned, all nodes that participate in the network have an identity, as provided by a
modular membership service provider (MSP). Nodes in a Fabric network take up one of three
roles: clients, peers, and ordering service nodes (OSN) (or, simply, orderers).

3.1.2 Ledger

The distributed ledger in HF is a combination of the world state database and the transaction log
history. Each network node has a copy of the ledger. The world state component describes the
state of the ledger at a given point in time. The state is a database and is modeled as a versioned
key/value store. The transaction log component records all transactions which have resulted in
the current value of the world state; it's the update history for the world state.

3.1.3 Distributed Application

A distributed application for HF must consists of two parts:

• Chaincode: A smart contract, called chaincode [6], is a program code that implements the
application logic. It is a central part of a distributed application in HF and is deployed on
the HF network, where it is executed and validated by a speci�c set of peers, who maintain
the ledger.
• Endorsement Policy: A typical endorsement policy lets the chaincode specify the endorsers
for a transaction in the form of a set of peers that are necessary for endorsement.

3.1.4 Transaction Flow

We now explain the transaction �ow in HF and illustrates the steps of the execution, ordering
and validation phases.

• Execution Phase: In this phase, a client sends transactions to a speci�c set of peers speci�ed
by the endorsement policy. Such a message is a signed request to invoke a chaincode
function. It must include the chaincode id, time stamp and the transaction's payload. Each
transaction is then executed by speci�c peers and its output is recorded.
Endorsing peers simulate/execute transactions against the current state. Peers transmit to
the client the result of this execution (read and write sets associated to the their current
state) alongside the endorsing peer's signature. No updates are made to the ledger at this
point.
Clients collect and assemble endorsements into a transaction. The client veri�es the en-
dorsing peer's signatures, determine if the responses have the matching read/write set and
checks if the endorsement policies has been ful�lled. If these conditions are met, the client
creates a signed envelope with the peer's read and write sets, signatures and the Channel
id. The aforementioned envelope represents a transaction proposal.
• Ordering Phase: After execution, transactions enter the ordering phase where clients broad-
cast the transaction proposal to the ordering service. The ordering service does not read the
contents of the envelope; it only gathers envelopes from all channels in the network, orders
them using atomic broadcast, and creates signed chain blocks containing these envelops.
These are broadcast to all peers, with the (optional) help of gossip.
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• ValidationPhase: In this phase, each peer then validates the state changes from endorsed
transactions with respect to the endorsement policy and the consistency of the execution.
All peers validate the transactions in the same order and validation is deterministic. Finally,
each peer appends the block to the chain, and for each valid transaction the write sets are
committed to current state database. An event is emitted, to notify the client application
that the transaction (invocation) has been immutably appended to the chain, as well as
noti�cation of whether the transaction was validated or invalidated.

4 Our Proposal: Certi�cate Transparency using
Blockchain (CTB)

CTB adds a new functional component to the current SSL/TLS certi�cate system: the CTB
network - a blockchain network. It is not a replacement for, or an alternative to, the current
SSL/TLS certi�cate system. Indeed, it does not change the fundamental chain-of-trust model
that lets clients validate a domain and establish a secure connection with a server. Instead, it
augments the chain-of-trust model by providing support for an extra layer of scrutiny of the entire
existing certi�cate system.

The �ow of the CTB assisted SSL/TLS certi�cate system begins with a certi�cate issuance
request by a domain owner D (having the key pair (pkD, skD)) on domain d to a certi�cation
authority T . Please note that the above request is being addressed as per the existing SSL/TLS
certi�cate system and results into a X.509 certi�cate certT→d/pkD

.
At this phase, T , who is also required to be a member of CTB network, submits certT→d/pkD

to
this network for it be added to the distributed ledger. The submitted transaction will be validated
by invoking the corresponding smart contract, and if successful, resulted into the addition of
certT→d/pkD

to the ledger. Finally, T also returns certT→d/pkD
to D.

Later, during a SSL/TLS handshake, any client browser who has initiated https to the domain
d, receives the certi�cate certT→d/pkD

(also additional certi�cates forming a traditional certi�cate
chain) from the server hosting d. As usual, the client validates the certi�cate and its signature
chain as per the existing system. In addition, client can now verify that the certT→d/pkD

is not
malicious and indeed has been validated by the CTB network by querying the blockchain ledger
of this network.

In the following we provide complete details of our CTB network by instantiating it on
Hyperledger Fabric blockchain platform, and denote it by CTBhf network.

4.1 CTB Instantiated on Hyperledger Fabric: CTBhf

CTBhf proposes a Hyperledger Fabric (HF) network among all certi�cation authorities by requir-
ing each certi�cate authorities to play the role of endorsing peers. In particular, let us assume
there are n public certi�cation authorities, say T1, . . . , Tn. In the CTBhf network we de�ne, for
every i in 1 ≤ i ≤ n, a pair (Pi, Ci), where Pi denotes a peer and Ci denotes a client. Each such
pair (Pi, Ci) represent the certi�cation authority Ti. In addition, there exists a separate client,
say B, representing internet browsers.

4.1.1 CTBhf Ledger, Chaincode and Endorsing Policy

We recall that a typical HF ledger consists of two distinct, though related, parts - a world state

and a blockchain. The world state, a database, holds the current values of a set of ledger states.
Ledger states are, by default, expressed as key-value pairs and they represent assets. HF provides
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the ability to modify assets (also referred as state transitions - i.e., states can be created, updated
and deleted) through chaincode invocations - referred to as transactions and are submitted by
clients. Accepted transactions are collected into blocks and then appended to the blockchain.

A typical state in CTBhf ledger is a tuple of the form (key, val) = (d, certT→d/pkD
), where d

represents a domain and certT→d/pkD
is a X.509 certi�cate attesting to the binding between d and

pkD (public key of the owner D of d) and is issued by a certi�cation authority T .
State Transitions: The chaincode for CTBhf , denoted by SContract.CTBhf , contains the logic

and the endorsement policy EP.CTBhf that helps execute the following two state transitions:

State Query - A state query is made to retrieve the current value of a state. A client can
invoke the chaincode against a state query by providing domain name key = d as input. The
chaincode SContract.CTBhf has a function FetchLedger(·) that will return certT→d/pkD

←
FetchLedger(d) as output.

State Update - A call to state update function from the SContract.CTBhf allows a certi�cation
authority T to issue a fresh certi�cate certT→d/pkD

attesting to the binding between domain
d and possibly a new public key pkD. The transaction payload, for such a state update call to

SContract.CTBhf , consists of three inputs:
(

certT→d/pkD
, certT→T/pkT

, signskcD
(certT→d/pkD

)
)
.

The �rst input proposes a fresh certi�cate certT→d/pkD
attesting to the binding between d

and pkD. The validity testing of this certi�cate requires the public key of T which is pro-
vided by the second input - a self signed certi�cate certT→T/pkT

by T - committing to
the binding between T and its public key pkT . The third input is required if the domain
d is already having a certi�cate issued to its name. Suppose the current state for d is:
(key = d, val = certT ′→d/pkcD

), where T ′ is possibly a di�erent CA from T , and certT ′→d/pkcD
is the current certi�cate attesting to the binding between d and the current public key
pkcD. The third input, to this e�ect, represents a consent from D - the required input
signskcD

(certT→d/pkD
) is a signature on the proposed certi�cate certT→d/pkD

, signed using
the current secret key skcD corresponding to the current public key pkcD. Clearly, a valid
third input signals D's approval in updating certi�cates for its domain d. In absence of a
third input, a proposal will still be considered valid, if no certi�cate against d is currently
registered with CTBhf .

The endorsement policy EP.CTBhf parametrized by SContract.CTBhf requires a consistent
endorsement by at least n

2 certi�cation authorities in favor of a transaction for it to be able to cause

a state update. In Figure 9 concrete details are provided for our smart contract SContract.CTBhf .

4.1.2 Security Analysis of CTBhf

We now conduct an informal security analysis of CTBhf to show how it prevents CA misbehaviour.
The primary objective of CTBhf is to provide domain owners with absolute control over their
certi�cates.

We consider an adversary A, who is able to capture the trusted element of the current
SSL/TLS system, i.e., certi�cation authorities, and whose goal is to impersonate a domain owner
D's domain (website) d. Let U be the compromised CA and certT→d/pkD

be the current certi�-

cate, issued by another CA T and is registered with CTBhf , attesting to the binding between d
and D's public key pkD (skD is the corresponding secret key). A can use U 's secret key to obtain
a certi�cate certU→d/pkfake

with the corresponding secret key skfake available to U . With this,
the current SSL/TLS system will allow A to impersonate d to clients by performing active man-
in-the-middle (MITM) attacks. But with CTBhf working on top of SSL/TLS, A is required to
overcome one more hurdle before it can successfully impersonate d. A must register certU→d/pkfake
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1 Function StateUpdate.CertIssue(certT→d/pkD
; certT→T/pkT

; signskcD
(certT→d/pkD

)):

2 Compute cert← FetchLedger(d)
3 Compute pk1 ← PkExtract(certT→T/pkT

)

4 if (cert 6= φ ∧ Status(cert) = active) then
5 Compute pk2 ← PkExtract(cert)
6 if

Verifypk2(certT→d/pkD
, signskcD

(certT→d/pkD
)) =

True ∧ Verifypk1(certT→d/pkD
) = True

then

7 return certT→d/pkD

8 else

9 return Invalid
10 end

11 else

12 if Verifypk1(certT→d/pkD
) = True then

13 return certT→d/pkD

14 else

15 return Invalid
16 end

17 end

18

19 Function KvExtract(x):
20 Query world state for key key = x
21 if (key = x, val = certT→x/pkX

) exists in world state then
22 return certT→x/pkX

23

24 Function PkExtract(certT→x/pkX
):

25 return pkX
26

27 Function Status(certT→x/pkX
):

28 return active, if certT→x/pkX
hasn't expired

Figure 9: SContract.CTBhf
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with CTBhf by updating the current authentic certi�cate certT→d/pkD
. Clearly, A cannot do this

even with the help of U . Registering certU→d/pkfake
with CTBhf requires U to obtain the following

signature signskD(certU→d/pkfake
). Because this must be signed by D's current secret key skD, A/U

without that key cannot create this signature. Another way for A to succeed is by mounting an
attack on the underlying HF blockchain network with the help of more than half of the CAs
(who are registered with CTBhf) endorsing this invalid transaction. But, in addition to the fact
that the requirement of an incredibly big size of the colluding CAs makes it a di�cult adversarial
task, there are works in the blockchain community to design more robust networks/consensus
algorithms addressing colluding attacks [14].

4.2 Enabling CTBhf with Certi�cate Revocation

When a certi�cate is issued, it is expected to be in use for the entire validity period. However,
there are circumstances where a certi�cate must be revoked prior to its expiration date. Such
circumstances include change of domain name, change of association between domain and the
certi�cate issuing CA, and (suspected)compromise of the domain owner's secret key [9]. Thus,
the existence of a certi�cate is a necessary but not su�cient evidence for its validity, and a
mechanism for determining whether a certi�cate was revoked is needed. Revocation techniques
in the traditional PKI-based SSL/TLS model is supported via certi�cate revocation lists (CRL)
and online certi�cate status checking protocol (OCSP). But, checking for revocation with these
approaches remains brittle. In principle the current methods involve CAs periodically pushing re-
vocation lists to browsers enabling revocation checking. However, this solution creates a window
during which the browser's revocation lists are out of date until the next push. The core proposal
in the IETF draft for Certi�cate Transparency does not specify any revocation mechanism. An
informal proposal for handling revocation exists [20], but adopting it has the side-e�ect of dra-
matically reducing the e�ciency of certi�cate transparency. Results enabling CT with revocation
and further improvements were proposed in [28,29].

We now propose to enable revocation mechanism in CTB by including an additional func-
tionality in SContract.CTBhf . With this modi�cation, world states in CTB needs better rep-
resentation. We now propose to store a typical state in CTBhf ledger as a tuple of the form
(key, val) = (d, (certT→d/pkD

, revoked/notrevoked)), where now val to a key itself is a tuple and
the second entry of a val tells us if the �rst entry, i.e., the certi�cate certT→d/pkD

is cur-
rently revoked or not. Next, add an additional state update function StateUpdate.Revoke, to
the CTBhf chain code SContract.CTBhf , that works to update the second entry of the val cor-
responding to a key. A call to StateUpdate.Revoke allows a certi�cation authority T to re-
voke an existing certi�cate. The transaction payload for such a call consists of four inputs:
(certT→d/pkD

; certT→T/pkT
; signskT (certT→d/pkD

); revoke). The certi�cate certT→d/pkD
is called for

revocation by the CA T . For revocation to be applied, StateUpdate.Revoke checks if the following
holds true: Check if the current certi�cate registered with CTBhf for the domain d is certT→d/pkD
and check if both veri�cations VerifypkT (certT→d/pkD

) and VerifypkT (signskT (certT→d/pkD
)) hold

true under the public key pkT . A valid call to StateUpdate.Revoke will update the existing
(key, val) = (d, (certT→d/pkD

, notrevoked)) for d to (d, (certT→d/pkD
, revoked)).

Having revoked a registered certi�cate certT→d/pkD
, CTBhf enforces an idle period (couple

of days/a week) before a fresh certi�cate can again be registered with CTBhf for the domain d
as described by StateUpdate.CertIssue functionality in SContract.CTBhf . In this period no fresh
certi�cate can be registered with CTBhf for the domain d. This enables protection against a
compromised T . In the absence of such an idle period, a compromised T , after revoking a genuine
certi�cate, could quickly issue and register a fresh certi�cate attesting to binding between d and
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a fake public key.
The new chaincode SContract.CTBhf with the above changes is given in Figure 10. For

current state (key, val) = (d, (certT→d/pkD
, revoked/notrevoked)), the following calls on key d,

FetchLedger.val1(d) and FetchLedger.val1(d), will return certT→d/pkD
and revoked/notrevoked re-

spectively.

4.3 Implementation Details of CTBhf

In the following we provide details on our implementation of CTBhf . Our implementation runs
on Fabric version v1.1 1. There are three types of organizations in total: orgi (1 ≤ i ≤ n),
C.org, and O.org. Every orgi (1 ≤ i ≤ n) has following entities: an admin, a peer, a client, and a
membership provider. Organizations are hosted on a single MacBook Pro (Mid 2012) as dedicated
docker containers (Docker Version: Community Edition, Version: 18.06.0-ce-mac70 (26399) ).
Admin is responsible for registering a client to an organization. The membership provider is
responsible for issuing cryptographic key-pairs to peers and clients. Each orgi (1 ≤ i ≤ n)
represents a certi�cation authority - they can access the network through their respective clients.
Peers presenting CAs in these organizations also play the role of endorsers as per the endorsement
policy. The organizations C.org and O.org represent client browsers and the ordering service of
the network respectively. The peer in C.org does not play the role of an endorsing peer. All peers
in orgi's and C.org have a local copy of the ledger.

The chaincode SContract.CTBhf , as described in Figure 10, is written in Go and is avail-
able at https://www.dropbox.com/sh/vne21wpusk6yaq1/AABy8pB4jd14tIXdo1WFyO8Ra?dl=0&

preview=ca-blockchain.go.

5 Conclusions

The idea of using public logs to monitor CA behavior is common to several proposals for current
Public-Key Infrastructure. But almost all of these proposals require global coordination of logs in
order to ensure that they have a consistent view of valid certi�cates. And the methods proposed
to achieve logs-consistency are either works-in-progress or ine�cient. Blockchain data structure
with its distributed consensus have proved to be a valuable technology in running distributed
applications e�ciently and securely.

In this paper we propose CTB, a blockchian based X.509 certi�cate registration and validation
methodology into SSL/TLS. CTB is not a replacement for, or an alternative to, the current
certi�cate validation mechanism. It augments the chain-of-trust model by providing support
for multi layer scrutiny of the entire existing certi�cate system. Furthermore, CTB can drop
seamlessly into existing SSL/TLS protocols and is much simpler than the existing public logs
based approaches. We recalled CT's design components thoroughly to compare them vis-a-vis
CTB's simple and modular design. Central to CTB is its smart contract that holds logics for
operations involving certi�cates. The security of these logics is bootstrapped by cryptography
and allows domain owners to have absolute control over their certi�cates. We further enable
CTB with an e�cient certi�cate revocation mechanism. CTB is successfully developed using
Hyperledger Fabric blockchain platform. For completeness, a link (anonymous) to the underlying
chaincode written in Go is given in the paper.

1http://hyperledger-fabric.readthedocs.io/en/release-1.1/
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1 Function StateUpdate.Revoke(certT→d/pkD
; certT→T/pkT

; signskT (certT→d/pkD
); revoke):

2 Compute cert← FetchLedger.val1(d)
3 Compute pk1 ← PkExtract(certT→T/pkT

)

4 if

cert == certT→d/pkD

∧Verifypk1(certT→d/pkD
) = True

∧Verifypk1(signskT (certT→d/pkD
)) = True

then

5 return revoke
6 else

7 return Invalid
8 end

9

10 Function StateUpdate.CertIssue(certT→d/pkD
; certT→T/pkT

; signskcD
(certT→d/pkD

)):

11 Compute cert← FetchLedger.val1(d)
12 Compute rstat← FetchLedger.val2(d)
13 Compute pk1 ← PkExtract(certT→T/pkT

)

14 if (cert 6= φ ∧ Status(cert) = active ∧ rstat = notrevoked) then
15 Compute pk2 ← PkExtract(cert)
16 if

Verifypk2(certT→d/pkD
, signskcD

(certT→d/pkD
))

= True ∧ Verifypk1(certT→d/pkD
) = True

then

17 return certT→d/pkD

18 else

19 return Invalid
20 end

21 else if (cert = φ ∨ Status(cert) 6= active) then
22 if Verifypk1(certT→d/pkD

) = True then

23 return certT→d/pkD

24 else

25 return Invalid
26 end

27 else if (cert 6= φ ∧ Status(cert) = active ∧ rstat = revoked) then
28 if

time.current ≥ time.revoked + IdlePeriod

∧Verifypk1(certT→d/pkD
) = True

then

29 return certT→d/pkD

30 else

31 return Invalid
32 end

33 end

Figure 10: StateUpdate.Revoke and StateUpdate.CertIssue functionalities in SContract.CTBhf
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