
Memory-Constrained Implementation of

Lattice-based Encryption Scheme on the

Standard Java Card Platform⋆

Ye Yuan1⋆⋆, Kazuhide Fukushima2 Junting Xiao1, Shinsaku Kiyomoto2, and

Tsuyoshi Takagi3,4

1 Graduate School of Mathematics, Kyushu University
2 KDDI Research, Inc.

3 Department of Mathematical Informatics, The University of Tokyo
4 CREST, Japan Science and Technology Agency

Abstract. Memory-constrained devices, including widely used smart

cards, require resisting attacks by the quantum computers. Lattice-based

encryption scheme possesses high efficiency and reliability which could

run on small devices with limited storage capacity and computation re-

sources such as IoT sensor nodes or smart cards. We present the first im-

plementation of a lattice-based encryption scheme on the standard Java

Card platform by combining number theoretic transform and improved

Montgomery modular multiplication. The running time of decryption is

nearly optimal (about 7 seconds for 128-bit security level). We also op-

timize discrete Ziggurat algorithm and Knuth-Yao algorithm to sample

from prescribed probability distributions on the Java Card platform.

More importantly, we indicate that polynomial multiplication can be

performed on Java Card efficiently even if the long integers are not sup-

ported, which makes running more lattice-based cryptosystems on smart

cards achievable.

Keywords: Post-Quantum Cryptography, Lattice-based Encryption Scheme,

Java Card, Discrete Gaussian Sampling, Montgomery Modular Multipli-

cation, Number Theoretic Transform

⋆ A preliminary version of this paper appeared with the title ”Memory-constrained

implementation of lattice-based encryption scheme on standard Java Card” in Pro-

ceedings of 2017 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST) [43].
⋆⋆ Email: y-yuan@math.kyushu-u.ac.jp



1 Introduction

Java Card is a mainstream applet development platform which allows developers

to program in a subset of the Java language or run applets on a deployed smart

card virtual machine. It is now widely used in telecommunications, finance, and

banking, and aims to define a standard smart card computing and developing

environment [20]. The card vendors and issuers can develop and test applets

on smart cards quickly due to its interoperability and standard development

interface; hence, the costs of applet development, employment, and maintenance

are reduced significantly. Accordingly, Java Card has rapidly become the most

popular smart card platform.

In the IoT era, tons of devices will be connected to the Internet and need

cryptographic schemes for the security and privacy. As an essential part of IoT

ecosystems, embedded devices like smart cards also require safe and reliable

data protection features. A significant unique benefit for Java Card vendors and

issuers is inherent security, including secure memory/data protection and cryp-

tographic support. Typically, standard Java Card platform has an insufficient

computational capability (see [17,40]). To make up for the processing capacity,

almost all Java card manufacturers install dedicated cryptographic co-processors

to speed up the operations of encryption algorithms such as 2048-bit RSA. How-

ever, Shor’s algorithm that was introduced in [39] for factorization and compu-

tation of discrete logarithms on quantum computers can efficiently break the

traditional RSA and elliptic curve cryptography (ECC). Since National Security

Agency (NSA) announced that they planned to transition from RSA and the

ECC to a new set of quantum resistant algorithms, post-quantum cryptography

(PQC) has attracted more attention from academic and industries.

Lattice-based cryptography [30] is known to be secure against attacks by

quantum computers. As one of the variants of lattice-based cryptography, ring-

LWE based encryption schemes (see [26]) possess high efficiency and reliability.

In recent years, the interest of implementation of ring-LWE based cryptography

on various devices has emerged. Some previous works such as [4,16,27,34,35] have

reported practical implementations on hardware or small devices. However, very

limited literatures provided the implementation of ring-LWE based cryptogra-

phy on individual smart cards, e.g., [5,6]. Considering the extensive usage of

smart card markets, PQC needs to be implemented on the standard Java Card

platform, imperatively.

Recently, more instantiations of ring-LWE based encryption schemes and key

encapsulation mechanisms such as [1,7] had been submitted as the candidates of

the PQC standardization project launched by National Institute of Standards

2



and Technology (NIST) (see [31]); hence, it is necessary to investigate the perfor-

mance of ring-LWE based cryptography on memory-constrained devices such as

widely used smart cards. We also have implemented several famous ring-LWE

based encryption schemes around 128-bit security on IoT devices successfully

(see [42]). We noticed that polynomial multiplication is a challenge as well as

the most expensive operation on memory-constrained devices due to the fact

that there is insufficient computing capacity. Some literature provides polyno-

mial operations optimized for specific parameters or architecture used in exper-

iments such as [1,6], but we would like to find a general solution for all possible

parameter sets and see the performance on the Java Card platform.

On the other hand, concerning the implementation of ring-LWE encryption

scheme, the function of sampling from a target discrete Gaussian distribution is

an indispensable component. However, sampling random values from a discrete

Gaussian distribution on standard Java Card platform is still a quite tricky task.

Studies were performed to deal with discrete Gaussian sampling in some litera-

ture, e.g., rejection sampling methods in [12,15,18], inversion sampling method

in [33], discrete Ziggurat method in [3], and Knuth-Yao method in [23]. Rejec-

tion sampling does not require too much memory consumption but needs lots of

time on high-precision computing. Inversion algorithm pre-computes and stores

the cumulative distribution function (CDF) of the sampled distribution. When

a probability is generated uniformly at random, it is very convenient to use

the CDF in determining the sampled value directly. However, when applied to

the standard Java Card platform, it is quite time-consuming to generate high-

precision decimals. These two discrete Gaussian sampling methods are relatively

straightforward but inefficient on such memory-constrained device. Therefore, we

apply discrete Ziggurat algorithm [3] and Knuth-Yao algorithm [23] to sample

random values from a target probability distribution. Different from rejection

sampling and inversion algorithm, discrete Ziggurat algorithm and Knuth-Yao

algorithm are aimed at getting a speed-memory trade-off. However, due to the

limited computational capacity of Java Card, there is not enough space for a

large look-up table storage, and it is inefficient to simulate floating-point num-

ber arithmetic using small integers, which is essential for many discrete Gaussian

sampling algorithms.

1.1 Paper contribution

Our focus is to consequently implement the original ring-LWE encryption scheme [26]

on the standard Java Card platform (or, simply, “Java Card” for short) with good

compatibility, portability, and expansibility. In this paper, firstly, we implement

3



and optimize discrete Ziggurat method and Knuth-Yao method on Java Card by

reducing the storage consumption. The results show that even slight optimization

of storage space can decrease those running time significantly. Secondly, we re-

visit the approach of the polynomial multiplication using more memory efficient

algorithms and then improved the implementation of Java Card. In our previ-

ous work, we have shown polynomial multiplication is a challenge as well as the

most expensive operation because of the insufficient computing capacity of Java

Card. Compared to the previous work, further improvements of the implementa-

tion are achieved by reducing local method invocation and the use of temporary

arrays. Thirdly, we propose an improved Montgomery modular multiplication

from [2], which can be carried out for big integer arithmetic using only small

integer operations without loss of accuracy and integer overflow. By combin-

ing efficient multiplication approach such as number theoretic transform (NTT)

with the improved modular multiplication, we are the first to perform efficient

polynomial multiplication with arbitrary large coefficients or moduli on Java

Card, that means it is possible to apply ring-LWE based cryptography on more

memory-constrained devices. Our solution obtains the nearly optimal running

time (about 7 seconds of decryption, and it is more than 10 times faster

than our previous result) for an approximate security level of AES-128. With the

performance boost over upgrading hardware, apparently, there is much room for

improvement in our future work.

1.2 Differences

The major differences between this extended version and the previous conference

paper [43] are as follows:

– We refactor our implementation of modular multiplication (see [2]), NTT,

and inverse NTT methods (see [24,35]) on Java Card. We reduce the memory

overhead of creating temporary instances and the number of function calls,

and vastly improve the efficiency of modular multiplication and polynomial

operations.

– We present our optimized approaches for discrete Gaussian sampling on

Java Card and report the experiment results. We perform optimized binary

number generating method and optimize the look-up tables to improve the

performance of discrete Gaussian sampling on Java Card. The former aims

at accelerating the discrete Ziggurat algorithm, whereas the latter optimizes

the probability array tables for the Knuth-Yao algorithm by adding addi-

tional sign bits. Our optimizations are the result of a trade-off between cost,

performance, and security.

4



– We rewrite the descriptive portions and explain the motivation and signif-

icance of our work in detail. We also report our experimental results and

compare with our previous work, e.g., decryption is more 10 times faster

than that of our previous work, and only costs about 7 seconds using 128-

bit security parameter set. The results show that this combination method

requires far less memory capacity and significantly improves computational

speed.

1.3 Outline

The rest of this paper is organized as follows. We give a brief mathematical

background of discrete Gaussian sampling and the ring-LWE based encryption

scheme in Section 2. We introduce the specification of Java Card in Section 3

and describe our implementation techniques in Section 4. We then give the ex-

periment reports of our implementation on a standard Java Card in Section 6.

Finally, we conclude this paper in Section 6.

2 Preliminaries

In this section, we introduce the relevant mathematical background for discrete

Gaussian sampling and the ring-LWE based encryption scheme [26].

Throughout this paper, the symbols Z and Zq denote the ring of integers and

ring of integers modulo a positive integer q, respectively, and Zq[x], denotes the

polynomials over Zq. Polynomials are denoted by bold italic letters such as f or

A, while vectors, bold small letters such as v and matrices, bold large letters

such as A.

2.1 Discrete Gaussian sampling

We define discrete Gaussian distribution DL,σ for given lattice L and deviation

σ, and exp(−π∥x∥/s2) is the probability centered at zero of any x ∈ L, where
s = σ

√
2π. In our case, we set L = Z so that each integer is sampled randomly

from DZ,σ.

The tail of the sampled discrete Gaussian distribution should have a finite

length so that every sampling algorithm can cover it. Therefore, it is necessary

to choose a suitable tail-cut factor t > 0 to determine the range of sampled

values. Note that the sampled discrete Gaussian distribution differs from nor-

mal distribution because of the tail bound. The tail bound is closely related to

5



the maximum statistical distance allowed by the security parameters discussed

in [38].

Sampling from a target discrete Gaussian distribution on Java Card is a big

challenge due to its specification (these features will be discussed in Section 3).

Computing the probabilities is a resource-consuming operation that depends

on the floating-point capabilities of the devices. In general, the high precision

floating-point operation or large storage is required as explained in [9]. Therefore,

setting the suitable precision is very significant. In our case, the random values

are pre-computed and stored in particular ways to reduce computation cost

and storage, and a detailed introduction of discrete Gaussian sampling will be

discussed in Section 4.1.

2.2 Ring-LWE based encryption scheme

The definition of the ring-LWE problem in [26] is similar to the original LWE

problem presented by Oded Regev in [36] firstly. Let a polynomial ring Rq =

Zq[x]/(x
n+1), called Rq an ideal lattice if each polynomial in Rq has a bijective

mapping to an ideal in Zn
q . Given a pair of polynomials (a, b) ∈ Rq × Rq, the

search version of the ring-LWE problem is to find the secret s ∈ Rq, where a

is chosen uniformly and b = as + e with an “error” e generated from a target

probability distribution. The decision version can be defined as follows: given a

pair (a, b) ∈ Rq × Rq where a is chosen uniformly, we distinguish whether b is

also chosen uniformly, or there exists a polynomial s ∈ Rq such that b = as+ e.

In the worst-case, the ring-LWE problem can be reduced to approximate shortest

vector problem (α-SVP) on ideal lattices.

Here, we investigate the ring-LWE based encryption scheme [26] which is

more efficient than the Regev’s LWE schemes [30,36]. It uses constructed poly-

nomials over Rq instead of the structured integer matrices, which is based on

the hardness of solving the ring-LWE problem with IND-CPA (short for indis-

tinguishability against chosen plaintext attacks) security by appropriately pa-

rameterized ideal lattices. In this paper, we refer to [26] as LPR-LWE.

Let Σ be a message alphabet, the message encoder and decoder are a pair of

functions within a certain tolerance, that is, encode: Σn → Rq and decode: Rq

→ Σn, such that decode(encode(m) + e) = m is an anti-operation of encoding

for any “small enough” error e ∈ Rq. DL,σ denotes a discrete Gaussian distribu-

tion as mentioned earlier. The following procedures define LPR-LWE encryption

scheme:

Key generation:

6



Sample e ← DL,σ; choose a “small” random polynomial s ∈ Rq and a uni-

formly random polynomial a ∈ Rq, then compute b = a · s+ e ∈ Rq. The public

key is the pair (a, b) and the secret key is s.

Encryption:

Choose a “small” random polynomial t ∈ Rq, sample e1, e2 ← DL,σ. Given

a plaintext m ∈ {0, 1}n, let m̄ = encode(m) ∈ Rq; compute c1 = a · t+ e1 ∈ Rq

and c2 = b · t+ e2 + m̄ ∈ Rq. The ciphertext is the pair (c1, c2).

Decryption:

Output decode(c2 − c1 · s) ∈ {0, 1}n.

Table 1: The selected Ring-LWE parameters works on Java Card

n q s ⌈log2(q)⌉ bit sec

dimension 128 128 3329 8.62 12 ≥ 80

dimension 256 256 7681 11.31 13 ≥ 128

In our case, we select the parameters from [15] in Table 1, corresponding to

medium-level security (AES-128) for n = 256 the least (see [15,25]). The primary

reason is that those parameters are not too large, and suitable for implementation

using NTT on Java Card. We could find that the size of the modulus q is far less

than that of the 2048-bit. Note that the concrete quantum security levels of those

parameters are still debatable, depending on the secure estimation algorithms

(e.g., see [44,45,46,47]).

3 Java Card platform specification

In this section, we introduce some general information and features about the

specification of the standard Java Card platform. Throughout the paper, we use

the Java Card Platform Specification 2.2.2 [40] (Classic Edition) and GlobalPlat-

form Card Specification 2.1.1 [17] as our standard.

A typical Java Card has the same shape and size of a credit card, i.e., an

integrated circuit is embedded in a plastic card. Java Card is a small device with

limited capacity and processing power, and its physical characteristics are defined

by ISO/IEC 7816-1 standard [19]. Java Card applets execute on the Java Card

virtual machine (JCVM) which is a subset of the Java virtual machine (JVM),

thereby achieves hardware-independent compatibility and reduces costs.

There are three types of memories presented by Java Card, random access

memory (RAM), read-only memory (ROM), and non-volatile memory (NVM),

7



Table 2: Features of Java Card Platform Specification 2.2.2

Supported Unsupported

boolean, byte, short

(optionally int)

float, double, char,

String

one-dimensional arrays multi-dimensional arrays

packages, interfaces,

exceptions, access scopes,

abstract methods,

inheritance, overloading

object cloning,

multithreading, GC,

finalization, dynamic class

loading, security manager

of which electrically erasable programmable read-only memory (EEPROM or

E2PROM) and Flash are the two most common NVM. Only a section of RAM

and NVM is available for the user. EEPROM allows code and data to be read,

erased, and rewritten individually; hence it could be used to save the applets

and data. RAM has a faster processing speed with unlimited use times in Java

Card, especially writing data to RAM is about 1000 times faster than writing

to EEPROM, that makes it suitable for allocating transient objects. Ordinarily,

the available RAM (up to about 10 KBytes) is less than NVM, but it is better

suited to temporary process data. In our implementation, the run-time data are

all stored in RAM, rather than EEPROM, that means we can update those data

quite fast in the process of responding.

To execute applets on smart cards, the programming language and JCVM

are reduced to fit into the smart card configuration. Table 2 shows an overview of

the supported and unsupported Java Card language features. There are two dif-

ficulties for implementation of LPR-LWE because of those features. Firstly, sin-

gle and double-precision floating-point types (including float and double) and

garbage collection (GC) are not available within JCVM. Floating-point arith-

metic is required for the offline or online phase of discrete Gaussian sampling

methods, but it is inefficient at simulating floating-point arithmetic using 8-bit

or 16-bit signed integers on Java Card. In addition, without garbage collector

feature, we must pay attention to the memory usage when creating look-up ta-

bles (LUT) or initializing objects. Secondly, the standard Java Card platform

only supports small integer types such as byte or short. Even the 32-bit signed

integer type int is optional, the vast majority of smart card manufacturers do

not support this feature. In view of the size of the moduli we shown in Ta-

ble 1, it is difficult to deal with efficient integer modular multiplication on the

standard Java Card platform. Although the cryptographic co-processors of Java

8



Card perform integer calculations for RSA internally, they only offer limited ex-

ecution functionality (see [41]) which does not support modular multiplication

and polynomial operations used in the ring-LWE encryption scheme.

For some lattice-based cryptography in the matrix form such as [13,25,30,36],

although the matrices can be converted to one-dimensional arrays for multipli-

cation, the sizes of those matrices are too large to hold in RAM or EEPROM

when the security level reaches a predetermined level, e.g., 128-bit security. Poly-

nomials, by contrast, can be stored in memory using one-dimensional coefficient

arrays, and the required key sizes are also small (e.g., see [42]). Therefore, ring-

LWE based cryptography is suited to implement on memory-constrained devices

such as Java Card.

For the standard Java Card platform, a message can be represented as bit-

stream or binary data. Hence, we use a binary array to express a plaintext in

our implementation, and this allows the ring-LWE scheme to perform bit-wise

text encryption.

4 Implementation techniques of ring-LWE scheme on

Java Card

In this section, we describe our implementation techniques for discrete Gaussian

sampling, improved modular multiplication, and efficient polynomial multiplica-

tion on Java Card.

4.1 Discrete Gaussian sampling

High precision floating-point arithmetic is essential for discrete Gaussian sam-

pling to ensure the security and accuracy. However, computations of values with

high precision are time-consuming because of the specification of Java Card. A

lower precision in sampling process provides a higher efficiency but not secure

and accurate enough. It is a challenge to balance the security and efficiency at

the same time on Java Card. A number of techniques for discrete Gaussian sam-

pling, such as the discrete Ziggurat algorithm in [3], the Knuth-Yao algorithm

in [11,23], and Karney’s algorithm [22] have been proposed and adopted to some

different environments or devices. Since its simplicity and without floating-point

arithmetic, it is likely to apply Karney’s algorithm on Java Card in the future.

In this subsection, we introduce the way of dealing with high precision floating-

point numbers for discrete Ziggurat algorithm and Knuth-Yao algorithm.

9



Algorithm 1: Discrete Ziggurat sampling algorithm on Java Card (DZ)

Input: m,n, l, t ∈ Z, σ ∈ R, a probability array p = (p0,p1, ...,pn−1)

∈ Zn(l+1)
2 , a y-coordinate value array y = (y0,y1, ...,ym)

∈ Z(m+1)(l+1)
2 , a x-coordinate value array x = (x0, x1, ..., xm)

∈ Zm+1, and an array r = (r0, r1, ..., rm−1) ∈ Zm(l+1)
2 .

Output: Sample value s ∈ Z ∩ [−tσ, tσ]
1 Let a = (a0, a1, ..., al) ∈ Zl+1, b = (b0, b1, ..., bl) ∈ Zl+1, and

c = (c0, c1, ..., cl) ∈ Zl+1;

2 while true do

3 i← {1, 2, ...,m} uniformly at random; sign← {−1, 1} uniformly at

random; x← {0, ..., xi} uniformly at random;

4 if 0 < x ≤ xi−1 then return s = sign ∗ x
5 else

6 if x = 0 then d← {0, 1} uniformly at random;

7 else

8 for j = 0 to l by 1 do

9 aj = yi[j];

10 for j = 0 to l by 1 do

11 bj = r(i−1)[j];

12 c = generate(b);

13 for j = 0 to l by 1 do

14 bj+ = aj + cj ;

15 if bj > 1 then

16 bj− = 2; bj−1+ = 1;

17 for j = 0 to l by 1 do

18 aj = px[j];

19 for j = 0 to l by 1 do

20 if bj > aj then return s = sign ∗ x
21 else continue

22 if d = 0 then return s = sign ∗ x;
23 else continue

10



Algorithm 2: Optimized binary number generator

Input: l ∈ Z, an array c′ = (c′0, c
′
1, ..., c

′
l) ∈ Zl+1

2

Output: An array a′ = (a′
0, a

′
1, ..., a

′
l) ∈ Zl+1

2

1 for t = 0 to c′0 − 1 by 1 do

2 a′
t = 0;

3 while true do

4 for i = c′0 to l by 1 do

5 a′
i ← {0, 1} uniformly at random;

6 for j = 0 to l by 1 do

7 if a′
j < c′j then

8 return a′;

9 else if a′
j > c′j then

10 break;

11 if a′
l = c′l then return a′

Discrete Ziggurat algorithm Some sampling methods, with large look-up ta-

bles or floating-point calculations, are less feasible to be implemented in memory-

constrained platforms. Nevertheless, the discrete Ziggurat sampling method pro-

posed in [3] allows for a flexible time-memory trade-off.

Let t > 0 be the tail-cut factor, for a real σ > 0, the sampled value is chosen

uniformly at random from {−tσ, ..., tσ}. Let m ∈ Z be the number of horizon-

tal rectangles which cover the probability density function (PDF) of the target

probability distribution. More memory could be saved by sampling an integer

x ∈ Z∩ [−tσ, tσ] since the target discrete Gaussian distribution is symmetric. If

x = 0, we accept with probability 1/2, otherwise a sign s ∈ {−1, 1} is generated
uniformly at random and return sx. Firstly, discrete Ziggurat method chooses

a rectangle, then a point (x, y) with x ∈ Z, y ∈ R is sampled inside the cho-

sen rectangle [3,9]. According to the location of that point inside the rectangle,

either x is accepted as a sampled value, or be rejected.

Floating-point arithmetic is unsupported because of the features of the Java

Card Platform Specification 2.2.2 (see Section 3), hence the floating-point num-

ber needs to be converted into its binary expansion with a finite precision. Let

l ∈ Z+ be the precision of the binary expansion of the floating-point number.

Both integral and fractional part of the floating-point number has to be stored

into a look-up table.

Apparently, the probability in floating-point form of any sampled value x ∈
Z∩[0, tσ] is greater than 0. However, the binary expansions with a finite precision

of some probabilities equal to 0, so that it’s not necessary to store them in a

11



look-up table. Let n ∈ Z, there are n binary expansions of the probabilities

p0,p1, ...,pn−1 ∈ Zl+1. x0, x1, ..., xm ∈ Z are the values of x-coordinates, and

y0,y1, ...,ym ∈ Zl+1 are the values y-coordinates with (l + 1)-bit precision of

m rectangles. For i ∈ Z ∩ [0,m), let ri = yi − yi+1 ∈ Zl+1 be the difference of

neighboring y-coordinates. Note that the value of y-coordinate of the vertex is

not less than one in order to cover the PDF.

Floating-point arithmetic is infeasible on Java Card due to limited memory

and computing power. In addition, the multi-dimensional array cannot adapt to

this environment. Therefore, the floating-point number is converted to its binary

expansion and a multi-dimensional array is transformed to a one-dimensional

array in our case. We modified the discrete Ziggurat sampling on Java Card

as written in Algorithm 1. In Step 12 of Algorithm 1, the supported method

generate() generates a (l + 1)-bit precision binary number less than or equal

to the input value. In consideration with the problem of time-consuming in this

process, we could improve the efficiency by optimizing the leading zeros for every

ri as shown in Algorithm 2.

When an array is inputted, Algorithm 2 searches the numbers of leading zeros

and inserts them directly into the generated array. This method will increase the

speed of discrete Ziggurat algorithm remarkably. At the beginning of each ri,

only a 1-bit number is required to represent the numbers of leading zeros.

Knuth-Yao algorithm Donald Ervin Knuth and Andrew Chi-Chih Yao pro-

posed an algorithm which aims to sample values from the non-uniform distri-

bution in [23]. Precomputation has to be executed in Knuth-Yao algorithm.

Similar to discrete Ziggurat algorithm, floating-point number of the probabili-

ties should be converted to its binary expansion with finite precision. Note that

multi-dimensional array is unsupported on Java Card. Therefore, we stored these

probabilities in a one-dimensional array as the look-up table.

Let l ∈ Z be the precision of the binary expansion of the probabilities, and

n ∈ Z, there are n binary probabilities p0,p1, ...,pn−1 ∈ Zl. A probability matrix

Pmat is composed of all the probabilities, and each row stores one probability.

Whereas numbers could only be stored in one-dimensional arrays on Java Card,

while Knuth-Yao algorithm samples value by scanning numbers from the bottom

of one column at each time as shown in [38]. When applied to Java Card, the

probability matrix Pmat is transposed and divided into l blocks. Each block is

one of the columns of Pmat. Let k0,k1, ...,kl−1 ∈ Zn
2 be all of the blocks. An

array k = (k0,k1, ...,kl−1) ∈ Zln
2 is stored in a look-up table for Algorithm 3.

Similar to discrete Ziggurat algorithm, it uses less memory if the algorithm only

stores the probabilities of sampled value x ∈ Z ∩ [0, tσ] (see Figure 1).

12



Fig. 1: Probability array k including l blocks

Note that the scale of the look-up table should be as less as possible because of

limited memory in Java Card. It is clear that there are many zeros in probability

array k and these zeros can be compressed as in [11].

Figure 2 shows that by “deleting” zeros in grey areas, less memory can be

used. Similar to Algorithm 3, Pmat is divided into l blocks k′
0,k

′
1, ...,k

′
l−1. Let

q ∈ Z represents the numbers of the first several blocks whose elements are

all zeros. After the optimization of zeros, the length differences between two

consecutive blocks can be marked with 1 or 0 [38]. A 0 is inserted as a sign

bit at the front of the 0-th block firstly. Next, the length of 0-th block with its

next neighboring block is compared. Then a sign bit 0 for no-increment or 1

for an increment by one is inserted. Hence, all sign bits for every block can be

obtained by this method. As shown in Algorithm 4, h ∈ Z is the total length

of all blocks which have been scanned, and g ∈ Z is the length of probability

array k′ = (k′
0,k

′
1, ...,k

′
l−1) = (k′0, k

′
1, ..., k

′
g−1). This method consumes less time

because these zeros can be skipped when scanning the look-up table.

In Step 1, 19, and 20 of Algorithm 4, FirstBlockLength means the length

of the first block in the optimized probability array.

13



Algorithm 3: Knuth-Yao Sampling algorithm on Java Card (KY)

Input: l, n ∈ Z, a probability array k = (k0,k1, ...,kl−1) ∈ Zln
2

Output: Sample value s ∈ Z ∩ [−tσ, tσ]
1 Let d = 0, x = 0, sign = 0 ;

2 while true do r ← {0, 1} uniformly at random;

3 d = 2d+ r;

4 for i = n down to 0 by 1 do d = d− kx[i];

5 if d = −1 then

6 if i = 0 then sign← {0, 1} uniformly at random;

7 else

8 sign← {−1, 1} uniformly at random;

9 return s = sign ∗ row;

10 if sign = 1 then return s = i;

11 else

12 d = 0;

13 r ← {0, 1} uniformly at random;

14 d = 2d+ r;

15 x = 0;

16 continue

17 x+ = 1;

4.2 Montgomery modular multiplication

Implementation of multiplications on small devices, especially on Java Card, is a

difficult task that not only due to its constrained memory, but also because of its

limited computational capacity. Basically, according to the Java Card Platform

Specification 2.2.2, only signed small integer types (short, byte) are supported

that are represented in 2’s complement form in the most common cards, which

means the signed integer larger than 15 bits is unavailable. However, choosing a

modulus q from the Table 1 and then multiplying two positive coefficients a and

b ∈ Zq, the multiplication will be probably out of bounds of the signed short

integer. Even worse, the running time of integer operations on Java Card is quite

slow, for instance, it takes about half of a second for 10000 times byte integer

multiplication on our experimental Java card. Therefore, we need to find a way

to achieve polynomial multiplications which support small integer computation.

Montgomery modular multiplication (MMM) is a quick way to compute mod-

ular product, replacing that division with an exact multiplication. Koç et al. [21]

analyzed several different MMMmethods including Separated Operand Scanning

method (SOS), Coarsely Integrated Operand Scanning method (CIOS), Finely

14



Fig. 2: Optimized probability array by deleting zeros in grey areas, the sign bit indicates

the difference between two consecutive block lengths

Integrated Operand Scanning method (FIOS), Finely Integrated Product Scan-

ning method (FIPS) and Coarsely Integrated Hybrid Scanning method (CIHS).

Some literature such as [14,28,29,32] reported the implementation results for

MMM methods on different platforms. However, according to their implemen-

tation, some local variables in calculation might be still out of the signed short

integer boundary using the parameters in Table 1; hence, those methods cannot

be used in such memory-constrained device. To fit modular multiplication into

the standard Java Card platform, we adopted an improved algorithm in [2] that

we refer to as R-MMM, which can compute radix-2ω MMM by only using s blocks

for n-bit multipliers.

The key factor of Algorithm 5 to note here is that we compute the inverse

M ′
0 of the block M0 instead of the modulus M . Hence, the advantage of our

implementation is that only the products of two ω-bit blocks will be computed,

so that we can select the suitable size for blocks to make sure the products

would not overflow. In Step 5 and 8, the maximum size of the product is 2ω

bits. When a signed short integer splits into two signed byte integers, the low

8 bits might be a negative byte integer. For the convenience of calculations,

we convert the negative byte integer to a positive short integer. Even if the

modulus M has increased, we only need to add additional blocks. Therefore,

Algorithm 5 guarantees its correctness throughout the entire process without

overflowing any variables. We define that every multiplier is an 8-bit integer,

15



Algorithm 4: Optimized Knuth-Yao Sampling algorithm on Java Card

(KYO)

Input: g, q ∈ Z, an optimized probability array k′ = (k′
0, k

′
1, ..., k

′
g−1) ∈ Zg

2

Output: Sample value s ∈ Z ∩ [−tσ, tσ]
1 Let d = 0, len = FirstBlockLength, sign = 0, h = 0 for j = 0 up to q − 1 by 1

do

2 r ← {0, 1} uniformly at random;

3 d = 2d+ r;

4 while true do

5 r ← {0, 1} uniformly at random;

6 d = 2d+ r;

7 for i = len− 1 down to 0 by 1 do

8 d = d− k′
i+1+sum;

9 if d = −1 then

10 if i = 0 then sign← {0, 1} uniformly at random;

11 else

12 sign← {−1, 1} uniformly at random; return s = sign ∗ i;
13 if sign = 1 then return s = i;

14 else

15 d = 0;

16 r ← {0, 1} uniformly at random;

17 d = 2d+ r;

18 len = FirstBlockLength;

19 sum = −FirstBlockLength− 1;

20 continue

21 h = h+ len+ 1 ;

22 if k′
h = 1 then

23 len+ = 1;

i.e., ω = 8 so that b = 28, and R = b2 = 216, then we can pre-compute M ′
0 and

the inverse R−1.

4.3 Number theoretic transform

We investigated several efficient approaches including widely used Karatsuba

algorithm and number theoretic transform for implementation of polynomial

multiplication on Java Card. Karatsuba algorithm is an efficient approach for

polynomial multiplication with lower asymptotic complexity O(n log n). Mul-

tiplying recursively in some programming languages is not a big issue, but at

the same time, too many temporary arrays will be created during the recursion

16



Algorithm 5: Radix-2ω Montgomery modular multiplication (R-MMM)

Input: n-bit integers M = (Ms, ...,M0)b, X = (Xs−1, ..., X0)b,

Y = (Ys−1, ..., Y0)b where 0 ≤ X,Y ≤M , b = 2ω, s = ⌈n/ω⌉, R = bs

with gcd(M, b) = 1 and M ′
0 = −M−1

0 mod b

Output: Non-negative integer A = X ∗ Y ∗R−1 mod M

1 Let A = 0 = (As, ..., A0)b; // in our case, we set n = 16, ω = 8;

2 for i = 0 to s− 1 do

3 temp = 0;

4 for j = 0 to s− 1 do

5 (temp,Aj) = Xj ∗ Yi +Aj + temp;

6 As = temp, temp = 0, µi = A0 ∗M ′
0 mod b;

7 for j = 0 to s do

8 (temp,Aj) = Mj ∗ µi +Aj + temp;

9 A = A/b;

10 if A ≥M then A = A−M ;

11 return A.

process. For example, we have tried Karatsuba algorithm on Java Card using

the parameters in Table 1, and the running time of decryption is more than

500 seconds for n = 64. We also have rewritten Karatsuba algorithm into the

non-recursive form. However, its computing speed is still slow, and the number

of temporary arrays could not be reduced greatly.

Therefore, we follow the state-of-the-art and use the NTT which has asymp-

totic complexity O(n log n) for multiplying polynomials with higher degrees. The

NTT is similar to the fast Fourier transform (FFT), but transforms over Zq in-

stead of the complex numbers C. In our previous work [42,43], we implemented

a non-recursive forward number theoretic transform (NTT, see [8,37]) for ring-

LWE based encryption schemes. For polynomial multiplication c = a · b ∈ Rq,

it is required to compute the inverse (NTT−1), so that NTT−1(NTT(f)) = f for all

f ∈ Rq, thus the multiplication c = NTT−1(NTT(a) ⊗ NTT(b)), where ⊗ denotes

component-wise multiplication.

More efficient approaches of NTT are presented in [24,35], which focus on

the optimization of NTT’s bit-reverse computation, as shown in Algorithm 6 and

Algorithm 7. Compared with our previous NTT implementation, Algorithm 6

and Algorithm 7 do not increase the length of the polynomial multipliers. We

can pre-compute a table of the bit-reversed order to reduce the running time

and the cost of RAM.

For a prime integer q ≡ 1 (mod 2n), where n is a power of 2, let ω be the

n-th primitive root of unity over Zq, and ψ =
√
ω such that ψ is the 2n-th

17



Algorithm 6: Cooley-Tukey forward number theoretic transform (CT-NTT)

Input: Polynomial a ∈ Rq = Zq[x]/(x
n + 1), and a LUT Ψrev ∈ Zn

q in

bit-reversed order

Output: Polynomial a′ = CT-NTT (a) ∈ Rq

1 t = n;

2 for m = 1 to n− 1 by m = 2m do

3 t = t/2;

4 for i = 0 to m− 1 do

5 j1 = 2 ∗ i ∗ t;
6 j2 = j1 + t− 1;

7 S = Ψrev[m+ i];

8 for j = j1 to j2 do

9 U = a[j];

10 V = R-MMM (q,a[j + t], S);

11 a[j] = U + V mod q;

12 a[j + t] = U − V mod q;

13 return a.

primitive root of unity over Zq. We write two polynomials f = (f0, f1, ..., fn−1)

and f̄ = (f0, ψf1, ..., ψ
n−1fn−1) ∈ Rq. First, we compute all 2n powers of ψ

and ψ−1, and then store n powers of ψ and ψ−1 with the bit-reversed order in

look-up tables Ψrev, Ψ
−1
rev ∈ Zn

q , respectively. All the coefficients of input poly-

nomials are in the standard order for Algorithm 6, and in bit-reversed order for

Algorithm 7, so the bit-reverse operation for input polynomial can be merged

into pre-computation. Then one gets the output the negative wrapped convolu-

tion c = (1, ψ−1, ..., ψ−(n−1)) ⊗ GS-INTT(CT-NTT(ā) ⊗ CT-NTT(b̄)), and c is the

polynomial multiplication.

We combine R-MMM and number theoretic transform, which computes the

modular multiplication in Step 10 of Algorithm 6 and Step 11, 15 of Algorithm 7.

Modular multiplication is the most time-consuming operation in NTT executed

on Java Card. Therefore, we should check whether the multiplication is in bounds

firstly, and then determine to use the suitable modular reduction method. In

our implementation, the performance of integer and polynomial multiplication

is significantly improved on Java Card, e.g., the running time of decryption

(n = 256) is more than 10 times faster than our previous result, and costs only

about 7 seconds in decryption for 128-bit security level. We show the performance

result in the next section.

18



Algorithm 7: Gentleman-Sande inverse of number theoretic transform

(GS-INTT)

Input: Polynomial b ∈ Rq = Zq[x]/(x
n + 1), and a LUT Ψ−1

rev ∈ Zn
q in

bit-reversed order

Output: Polynomial b′ = GS-INTT (b) ∈ Rq

1 t = 1;

2 for m = n to 2 by m = m/2 do

3 h = m/2, j1 = 0;

4 for i = 0 to h− 1 do

5 j2 = j1 + t− 1;

6 S = Ψ−1
rev[h+ i];

7 for j = j1 to j2 do

8 U = b[j];

9 V = b[j + t];

10 b[j] = U + V mod q;

11 b[j + t] = R-MMM (q, (U − V ), S);

12 j1 = j1 + 2t;

13 t = 2t;

14 for i = 0 to n− 1 do

15 b[i] = R-MMM (q, b[i], n−1);

16 return b.

5 Performance of ring-LWE scheme on Java Card

In this section, we report the experimental results of running discrete Gaus-

sian sampling methods and LPR-LWE scheme on a standard Java Card (JCOP

v2.4.1 NXP J3A081 Dual Interface Card: Java Card Version: 2.2.2; Global

Platform: 2.1.1; ISO/IEC 7816, T=0, T=1 (kbit/s): 223.2; ISO/IEC 14443 T=CL

(kbit/s): 848; available EEPROM Options KByte: 80; ROM (free for Applets,

up to KBytes): 76; APDU Buffer (RAM/Bytes): 1462). In our case, the random

values are generated by pre-computing using our improved discrete Gaussian

sampling methods.

5.1 Performance results of discrete Gaussian sampling on Java

Card

We implement the Knuth-Yao algorithm and discrete Ziggurat algorithm with

and without optimization on Java Card. With the precision l = 128 bits, it is

infeasible to use large parameters because of the memory limitation. We choose

the parameter sets (n, s) ∈ {(128, 8.62), (256, 11.31)} same as in [15] to ensure

19



Table 3: Experimental comparison of discrete Gaussian sampling methods on Java Card

for different parameter sets

Sampling method
Running time (s)

(𝑛, 𝑠) = (128, 8.62) (𝑛, 𝑠) = (256, 11.31)

Storage (KBytes)

(𝑛, 𝑠) = (128, 8.62) (𝑛, 𝑠) = (256, 11.31)

DZ [Alg.1]

DZO [Alg.2]

DZO-SP [Alg.2]

KY [Alg.3]

KYO [Alg.4]

KYO-SP [Alg.4]

11.01 24.49

2.25 5.01

1.92 3.89

22.40 24.29

22.51 24.39

18.16 19.67

4.87 12.37

1.15 2.47

1.11 2.41

6.19 7.95

4.32 5.48

3.29 4.24

the statistical distances for the discrete Ziggurat algorithm and the Knuth-Yao

algorithm are at most 2−100 as in [5]. The number of rectangles is 63 for discrete

Ziggurat algorithm [3]. To ensure the security and accuracy of discrete Gaussian

sampling, the precision l = 128 bits for these algorithms is sufficient in our case.

However, the memory size and computing power are limited according to the

specification of Java Card. Under this circumstance, it is necessary to use a rel-

atively less precision. Moreover, when a smaller look-up table comes true, larger

parameters can be used on Java Card. According to Lemma 2 in [11], a more

suitable precision can be used. For each algorithm with n = 128 (resp.256), we

choose the precision l = 104 (resp.105) bits. As shown in Table 3, we compare

the following sampling methods on Java Card: the original discrete Ziggurat (DZ,

Algorithm 1)/Knuth-Yao algorithm (KY, Algorithm 3), the optimized discrete

Ziggurat algorithm by using Algorithm 2 (DZO), and our optimized Knuth-Yao

algorithm (KYO, Algorithm 4). Moreover, DZO-SP denotes the discrete Ziggurat

algorithm with optimization using a suitable precision, and KYO-SP denotes the

Knuth-Yao algorithm with optimization using a suitable precision. For each al-

gorithm with n = 128 and 256, Table 3 shows the running time in seconds (s)

and storage in kilobytes (KBytes).

Apparently, there are notable improvements by means of the appropriate

optimizations for not only Knuth-Yao algorithm, but also discrete Ziggurat al-

gorithm from Table 3.

Compared with KY, KYO takes less running time and memory consumption

that is about 5 times faster than KY for any selected parameter sets. Compared

with DZ, DZO shows better performance that is more than 4 times faster than

DZ for any chosen parameter sets. It is clear that KYO-SP uses much less storage

than KYO and DZO-SP has higher speed with smaller look-up tables than DZO.

20



Note that KY, KYO, and KYO-SP have better performances than DZ, DZO, and

DZO-SP for both running time and memory consumption. The calculation of

discrete Ziggurat algorithm can be sped up by two different ways. The first

way is to optimize the time-consuming operation of generating random l-bit

binary numbers such as Algorithm 2. It is clear that this technique improves the

efficiency of discrete Ziggurat algorithm significantly. However, for any random

l-bit binary number, there are at most 2l − 1 numbers which are not greater

than it. It is difficult to store such scale of numbers on Java Card. Therefore,

these numbers cannot be pre-determined. Another method could be increasing

the number of rectangles. If there are more rectangles, the area covered by them

will tighter enclose the area under the probability density function [3]. However,

if a larger m is chosen, the additional values of coordinates have to be stored,

increasing the memory requirements. Hence, the promotion of discrete Ziggurat

algorithm is limited to a certain level. For these reasons, we noticed that DZ

and DZO are much slower than KY and KYO on standard Java Card. On the

other hand, Knuth-Yao algorithm has less precomputation and a smaller look-

up table than discrete Ziggurat algorithm, because it only pre-computes the

probabilities of all values in the specified range and stores their binary expansions

into a probability array. Apart from this, discrete Ziggurat algorithm has to pre-

compute the coordinates of all rectangles as well. Hence, Knuth-Yao algorithm

is better than discrete Ziggurat algorithm for a memory-constrained device such

as the standard Java Card platform.

5.2 Performance results of LPR-LWE on Java Card

In this subsection, we only report the performance results of key generation,

encryption, and decryption of LPR-LWE without discrete Gaussian sampling,

since we have generated all random values by pre-computing. We implement

LPR-LWE scheme and generate key pairs by using parameters in Table 1.

Table 4 shows the performance results of LPR-LWE executed on a standard

Java Card without using any additional co-processor. Compared to these per-

formances, the running time of LPR-LWE with dimension 128 is less than half

of that with dimension 256 due to the smaller size and modulus. The running

time ratio for key generation, encryption and decryption is almost 1 : 2 : 1.

Furthermore, we can see that the current execution speed of LPR-LWE is much

improved with performance acceleration of more than 10 times compared with

our previous work [43]. The reason is that we refactor our code, pre-computing

the bit-reversed permutation and keeping the number of temporary objects to a

minimum in R-MMM and NTT computations.

21



Table 4: Performance results (seconds) of LPR-LWE on Java Card for different param-

eter sets (comparing with our previous work in [43])

Key-Gen Enc Dec

dimension 128
Previous [43] Now Previous [43] Now Previous [43] Now

44.748 4.887 89.762 10.685 45.012 3.682

dimension 256
Previous [43] Now Previous [43] Now Previous [43] Now

104.005 10.358 208.188 16.050 103.761 7.398

233-bit ECC [10] -- ≈ 11.618 ≈ 5.845

2048-bit RSA [10] -- ≈ 0.123 ≈ 622.009

Comparing the performance between ring-LWE scheme and other cryptosys-

tems on the standard Java Card platform is quite difficult. Firstly, we had tried

to choose the prevailing public-key encryption algorithms such as RSA or ECC

for comparison with the ring-LWE scheme at the approximate security level of

128 bits. However, Java Card needs some additional cryptographic co-processors

that support such public encryption algorithms as RSA. Hence, because of the

limited hardware resources, Java Card only offers asymmetric cryptographic sup-

port for RSA up to 2048 bits (112-bit security) and ECC up to 320 bits (160-

bit security). Therefore, we can only compare our implementation of ring-LWE

scheme achieving 128-bit security to 2048-bit RSA and 233-bit ECC that achieve

same security level (112-bit security). According to the implementation results

in [10], encryption of 233-bit ECC (Menezes-Vanstone ECC) takes about 12 sec-

onds, and decryption takes less than 6 seconds. Encryption of 2048-bit RSA is

also faster that only takes about 0.1 seconds. However, its decryption is quite

slower, which running time is more than 600 seconds, i.e., over 80 times slower

than that of LPR-LWE scheme (n = 256). Even considering the differences of

the test platform specifications and bit-security, decryption of LPR-LWE is still

comparable to that of ECC, and much more efficient than that of RSA.

Secondly, no result of ring-LWE scheme executed on the standard Java Card

platform is found in current literature. Authors in [5,6] presented the perfor-

mance of the ring-LWE scheme and some authentication protocols on several

smart cards including one kind of Java Card which is not standard. Their re-

sults show that the performance of lattice-based cryptography on smart card

could be increased with good optimization and better hardware. However, in

those papers, the authors solve modular reduction operations only for several

special moduli but not for arbitrary parameters. In addition, some of the mod-

22



25.488

14.297

7.312

4.192

1.006

0.765

0 5 10 15 20 25 30 35 40

dimension 256

dimension 128

CT-NTT (including MMM) [Alg.6] GS-INTT (including MMM) [Alg.7] Other

seconds

19.254

33.806

Fig. 3: Decomposition of the total running time (seconds) for different parameter sets

uli selected by them are much larger than 215, and we can find that in their

source code they used the signed int instances and int arrays. That indicates

their environment should support big integer operations, but it also means the

backward compatibility and portability of the programs are probably dismal.

The authors did not discuss these in their papers. Therefore, the performance

of implementations executed on different smart card platforms are hard to be

compared.

5.3 Detailed running time of LPR-LWE on Java Card

Figure 3 shows the decomposition of the total running time including key gen-

eration, encryption and decryption time for different parameter sets. Including

many R-MMM loops in polynomial multiplication, we tested the execution time of

CT-NTT and GS-INTT.

The running time of LPR-LWE with dimension 128 is less than half of that

with dimension 256 due to the smaller parameter sizes. Compared with those

methods, we noticed that polynomial multiplication is the single bottleneck

computation that accounting for about 90% by summing both running time of

CT-NTT and GS-INTT. In fact, most time is spent on R-MMM in CT-NTT/GS-INTT,

and as the parameters increases, the running time of R-MMM loop within NTT

increases too. As we have expected, in Figure 3, the running time required for

polynomial multiplication is nearly equal to the total running time.

Figure 4 shows the proportions of computation time for different parameter

sets. We see that though the running time using dimension 128 parameters only

accounts for less than 50% by using dimension 256, the proportions of running

time of each method are approximately equal. The results indicate that the exe-

cution time of LPR-LWE on Java Card is almost equivalent to the running time

23



75.39%

21.63%

2.98%

CS-NTT (including MMM) [Alg.6]
GS-INTT (including MMM) [Alg.7]
Other

74.25%

21.77%
3.97%

dimension 128

dimension 256

Fig. 4: The proportions of computation time for different parameter sets

of polynomial multiplication. Overall, as moduli diminish in size, the amount of

modular multiplication within NTT will be reduced.

6 Conclusion

We implemented ring-LWE based encryption scheme for general arguments and

successfully ran the applets on a standard Java Card, the performance of dif-

ferent parameter sets was compared. First, we came up with an approach to

solve the problem of big integer multiplication and provided nearly optimal run-

ning time (about 7 seconds in decryption for 128-bit security) on the standard

Java Card [43]. Then, we proposed the improving methods for discrete Ziggurat

algorithm and Knuth-Yao algorithm implementing on Java Card, and the per-

formance of our approaches are compared. We also have used number theoretic

transform to improve polynomial multiplication speed and reduce the calculated

amount, and the result shows that polynomial multiplication is the primary per-

formance bottleneck. Furthermore, by combining NTT and improved MMM, our

results indicate that it is possible to implement more lattice-based cryptosystems

on such a memory-constrained device.

24



References

[1] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. “Post-

quantum key exchange - a new hope.” In Proceedings of the 25th USENIX

Security Symposium, pp. 327–343, 2016.

[2] Toru Akishita and Tsuyoshi Takagi. “Power analysis to ECC using differen-

tial power between multiplication and squaring.” In Proceedings of the 7th

IFIP WG 8.8/11.2 International Conference on Smart Card Research and

Advanced Applications, LNCS, Vol. 3928, pp. 151–164, 2006.

[3] Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing,

and Patrick Weiden. “Discrete Ziggurat: A time-memory trade-off for sam-

pling from a Gaussian distribution over the integers.” In Proceeding of the

20th International Conference on Selected Areas in Cryptography – SAC

2013, LNCS, Vol. 8282, pp. 402–417, 2013.

[4] Johannes Buchmann, Florian Göpfert, Tim Güneysu, Tobias Oder, and Thomas

Pöppelmann. “High-performance and lightweight lattice- based public-key

encryption.” In Proceedings of the 2nd ACM International Workshop on

IoT Privacy, Trust, and Security – IoTPTS ’16, pp. 2–9, 2016.

[5] Ahmad Boorghany and Rasool Jalili. “Implementation and comparison of

lattice-based identification protocols on smart cards and microcontrollers.”

In IACR Cryptology ePrint Archive, Report 2014/078, 2014.

[6] Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. “On con-

strained implementation of lattice-based cryptographic primitives and schemes

on smart cards.” In ACM Transactions on Embedded Computing Systems

(TECS) – Special Issue on Embedded Platforms for Crypto and Regular Pa-

pers, Vol. 14, Issue 3, No. 42, pp. 1–25, 2015.

[7] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. “Lizard:

Cut off the tail! Practical post-quantum public-key encryption from LWE

and LWR.” In IACR Cryptology ePrint Archive, Report 2016/1126, 2016.

[8] Ruan De Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-

bauwhede. “Efficient software implementation of ring-LWE encryption.” In

Proceedings of 2015 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 339–344, 2015.

[9] Daniel Cabarcas, Patrick Weiden, and Johannes Buchmann. “On the effi-

ciency of provably secure NTRU.” In Proceedings of 6th International Work-

25



shop on Post-Quantum Cryptography – PQCrypto 2014, LNCS, Vol. 8772,

pp. 22–39, 2014.

[10] Aaradhana A. Deshmukh, Manali Dubal, TR Mahesh, and CR Chauhan.

“Data security analysis and security extension for smart cards using Java

Card.” In International Journal of Advanced Information Technology (IJAIT),

Vol. 2, No. 2, pp. 41–57, 2012.

[11] Nagarjun C. Dwarakanath and Steven D. Galbraith. “Sampling from dis-

crete Gaussians for lattice-based cryptography on a constrained device.” In

Applicable Algebra in Engineering, Communication and Computing, Vol. 25,

Issue 3, pp. 159–180, 2014.

[12] Léo Ducas and Phong Quang Nguyen. “Faster Gaussian lattice sampling

using lazy floating-point arithmetic.” In Proceedings of the 18th International

Conference on the Theory and Application of Cryptology and Information

Security – ASIACRYPT 2012, LNCS, Vol. 7658, pp. 415–432, 2012.

[13] Tore Kasper Frederiksen. “A practical implementation of Regev’s LWE-

based cryptosystem.” Technical report, 2010. http://daimi.au.dk/~jot2re/

lwe/

[14] Junfeng Fan, Kazuo Sakiyama, and Ingrid Verbauwhede. “Montgomery mod-

ular multiplication algorithm for multi-core systems.” In Proceedings of 2007

IEEE Workshop on Signal Processing Systems (SIPS), pp. 261–266, 2007.

[15] Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann,

and Sorin Huss. “On the design of hardware building blocks for modern

lattice-based encryption schemes.” In Proceedings of the 14th International

Conference on Cryptographic Hardware and Embedded Systems – CHES

2012, LNCS, Vol. 7428, pp. 512–529, 2012.

[16] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. “Practical

lattice-based cryptography: A signature scheme for embedded systems.” In

Proceedings of the 14th International Conference on Cryptographic Hardware

and Embedded Systems – CHES 2012, LNCS, Vol. 7428, pp. 530–547, 2012.

[17] GlobalPlatform. “GlobalPlatform Card Specification 2.1.1.” 2003. http://

www.win.tue.nl/pinpasjc/docs/Card%20Spec%20v2.1.1%20v0303.pdf

[18] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for

hard lattices and new cryptographic constructions.” In Proceedings of the

Fortieth Annual ACM Symposium on Theory of Computing – STOC ’08,

pp. 197–206, 2008.

26



[19] ISO/IEC 7816–1:2011. “ISO/IEC 7816–1: Cards with contacts – Physical

characteristics.” Updated in 2011. Preview: https://webstore.iec.ch/preview/

info_isoiec7816-1{ed2.0}en.pdf

[20] Java Card Forum. “Java Card Platform vs. Native Cards (White Paper).”

2013. https://javacardforum.files.wordpress.com/2013/11/jcf-java-vs-native-final.

pdf

[21] Çetin Kaya Koç, Tolga Acar, and Burton S. Kaliski Jr.. “Analyzing and

comparing Montgomery multiplication algorithms.” In IEEE Micro, Vol. 16,

Issue 3, pp. 26–33, 1996.

[22] Charles F. F. Karney. “Sampling exactly from the normal distribution.”

In ACM Transactions on Mathematical Software (TOMS), Vol. 42, Issue 1,

No. 3, pp. 1–14, 2016.

[23] Donald Ervin Knuth and Andrew Chi-Chih Yao. “The complexity of non

uniform random number generation.” In Algorithms and complexity: New

directions and recent results, Academic Press, pp. 357–428, 1976.

[24] Patrick Longa and Michael Naehrig. “Speeding up the number theoretic

transform for faster ideal lattice-based cryptography.” In Proceedings of the

15th International Conference on Cryptology and Network Security – CANS

2016, LNCS, Vol. 10052, pp. 124–139, 2016.

[25] Richard Lindner and Chris Peikert. “Better key sizes (and attacks) for LWE-

based encryption.” In Proceedings of the 11th International Conference on

Topics in Cryptology – CT-RSA 2011, LNCS, Vol. 6558, pp. 319–339, 2011.

[26] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On ideal lattices and

learning with errors over rings.” In Proceedings of the 29th Annual interna-

tional conference on Theory and Applications of Cryptographic Techniques

– EUROCRYPT 2010, LNCS, Vol. 6110, pp. 1–23, 2010.

[27] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim,

and Ingrid Verbauwhede. “Efficient ring-LWE encryption on 8-bit AVR pro-

cessors.” In Proceedings of the 17th International Conference on Crypto-

graphic Hardware and Embedded Systems – CHES 2015, LNCS, Vol. 9293,

pp. 663–682, 2015.

[28] Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens.

“Low power Montgomery modular multiplication on reconfigurable systems.”

In IACR Cryptology ePrint Archive, Report 2016/280, 2016.

27



[29] Ciaran McIvor, Máire McLoone, and John Vincent McCanny. “FPGA Mont-

gomery multiplier architectures - a comparison.” In Proceedings of 12th An-

nual IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), pp. 279–282, 2004.

[30] Daniele Micciancio and Oded Regev. “Lattice-based cryptography.” In Post-

Quantum Cryptography, pp. 147–191, Springer-Verlag, 2009.

[31] National Institute of Standards and Technology. “Post-Quantum Cryptogra-

phy.” 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

[32] Sıddıka Berna Örs, Lejla Batina, Bart Preneel, Joos Vandewalle. “Hardware

implementation of a Montgomery modular multiplier in a systolic array.” In

Proceedings of 2003 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), p. 8, 2003.

[33] Chris Peikert. “An effcient and parallel Gaussian sampler for lattices.” In

Proceedings of the 30th Annual Conference on Advances in Cryptology –

CRYPTO 2010, LNCS, Vol. 6223, pp. 80–97, 2010.

[34] Thomas Pöppelmann and Tim Güneysu. “Towards efficient arithmetic for

lattice-based cryptography on reconfigurable hardware.” In Proceedings of

the 2nd International Conference on Cryptology and Information Security in

Latin America – LATINCRYPT 2012, LNCS, vol. 7533, pp. 139–158, 2012.

[35] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. “High-performance

ideal lattice-based cryptography on 8-bit ATxmega microcontrollers.” In

Proceedings of the 4nd International Conference on Cryptology and Infor-

mation Security in Latin America – LATINCRYPT 2015, LNCS, Vol. 9230,

pp. 346–365, 2015.

[36] Oded Regev. “On lattices, learning with errors, random linear codes, and

cryptography.” In Proceedings of the Thirty-Seventh Annual ACM Sympo-

sium on Theory of Computing – STOC ’05, pp. 84–93, 2005.

[37] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong

Chen, and Ingrid Verbauwhede. “Compact ring-LWE cryptoprocessor.” In

Proceedings of the 16th International Conference on Cryptographic Hardware

and Embedded Systems – CHES 2014, LNCS, Vol. 8731, pp. 371–391, 2014.

[38] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. “High pre-

cision discrete Gaussian sampling on FPGAs.” In Proceeding of the 20th

28



International Conference on Selected Areas in Cryptography – SAC 2013,

LNCS, Vol. 8282, pp. 383–401, 2013.

[39] Peter Williston Shor. “Polynomial time algorithms for prime factorization

and discrete logarithms on a quantum computer.” In SIAM Journal on Com-

puting, Vol. 26, Issue 5, pp. 1484–1509, 1997.

[40] Sun Microsystems, Inc.. “Java Card Platform Specification 2.2.2.” 2006.

http://www.oracle.com/technetwork/java/javacard/specs-138637.html

[41] Hendrik Tews and Bart Jacobs. “Performance issues of selective disclosure

and blinded issuing protocols on Java Card.” In Proceeding of the Third IFIP

WG 11.2 International Workshop on Information Security Theory and Prac-

tice. Smart Devices, Pervasive Systems, and Ubiquitous Networks – WISTP

2009, LNCS, Vol. 5746, pp. 95–111, 2009.

[42] Ye Yuan, Chen-Mou Cheng, Shinsaku Kiyomoto, Yutaka Miyake, and Tsuyoshi

Takagi. “Portable implementation of lattice-based cryptography using JavaScript.”

In International Journal of Networking and Computing, Vol. 6, No. 2, pp. 309–

327, 2016.

[43] Ye Yuan, Kazuhide Fukushima, Shinsaku Kiyomoto, and Tsuyoshi Takagi.

“Memory-constrained implementation of lattice-based encryption scheme on

standard Java Card.” In Proceedings of 2017 IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), pp. 47–50, 2017.

[44] Robert Primas, Peter Pessl, and Stefan Mangard. “Single-trace side-channel

attacks on masked lattice-based encryption.” In Proceedings of the 19th In-

ternational Conference on Cryptographic Hardware and Embedded Systems

– CHES 2017, LNCS, Vol. 10529, pp. 513–533, 2017.

[45] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the concrete hard-

ness of learning with errors.” In Journal of Mathematical Cryptology, Vol. 9,

Issue 3, pp. 169–203, 2015.

[46] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.

“Practical CCA2-secure and masked ring-LWE implementation.” In IACR

Transactions on Cryptographic Hardware and Embedded Systems, Vol. 2018,

Issue 1, pp. 142–174, 2018.

[47] Florian Gp̈fert, Christine van Vredendaal, and Thomas Wunderer. “A hy-

brid lattice basis reduction and quantum search attack on LWE.” In IACR

Cryptology ePrint Archive, Report 2017/221, 2017.

29


