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Abstract: In this paper, we consider the indistinguishability of XTS in some security models

for both full final block and partial final block cases. Firstly, some evaluations of the indistin-

guishability up-to-block are presented. Then, we present a new security model in which the

adversary can not control sector number, based on an ε-collision resistant function. In this

model, we give a bound of the distinguishing advantage that the adversary can get when at-

tacks on XTS. The received results is an extension of [6].
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1 Introduction

Encryption on a storage device has characteristics that some common block cipher mode of

operations such as CBC, CFB, CTR... are not suitable. Thus, Liskov, Rivest and Wagner pro-

posed the tweakalbe block cipher notion in 2002 (see [7]). Then, many structures of tweakable

block cipher were proposed such as LRW, XEX, XEX2... The XTS mode (XEX-based tweaked-

codebook mode with ciphertext stealing; XEX is acronymed of XOR-Encryption-XOR) is rec-

ommended to use for encrypting data on storage devices by IEEE P1619 Standard and NIST SP

800-38E Recommendation (see [4, 5]). The security in the design of encryption schemes is often

considered based on the indistinguishability in some specific models such as real or random

indistinguishability, left or right indistinguishability [2].... Evaluating the indistinguishability

for XTS have been attracting research attention in the cryptography community [1, 6, 9].

Related worked. In [6], the authors considered the indistinguishability up-to-block, the indis-

tinguishability up-to-prefix, the indistinguishability up-to-repetition of some mode of operations

when they are used on a storage device. However, the ciphertext stealing was not considered in

that paper. Moreover, in order to avoid the restriction of XTS that encrypts the same plaintext

twice in the same sector will always result in an identical ciphertext, Louiza Khati et al. pre-

sented the ideal that associates a diversifier to every sector by using SSD (solid state drive) in

[6]. Then the combination of the sector number i and the diversifier is used instead of the sector

number in XTS construction. This ideal makes that encrypting the same plaintext will result

different ciphertexts in the same sector. In other words, this diversifier allows us to encrypt the

same plaintext in distinct ways for the same sector number. However, the authors assert that

the diversifier must be a rather short value, typically only a few bits [6]. We suppose that this

recommendation makes the diversifier easy to repeat so XTS still has the restriction.
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Our contributions. In this paper, firstly, we consider the security of XTS with the indistin-

guisability up-to-block [6] in the case using ciphertext stealing. Then, we generalize the ideal

that associates a random variable to every sector in [6] by using an ε-collision resistant function.

Moreover, we evaluate the distinguished advantage of the adversary that attacks on XTS in

two above models.

Outline. This paper is organized as follows. In Section 2, we represent some related notions.

In Section 3, we evaluate the indistinguishability up-to-block of the XTS mode. In Section 4,

we evaluate the indistinguishability of the XTS mode in the proposed security model. Finally,

some conclusions are given.

2 Preliminaries

In 2002, the definition of tweakable block cipher was proposed by Liskov, Rivest and Wagner

[7] has the signature: Ẽ : {0, 1}k × T × {0, 1}n → {0, 1}n. A tweakable block cipher has the

new input, which is called tweak, beside a key and a plaintext. Thus, a tweakalbe block cipher

takes three inputs: a key K ∈ {0, 1}k, a tweak T ∈ T , and a plaintext M ∈ {0, 1}n to produce

as ouput a ciphertext C ∈ {0, 1}n.

Firstly, we consider the security of a tweakalbe block cipher under chosen plaintext attack

(abbreviate as tcpa). Let Ẽ : K × T × X → X be a fix tweakalbe block cipher. Consider an

adversary that has access to an oracle which is a function g : T ×X → X is determined by one

of the following two cases:

World 0: A tweakable random permutation Π̃(·, ·) where Π̃ is a family of independent random

permutation parameterized by T which denotes Π̃(T, ·).
World 1: A function is chosen randomly from the family functions Ẽ that means a key K

$←− K
and takes g(·, ·)← ẼK(·, ·).

Definition 1 (see [8]) Let Ẽ : K × T × X → X be a tweakable block cipher and A be a

probabilistic polynomial-time algorithm takes an oracle for a function g : T × X → X ,and

returns a bit. We consider two experiments:

ExperimentExptcpa-1

Ẽ
(A) ExperimentExptcpa-0

Ẽ
(A)

K
$←− K Π̃ is a tweakable random permutation

b← AẼK(·,·) b← AΠ̃(·,·)

Return b Return b

The tcpa advantage of A is defined as

Advtcpa
Ẽ

(A) = |Pr[Exptcpa-1

Ẽ
(A) = 1]− Pr[Exptcpa-0

Ẽ
(A) = 1]|.

Then, the tcpa advantage function in the attack on Ẽ is defined as

Advtcpa
Ẽ

(t, q) = max
A∈A(t,q)

Advtcpa
Ẽ

(A),
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where A(t, q) is the set of all adversary making at most q oracle queries and running in time

at most t.

In order to prove security models, we define a tweakable block cipher Ẽ is (t, q, ε)-tcpa security

if Advtcpa

Ẽ
(t, q) ≤ ε.

Next, we consider the security of a tweakalbe block cipher under chosen ciphertext attack (ab-

breviate as tcca). Let Ẽ : K × T × X → X be a fix tweakalbe block cipher. Consider an

adversary that has access to an oracle which is a function g : T × X → X and its inverse is

determined by one of the following two cases:

World 0: A tweakable random permutation Π̃(·, ·) and Π̃−1(·, ·) where Π̃ is a family of inde-

pendent random permutation parameterized by T which denotes Π̃(T, ·).
World 1: A function is chosen randomly from the family functions Ẽ and the corresponding

decryption function, that means a key K
$←− K and takes g(·, ·)← ẼK(·, ·), g(·, ·)−1 ← D̃−1

K (·, ·).

Definition 2 (see [8]) Let Ẽ : K × T × X → X be a tweakable block cipher and A be a

probabilistic polynomial-time algorithm takes an oracle for a function g : T × X → X and its

inverse,and returns a bit. We consider two experiments:

ExperimentExptcca-1
Ẽ

(A) ExperimentExptcca-0
Ẽ

(A)

K
$←− K Π̃ is a tweakable random permutation

b← AẼK(·,·),D̃K(·,·) b← AΠ̃(·,·),Π̃−1(·,·)

Return b Return b

The tcca advantage of A is defined as

Advtcca
Ẽ

(A) = |Pr[Exptcca-1
Ẽ

(A) = 1]− Pr[Exptcca-0
Ẽ

(A) = 1]|.

Then, the tcca advantage function in the attack on Ẽ is defined as

Advtcca
Ẽ

(t, q) = max
A∈A(t,q)

Advtcca
Ẽ

(A),

where A(t, q) is the set of all adversary making at most q oracle queries and running in time

at most t.

Simillar to Definition 1, we define a tweakable block cipher Ẽ is (t, q, ε)-tcca security if Advtcca
Ẽ

(t, q) ≤
ε.

The XEX2-AES block cipher is used in NIST SP 300-38E Recommendation [4] has LRW con-

struction [2] where the underlying block cipher is AES. In this paper, we describe the general

definition for the XEX2 block cipher with an arbitrary underlying block cipher E.

Definition 3 Let E be an arbitrary block cipher: K × {0, 1}n → {0, 1}n. The XEX2 tweakable

block cipher: {0, 1}k × {0, 1}n × [0..2n − 2]× {0, 1}n → {0, 1}n is defined as

XEX2i,jK (M) = EK1(M ⊕ EK2(i) · αj)⊕ EK2(i) · αj,

where K = K1||K2 ∈ {0, 1}k (Ki ∈ K for i = 1, 2; k = 2|K1|), (i, j) ∈ {0, 1}n× [0..2n− 2], α be

a primitive element of GF (2n), and the operator · is the multiplication in GF (2n).
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The security of XEX2 under chosen ciphertext attack is obtained from the fact that it has LRW

construction.

Proposition 1 (see [9]) Let E : K × {0, 1}n → {0, 1}n be a security block cipher under ci-

phertext attack. Then, the XEX2 tweakable block cipher is security under ciphertext attack.

Moreover,

AdvtccaXEX2(t
′, q) ≤ 2Advprp-ccaE (t, q) + 3q2/(2n − 1),

where t′ = t + O(q),Advprp-ccaE (t, q) is the advantage function under chosen ciphertext attack

which distinguishes the block cipher E from a random permutation (see Def 4.8 [3]).

The XTS mode can be regarded as an ECB-like mode over XEX2, but something special-

ciphertext stealing is employed for any fractional final block and its predecessor. In [4, 5], XTS

is described for the underlying block cipher which is AES with the block length n = 128 bit.

In this paper, we use the previous general definition of XEX2 to propose a general model for

the XTS mode for an arbitrary underlying block cipher.

Definition 4 Let E : K × {0, 1}n → {0, 1}n be an arbitrary block cipher. The XTS mode

constructs a function

XTSiK : K2 × T × {0, 1}N → {0, 1}N ,

where i ∈ T = {0, 1}n, K = K1||K2 ∈ K2, n ≤ N ≤ n · (2n − 1).

With inputs are a key K ∈ K2 , a tweakable i ∈ T and a plaintext P ∈ {0, 1}N , the XTS mode

operates as the following algorithm:

0 AlgorithmXTSik(P )

1 K ∈ K2, i ∈ {0, 1}n, P ∈ {0, 1}N

2 P0P1 ·Pm ← P where m = d|P |/ne−1 and |Pj| = n with 0 ≤ j < m, 1 ≤ |Pm| ≤ n

3 b← |Pm|
4 For j ← 0 to m− 1 do Cj ← XEX2i,jK (Pj)

5 If b = n then

6 Cm ← XEX2i,mK (Pm)

7 else

8 Cm||D ← Cm−1 where |Cm| = b

9 Cm−1 ← XEX2i,mK (Pm||D)

10 Endif

11 Return C0 · · ·Cm

3 The indistinguishability up-to-block of XTS

The XTS mode is not security tweakable block cipher under chosen plaintext attack: en-

crypting the same plaintext twice in the same sector will always result in an identical ciphertext.

Thus, the XTS mode was considered in some more restrictive model [6]. In this part, we evaluate
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XTS with the indistinguishability up-to-block. This security notion is described in [6], however,

ciphertext stealing is not considered. Moreover, the authors asserted (not proved) that: XTS

is indistinguishable up-to-block. In order to evaluate for two cases, we represent the indistin-

guishability up-to-block under chosen plaintext attack and chosen ciphertext attack. Note that

the adversary has the privilege choosing the sector which he wants to write plaintext.

Firstly, we consider the indistinguishability up-to-block under chosen plaintext attack (abbre-

viate as ub-cpa). The adversary is allowed to query a plaintext P and a tweak i. The authors

[6] presented this definition base on game models, however it has not the distinguishing ad-

vantage. In this paper, we represent in detail the definition of indistinguishability up-to-block

based on oracle model, we also give the advantage function of the adversary. Now, we describe

two oracles which the adversary must distinguish.

World 1. Firstly, a key K
$←− K is chosen randomly. Then, the oracle operates as follows. The

oracle takes two inputs-a tweak i ∈ {0, 1}n and a plaintext P ∈ X and produces as output a

ciphert C ← XTSiK(P ) for the adversary. We denote the oracle by XTSK(·).
World 0. The oracle takes two inputs: a plaintext P ∈ X and a tweak i ∈ {0, 1}n. Then, the

oracle chooses randomly a permutation Πi,j(·) ∈ Perm(n) for every pair (i, j) where 0 ≤ j ≤ m

(note that this permutations are saved in the query process). When N is a multiple of n, the or-

acle encrypts Cj ← Πi,j(Pj) where 0 ≤ j ≤ m. When N is not a multiple of n or N = b(modn).

If 0 ≤ j ≤ m − 1, the oracle encrypts Cj ← Πi,j(Pj), then put Cm||D ← Cm−1 with |Cm| = b

and then encrypts Cm−1 ← Πi,j(Pm||D). The oracle outputs C = C0|| · · · ||Cm. We denote the

oracle by {Π(·)}.

Definition 5 Let the XTS mode is determined by Definition 4 and A is an adversary that has

access to an oracle. We consider the two following experiments:

ExperimentExpub-cpa-1
XTS (A) ExperimentExpub-cpa-0

XTS (A)

K
$←− K

d← AXTSK(·) d← A{Π(·)}

Return d Return d

The ub-cpa advantage of A is defined as

Advub-cpaXTS (A) = |Pr[Expub-cpa-1
XTS (A) = 1]− Pr[Expub-cpa-0

XTS (A) = 1]|.

Then, ub-cpa advantage function in the attack on XTS is defined as

Advub-cpaXTS (t, q, σ) = max
A∈A(t,q,σ)

Advub-cpaXTS (A),

where A(t, q, σ) is the set of all adversary making at most q oracle queries with the total number

of blocks at most σ, running in time at most t. We define a tweakable block cipher Ẽ is (t, q, σ, ε)-

ub-cpa security if Advub-cpaXTS (t, q, σ) ≤ ε.

Next, we consider the indistinguishability up-to-block under chosen ciphertext attack (ab-

breviate as ub-cca). The adversary is allowed to query a plaintext P and a tweak i or query
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a ciphertext C and a tweak i. We describe two oracles which the adversary must distinguish

similarly to the chosen plaintext attack.

World 0. Firstly, a key K
$←− K is chosen randomly. Then, the oracle operates as follows. The

oracle takes two inputs-a tweak i ∈ {0, 1}n and a plaintext P ∈ X and produces as output a

ciphertext C ← XTSiK(P ) for the adversary. The oracle takes two inputs tweak i ∈ {0, 1}n and

a plaintext C ∈ X and produces as output a ciphertext P ← Di
K(P ) for the adversary. We

denote the oracle by XTSK(·),XTS−1
K (·).

World 1. If inputs are a tweak i and a plaintext P the oracle operates as the cpa case (note

that permutations Πi,j is saved). If inputs are a tweak i ∈ {0, 1}n and a ciphertext C ∈ X the

oracle operates as follows. When N is a multiple of n, the oracle decrypts Pj ← (Πi,j)−1(Cj)

where 0 ≤ j ≤ m. When N is not a multiple of n or N = b(modn), the oracle decrypts

Pj ← (Πi,j)−1(Cj) where 0 ≤ j ≤ m − 2, then it decrypts Pm||D ← (Πi,m)−1(Cm−1) with

|Pm| = b, Pm−1 ← (Πi,m−1)−1(Cm||D). The oracle returns P = P0|| · · · ||Pm. We denote the

oracle by {Π(·)}, {Π−1(·)}.

Definition 6 Let the XTS mode is determined by Definition 4 and A is an adversary that has

access to the oracle. We consider the two following experiments:

ExperimentExpub-cca-1
XTS (A) ExperimentExpub-cca-0

XTS (A)

K
$←− K

d← AXTSK(·),XTS−1
K (·) d← A{Π(·)},{Π−1(·)}

Return d Return d

The ub-cca advantage of A is defined as

Advub-ccaXTS (A) = |Pr[Expub-cca-1
XTS (A) = 1]− Pr[Expub-cca-0

XTS (A) = 1]|.

Then, ub-cca advantage function in the attack on XTS is defined as

Advub-ccaXTS (t, q, σ) = max
A∈A(t,q,σ)

Advub-ccaXTS (A),

where A(t, q, σ) is the set of all adversary making at most q oracle queries with the total number

of blocks at most σ, running in time at most t. We define a tweakable block cipher Ẽ is (t, q, σ, ε)-

ub-cca security if Advub-ccaXTS (t, q, σ) ≤ ε.

Now, we present and prove Proposition 2 which states that XTS is ub-cca security.

Proposition 2 Let E : {0, 1}n ×K → {0, 1}n be a family of functions and XTS is determined

by Definition 4 using E as an underlying block cipher. We have:

Advub-ccaXTS (t′, q, σ) ≤ Advprp-ccaE (t, q) + 3q2/(2n − 1),

where t′ is a polynomial of t.

Proof. We only need prove for the case that uses ciphertext stealing. Using Proposition 1 we

have

Advtcca
XEX2(t′′, q) ≤ Advprp-cca

E (t, q) + 3q2/(2n − 1).
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We will prove that if there is an ub-cca adversary A on XTS, there will be exist a tcca adversary

B on XEX2 such that

Advub-cca
XTS (A) ≤ Advtcca

XEX2(B)

For every ub-cca adversary A on XTS, we will construct a tcca adversary B on XEX2. If A

queries a tweak i and a plaintext P , B separates P = P0|| · · · ||Pm where |P0| = · · · = |Pm−1| = n

and |Pm| = b < n. The adversary B queries consecutively (Pj, i, j) where j = 0, · · · ,m−1 to the

oracle of XEX2 and receives C0, · · · , Cm−1. The adversary B put Cm||D ← Cm−1 and queries

(Pm||D, i,m) to the oracle of XEX2, it receives C ′m−1. B returns C = C0|| · · · ||Cm−2||C ′m−1||Cm.

If A queries a tweak i and ciphertext C, B separates C = C0|| · · · ||Cm where |C0| = · · · =

|Cm−1| = n and |Cm| = b < n. The adversary B queries consecutively (Cm−1, i,m) where

j = 0, · · · ,m − 2 and receives P0, · · · , Pm−2. B queries Cm−1, i,m) and receives Pm||D. Then

B queries (Cm||D, i,m− 1) and receives Pm−1. B returns P = P0|| · · · ||Pm. If the adversary A

returns a bit d after querying q times, the adversary B returns d.

If B is used the oracle O = XEX2K , the view that A runs as a subroutine of B same the view

that A runs independently attacks on XTS. Thus, we have:

Pr[Expub-cca-1
XTS (A) = 1] = Pr[Exptcca-1

XEX2(B) = 1].

B is used the oracle O = Π̃(·, ·). Because of our construction so the probability that B returns

1 is the probability that A returns 1 in that case, we denote AΠ̃(·,·). This means that:

Pr[AΠ̃(·,·) = 1] = Pr[Exptcca-0
XEX2(B) = 1].

Now, we consider the view that A runs independently attacks on XTS and the view that

A runs as a subroutine of B. Then, we present the relationship between two probabilities

Pr[Expub-cca-0
XTS (A) = 1] and Pr[AΠ̃(·,·) = 1]. In the first case, A receives answers from the per-

mutations Πi,j or (Πi,j)−1. In the second case, A receives answers from the tweakable random

permutations Π̃(·, ·) or Π̃−1(·, ·). Note that in the construction of Πi,j or (Πi,j)−1, values are

chosen randomly. Thus, we can state that the view that B creates for A same as the view that

A runs independently attacks on XTS. We have

Pr[Expub-cca-0
XTS (A) = 1] = Pr[Exptcca-0

XEX2(B) = 1].

From above arguments we have

Advtcca
XEX2(B) = Advub-cca

XTS (A).

We get the proof for Proposition 2. �

4 The indistinguishability in the proposed security model

4.1 Our security model

Typically, the XTS mode encrypts the same plaintext twice in the same sector number

will produce an identical ciphertext. The authors of [6] presented the ideal that transforms
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the sector number to a random value. This allows us to encrypt the same plaintext in distinct

ways for the same sector number. In this paper, we generalize the above ideal and present

the detail distinguishing advantage. Instead of using the sector number i, we use a function

ψ : {0, 1}s × {0, 1}r → {0, 1}n with number sector i and a random value r to generate a new

value ψ(i, r) = i′; then the plaintext will be encrypted by the index i′ but the ciphertext is saved

in the sector i. This means that the jth ciphertext block in the sector number i is determined

by EK1(P ⊕EK2(i
′) ·αj)⊕EK2(i

′) ·αj. Note that the combination i||R in [6] is a special case of

our model. In order to present the distinguishing advantage, we consider a family of function

ψ which satisfies Pr[ψ(i1, r1) = ψ(i2, r2)] ≤ ε for every (i1, r1) 6= (i2, r2), we call such function

be an ε-collision resistant function.

Next, we will present the security model for this ideal. Let Ẽ : K × T × X → X be a fix

tweakable block cipher. Consider an adversary that has access to an oracle which is one of two

cases as follows:

World 1. Firstly, a key K
$←− K is chosen randomly. When the input is (i, P ), the oracle chooses

r
$←− {0, 1}r and computes i′ ← ψ(i, r) then returns (i′, C) where C = Ei′

K(P ). We denote the

oracle by ẼK(·)
World 0. The input is (i, P ). The oracle chooses r

$←− {0, 1}r and computes i′ ← ψ(i, r) then

returns (i′, C) where C ← Π̃(i, P ) and Π̃(·, ·) is a tweakable random permutation (Π̃(i, ·) is a

permutation which is chosen randomly form Perm(N). We denote the oracle by Π̃(·, ·).

Definition 7 Let Ẽ : K × T × X → X X be a tweakalbe block cipher and A is a probability

polynomial-time algorithm that has access the oracle. We consider two experiments:

ExperimentExptcpa-1

Ẽ
(A) ExperimentExptcpa-1

Ẽ
(A)

K
$←− K Π̃(·, ·) is a tweakable random permutation

r
$←− {0, 1}r r

$←− {0, 1}r

b← AẼK(·) b← AΠ̃(·,·)

Return b Return b

The tcpa advantage of A is defined as

Advtcpa
Ẽ

(A) = |Pr[Exptcpa-1

Ẽ
(A) = 1]− Pr[Exptcpa-0

Ẽ
(A) = 1]|.

Then, tcpa advantage function in the attack on XTS is defined as

Advtcpa
Ẽ

(t, q) = max
A∈A(t,q)

Advtcpa
Ẽ

(A),

where A(t, q) is the set of all adversary making at most q oracle queries running in time at

most t. We define a tweakable block cipher Ẽ is (t, q, ε)-tcpa security if Advtcpa
Ẽ

(t, q) ≤ ε.

4.2 Main result

From above definition, we present and prove for the following proposition.
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Proposition 3 Let E : K × {0, 1}n → {0, 1}n is a family of functions and the XTS mode is

defined by Definition 4 using E as an underlying block cipher. If ψ is an ε-collision resistant

function we have

AdvtcpaXTS(t′, q) ≤ 2Advprp-cpaE (t, q) + 3q2/(2n − 1) + ε,

where t′ is a polynomial of t, Advprp-cpaE (t, q) is the advantage function under chosen planitext

attack which distinguishes the block cipher E from a random permutation (see Def 4.7 [3]).

Proof. Using Proposition 1 we have

Advtcpa
XEX2(t′′, q) ≤ Advprp-cpa

E (t, q) + 3q2/(2n − 1).

We will prove that if there is a tcpa adversary A on XTS, there will exist a tcpa adversary B

on XEX2 such that

Advtcpa
XTS ≤ Advtcpa

XEX2(B) + ε.

Figure 1: The diagram builds an adversary B on XEX2 from an adversary A on XTS

For every tcpa adversary A on XTS, we will construct a tcpa adversary B on XEX2. If A

queries (i, P ) where |P | = N , B chooses a random value r
$←− {0, 1}r and computes i′ ← ψ(i, r),

then B separates P = P0|| · · · ||Pm where |P0| = · · · = |Pm−1| = n and |Pm| = b ≤ n. When

b = n, B queries consecutively (i′, j, Pj) to the oracle O of XEX2 where 0 ≤ j ≤ m and it

receives Cj. When b < n, B queries consecutively (i′, j, Pj) to the oracle O of XEX2 where

0 ≤ j ≤ m − 1 and it receives Cj. Next, B puts Cm||D ← Cm−1 where |Cm| = b and queries

(i′,m, Pm||D) to the oracle. B is returned a value which names Cm−1. Finally, B returns (i′, C)

where C = C0|| · · · ||Cm. If the adversary A returns a bit d after querying q times, the adversary

B returns d. Note that, we only need consider for the case that b < n.

If B is used the oracle O = XEX2K , the view that A runs as a subroutine of B sames the view

that A runs independently attacks on XTS. Thus, we have:

Pr[Exptcpa-1
XTS (A) = 1] = Pr[Exptcpa-1

XEX2(B) = 1].
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If B is used the oracle O = Π̃(·, ·), the ciphertext that A is returned when running as a

subroutine of B is (i′, C) where C = C0|| · · · ||Cm and Cj = Πi′,j(Pj) with 0 ≤ j ≤ m −
2, Cm||D = Πi′,m−1(Pm−1), |Cm| = b and Cm−1 = Πi′,m(Pm||D) where Πi′,j(·) = Π((i′, j), ·) is

a permutation which is chosen randomly in Perm(n). Thus, Cj are random and independent

values so C is a random value. In the case that A runs independently attacks on XTS, the

ciphertext that A is returned is C = Π̃(i′, P ) where Π̃(i′, ·) is a permutation which is chosen

randomly in Perm(N). We will compare the view of A in both cases. If the tweak i′ that is

generated by ψ(i, r) in q times is different, then the view that A runs as a subroutine of B

same the view that A runs independently attacks on XTS. Indeed, ciphertexts that is returned

to A are random and independent values in the both cases. If there is the tweak i′ that repeats

twice in q times, then the ciphertexts C are not independent so the view of A is different in

two cases, however this has probability at most ε. Thus, we have

Pr[Exptcpa-0
XEX2(B) = 1]− Pr[Exptcpa-0

XTS (A) = 1] ≤ ε.

From above arguments we have

Advtcpa
XTS(A) =Pr[Exptcpa-1

XTS (A) = 1]− Pr[Exptcpa-0
XTS (A) = 1]

≤Pr[Exptcpa-1
XEX2(B) = 1]− Pr[Exptcpa-0

XEX2(B) = 1] + ε

=Advtcpa
XEX2(B) + ε

We get the proof for Proposition 3.�

The ideal of [6] is a special case of our model where the function ψ(i, r) = i||r. It is easy to see

that ε = 1/2r. From Proposition 3, the tcpa advantage in the model which was proposed in [6]

is:

Advtcpa
XTS ≤ 2Advprp-cpa

E + 3q2/(2n − 1) + 1/2r.

Note. In [6] commented that the values of r may be very small, this means that ε is non-

negligible. By our result, we can state that the XTS mode in this model is distinguishability.

Moreover, we can realize that the model in [6] is attacked easily on the indistinguishability

when an adversary repeats consecutively queries.

5 Conclusion

In conclusion, the XTS mode is indistinguishability up-to-block even it uses ciphertext

stealing. Moreover, we present the evaluation for the indistinguishability of XTS in security

model which based on an ε-collision resistant function to transform sector number. The theoretic

result shows that the indistinguishability of XTS is guaranteed when the random value r is large

enough. However, in order to actualise requests in our model there requires some technology

problems that solve the storage of the added random value. In the future, we hope that there

are another technology solution more effective.
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