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Abstract. We study instantiating the random permutation of the block-
cipher mode of operation IAPM (Integrity-Aware Parallelizable Mode)
with the public random permutation of Keccak, on which the draft stan-
dard SHA-3 is built. IAPM and the related mode OCB are single-pass
highly parallelizable authenticated-encryption modes, and while they
were originally proven secure in the private random permutation model,
Kurosawa has shown that they are also secure in the public random per-
mutation model assuming the whitening keys are uniformly chosen with
double the usual entropy. In this paper, we show a general composabil-
ity result that shows that the whitening key can be obtained from the
usual entropy source by a key-derivation function which is itself built
on Keccak. We stress that this does not follow directly from the usual
indifferentiability of key-derivation function constructions from Random
Oracles. We also show that a simple and general construction, again
employing Keccak, can also be used to make the IAPM scheme key-
dependent-message secure. Finally, implementations on modern AMD-64
architecture supporting 128-bit SIMD instructions, and not supporting
the native AES instructions, show that IAPM with Keccak runs three
times faster than IAPM with AES.

1 Introduction

Symmetric key encryption of bulk data is usually performed using either a stream
cipher or a block cipher. A long message is divided into small fixed-size blocks
and encryption is performed by either a stream-cipher mode or a block-cipher
mode employing a cryptographic primitive that operates on blocks. The block
primitives have traditionally been keyed-primitives, i.e. the block primitives also
take a secret key as input. However, stream-cipher modes are sometimes de-
signed to work with key-less block primitives as the state itself can maintain or
carry some secret information. Examples include random-oracle domain exten-
sions and authenticated-encryption in the streaming mode [11] using the sponge
construction [5], proven secure under the strong notion of indifferentiability [20].

Note that the only underlying assumption in the sponge construction is that
the fixed-length (input and output) permutation is indeed as good as picking
such a permutation randomly from all such permutations with the same domain
and range. The random permutation is publicly available, yet it is deemed ran-
dom enough in the sense that without actually computing the permutation P
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on x (such that x was not the output of an earlier computation of P−1(y) for
some y), its value P (x) is random and un-predictable. Indeed, this is the model
under which most cryptographic hash functions operate including SHA-3 [24] (a
draft standardization of Keccak [4]). We will refer to this as the public random-
permutation (RP) model. This should be contrasted with the private random-
permutation (RP) model, where the random-permutation is not available to the
public and it can only be accessed via an oracle, such as an encryption/decryption
algorithm which is built using this private random-permutation. Moreover, tak-
ing AES[1] as an example, the model contends that the AES permutation keyed
with a secret key becomes a private random-permutation. However, note that it
requires that two (or more) such instantiations with randomly and independently
chosen keys lead to completely independent private random-permutations, which
is a strong requirement on the block primitive.

The challenge of designing such strong block-cipher primitives1, and at the
same time advances in designing good random permutations enjoying prov-
able bounds on differential trails [1, 4], has led to many proposals of encryp-
tion schemes in the public random-permutation model. However, this has still
been the case mostly in the stream-cipher mode. As mentioned above, the Kec-
cak team has proved that one can build authenticated-encryption stream-cipher
modes using the very same public Keccak permutation [6] on which SHA-3
(as a random oracle) is built. The question naturally arises if one can build
authenticated-encryption block-cipher modes of operation using the Keccak per-
mutation, i.e. in the public RP model.

In 2010, Kurosawa [19] showed that a modified version of the Integrity-aware-
Parallelizable-Mode (IAPM) [15] authenticated encryption scheme is secure in
the public RP model. Jutla in [15] had only shown that the IAPM scheme
is secure in the private random-permutation model (e.g. instantiating it with
keyed-AES). The result of Kurosawa shows that one can instantiate it (or at
least the slightly modified version) by a public random-permutation, e.g. the
key-less Keccak permutation. He also showed that the same applies to modified
versions of OCB [23] which is a variant of IAPM that can also handle messages
that are not of length exact multiples of block size. The main attraction of
these schemes is that they provide single-pass authenticated-encryption, and in
addition are fully-parallelizable. Essentially, both these properties were obtained
in the private RP model by requiring two independent keys k1 and k2, the key
k1 being say, the AES key, and k2 being a whitening key. The whitening key
k2 is used to whiten the i-th block of input before encryption by AES under
key k1, and also to whiten the output of the AES encryption in the same way.
We will refer to this as pre- and post-whitening with k2. The whitening refers
to obtaining n-bits of new randomness from k2 and block index i, and xor-ing
it to the input block. The main idea here is that this randomness need only

1 We remark that AES, which builds such a keyed-primitive, has never been shown to
exhibit any weakness in this primitive. Nevertheless, the keyed-primitive of AES is
a strong property or assumption.



be pair-wise independent, which makes this a rather simple operation, e.g. a
linear-feedback-shift-register operation.

The result of Kurosawa shows that one can get rid of the permutation key,
i.e. k1 by setting it to a randomly chosen public constant, and the scheme is
still secure for authenticated encryption (just by the pre- and post- whitening
due to k2 using a pair-wise independent random function). This is then remi-
niscent of the Even-Mansour construction [13], except that it uses a pair-wise
independent function of the key k2. Further, its security bound has terms sim-
ilar to the Even-Mansour bound, namely z ∗ q ∗ (2−n + 2−|k2|), where z is the
number of encryption/decryption queries, q is the number of evaluations of the
public permutation, and n is the block size of the primitive. Thus, as shown
by Daemen [12], one must have large n, because of the “quadratic” nature of
the bound. Thus, a 128-bit AES permutation (with a fixed key) is out of the
question. However, this quadratic nature of the bound also applies to the sponge
construction mentioned above, and hence Keccak actually uses a permutation on
n = 1600 bits, in which case at least this concern goes away. We will refer to this
version of IAPM that uses the key-less Keccak permutation as IAPM-Keccak.

However, once we are in the public random-permutation model, there are
other issues which need to be addressed, which are usually swept aside in the
(private) random-permutation model by making various independence assump-
tions (most likely valid, but still not entirely satisfying). In the public random-
permutation model, such independence assumption are definitely not valid a
priori, and one must prove that composition of various components of an end-
to-end encryption paradigm, e.g. a secure channel, are secure, especially if they
are all using the same public random-permutation.

In particular, while one may make the benign assumption that the whitening
key k2 is chosen uniformly at random from all 256-bit strings (this is the mini-
mum width required for k2 because of the above quadratic bound so as to match
security obtained in the private RP model), it most likely was obtained from a
wider, less-uniform random source and with lesser min-entropy (say, 128-bits)
using a key-derivation function. Most likely, this key-derivation function itself is
built using the same public random-permutation (e.g. Keccak of SHA-3).

Even if this key-derivation function is proven to be a random oracle in the
indifferentiability sense, it does not prove that it can be composed “as is” with
IAPM that is using the same key-less permutation Keccak. In fact, while [20]
prove a composition theorem that says that a cryptosystem C can use an ideal
primitive I, instead of an algorithm alg built using another public ideal primitive
F , and still be equally secure, this composition theorem does not hold if C itself is
using F (in our case F is the Keccak permutation). We defer detailed discussion
to Section 5.

However, in this work we prove that in some special situations of cryptosys-
tems themselves accessing the public ideal primitive F a composition result
still holds. This result should be of general interest, beyond application to us-
ing IAPM in the random-permutation model. In particular, we show that a
key-derivation function that uses the Keccak permutation and which is shown



indifferentiable from a random oracle can indeed be securely used to generate
the 256-bit uniformly random whitening key of IAPM-Keccak. The final security
bound we obtain is of the form q ∗ 2κ + z ∗ q ∗ (2−n + 2−256), where κ is the
min-entropy of the key-source. This matches the key-source security bound in
the private RP model.

We also need to study security of secrecy under key-dependent message en-
cryption (KDM-security) [7] as in the public RP model this could have ramifi-
cations usually ignored in the private RP model. Further, apart from security
issues like accidental encryption of the key itself, KDM security can have other
applications [7]. In the random oracle model, [7] also show an encryption scheme
that is KDM-secure. However, constructions of arbitrary output length random
oracles from small fixed length random oracles or random permutations tend to
be sequential or at best tree-like, and do not offer fully parallelization of IAPM.
Further, while IAPM operates at full rate, i.e. rate of encryption of 1600 bits per
invocation of Keccak permutation, the random oracle constructions have a lesser
ratio than the bit-size of the permutation. Finally, IAPM provides authentication
almost for free.

Fortunately, we show that a construction similar to [7] can be used to obtain
KDM-security for IAPM. The main idea is to apply, for each message, a random
oracle H on (k‖IV ) but only to obtain 256-bits of a fresh 256-bit whitening key
k2. Then, this key k2 can be used to do the IAPM authenticated-encryption
in the public RP model. It is a non-trivial task to prove that the same public
random-permutation can be used to build the random oracle H also. Our result
is also general and applies to any cryptosystem that is chosen plaintext attack
(CPA) secure in the public RP model. In particular, it also applies to IAPM in
the private random-permutation model (i.e. using keyed-AES). We also show,
using our earlier composition theorem, that the key k need not be the wider
source from which the key k2 is obtained, but an already extracted key k from
the wider source k′ using a random oracle built from the same public RP, as
long as the source k′ is erased after extraction of k.

Finally, we prove that general IAPM like constructions, such as OCB and
others which are based on pre- and post- whitening by pair-wise independent
random numbers, are as secure in the public random-permutation model as in
the private random-permutation model.

We also implement the KDM-secure IAPM scheme using the Keccak-1600
permutation and show that on modern Intel/AMD architectures supporting 128-
bit SIMD operations (and not supporting native AES instructions) it runs at
speeds 3 times faster than a similar IAPM scheme using keyed-AES.

2 Preliminaries

Throughout this paper, an algorithm will be called an N -oracle algorithm if it
has access to N number of oracles. If it has only one oracle, we will just refer to
it as an oracle algorithm.



Definition 1. (ǫ-XOR-Universal Hash Function) [18] For any finite set H ,
an H-keyed (m,n)-hash function H has signature H : H × {0, 1}m → {0, 1}n.
Such a hash function is called an ǫ-XOR-Universal hash function, if for every
m-bit value M , and every n-bit value c, Prh[H(h,M) = c] ≤ ǫ, and further if
for every pair of distinct m-bit values M1 and M2, and every n-bit value c,
Prh[H(h,M1)⊕H(h,M2) = c] ≤ ǫ, where the probabilities are over choosing h
uniformly from H .

Definition. For a random variable X defined on {0, 1}n, its min-entropy

H∞(X) is the minimum over all n-bit strings x of log (1/PrX [X = x]).
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Fig. 1. IAPM in Public Random Permutation Model

3 Authenticated Encryption

We give definitions of authenticated encryption schemes in a public random
permutation model. Let Coins be the set of infinite binary strings. Let K⊆ {0, 1}∗

be the key space, and D be a distribution on the key space.

DefinitionA (2-oracle, probabilistic, symmetric, stateless) authenticated-encryption
scheme, with block size n, key space K, and distribution D, consists of the fol-
lowing:

– initialization: All parties exchange information over private lines to es-
tablish a private key k ∈ K. All parties store k in their respective private
memories.

– message sending with integrity: Let E and D be efficient 2-oracle al-
gorithms, with E taking as input a key k (in K), coins (in Coins), and a
plaintext binary string and outputting a binary string, and D taking as input
a key k and a ciphertext binary string and outputting either ⊥ or a binary
string. The two oracles take n-bits as input and produce n-bits as output.



In addition E and D have the property that if oracles O1 and O2 implement
inverse functions of each other, then for all k ∈ K, for all coins and P ,

DO1,O2(k, (EO1,O2(k,coins, P )) = P

We will usually drop the random argument to E as well, and just think of E as
a probabilistic algorithm. The security of such a scheme is given by the following
two definitions, the first defining confidentiality under chosen plaintext attacks,
and the second defining message integrity. In the security definitions, we will
count the length of plaintext inputs in terms of n-bit blocks. Thus, a plaintext
input of length m bits will be considered to have length ⌈m/n⌉ blocks.

Definition (Chosen-Plaintext Attack Security[2])
For any n > 0, consider a 3-oracle probabilistic adversary A. Consider an

authenticated-encryption scheme with key-space K, key distribution D and 2-
oracle algorithms E and D. For any n-bit permutation π, let Realπ

k
be the oracle

that on input P returns Eπ,π−1

(k, P ), and Idealπ
k
be the oracle that on input P

returns Eπ,π−1

(k, 0|P |). The IND-CPA advantage AdvA of the adversary A in
the public random permutation model is given by

|Pr[k←D;Aπ,π−1,Realπ
k = 1]− Pr[k←D;Aπ,π−1,Idealπ

k = 1]|

where the probabilities are over choice of π as a random permutation on n-
bits, and choice of k according to D, other randomness used by E, and the
probabilistic choices of A.

An authenticated-encryption scheme with block size n is said to be (t, q1, q2,
m, ǫ)-secure against chosen plaintext attack in the public random permutation
model if for any adversary A as above which runs in time at most t and asks at
most q1 queries to π and π−1, and at most q2 queries to the third oracle (these
totaling at most m blocks), its advantage AdvA is at most ǫ.

Definition (Message Integrity): Consider an adaptive 3-oracle (probabilistic)
adversary A running in two stages. Adversary A has access to oracles O1, O2

and an encryption oracle EO1,O2(k, ·). In the first stage (find) A asks r queries
of the encryption oracle. Let the oracle replies be C1, ..., Cr. Subsequently in the
second stage, A produces a cipher-text C′, different from each Ci, i ∈ [1..r]. The
adversary’s success probability is given by

SuccA
def
= Pr[Dπ,π−1

(k, C′) 6=⊥]

where the probability is over choice of O1 as a random permutation on n-bits
(and O2 as its inverse), and choice of k according to D, other randomness used
by E, and the probabilistic choices of A.

An authenticated-encryption scheme with block size n is (t, q1, q2,m, ǫ)-
secure for message integrity in the public random permutation model if for any
3-oracle adversary A running in time at most t and making at most q1 queries
to O1 and O2 and at most q2 queries to the encryption oracle (these totaling m
blocks), its success probability is at most ǫ.



4 IAPM in Random Permutation Model

We will prove our results for more general (abstract) IAPM-like schemes, but
to serve as a background we briefly review the definition of IAPM from [15,
16]. In the following, the operator “+” will stand for integer addition, and “⊕”
for n-bit exclusive-or. Since with wide permutations on n bits, the “MAC” tag
produced by the permutation may need to be truncated, the authentication
check in decryption is defined slightly differently (as in OCB [23] and [19]). In
the following, when using n-bit permutations, we will refer to n-bit strings as a
block.

Definition 2. Given a permutation f from n bits to n bits, an H-keyed (2n, n)-
hash-function g, whereH is the set of all ν-bit strings (ν ≤ n), the (deterministic)
function e-iapmf,g: H × {0, 1}

n × ({0, 1}n)∗ → ({0, 1}n)+ is defined as follows:

– Let the input to e-iapmf,g be h ∈ H , an n-bit (block) IV, and an m block
string P (= P1, P2, ..., Pm).

– Define C0 = IV , and checksum = 0⊕
⊕m

j=1
Pj .

– Define for j = 1 to m:
Cj = g(h, 〈IV, j〉)⊕ f(Pj ⊕ g(h, 〈IV, j〉)).

– Cm+1 = g(h, 〈IV, 0〉)⊕ f(checksum⊕ g(h, 〈IV,m+ 1〉)).
– The output of the function e-iapmf,g is them+2 block string C0, C1, ..., Cm+1.

The last block can be truncated to the required “MAC” tag-length, say µ
bits.

Definition 3. With the same parameters as above, the function d-iapmf,g: H×
({0, 1}n)+ → ({0, 1}n)∗ ∪ {⊥} is defined as follows:

– Let the input to d-iapmf,g be an h ∈ H , an ((m + 1)n + µ)-bit string C,
which is divided into (m+ 1) blocks IV, C1, ..., Cm and a tag T of µ bits.

– Define for j = 1 to m:
Pj = g(h, 〈IV, j〉)⊕ f−1(Cj ⊕ g(h, 〈IV, j〉)).

– T ∗ = g(h, 〈IV, 0〉)⊕ f(
⊕m

j=1
Pj ⊕ g(h, 〈IV,m+ 1〉)).

– if (truncµ(T
∗) 6= T ) return ⊥, otherwise the output of d-iapmf,g is the m

block string P1, ..., Pm.

See Fig. 1 (right of the dashed vertical line) for a schematic diagram. The left
of the dashed line depicts key derivation using the same permutation, which is
discussed in the next sub-section.

4.1 Public Random Permutation Model

If g is an efficiently computable function, the above two functions e-iapm and
d-iapm can be computed efficiently given oracle access to f and f−1. It is impor-
tant to make this characterization as we intend to instantiate f and f−1 by public
permutations. Further, the definition of an (authenticated) encryption scheme
requires specifying the distribution from which the keys are sampled. While we



may assume a benign setting where the ν-bit key h above is chosen uniformly
from H , it is most likely that this key is obtained using a key-derivation function
(KDF) which in turn also used the same public permutation f . Thus, we will
define a composite scheme which takes an arbitrarily long bit-string k as (key)
input, uses a general-purpose KDF (with oracle access to f and f−1) to obtain h
from k, and then uses e-iapm and d-iapm as per Definitions 2, 3 with parameter
g and with oracle access to f and f−1.

Definition 4. (IAPM in public random permutation model)[Fig. 1] Let f
be an n-bit permutation. Let g be an (efficiently computable) H-keyed (2n, n)-
hash function, where H is the set of all ν-bit strings (ν ≤ n). Let kdf be
an efficient (key-derivation) 2-oracle algorithm that takes arbitrary bit strings
as input and produces ν-bit strings as output. The authenticated-encryption
scheme IAPM(kdf, g, ν, µ, κ) with block size n, and oracles f and f−1 is given
by the following key space, distribution, and 2-oracle encryption and decryption
algorithms:

– The set K of keys is arbitrary bit strings. The distribution D on K is any
distribution on K with min-entropy κ.

– Let h = kdf
f,f−1

(k).

– The encryption under key k is given by e-iapm
f,f−1

g (h, ·, ·), and the decryp-

tion by d-iapm
f,f−1

g (h, ·).

It is easy to see that the decryption algorithm correctly inverts the encryption
algorithm.

In Section 5.1 we prove a general composition result for application of key-
derivation functions, and using that it will follow that all security properties
related to the above composite scheme can be reduced to related security prop-
erties of the following IAPM scheme with uniformly chosen keys.

Definition 5. (IAPM with uniform keys in public RPmodel) Authenticated-
Encryption scheme IAPM-uniform(g, ν, µ) with block size n, and oracle f and
f−1 is given by a key space K that is the set of ν-bit strings, and a distribu-
tion D on keys that is the uniform distribution on K. Moreover, the encryption
and decryption algorithms under key k are given by e-iapm

f,f−1

g (k, ·, ·), and

d-iapm
f,f−1

g (k, ·) resp.

Definition 6. (Zero-IV IAPM) An IAPM scheme is called a zero-IV scheme
if IV is always set to zero. Thus, C0 = 0 for all ciphertexts, and g function is
computed with IV set to zero. As a consequence, the encryption function does
not need the IV input.

5 Indifferentiability

In this section we briefly discuss the notion of indifferentiability introduced by
Maurer et al [20] based on ideas of universal composability (UC) [9] and the
model described in [21]. We refer the reader to [20, 11] for details.



A cryptosystem C is modeled as an interactive algorithm (or Turing Machine),
and it is run by an environment E . The cryptosystem C has a private interface
Cpriv to the environment E and a public interface Cpub to the adversary. The
environment also controls the adversary. An ideal primitive is a cryptosystem
whose interface just serves queries with answers. In this work, we focus on the
notion of a public ideal primitive that has only a single interface which serves
as both public and private interfaces. An important public ideal primitive is a
random oracle (RO) which provides a random output to each query with the
constraint that identical queries are replied with the same answer. We will refer
to a random oracle that outputs exactly m-bits as an m-bit RO. Note that the
input to an m-bit RO can be an arbitrarily long string.

Definition 7. An oracle algorithm alg with its oracle instantiated by an ideal
primitive F is said to be (tD, tS , q1, q2, L, ǫ)-indifferentiable from a public ideal
primitive I if there exists an oracle algorithm (called simulator) S that runs
in time tS and makes at most L oracle calls, and such that for any (2-oracle)
distinguisher D the following holds:

|Pr[Dalg
F ,F = 1] − Pr[DI,SI

= 1]| < ǫ

where D runs in time tD and makes at most q1 (q2) calls to the first oracle
(second oracle resp.). When the above property holds regardless of the run-time
of D, we will say that algF is (∞, tS , q1, q2, L, ǫ)-indifferentiable from I.

Readers more familiar with the UC framework will note that the above is equiv-
alent to saying that the public ideal functionality I is UC-realizable by alg in
the F -hybrid model.

F

D

alg

≈
I

S

A

=⇒

F

D

alg

≈ I

A′

C C

∃S

Fig. 2. Indifferentiability and Composition

When composing cryptosystems, it is important to note that if a cryptosys-
tem C uses a cryptosystem P then the public interface of C includes the public
interface of P . One of the main results of [20] proves a composition theorem (see
Fig. 2) which informally states that if an oracle algorithm alg with oracle access



to a public ideal primitive F is indifferentiable from a public ideal primitive I,
then a cryptosystem C using alg

F (with adversary having access to F by the
above convention) is as secure as the cryptosystem C using I (with adversary
having access to I). However, if C itself accesses the public ideal primitive F ,
then this composition theorem may not hold in general. In fact, C needs its oracle
instantiated by either F or some other public ideal primitive in the I-world as
well. In this situation, for the composition theorem to hold in general it is well
known that in the definition of indifferentiability the distinguisher may need ac-
cess to the same primitive F in both worlds [10]. This, of course, would preclude
programming of F using the simulator S.

However, we show that in some special situations of cryptosystems themselves
accessing the public ideal primitive a composition result still holds. For the next
definition, we will focus on cryptosystems that are themselves ideal primitives
and further they use another public ideal primitive, say F , as an oracle. Thus,
the public interface of the former primitive is also F . We now specialize the
definition of “as secure as” [20] to cater to such cryptosystems.

kdf π

D → a x

init

C∗ A

E

C

Dashed arrows indicate oracle responses.

Fig. 3. Cryptosystem initialized using KDF

Definition 8. For public ideal primitives F1 and F2, a cryptosystem CF1

1 is said
to be (q1, q2, N, 1 − ǫ) as secure as a cryptosystem CF2

2 if for all environments
E the following holds: for all adversary A1 making at most a total of q1 oracle
calls there is an adversary A2 making at most a total of q2 oracle calls such that

|Pr[E(CF1

1 ,AF1

1 ) = 1]− Pr[E(CF2

2 ,AF2

2 ) = 1]| < ǫ,

where both probabilities are conditioned on the total number of calls to F1 (F2

resp.) by C1 and A1 combined (by C2 and A2 combined resp.) being less than
N .



5.1 KDF Composition

kdf π

D → a x

init C∗ A

E

RO S
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Fig. 4. Various Experiments in Theorem 1

Definition. We will say that a cryptosystem C has an initialization step init, if
C can be split into two parts init and C∗. Further, over all calls from E to C, only
the first call leads to execution of init and which results in a private state σ. The
private state σ is used as an additional input by C∗ in all calls from E to C.

Theorem 1. Let kdf be an oracle algorithm such that with its oracle instanti-
ated with a public ideal primitive π, it is (∞, tS , q1, q2, L, ǫ)-indifferentiable from
an m-bit RO. Let C1 be a 1-oracle cryptosystem that has an initialization step
that generates a private state by sampling m uniformly random bits. Let D be any
distribution on finite length binary strings with min-entropy ν. Let C be a cryp-
tosystem which is identical to C1 except that the initialization step is different
and consists of running kdf on an input a sampled from D, with the oracle calls
of kdf redirected to the oracle of C1. The private state of the initialization step
is the output of kdf. Then, for all q3, and for all (q3 ≤)N < q2, cryptosystem
Cπ is (q3, q3, N, 1− L ∗N ∗ 2−ν − 2 ∗ ǫ) as secure as cryptosystem Cπ1 .

Remark 1. The cryptosystem C is depicted in Fig. 3 (and also in Expt0 of Fig. 4).
It is important to note that π is a public ideal primitive, and when proving
security the adversary is allowed access to π. The cryptosystem C1 can be seen
represented in Expt4 of Fig. 4.

Remark 2. In most known realizations of RO such as the sponge construction [5],
the simulator S makes at most L = 1 oracle calls.

Proof: Let E be any environment. Note that the public interfaces of C and C1
include the interface of public ideal primitive π. Let C1 consist of an initialization



phase of sampling a uniformly randomm-bit string r and a second 1-oracle phase
C∗ running with additional input r. Let Ψ be a 2-oracle cryptosystem with oracles
O1 and O2, with an initialization phase that samples a from D, queries O1 with
a to get x and runs the 1-oracle second phase C∗ with additional input x and
oracle O2. Note that Ψ makes at most one call to the first oracle O1. Moreover,
if the two oracles of Ψ are instantiated by O1 = kdf

π and O2 = π, then we get
the cryptosystem Cπ (see Fig. 3).

For any adversary A, consider a composite 2-oracle algorithm D that is a
composition of E , the 1-oracle adversary A and Ψ as defined above. The oracle
calls of 2-oracle Ψ are directed to the two oracles ofD respectively, and the oracle
calls of the 1-oracle A are directed to the second oracle of D. The algorithm D
also outputs a single bit which is same as the bit output by E . Now consider two
worlds: a real world where the first oracle is instantiated by kdf

π and the second
oracle by π, and an ideal world where the first oracle of D is instantiated by an
m-bit RO and the the second oracle by S (which itself has oracle access to the
same m-bit RO). Here S is the simulator as stipulated in the indifferentiability
hypothesis of kdfπ and m-bit RO. More formally, we will say that D is taking
part in the real world experiment or the ideal world experiment. The real and
the ideal world experiments will also be denoted by Expt0 and Expt1 respectively
(see Fig. 4). We will denote probabilities in Expti by a subscript i. Let N be any
number less than q2. Note that the total number of calls to the second oracle
of D is the sum of the total number of calls of Ψ to its second oracle and the
total number of calls of A to its oracle. By the indifferentiability hypothesis,
and conditioned on D making at most N( < q2) calls to the second oracle,
the algorithm D cannot distinguish between the real world experiment and the
ideal world experiment with probability more than ǫ. In other words, |Pr0[D =
1]− Pr1[D = 1]| ≤ ǫ.

Let BAD be the event that in Expt1, the simulator S makes a call to its oracle
(the m-bit RO) which is identical to the single call made to the first oracle by D.
Recall, in Expt1 the first oracle of D is same as the m-bit RO oracle of S. Now,
the probability of D outputting 1 in Expt1 is at most the sum of the following
two values: (a) the probability of D outputting 1 and event BAD not happening,
and (b) the probability of event BAD happening. Thus, Pr1[D = 1 ∧ ¬BAD] ≤
Pr1[D = 1] ≤ Pr1[D = 1 ∧ ¬BAD] + Pr1[BAD].

Now, consider another experiment Expt2 (see fig. 4) which differs from the
ideal world experiment Expt1 in that the common m-bit RO oracle of S and D
is replaced by two independent m-bit random oracles RO1 and RO2 (RO1 for
the first oracle of D and RO2 for the oracle of S; see Fig. 4).

From the definition of a random oracle, i.e. the fact that it outputs random
and independent values on different inputs, it is not difficult to see that the first
probability (a) remains same in Expt2 as in Expt1. More formally, this is proved
by induction over a sequence of hybrid games, starting from Expt1 and ending in
Expt2, where in each subsequent game one additional call of S to its oracle (going
backward from last call to first) is made to the new independent m-bit random



oracle RO2. Thus, Pr2[D = 1 ∧ ¬BAD] ≤ Pr1[D = 1] ≤ Pr2[D = 1 ∧ ¬BAD]
+ Pr1[BAD].

Now, consider experiment Expt3 which is same as experiment Expt2 except
that the single call to the first oracle is replaced by just generating a uniform m-
bit random value independently. This is just a syntactic change by definition of
m-bit RO, and hence the probability (a) remains the same. Since the first oracle
call does not access any m-bit RO, the m-bit RO oracle of S is the only RO that
remains in Expt3. Thus the above inequalities continue to hold with subscript
2 replaced by 3. It also follows that Pr3[D = 1] − Pr3[BAD] ≤ Pr1[D = 1] ≤
Pr3[D = 1] + Pr1[BAD].

Next, consider Expt4 which is same as Expt3 except that the second oracle
of D is instantiated by primitive π. Again, by the indifferentiability hypothesis
of kdfπ and m-bit RO, the probability Pr3[D = 1] differs from Pr4[D = 1] by
at most ǫ. Now, note that experiment Expt4 is identical to E running Cπ1 and
adversary Aπ . Since D outputs the same bit that is output by E it follows that
|Pr4[E() = 1]− Pr0[E() = 1]| ≤ 2 ∗ ǫ + max{Pr1[BAD], Pr2[BAD]}.

Since in both Expt1 and Expt2, the value x is independent of a (by definition
of random oracle), it follows that all oracle calls of simulator S in both Expt1 and
Expt2 are independent of a. Moreover, for each invocation of S, S itself makes
at most L oracle calls. Since D has min-entropy ν, it follows by union bound
that both Pr1[BAD] and Pr2[BAD], conditioned on total number of calls to the
second oracle being less than N , are upper bounded by L ∗ N ∗ 2−ν and that
completes the proof.

6 Key-Dependent Message Security

In this section we show that IAPM in public RP model (Def. 4) can be slightly
modified by introducing a random nonce so that it even becomes key-dependent
message (KDM) secure. KDM security was introduced and formalized in [7],
extending the notion of circular security from [8]. Informally, KDM security
means that an Adversary cannot distinguish between an encryption of some
function φ of the key itself from encryption of a constant message. The function
φ is also allowed to be picked by the adversary adaptively.

6.1 KDM Security Definition

In this work, we will follow the definition of KDM security from [7] in the random
oracle model, and adapt it to the public RP model, but will focus on a single
key instead of a set of keys. One interesting feature of this definition is that the
Adversary can ask for encryptions of the key under any function φ of its choice,
and even a function φ whose description is given by an oracle-algorithm with
the oracle to be instantiated by the very same public random-permutation.



In the following, we will restrict the Adversary’s choice of oracle-algorithms
φ to fixed-output-length algorithms, i.e. for all oracles π, |φπ(k)| is same for all
k.

Definition (Key-Dependent Message Security) For any n > 0, consider a 3-
oracle probabilistic adversary A. Consider an (authenticated) encryption scheme
with key-space K, key distribution D and 2-oracle-algorithms E and D. For any
n-bit permutation π, Let Realπ

k
be the oracle that on input a description of a 2-

oracle fixed-output-length algorithm φ returns Eπ,π−1

(k, φπ,π−1

(k)), and Idealπ
k

be the oracle that on input P returns Eπ,π−1

(k, zero), where zero is a bit-

string of zeroes of length |φπ,π−1

(k)|. The IND-KDM advantage AdvkdmA of the
adversary A in the public random-permutation model is given by

|Pr[k←D;Aπ,π−1,Realπ
k = 1]− Pr[k←D;Aπ,π−1,Idealπ

k = 1]|

where the probabilities are over choice of π as a random permutation on n-
bits, and choice of k according to D, other randomness used by E, and the
probabilistic choices of A.

An (authenticated) encryption scheme with block size n is said to be (t,
q1, q2, t3, q3, m, ǫ)-secure against key-dependent message attack in the public
random-permutation model if for any adversary A as above that restricts its
queries to description of 2-oracle-algorithms φ that run in time t3 and make at
most q3 oracle calls, and which itself (i.e. A) runs in time at most t and asks at
most q1 queries to π and π−1, and at most q2 queries to the third oracle (these
totaling at most m blocks), its advantage AdvkdmA is at most ǫ.

6.2 General Construction

kdf π

D → a

init

C∗

A

C

$ → ri

φi

φi

·||·
xi

π

?

Fig. 5. KDM Secure General Construction in Public RP Model



Definition 9. Let C∗ be a 2-oracle stateless authenticated encryption scheme
with block size n, with key space K∗ and distribution D∗ on K∗ given by uniform
distribution on all ν-bit strings, and encryption and decryption algorithms E∗

and D∗. Let kdf be an efficient (key-derivation) 2-oracle-algorithm that takes
arbitrary bit strings as input and produces ν-bit strings as output. Then, define
another 2-oracle stateless probabilistic authenticated encryption scheme C with
block size n as follows (let O1 and O2 be its oracles):

– The set K of keys is arbitrary bit strings. The distribution D on K is any
distribution on K with min-entropy κ.

– The probabilistic encryption algorithm under key a, takes input P , chooses

ρ-bit r uniformly at random, obtains x = kdf
O1,O2(a||r), and outputs

〈r, E∗O1,O2(x, P )〉.
– The decryption algorithm under key a, takes as input 〈r, C〉, obtains x =

kdf
O1,O2(a||r), and outputs D∗O1,O2 (x,C).

Theorem 2. Let C∗ as above be (t, q1, (q2 =) 1,m, ǫ1)-secure against chosen
plaintext attacks in the public random-permutation model. Let β be such that,
For each l (n-bit) block plaintext input, β ∗ l is the maximum number of calls
that E∗ makes to its oracles. Let kdf as above with its oracle instantiated with
a public random-permutation on n bits be (∞, tS , q3, q4, L, ǫ2)-indifferentiable
from a ν-bit RO. Then, the authenticated encryption scheme C as defined above
is (t′, q1′, q2′, t′3, q3

′,m, δ) KDM-secure in the public random-permutation model,
for

– t′ + t′3 + (q1′ + q3′) ∗ tS < t, and
– β ∗m+ q1′ + q3′ < q4, and where
– δ = 4 ∗ ǫ2 + 2 ∗ ǫ1 + (β ∗m+ q1′ + q3′) ∗ L ∗ (q2′ ∗ 2−ρ + 2−κ).

Remark 3. For authenticated encryption schemes such as IAPM, β is at most 2.
Moreover, for most ν-bit RO constructions such as the sponge construction L is
at most 1. Also, note that in the theorem statement C∗ is required to be only
single-use secure, i.e. q2 = 1 or only one encryption query is allowed. Informally,
this suffices as the encryption key x for C∗ is obtained as x = kdf(a||r), for a
fresh r for each message.

Proof: We will focus on the proof for a single encryption query by the Adversary
A. Proof for multiple queries follows by induction by considering hybrid experi-
ments. See Fig. 5 for a depiction of this setting along with the construction of C.
We will denote both the public random permutation and its inverse as a single
public ideal primitive π which offers both interfaces. All random variables will
be denoted in boldface.

The real world experiment where encryption of φ(a) is returned will be called
Expt0. We will define a sequence of experiments, with the last being the one in
which a constant string is encrypted. We will show that in each subsequent
experiment, the probability of A outputting 1 is only negligibly different from
the previous experiment.



In Expt1, we replace kdf and π by ν-bit RO and the simulator S as stipulated
in the indifferentiability of kdf from ν-bit RO. By the indifferentiability claim
the difference in the probability of A outputting 1 is at most ǫ2. We will use
subscript i to denote probabilities in experiment Expti. Thus, |Pr1[A = 1] −
Pr0[A = 1]| < ǫ2.

Let BAD be the event that in Expt1, the simulator S makes a call to its oracle
(the ν-bit RO) which is identical to the (single) call made to the ν-bit RO by
C, i.e. (a||r), where r is a ρ-bit uniform and independent random value. Now,
Pr1[A = 1] is at most the sum of Pr1[A = 1 ∧ ¬BAD] and Pr1[BAD].

Now, consider experiment Expt2 where we split the RO into two independent
random oracles RO1 and RO2, where the call (a||r) is served by RO1 and all
calls by S are served by RO2. This is similar to the situation depicted in Expt2
in Fig. 4. It is clear that Pr2[A = 1 ∧ ¬BAD] remains same as in Expt1.

We, also consider Expt3 where the call (a||r) to RO1 is replaced by just using
a random and independent ν bit value x. By definition of RO, this is same as
Expt2.

Next, we switch to Expt4 where we go back to kdf and public random per-
mutation π, except that there is no call to the kdf now (similar to as shown
in Expt4 in Fig. 3). Now, note that the encryption of φ(a) is being performed
under a key x, which is a ν-bit uniformly random value independent of all other
variables including a and r. Thus, by CPA security of C∗, we can consider Expt5
where we replace the encryption of φ(a) by a constant string of the same length,
and the Adversary will not be able to distinguish with probability more than ǫ1.
Thus, similar to proof of theorem 1, |Pr5[A() = 1]−Pr0[A() = 1]| ≤ 2 ∗ ǫ2 + ǫ1
+ max{Pr1[BAD], Pr2[BAD]}.

We now bound both Pr1[BAD] and Pr2[BAD]}. We first focus on the former.
First note that r is only revealed to the Adversary A at the end of encryption by
C∗, while C∗ runs independent of r. Thus, all calls by C∗ to S are independent
of r, and similarly all calls by A to to S before C outputs r are independent of
r. Thus the probability of any of these calls leading to event BAD is at most
L ∗ 2−ρ (recall, L is the maximum number of calls by S to RO in any invocation
of S). Let there be a total of q′ such calls to S.

So, we now focus on calls by A to S after r is output by C to A. Let there
be q′′ such calls. We will also split BAD as a disjunction of BAD′ and BAD′′,
where BAD′ is BAD restricted to the q′ calls above, and BAD′′ is conjunction
of BAD′ not happening and BAD restricted to the q′′ calls of the latter kind.
Consider the i-th such call by A to S. We can write BAD′′ as a disjunction of
(COLi∧¬BAD

′∧∀j < i : ¬ COLi) with i ranging from 1 to q′′, where COLi stands for
collision in oracle calls of S with (a||r) in A’s i-th invocation of S. Further, since
these q′′ disjuncts are mutually exclusive, the probability of BAD′′ is exactly the
sum of the probability of each disjunct. We will refer to each disjunct as BAD′′

i .
We now show that Pr1[BAD

′′
i ] = Pr2[BAD

′′
i [. Since the view of the adversary

A at the point it makes the i-th call is completely determined by earlier calls of
A to S and all calls of C∗, and given that the Expt1 and Expt2 are identically



distributed till that point conditioned on BAD′ ∧ ∀j < i : ¬ COLi, the claim
follows.

Again, since the events BAD′′
i are mutually exclusive, we get Pr1[BAD

′′] =
Pr2[BAD

′′]. Now, Pr2[BAD
′′] is easier to upper bound, as we now show. First

note that Pr2[BAD
′′] = Pr3[BAD

′′], as the two experiments Expt2 and Expt3 are
identically distributed.

Recall, in Expt3, S is a simulator stipulated for each distinguisher in the
indifferentiability claim, and thus it is defined given A, A and C∗. It may also be
a probabilistic algorithm. However, for fixed algorithms C∗, A and A, it is also
a fixed probabilistic algorithm.

Now, consider a 2-oracle distinguisher D which is built as follows by also
using the uninstantiated 1-oracle S as a component (not to be confused with
it being used as an oracle). The distinguisher D consists of composition of the
2-oracle C and 1-oracle A as in Expt3, except for the following change: for each
of the i ∈ [1..q′′] calls of A to its oracle, it also uses S internally to see if S’s L
oracle calls collide with (a||r). Finally, the distinguisher D outputs 1 iff event

BAD′′ happens, with its two oracles instantiated by RO and SRO.

Now by indifferentiability of kdf
π and π from RO and SRO, the above

probability of D outputting 1 remains same if we go back to using kdf
π and π

as the two oracles of D.
Next, consider D′ which is same as D but replaces the encryption of φ(a)

by C∗ by a constant string of the same length. Since in D and D′, C∗ is using
a random and independent ν-bit value as key (i.e. independent of a), by CPA-
security of C∗, |Pr[D = 1]− Pr[D′ = 1]| < ǫ1.

Since as component of D′, the view of A is independent of a, the probability
of D′ = 1 is at most q′′ ∗ L ∗ 2−κ, recalling that the min-entropy of a (or its
distribution D) is κ.

Thus, Pr2[BAD
′′] = Pr4[BAD

′′] < ǫ1+q′′∗(L∗2−κ). Hence Pr1[BAD] ≤ 2∗ǫ2
+ ǫ1 + q′ ∗ L ∗ 2−ρ + q′′ ∗ L ∗ 2−κ.

7 Reducing Public to Private Random-Permutation

Model

We start by showing that the cryptosystem IAPM-uniform (Definition 5) in the
public random-permutation (RP) model is as secure as the cryptosystem IAPM-
uniform in the private random-permutation model. Later, in Section 7.2, we will
use Theorem 1 to prove security of IAPM in the public RP model (i.e. as per
Definition 4). Recall that in the public RP model, the adversary has access to
oracles f and f−1 which the IAPM scheme uses. Security is proven under the
probability of choosing f uniformly from all random permutations on n bits,
where n is the block size of the IAPM scheme. In the private RP model, the
adversary does not have access to either f or f−1.

Theorem 3. Let g be any ǫ-xor-universal hash function from 2n bits to n bits.
The cryptosystem IAPM-uniform(g, ν, µ) in the n-bit public random-permutation



model is (q, q, N , 1− q ∗ 2−n − (2 ∗ q ∗N +N(N +1))∗ ǫ) as secure as the cryp-
tosystem IAPM-uniform(g, ν, µ) in the n-bit private random-permutation model,
if the environment makes at most one call to the decryption algorithm.

Remark 4. Since all invocations of f and f−1 in both e-iapmf,g and d-iapmf,g

are “guarded” by xor-universal whitening function g keyed with secret key h, it
would seem that it is easy matter to show that adversarial calls to f and f−1

do not collide with such calls from IAPM. However, the adversary has access to
the ciphertexts from the various calls the environment makes to IAPM, and it
needs to be shown that the adversary gains only negligible information about
the secret key h from the adaptively obtained ciphertext transcripts.

Remark 5. If the cryptosystem IAPM-uniform(g, ν, µ) with block size n in the
private RP model is (t, q1, q2, m, ǫ1)-secure for message integrity, then the
above restriction in the theorem statement of only a single call to the decryption
algorithm D can be removed. This is so because if D is called with a ciphertext
not returned by an earlier call to the encryption algorithm E, then in the private
RP model it will return ⊥ with overwhelming probability (1− ǫ1). Therefore, by
induction, even in the public RP model ⊥ will be returned with overwhelming
probability. Hence, the environment need not make this call at all. Further, it is
well-known that in the private RP model, if an authenticated-encryption scheme
is IND-CPA secure and secure for message integrity, then it is IND-CCA secure
(i.e. secure against chosen-ciphertext attacks) [3, 17]. Hence from the above un-
restricted version of the theorem it follows that if IAPM-uniform is IND-CPA
secure and secure for message integrity in the private RP model then it is also
IND-CCA secure in the public RP mode.

Remark 6. While the actual IAPM encryption scheme truncates the last block
to obtain the “MAC tag”, for the purpose of studying security, this truncation
is not required, and we can assume that the whole last block is returned to
the environment. Thus, the truncation is only performed to save on the space
required to represent the tag and is not a security requirement. Similarly, in
OCB, ciphertext stealing is used to represent the final non-full-block ciphertext
by truncating an invocation of f . Again, for security purposes, the whole output
of this invocation of f can be returned.

Proof: Note that since the environment E and adversary A are not computa-
tionally bounded, we can assume that they are deterministic. Also, note that
underlying probability distribution is the key h chosen uniformly from H (the
ν-bit keys of g), and the choice of f as a random permutation. Thus, the space
for the probability distribution is the set of pairs h and f . Any variable which
is a function of h and f , will be called a random variable, and for clarity will be
depicted in bold-face or capital. By the same convention, from now on, we will
also denote f and h in bold-face, i.e. f and h. We will refer to f as the permuta-
tion, and h as the key. Fixed values of any random variables will be denoted by
small-case letters.

W.l.o.g. we can assume that the environment never repeats queries, and
moreover it never calls d-iapm with a ciphertext returned by an earlier call to



e-iapm. All queries by E to e-iapm will be called plaintexts, and the i-th such
query will be denoted P i. Individual blocks in P i will be denoted by subscripts.
All replies to such queries will be called ciphertexts, and the i-th ciphertext will
be denoted by Ci, and similarly, the j-th block on Ci will be denoted Ci

j . All

the Ci together will be called C. The i-th query by A to f will be denoted V i,
and i-th query to f−1 will be denoted X i. The results of these queries will be
denoted by W i and Y i resp. We will call the ciphertexts, W i and Y i together
as the transcript C̃. Since, A and E are deterministic, all queries of E and A are
a function of the transcript alone. The transcript itself is a random variable as
it is a function of f and h.

The (single) query to d-iapm will be denoted by C′ and will be called the
forged ciphertext. It is also a function of the transcript C̃. Thus, given a fixed
value c̃ of the transcript, all the plaintexts and the forged ciphertext are fixed
as well (and in particular, do not depend on f and h). We will call all variables
which are either part of the transcript or are a function of the transcript alone
(i.e. are independent of f and h) as visible variables (these are visible to the
environment). Thus, C, P , V , W , X , Y and C′ are visible variables. We will
refer to P ′ (which is the decryption of C′) as a hidden variable, as it may not
be output if the authentication test fails. However, it is computed by d-iapm,
and indeed d-iapm further computes T ∗ = f(

⊕m
j=1

P ′
j ⊕ g(h, 〈IV ′,m + 1〉)) to

compare it (more precisely, truncµ(T
∗)) with the tag T given as part of C′. We

will also refer to
⊕m

j=1
P ′
j as a hidden variable P ′

m+1. Note that hidden variables
are not a function of the transcript alone, and these may also depend on f and
h.

We will denote values that are invoked on f in e-iapm as M i
j , and its output

as N i
j . Note, M

i
j = P i

j ⊕ g(h, 〈IV i, j〉), and N i
j = Ci

j ⊕ g(h, 〈IV i, j〉). Similarly,

the values invoked on f−1 in d-iapm will be denoted N ′
j and its output by M ′

j .

Note, N ′
j = C′

j ⊕ g(h, 〈IV ′, j〉). Since P i
j , C

i
j , C

′
j (and also the IVs) are visible

variables, each of these M i
j , N

i
j and N ′

j can be written as a function of C̃ and h.

Thus, all inputs to invocations of f and f−1 in both e-iapm and d-iapm,
except for the one used to compute T ∗, have the property that they are exclusive-
or of a visible variable and g(h, a), where a is itself a visible variable. Associate to
each such invocation of f and f−1 a value a (for now, disregard the invocation of f
to compute T ∗). Clearly, if the IV for all the queries to e-iapm are different, then
the a values across different queries are different. Further, the a values within a
query are different by design. For the forged ciphertext query to d-iapm, if IV′

is different from all the IV in the e-iapm queries, then the a values used in the
d-iapm query are also different within the d-iapm query and different from all
a values used in e-iapm.

We will say that a block C′
j in the forged ciphertext C′ is in-place if IV′ =

IVi for some i, and C′
j = Ci

j , and Ci
j is not the MAC tag block of ciphertext Ci.

Note, in this case N ′
j = N i

j , and we will refer to N ′
j as also being in-place.

As for the computation of T ∗ in d-iapm, we will denote the input to f to
compute T ∗ as M ′

m+1. For now, we just observe that it is an exclusive-or of a
hidden variable and g(h, a) for some visible variable a.



Now, given a fixed value of the transcript c̃, and a fixed value h of the key
h, define the event iCOL(h, c̃) (for internal collisions) as disjunction of some two
M i

j being same, or some two N i
j being same, or some two N ′

j being same. Define

xCOL(h, c̃) (for external collision) as disjunction of some M i
j being same as some

V i′ or some Y i′ , or some N i
j being same as some W i′ or some X i′ , or some N ′

j′

being same as some W i′ or some X i′ , or some N ′
j′ that is not in-place being

same as some N i
j , or all N

′
j′ are in-place and M ′

m+1 is same as some V i′ or some

Y i′ . We will refer to disjunction of iCOL and xCOL as simply COL. Finally, if we
also fix a value f for f , define hCOL(f, h, c̃) (for hidden collision) as disjunction
of some M ′

j (j = 1 to m+ 1) being same as some V i′ or some Y i′ .

Now, we are interested in the probability of the event COL(h, C̃) or hCOL(f ,h, C̃)
happening. When neither of these events happen the view of E is identical in
the public and private RP model. Thus, its distinguishing probability is up-
per bounded by the sum of the two collision probabilities2. The bound on the
collision probabilities follows by the following lemmas 1, 2, 3 and 4.

For c̃ = (c, w, y), define uc to be the number of blocks in c, uw to be the
number of blocks (queries) in w and uy be the number of blocks (queries) in y.
For any fixed c̃, h, define Fc̃,h to be the set of permutations as follows: If COL(h, c̃)
holds then this set is empty. Otherwise, the set contains all permutations f with
the following restrictions:

1. ∀i, j : f(M i
j(h, c̃)) = N i

j(h, c̃),

2. ∀i ∈ [1..uw] : f(V
i(c̃)) = wi,

3. ∀i ∈ [1..uy] : X
i(c̃) = f(yi),

Define |c̃| = uc + uw + uy. Then, for c̃, h, such that COL(h, c̃) does not hold, the
probability Prf [f ∈ Fhc̃] depends only on |c̃|, and in particular is independent
of h. Thus, for the rest of this paragraph, for any fixed c̃, consider any h such
that ¬COL(h, c̃) holds. Moreover, define num(c̃) to be the ratio of number of
permutations on 2n blocks and |Fh,c̃|, which is same as (2n)!/(2n − |c̃| − 1)!.
Note that Prf [f ∈ Fh,c̃] is same as 1/num(c̃). In the following lemma, recall

that for each fixed and deterministic adversary, the transcript C̃ is a function of
permutation f and key h. Hence, it should more precisely be written as C̃(f, h).

Lemma 1. For any fixed c̃ = (c, x, z), any fixed h such that ¬COL(h, c̃), and any
fixed f , C̃(f, h) = c̃ is equivalent to f ∈ Fh,c̃.

Proof: That C̃(f, h) = c̃ implies f ∈ Fh,c̃. follows from the definition of the set
Fh,c̃. The reverse direction is proved by induction over the order of adversarial
queries. Since the adversary is deterministic, the first query, whether P i or V 1

or X1 is fixed. In case the first query was P 1 (and first IV is IVi), given the
fixed h, it also fixes M1, which then leads to C1

j = g(h, 〈IV 1, j〉)⊕ f(M1
j ). But,

2 Actually, the distinguishing probability is upper bounded by sum of xCOL and hCOL,
but it will be difficult to bound this probability without also bounding iCOL.



N1
j (h, c̃) is defined as g(h, 〈IV1, j〉) ⊕ c1j . Thus, C

1
j = N i

j(h, c̃) ⊕ c1j ⊕ f(M1
j ).

Since, f ∈ Fh,c̃, by definition of the set Fh,c̃, we have N i
j(h, c̃) = f(M1

j ), and

hence C1
j = c1j .

A similar but simpler argument also shows that W 1 = w1 or Y 1 = y1 (in
case the first query was V 1 or X1 resp.). In other words C̃1 = c̃1. This in turn
fixes the next query, and we continue the argument inductively.

Lemma 2. For any c̃ = (c, x, z),

Prf ,h[C̃ = c̃ ∧ ¬COL(h, c̃)] =
1

num(c̃)
∗ Prh[¬COL(h, c̃)]

The proof of this lemma follows easily by applying lemma 1. Proof:

Prf ,h[C̃ = c̃ ∧ ¬COL(h, c̃)]

=
∑

h

Prf ,h[h = h ∧ C̃ = c̃ ∧ ¬COL(h, c̃)]

=
∑

h

Prf ,h[h = h ∧ f ∈ Fh,c̃ ∧ ¬COL(h, c̃)]

=
∑

h

Prf [f ∈ Fh,c̃] ∗ Prh[h = h ∧ ¬COL(h, c̃)]

=
1

num(c̃)
∗ Prh[¬COL(h, c̃)]

where the first equality follows from lemma 1, and the second equality follows
as f and h are independent.

Let u′
c be the number of blocks in C′ (which is completely determined by c̃).

Lemma 3. For every constant transcript c̃,

Prh[COL(h, c̃)] < (2(uw + uy) ∗ (uc + u′
c) + uc(uc + 1)) ∗ ǫ

Proof: We will assume that E does not repeat queries to e-iapm, and further
each such query uses a distinct IV. Since g is an xor-universal hash function,
and h is chosen uniformly from its set of keys H (which is just all ν-bit strings),
the result follows by noting that each disjunct in iCOL and xCOL compares either
g(h, a) (for some constant value a determined by c̃) or (g(h, a) ⊕ g(h, a′)) (for
some distinct constant values a and a′) with some constant value determined by
c̃.

Lemma 4. For every constant transcript c̃, and every constant h such that
¬COL(h, c̃)

Prf [hCOL(f , h, c̃) | f ∈ Fh,c̃] < (uw + uy) ∗ 2
−n



Proof: Recall that event hCOL is the disjunction of any M ′
i being same as either

some V i′ or some Y i′ . Moreover, recall that for j = 1 to m, M ′
j = f−1(N ′

j),

where N ′
j = C′

j ⊕ g(h, 〈IV′, j〉), and M ′
m+1 =

⊕m
j=1

P ′
j ⊕ g(h, 〈IV′,m+ 1〉).

Now, by lemma 1, f ∈ Fh,c̃ implies that the random variable transcript C̃ is

fixed to c̃. Since, C′ is completely determined by C̃, the value of C′ is also fixed.
We will denote this fixed value of C′ by c′. For each j′ = 1 to m, there are two
cases to consider:
(a) either N ′

j′ is in-place and same as some N i
j But, then M ′

j′ = M i
j , and from

being in-place it also follows that P ′
j′ = P i

j . In addition, since ¬xCOL(h, c̃) holds,

then M ′
j′ does not collide with any V i′ or Y i′ .

(b) If N ′
j′ is not in-place, then since ¬COL(h, c̃) holds, N ′

j′ does not collide with

any W i′ or X i′ , or with any other N ′
j′′ , or with any N i

j . Thus, M
′
j′ = f−1(N ′

j′ )

is different from all V i′ and Y i′ (as f is a permutation). Also, it is uniformly
random n-bit value even conditioned on f ∈ Fh,c̃.

We also need to determine the probability of M ′
m+1 colliding with V i′ or

Y i′ . If all N ′
j′ satisfied (a) above, then all N ′

j′ are in place and by ¬COL(h, c̃), it

follows that M ′
m+1 does not collide with V i′ or Y i′ . If some N ′

j′ is not in-place,
then by (b) above, M ′

j′ is a uniformly random value, and also independent of
all other M ′

j′′ (as ¬COL(h, c̃) implies that N ′
j′ does not collide with other N ′

j′′ ).
Thus, M ′

m+1 is uniformly random n-bit value, and probability of it colliding with

any V i′ or Y i′ is 2−n.

Coming back to the proof of theorem 3,

Pr[¬COL(h, C̃) ∧ ¬hCOL(f ,h, C̃)]

=
∑

c̃,h

Pr[C̃ = c̃ ∧ h = h ∧ ¬COL(h, c̃) ∧ ¬hCOL(f , h, c̃)]

=
∑

c̃,h

Pr[f ∈ Fh,c̃ ∧ h = h ∧ ¬COL(h, c̃) ∧ ¬hCOL(f , h, c̃)]

where the last equality follows from lemma 1. Now, each of these probabilities is
the product of Pr[f ∈ Fh,c̃ ∧ h = h ∧ ¬COL(h, c̃)] and Pr[¬hCOL(f , h, c̃)|f ∈ Fh,c̃].
The latter is lower bounded by 1 − (uw + uy) ∗ 2

−n by lemma 4. The former is

again, by lemma 1 same as Pr[C̃ = c̃∧h = h∧¬COL(h, c̃)]. Thus, continuing the



above equations,

Pr[¬COL(h, C̃) ∧ ¬hCOL(f ,h, C̃)]

≥ (1− (uw + uy) ∗ 2
−n) ∗

∑

c̃

Pr[C̃ = c̃ ∧ ¬COL(h, c̃)]

= (1− (uw + uy) ∗ 2
−n) ∗

∑

c̃

1

num(c̃)
∗ Prh[¬COL(h, c̃)]

≥ (1− (uw + uy) ∗ 2
−n) ∗

(1− (2(uw + uy) ∗ (uc + u′
c) + uc(uc + 1)) ∗ ǫ) ∗

∑

c̃

1

num(c̃)

≥ (1− (uw + uy) ∗ 2
−n) ∗

(1− (2(uw + uy) ∗ (uc + u′
c) + uc(uc + 1)) ∗ ǫ)

where the equality above follows by lemma 2, the second last inequality by
lemma 3, and the last inequality by definition of num(c̃), which we recall is same
as (2n)!/(2n − |c̃| − 1)!.

Thus, the probability of either COL or hCOL happening is at most (uw + uy) ∗
2−n + (2(uw + uy) ∗ (uc + u′

c) + uc(uc + 1)) ∗ ǫ. In the definition of “as secure
as” (Definition 8), the cryptosystems C1 and C2 have public ideal primitives F1

and F2 resp. Here, C1 is IAPM in the public RP model, and F1 is just f and f−1

combined in one interface. Also, C2 here is IAPM in the private RP model and
it does not need access to any public oracle. However, the adversary continues
to have access to a different public random permutation (and its inverse). Now,
note that adversary A1’s queries to the public oracle are (uw + uy) in number.
This number remains the same as A2 is exactly the same as A1. The number N
of total queries to F1 (i.e. f and f−1) is of course upper bounded by (uc + u′

c +
uw + uy). Thus, IAPM-uniform in public RP model is (q, q,N , 1 − q ∗ 2−n +
(2 ∗ q ∗N +N(N +1)) ∗ ǫ) as secure as IAPM-uniform in the private RP model.

7.1 General Schemes

From the structure of the proof of Theorem 3, the theorem is easily generalizable
to different variants of IAPM such as OCB [23], the authenticated-encryption
with associated data (AEAD) scheme due to Hawkes and Rose [14], the OCB
variant for associated data OCB-AEAD [22], and the modified IAPM and OCB
schemes due to Kurasawa [19]. Note that the proof in [19] just estimates the
probability of event COL(h, C̃), where as to upper bound it correctly it requires
the detailed consideration above (see Remark 2 above).

7.2 Corollaries

In this section we state the various corollaries that obtain from the combination
of theorems in Sections 5, 6, 7, and results from earlier works in the private



random-permutation model. To start with, we state a theorem from [16], which
states the security of IAPM for message integrity in the private RP model.

Theorem 4. [16] Let g be an ǫ-xor-universal H-keyed (2n, n)-hash function,
where H is the set of all ν-bit strings (ν ≤ n). Let A be an adaptive adversary in
the message integrity experiment in the private RP model for the authenticated-
encryption scheme IAPM-uniform(g, ν, µ) with block size n. Let A make at most
z queries, these totaling at most m blocks. Let A make a query with at most v
blocks in the second stage. If 4m2 < 2n and 4v2 < 2n, then

SuccA ≤ 2−µ + (m2 + 3v) · (ǫ+ 2−n)

This theorem along with theorem 3 implies that IAPM-uniform(g, ν, µ) is secure
for message integrity in the public random-permutation model, with

SuccA ≤ 2−µ + (m2 + 3v) · (ǫ+ 2−n) + q ∗ 2−n + (2 ∗ q ∗m+m(m+ 1)) ∗ ǫ

where A makes at most z queries to the encryption oracle, these totaling at most
m blocks, and A makes at most q queries to the public random permutation.

Then, using theorem 1, we get the following corollary for the composite IAPM
scheme (Definition 4) that uses a key derivation function with oracle access to
the same public random permutation.

Corollary 1. Let kdf be an oracle algorithm such that with its oracle instanti-
ated with a public ideal primitive π, it is (∞, tS , q1, q2, L, ǫ1)-indifferentiable from
a ν-bit RO. Let g be an ǫ-xor-universal H-keyed (2n, n)-hash function, where H
is the set of all ν-bit strings (ν ≤ n). Let A be a 3-oracle adaptive adversary in
the message integrity experiment in the public RP model for the authenticated-
encryption scheme IAPM(kdf, g, ν, µ, κ) with block size n. Let A make at most
z encryption queries, these totaling at most m blocks. Let A make a query with
at most v blocks in the second stage. Let A make at most q queries to its first
two oracles (the public random permutation). If 4m2 < 2n and 4v2 < 2n, and
(m+ q) < q2, then SuccA is at most

2−µ + (q +m2 + 3v) ∗ 2−n + (2 ∗ q ∗m+ 2m2 + 3v) ∗ ǫ+ L ∗ (m+ q) ∗ 2−κ + ǫ1

A similar corollary (with similar bounds) holds for IND-CPA security of IAPM(kdf,
g, ν, µ, κ) in the public random-permutation model, again by using theorems 3
and 1, and the known result from [16] about message secrecy of IAPM-uniform
in the private RP model.

As for the IND-KDM security of IAPM, we have two options. One is to
consider a scheme which has arbitrarily long bit-strings as key space as long as
they have min-entropy κ, or one can consider KDM security with the keys chosen
randomly and uniformly from ν-bit strings. The latter is a realistic model if we
assume that after applying the key-derivation function, the original κ-entropy
key source is immediately and permanently deleted. This would also lead to a
more efficient implementation, since for KDM security we must apply the key-
derivation function to (a||r) afresh for each encryption. If a is the compact ν-bit



string (typically ν is either 256 bits, or 512 bits or a maximum of 1024 bits),
then applying the sponge-style random oracle implementation to (a||r) with r

at most 512 bits would only need a single application of a 1600-bit permutation
to get 1024 bits random oracle output (with 576-bit security, also known as
capacity). Thus, we only formally state the corollary for KDM-security of the
IAPM-uniform instance. Moreover, by our general composition theorem 1, we
can continue to use the a key-derivation function built using the same public
random permutation to derive this short ν-bit uniform key. Note that theorem 2
only requires a single-use encryption scheme (see Remark 1 after that theorem).
This means that we can instantiate with an IAPM scheme that does not require
IVs, or the IV can be permanently set to zero.

Corollary 2. Let kdf be an oracle algorithm such that with its oracle instanti-
ated with a public ideal primitive π, it is (∞, tS , q1, q2, L, ǫ1)-indifferentiable from
a ν-bit RO. Let g be an ǫ-xor-universal H-keyed (2n, n)-hash function, where H
is the set of all ν-bit strings (ν ≤ n). Let A be a 3-oracle adaptive adversary in the
IND-KDM experiment in the public RP model for the authenticated-encryption
scheme obtained from zero-IV IAPM-uniform(g, ν, µ) with block size n and kdf

as per Definition 9. Let A make at most z encryption queries, these totaling
at most m blocks. Let A make at most q queries to its first two oracles (the
public random permutation). Let A only make (kdm) queries with description
of 2-oracle algorithms φ that make at most q3 oracle calls. If 4m2 < 2n and
(m+ q + q3) < q2, then

AdvkdmA ≤2 ∗ (q +m2) ∗ 2−n + 2 ∗ (2 ∗ q ∗m+ 2m2) ∗ ǫ+

4 ∗ ǫ1 + (m+ q + q3) ∗ L ∗ (z ∗ 2
−ρ + 2−ν)

We also need to prove that the scheme C as per Definition 9 instantiated with
zero-IV IAPM-uniform(g, ν, µ) is secure for message-integrity. This is proven by
first noting that the the adversary in the message-integrity experiment’ find
stage cannot distinguish between the real-world and the ideal world by Corol-
lary 2. Thus, we can consider the adversary to be in the usual message-integrity
experiment as in Section 3 for the scheme C (i.e. with no key-dependent mes-
sage queries). The rest of the proof follows by showing that for each encryption
query in the find stage, the key to IAPM-uniform is a uniformly random and
independent ν-bit value. This is proven similarly to the analysis in the proof of
Theorem 2. The adversary’s probability of success SuccA is same as AdvkdmA but
with additional terms 2−µ + v ∗ L ∗ (z ∗ 2−ρ + 2−ν), where v is the number of
blocks in the second stage. Recall, µ is the length of the MAC tag.

8 Concrete Instance

We will instantiate the public random permutation by the permutation under-
lying SHA-3 [24], which in its draft standardization uses the Keccak hash func-
tion [4]. This hash function is built on a “cryptographic” permutation on 1600-
bits called keccak − f [1600], and which we will just call keccak from now



on. During and after the SHA-3 selection process, keccak has undergone ex-
tensive cryptanalysis, and is considered indistinguishable from a public random
permutation. We will instantiate the public random permutation by keccak.

Thus, we consider block size n = 1600. The key source K min-entropy can
be kept just as in encryption modes using private random permutations such
as keyed-AES. This is justified by the security bounds obtained for message-
integrity (and similar bounds for message secrecy) in Corollary 1. Thus, we let
κ = 128 to be the min-entropy of the key-source. The ǫ-XOR-universal hash
function g must have ǫ ≤ 2−256, as there are quadratic terms q ∗m ∗ ǫ in both
Corollary 1 and 2. Thus, the size of the key ν for IAPM-uniform should be at
least 256 as well, and we will set ν = 256. We also let µ = 128 to be the MAC
tag length. For KDM security ρ should be 256 bits as well, though 128 bits may
be enough. In the security bound obtained in Corollary 2 the dependence on ρ
is given by the term (m+ q+ q3) ∗ z ∗ 2

−ρ. Thus, the quadratic term comes from
z, the total number of encryptions, and it does not lead to key-recovery, but just
the possible loss of secrecy of that particular message.

The ǫ-xor-universal (2n,n)-hash function g is as follows. Let F be the Galois
field GF(2256). The key 256-bit key h to g is considered as an element of F.
The function g(h, IV, i), where IV and i are less than 128-bits long and are
considered elements of F is computed as g(h, IV, i) = h ∗ (IV ∗ 2128 + i) in F. It
is extended to n = 1600 bits by prefixing zero bits. Note in zero-IV IAPM, this
just becomes h ∗ i in F. It is easy to see that this yields an ǫ-xor-universal hash
function for inputs restricted to 128-bits, with ǫ = 2−256.

To be precise, here is the complete KDM-secure authenticated encryption
scheme IAPM:

– In the initialization stage, let k be a key sampled from a source D with min-
entropy κ. Run a kdf with 256-bits output on k to obtain k′. Permanently
erase k.

– To encrypt a message P , choose a fresh random 256-bit R, and compute h =
trunc256 (keccak(k′||R)). Run zero-IV IAPM-uniform encryption function
on P with key h to obtain ciphertext C. Output 〈R,C〉.

– To decrypt a ciphertext 〈R,C〉, compute h = trunc256 (keccak(k′||R)), and
run the zero-IV IAPM-uniform decryption function on C with key h. Output
the result.

The kdf above can be implemented using the sponge construction [5] using
keccak. Note that h above is obtained using a simple modification (optimiza-
tion) of the sponge construction restricted to inputs that are at most 1600-bits.

8.1 Implementation

We implemented the above scheme on an Intel Xeon X5570 processor running
at 3GHz, with SSE4 SIMD-instruction set and no native AES instruction. The
above KDM-secure IAPM algorithm achieved 3250 mbps (mega-bits per sec.) on
a single core on messages of size 16000 bytes. Our implementation used a double-
permutation implementation of keccak from the Keccak pacakge, which utilizes



the 128-bit SIMD-instructions. In contrast, IAPM running with keyed-AES using
the fastest AES implementation available (as per SUPERCOP [25] profiling on
the machine) achieved only 968 mbps performance (note, there is no native AES
support on this processor).
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