
Multi-mode Cryptocurrency Systems
Tuyet Duong

Virginia Commonwealth University
duongtt3@vcu.edu

Alexander Chepurnoy
Ergo Platform and IOHK Research

alex.chepurnoy@iohk.io

Hong-Sheng Zhou
Virginia Commonwealth University

hszhou@vcu.edu

ABSTRACT

In the past years, the security of Bitcoin-like protocols has been
intensively studied. However, previous investigations are mainly
focused on the single-mode version of Bitcoin protocol, where the
protocol is running among full nodes (miners). In this paper, we
initiate the study of multi-mode cryptocurrency protocols. We gen-
eralize the recent framework by Garay et al. (Eurocrypt 2015) with
new security definitions that capture the security of realistic cryp-
tocurrency systems (e.g. Bitcoin with full and lightweight nodes).
We provide the first rigorous security model for addressing the
“blockchain bloat” issue. As an immediate application of our new
framework, we analyze the security of existing blockchain prun-
ing proposals for Bitcoin aiming to improve the storage efficiency
of network nodes by pruning unnecessary information from the
ledger.

ACM Reference Format:

Tuyet Duong, Alexander Chepurnoy, and Hong-Sheng Zhou. 2018. Multi-
mode Cryptocurrency Systems. In Proceedings of ACM Conference (Con-

ference’17). ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Bitcoin [13] is a decentralized digital cash system built on top of
a distributed, append-only public transaction ledger. The public
ledger is maintained by a network of nodes via the proof-of-work
mechanism, and only valid transactions are supposed to be recorded
in the ledger. The techniques behind have proven to be very promis-
ing. Besides cryptocurrencies, many interesting applications, such
as decentralized crowdfunding and decentralized autonomous or-
ganization, come to the reality.

Bitcoin-like cryptocurrencies are oftenmulti-mode systems: some
network nodes are running in “full mode”, and each full-mode node
records and checks the complete history of transactions, and is
capable of verifying the integrity of history and the validity of new
transactions by itself; while the remaining nodes may run in certain
“light modes”, and they might store only a partial history of trans-
actions. More concretely, Bitcoin has multiple modes by design: in
its whitepaper by Nakamoto [13], a light mode called “SPV (Simple
Payment Verification)” mode has been introduced1. Later, in the

1Please see Section 8 of the whitepaper [13] for details.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

version 0.11 of Bitcoin Core [1], another light mode called “prun-
ing” mode has been introduced. Similarly, Ethereum [22] is also a
multi-mode system. For example, Parity clients [20] for Ethereum
blockchain can be run in a light mode called “WarpSync” mode [21].

The advantage of having multiple modes is very clear. First,
it partially addresses the very urgent issue of “blockchain bloat”:
when more transactions are made, the blockchain has more data to
record, and if it grows too large, it becomes difficult to download or
store it; as a result, the scope of Bitcoin blockchain is very limited.
Compressing the transaction history in a light mode will directly
reduce the effort of storing blockchain transactions. Second, having
multiple modes allows more players, especially those with limited
storage, to join the system. This apparently will make multi-mode
Bitcoin like cryptocurrencies more popular.

Rigorous security analysis of Bitcoin protocols has been recently
developed. Garay et al. [5] proposed the first cryptographic frame-
work and investigated the security of the Bitcoin backbone protocol.
More concretely, Garay et al. investigated a single mode version
of Bitcoin protocol where all the nodes are running in a full-mode,
and they showed that several important security properties can be
achieved under the assumption that the majority of the full-mode
nodes are honest. This result has been further extended; see [6, 16].
However, the security of Bitcoin, as a multi-mode system, has not
been investigated, to the best of our knowledge. This motivates the
following question:

What security properties can the current multi-mode

Bitcoin system achieve?

1.1 Our contributions

We answer the above question by making the following contribu-
tions.

Formal treatment for themulti-mode Bitcoin system.We are
the first to propose a rigorous model and analysis for multi-mode
cryptocurrency systems. More specifically, we first define security
properties for lightweight nodes (running in light modes) in Bitcoin
system. Note that, in the previous efforts [5, 16], all transactions are
faithfully recorded, and certain security properties (e.g, persistence
and liveness) can be naturally defined. Now in a light mode, lots
of information of the transactions will be eliminated. Unlikely, the
previous security definitions will work in all light modes. We begin
by introducing a generalized notion of ledger called snapshot. Based
on the notion of snapshot, we define the relaxed security definitions:
snapshot persistence and snapshot liveness.

Once the security definitions for light modes have been defined,
we need to further study the security for systems with multiple
modes. It is possible that nodes in different modes may not be
able to work together. If that is the case, the entire system may
be insecure. Therefore, a new security definition, namely, multi-

mode soundness property, is needed to ensure the nodes in different

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

modes are compatible. Intuitively, for each new transaction, nodes
in the full mode and nodes in the light modes should make the same
decision on whether to accept the new transaction or reject it.

Applications. As an immediate application of our analysis frame-
work, we for the first time, provide security analysis for the two-
mode version of Bitcoin (and also Ethereum) which consists of
full-mode nodes and prune-mode nodes. See the pruning propos-
als from Bitcoin/Ethereum community; there, network nodes are
allowed to be in the prune-mode, where, instead of storing the
complete history of transactions, each prune-mode node keeps a
succinct archive for the transaction history. These proposals have
been widely adopted in cryptocurrency community. However, their
security has not been investigated yet. We show that, under as-
sumption that if each honest player in prune-mode faithfully keeps
its succinct archive, then the Bitcoin/Ethereum pruning proposals
can achieve the relaxed security properties. Note that the relaxed
security properties are sufficient for typical blockchain applications
such as cryptocurrency. More details can be found in Sections 5,6,
and 7.

1.2 Related work

Cryptocurrency client modes. Multi-mode paradigm was in-
troduced in the original Bitcoin whitepaper [13]: it describes a
“full” mode node design, and also introduces a lighter mode called
“SPV (Simple Payment Verification)” mode (see Section 8 of the
whitepaper for details). A full node is checking everything in the
blockchain: proofs of work, correctness of inter-block pointers, sig-
natures and semantic rules for all the transactions, forking rules
etc. Since version 0.11 of Bitcoin Core [1], a node can be run in
another lighter mode called “pruning” mode. A node in this mode is
downloading and processing all the blocks, and then leaves only a
fixed-sized suffix of the blockchain assuming that some other nodes
in the network store the prefix. To relax this assumption (and also
to support better SPV clients), Ethereum [22] has representation
of transaction validation state being fixed by the protocol with an
authenticating digest to be included into a block. Some implemen-
tations of the protocol are using the digest to obtain a verifiable
state snapshot from peers without building it by processing blocks
from genesis. WarpSync [15] mode in Parity [20] is the example
of such an implementation, it could be seen as the development
of the pruning mode in Bitcoin, as a node running in this mode
is not only storing a suffix of the blockchain, but also processing
only fixed number of last blocks after checking block headers and
downloading authenticated validation state before the full blocks.
The underlying assumption is that there are network nodes storing
authenticated validation states buried deep enough in the history.
The scheme lacks rigorous security analysis.

Blockchain security analysis. The security of Bitcoin protocol
has been extensively analyzed in both rational ([3, 4, 8, 14, 17, 18])
and cryptographic ([5, 9, 10, 16, 19]) settings. Three crucial security
properties, namely common prefix ([5], [16]), chain growth ([9]) and
chain quality ([5]) have been considered for blockchain protocols.
For our study we adopt the stronger variant of the common prefix
property by Pass et al. [16] together with the chain quality and
chain growth from [5, 9].

Organization:We introduce the model in Section 2. Then we in-
troduce the proof of work blockchain in Section 3. Our major con-
tributions can be found in Section 4 for generalized ledger and the
security definitions, and in Section 5, 6, and 7, for the analysis of
full mode, prune mode, and multi-mode, respectively. Additional
materials for those sections can also be found in appendices.

2 MODEL

Based on the previous modeling efforts [5, 16], we consider a frame-
work with stateful miners, in the sense that they are required to
store blockchain information locally; in this way, only blocks, not
the entire blockchains, appear in the broadcast channels. We also
consider different roles among the players: some players will record
the complete history of transactions, and some may record a com-
pressed version of the history. Our modeling choice is consistent
with the reality.

2.1 The model of protocol execution

Network communication.We consider a standard multi-player
communication setting with the relaxation that (i) all nodes are con-
nected via single- or multi-hop communication channels; (ii) these
communication channels are reliable but not authenticated, and the
adversary may “spoof” the source of a message in a communication
channel and impersonate the (honest) sender of the message; and
(iii) the messages between honest players can be delayed by at most
∆ number of execution rounds for some ∆ ∈ R+, and the adversary
is not allowed to stop the messages from being delivered.

We use Broadcast to denote the atomic unauthenticated broad-
cast functionality in this asynchronous networks with ∆-bounded
delay; here an adversarial sender may abuse Broadcast by sending
inconsistent messages to different honest miners to confuse them.
The adversary is “rushing” in the sense that in any given round
the adversary is allowed to see all honest miners’ messages before
deciding his strategy.
The execution of proof-of-work blockchain protocol.We con-
sider the execution of a multi-party protocol Π among a set P of
miners that is directed by an environment Z (1κ), where κ is a
security parameter. Each player will have the following phases.

All miners are created by the environmentZ. Once created, the
miner P ∈ P becomes active with initial state which consists of
the genesis block and mode information. Here the mode informa-
tion specifies which role the miner P will play in the multi-party
protocol.
Preparation phase. Any active miner P , before participating in
the mining process, will obtain additional information from the
system based on its initial state. More concretely, if the miner P
is in the full mode, then P will obtain the entire blockchain infor-
mation from the system, and store the blockchain information in
its full-mode storage. If P is in a light mode, then it will obtain a
compressed version of the blockchain information, and then store
the compressed blockchain in its light mode storage.
Execution phase. Any active miner P can join the mining process
after the preparation phase. The mining process consists of multiple
rounds. In each round, the environmentZ provides inputs for all
miners and receives outputs from these miners, and the miners
communicate with each other. More concretely, in each round,

2

each honest miner receives an input from the environmentZ, and
potentially receives incoming network messages (delivered by the
adversaryA), and then updates its local storage; then based on the
stored information, it carries out some mining operations; in the
case that a new block is generated, the miner sends out the new
block via Broadcast which will be guaranteed to be delivered to
all miners in the beginning of the next round. Note that, at any
point of the execution, the environmentZ can communicate with
the adversary A or access the local information of the miners.

For simplicity, we consider the static computing power setting
(where the total amount of computing power invested to the proto-
col will not change over time). We further assume all miners have
the same amount of computing power, and there are n number of
active miners. Moreover, we assume players remain in the same
mode during the execution (i.e., no mode changing). Note that, in
each execution round, all miners have access to a random oracle
hash(·).

We consider adaptive adversaries who are allowed to take control
of protocol players on the fly. At any point of the execution,Z can
send message (Corrupt, P) to adversaryA. From that point,A has
access to the party’s local state and controls P .

Let {ViewP
Π,A,Z

(κ, z)}κ ∈N,z∈{0,1}∗ denote the random variable
ensemble describing the view of a miner P after the completion
of an execution with environment Z, running protocol Π, and
adversary A, on auxiliary input z ∈ {0, 1}∗ and security parameter
κ. For simplicity, the parameters κ and z are often dropped if the
context is clear, and we describe the ensemble by ViewP

Π,A,Z
(κ, z).

The concatenation of the view of all miners ⟨ViewP
Π,A,Z

⟩P ∈P is
denoted by View

Π,A,Z
.

3 PROOF-OF-WORK BLOCKCHAIN

In this section, we provide definitions for a proof-of-work blockchain.
The definitions are similar to previous works [5, 16]. Developing
their approach, we put details into block and blockchain definitions
which allow us to build different modes of operation for a protocol
participant.

3.1 Building block: Authenticated data

structure

An authenticated data structure such as Merkle tree [11] is simply
a binary tree over inputs x1, . . . ,x j , such as the inputs are placed in
the leaves of the tree (if j is not a power of two, we add null-elements
up to a closest power of two), and the value of each internal node
then is the hash of values of its two children. It is easy to see that
the tree is of length log(j) and has a single authenticating digest
at the top. A Merkle tree is collision-resistant. By using a Merkle
tree it is possible to prove membership of any element in a set by
providing logarithmic in a size of the set number of hashes. We are
interested in collision-resistance only, and we define a generalized
notion of an authenticated data structure over a data structure.

Definition 3.1. An authenticated data structure Σau is a pair of
deterministic polynomial-time algorithms (Root,CheckRoot), with
security parameter κ, such that:

The digest generation algorithm Root takes a data structure x
and outputs a digest τ ∈ {0, 1}κ . We write this as τ := Root(x).

The digest verification algorithmCheckRoot takes a data struc-
ture x ∈ {0, 1}∗, and a digest τ ∈ {0, 1}κ . It outputs a bit b, with
b = 1 meaning valid and b = 0 meaning invalid. We write this
as b := CheckRoot(x,τ).

We require the authenticated data structure Σau = (Root,CheckRoot)
to be collision-resistant.

Definition 3.2. An authenticated data structure Σau = (Root,CheckRoot)
is collision-resistant if for all ppt adversaires A, it holds that

Pr[Auth-collA,Σau (κ) = 1] ≤ negl(κ)

where Auth-collA,Σau (κ) is an collision-finding experiment de-
fined as follows.

The adversary A is given input 1κ , and outputs x, x ′.
The output of the experiment is defined to be 1 if and only
if x , x

′, Root(x) = Root(x ′) = τ , and CheckRoot(x,τ) = 1
and CheckRoot(x ′,τ) = 1. In such a case we say that A has
found a collision.

3.2 A block and a blockchain

To capture the real-world Bitcoin system, we define a block as Bj =
⟨headj , xj ⟩, where headj is a header of the block, and xj is a block
payload. The header is defined as headj = ⟨hj ,τj ,wj ⟩, where hj =
hash(headj−1) and headj−1 is the header of the previous block is a
link to a previous block, τj denotes the one-way digest of xj (in the
Bitcoin protocol it is generated by an authenticated data structure
πau, see Definition 3.1 further), and wj is a proof-of-work puzzle
solution. The header should satisfy the inequality hash(headj) < t,
where t is the proof-of-work target setting hardness of a proof-of-
work puzzle solution.

A blockchain is a sequence of ordered and linked blocksB∅,B1,B2,
. . . ,Bℓ , so for any block Bj , its header contains correct link hj =

hash(hj−1). We denote the blockchain as C = B∅ | |B1 | |B2 | | . . . | |Bℓ ,
where operation “| |” indicates the concatenation between any two
blocks. Here, we denote B∅ as the genesis block.
Blockchain payload andpayload validationpredicate.A blockchain

payload is concatenation of blockchain block payloads. In details,
for blockchain C, blockchain payload is xC = ⟨x1, . . . , xℓ⟩. The
validation of the blockchain payload depends on the concrete ap-
plications on top of the blockchain protocol. In our blockchain
protocol, participants are validating the puzzle solutions via check-
ing the hash inequality, the links between blocks via the hash chain,
and the payloads via a deterministic predicate V(·). Next, we will
define the predicate V(·).

Definition 3.3 (Payload validation predicate). Consider a blockchain
C of length ℓ ∈ N, with payload xC = ⟨x1, . . . , xℓ⟩. We say deter-
ministic V(·) is a payload validation predicate for blockchain C, if
all the following conditions hold (1) V(ϵ) = 1, (2) if V(xC) = 1, then
there exists a new payload x such that V(xC, x) = 1.

The first constraint says that blockchain development must be
started in a correct initial state. The second constraint means that
making progress in constructing a blockchain is always possible.
With these constrains applied, a blockchain protocol can achieve
its properties (namely Chain Growth, Common Prefix and Chain
Quality). In this section, we leave predicate V(·) undetermined. In

3

following sections we will instantiate the predicate V(·) with a
concrete blockchain application in mind.

3.3 Stable and unstable blockchain payload.

We term the sequence of all payloads except the last κ payloads
(the confirmed portion) as the stable blockchain payload, and the
sequence of the last κ payloads (the unconfirmed portion) as the
unstable blockchain payload. We formally define these terms as
follows.

Definition 3.4 (Stable and unstable blockchain payload). LetB∅,B1,
. . . ,Bℓ be the ordered sequence of blocks in a given round, for
ℓ ∈ N, where Bj = ⟨headj , xj ⟩, for j ∈ [1, . . . , ℓ]. Let κ be the secu-
rity parameter. We then say ⟨x1, x2, . . . , xℓ−κ ⟩ is a stable blockchain
payload and ⟨xℓ−κ+1, xℓ−κ+2, . . . , xℓ⟩ is an unstable blockchain pay-

load.

We recall that a blockchain C is constituted by processing a
sequence of blocks, B∅,B1,B2, . . . ,Bℓ . However, for the sake of
presentation, we structure the blockchain in a different but equiva-
lent way. In more detail, we decompose the blockchain C of length
ℓ into three components: (1) the header-chain (denoted Hℓ), (2)
the stable blockchain payload (denoted x̄C), and (3) the unstable
blockchain payload (denoted x̃C); here, the header-chain Hℓ :=
⟨head1, . . . , headℓ⟩, the stable payload x̄C := ⟨x1, x2, . . . , xℓ−κ ⟩,
and the unstable blockchain payload x̃C := ⟨xℓ−κ+1, xℓ−κ+2, . . . , xℓ⟩.
That is, we canwrite a blockchainC of length ℓ asC := ⟨Hℓ , x̄C, x̃C⟩.
Note that, for the sake of presentation, we use the notation C[j,m]
to indicateHℓ[j,m], for j ≥ 1 andm ≤ ℓ, in the next section. We
also abuse C ⪯ C′ (where C′ := ⟨H ′

ℓ
, x̄ ′C, x̃

′
C⟩) to sayHℓ ⪯ H

′
ℓ
.

Extending the stable and unstable blockchain payload. We
then investigate how to extend the unstable blockchain payload. As
defined, the unstable blockchain payload of a blockchainC of length
ℓ is formed and updated via a sequence of the last κ payloads, i.e.,
x̃C := ⟨xℓ−κ+1, xℓ−κ+2, . . . , xℓ⟩. In addition, the number of payloads
to form the unstable blockchain payload sequence is defined by the
security parameter κ. Therefore, whenever a new block Bℓ+1 with
a new payload xℓ+1 is introduced in the system, the oldest payload
in the unstable blockchain payload no longer belongs to the last
κ payloads. This payload will therefore be appended to the stable
blockchain payload. In the meantime, the new coming payload xℓ+1
is appended to the unstable blockchain payload.

This intuition is captured by the operation ▲, which is for-
mally defined in Algorithm 1. Specifically, for the sequence x̃C :=
⟨xℓ−κ+1, xℓ−κ+2, . . . , xℓ⟩, the operation appends the new payload
xℓ+1, and then removes the payload xℓ−κ+1 from the sequence to
produce an updated sequence x̃

′
C := ⟨xℓ−κ+2, . . . , xℓ , xℓ+1⟩, and

then returns a payload xℓ−κ+1. Please refer to Algorithm 1.

Algorithm 1 Operation▲.
1: function ▲ (x̃C, xℓ+1)
2: ⟨xℓ−κ+1, xℓ−κ+2, . . . , xℓ⟩ ← x̃C
3: x̃

′
C := ⟨xℓ−κ+2, . . . , xℓ, xℓ+1⟩ ▷ concatenate xℓ+1 and remove

xℓ−κ+1
4: return ⟨x̃′C, xℓ−κ+1⟩
5: end function

Compressed stable blockchain payload. Recall that we treat
the blockchain C as a set of a header-chain, a stable blockchain
payload, and an unstable blockchain payload, i.e., C = ⟨Hℓ , x̄C, x̃C⟩.
As the next step, we allow miners to compress the stable blockchain
payload of the blockchain C (of length ℓ) to a succinct version,
called compressed stable blockchain payload and denoted x̄C. Now,
the blockchain C consists of (1) a header-chain, (2) a compressed
stable blockchain payload, and (3) an unstable blockchain payload ,
i.e., C := ⟨Hℓ , x̄C, x̃C⟩.

Inmore detail, the stable blockchain payload x̄C := ⟨x1, x2, . . . , xℓ−κ ⟩
is compressed to x̄C via an operation “⋄”.Wewrite, x̄C := x1⋄x2⋄ . . .⋄
xℓ−κ . We stress that, this operation is instantiated later depending
on the application on top of the blockchain. For example, if miners
want to keep all payloads of the blockchain, the operation ⋄ can
be instantiated as a concatenation operation, i.e., “| |”. On the other
hand, if miners want to only store partial information, it can be
instantiated as the operation ◦ (see Section 6.1). For the sake of pre-
sentation, we defer the details of these operations to next sections.
Note that, the compressed stable blockchain payload x̄C is initially
defined by x̄∅; here, x̄∅ could be set as empty, or it may contain
some initial information needed for an application.

Here, the compressed stable blockchain payload is validated via
a compressed payload validation predicate. Formally, the compressed
payload validation predicate is defined as follows.

Definition 3.5 (Compressed payload validation predicate). Con-
sider a chain C := ⟨Hℓ , x̄C, x̃C⟩ of length ℓ ∈ N, with an operation
“⋄". Let x̄∅ be the initial compressed stable blockchain payload. We
say deterministic V(·) is a compressed payload validation predicate,
if the following conditions hold (1) V(x̄∅) = 1, (2) if V(x̄C) = 1,
then there exists a new payload x such that V(x̄C, x) = 1.

3.4 Security properties for the blockchain

In [5] (and then [9, 16], several important security properties, com-

mon prefix property [5, 16], chain quality property [5], and chain

growth property [9], have been defined for Bitcoin blockchain pro-
tocols. Please refer to Appendix A for details on the execution of
the blockchain protocol.

Definition 3.6 (Chain growth). Consider a blockchain protocol
ΠC among a set P of players. The chain growth property Qcg with
parameter д ∈ R states that for any honest player P ∈ P with the
local chain C of length ℓ in round r and C′ of length ℓ′ in round r ′,
where r ′ − r > 0, in View

ΠC,A,Z
. It holds that ℓ′ − ℓ ≥ д · (r ′ − r)

for д > 0.

Definition 3.7 (Chain quality). Consider a blockchain protocol
ΠC among a set P of players. The chain quality property Qcq with
parameters µ ∈ R and T ∈ N states that for any honest player
P ∈ P with a local chain C of length ℓ in View

ΠC,A,Z
, it holds

that for large enough T consecutive blocks of C the ratio of honest
headers is at least µ.

Definition 3.8 (Common prefix). Consider a blockchain protocol
ΠC among a set P of players. The common prefix property Qcp
with parameter κ ∈ N states that for any two honest players, P ′
with a best local chain C′ of length ℓ′ in round r ′, and P ′′ with
a best local chain C′′ of length ℓ′′ in round r ′′, in View

ΠC,A,Z

4

where P ′, P ′′ ∈ P, r ′ ≤ r ′′, it holds that C′[1, l] ⪯ C′′ where
l = ℓ′ − κ.

Jumping ahead, the three properties can also be defined for the
header-chain.

4 LEDGER AND ITS GENERALIZATION

4.1 Preliminary: Transaction

Transaction generation and verification. Transactions are data-
grams that are produced and consumed by the users. By a digital
signature scheme [7], the users are able to create accounts and sign
transactions.
Transaction format and data structure. We are now giving
more details on our proposed data structures for account, credit,
signed and unsigned transactions in Figure 1. The account contains
a verification key vk, and its address G(vk). The credit stores an
output account and the number of coins cout; thus, cout will be
transfered from an input account to aout. The unsigned transaction
includes a debited/input account, and the number of debited coins
cin from the input account. The signed transaction consists of the
corresponding unsigned transaction, a verification key and the
signature of this transaction.

+ verification_key vk;
+ account_address G(vk);

account

+ account aout;
+ coin_number cout;

credit

+ account ain;
+ coin_number cin;
+ credit Cr;

unsigned_tx

+ unsigned_tx t̃x;
+ verification_key vk;
+ signature σ ;

tx

Figure 1: Transaction structure

In Figure 2, we present the format of a regular transaction (the
tx box). We employ the “dot” notation to indicate the access to an
element of a data structure. For instance, if we want to access the
input account in the data structure shown in Figure 2, we would
refer to it as tx.t̃x.ain. The signed transaction tx consists of three
fields: a public key vk, an unsigned transaction t̃x for verification,
and the signature σ of t̃x. The unsigned transaction t̃x contains
an input/debited account, and the number of debited coins cin, ℓ
credited/output accounts.
Non-conflicting transactions. We define what it means for two
transactions to be non-conflicting. We assume that the debited
accounts need to transfer all coins they have to credited accounts;
therefore, those accounts cannot be debited accounts again in any
other transactions. If there is a transactions in C such that its input
account is the same as that in the considered transaction, then the
examined transaction is a conflicting transaction. Otherwise, it is a
non-conflicting transaction.

Definition 4.1 (Non-conflicting Transaction). Consider a chain C
of the length ℓ ∈ N which contains a blockchain payload xC :=
⟨tx1, . . . , txm⟩ for some m ∈ N. We say a transaction tx is not

conflictingwith xC if and only if predicateNonConflict(xC, tx) = 1,
where

NonConflict(xC, tx) =
{

1 ∀i ∈ [m], txi .t̃x.ain , tx.t̃x.ain

0 otherwise

Traceable transactions. Transactions have a one-to-many rela-
tionship that represents the transfer of coin(s) from a single input
account to potentially many output accounts. In order to make sure
that a new transaction is valid, we need to ensure that the input
account of that transaction has a valid balance (i.e., cin).

Definition 4.2 (Traceable Transaction). Consider a chain C of
the length ℓ ∈ N which contains a blockchain payload xC :=
⟨tx1, . . . , txm⟩ for somem ∈ N. We say a transaction tx is traceable
with respect to xC if and only if predicate Traceable(xC, tx) = 1,
where

Traceable(xC, tx) =

1 ∃i ∈ [m],∃t ∈ [ℓi] s .t .
(1), txi .t̃x.Cr.aout

t = tx.t̃x.ain,
and (2), txi .t̃x.Cr.cout

t = txi .t̃x.cin

0 otherwise

where ℓi is the number of output accounts in transaction txi .

Spent and unspent transaction output accounts. We next de-
fine two types of transaction output accounts that are useful for
our construction in next section, namely, spent transaction output

account and unspent transaction output account. Roughly speaking,
a transaction output account is considered as spent if it becomes a
transaction input account in a later transaction. On the other hand,
if it is not a transaction input account of any following transactions,
we call it an unspent transaction output account. To simplify the
presentation, we simply call transaction input accounts as trans-
action inputs. Similarly, we call transaction output accounts as
transaction outputs. We formally define them as follows.

Definition 4.3 (Spent Transaction Output). Consider a chain C
of the length ℓ ∈ N which contains a blockchain payload xC :=
⟨tx1, . . . , txm⟩ for some m ∈ N. We say a transaction output aout

of a transaction txj for j ∈ [m]is spent with respect to xC if and
only if predicate Spent(xC, aout) = 1, where

Spent(xC, a
out) =

{
1 ∃i ∈ [m], txi .t̃x.ain = aout

0 otherwise

Definition 4.4 (Unspent Transaction Output). Consider a chain
C of the length ℓ ∈ N which contains a blockchain payload xC :=
⟨tx1, . . . , txm⟩ for some m ∈ N. We say a transaction output aout

of a transaction txj for j ∈ [m]is unspent with respect to xC if and
only if predicate UnSpent(xC, aout) = 1, where

UnSpent(xC, a
out) =

{
1 ∀i ∈ [m], txi .t̃x.ain , aout

0 otherwise

4.2 Preliminary: Ledger

Since we are interested in transactions as the content of the ledger,
the payload x is instantiated as a set of transactions, x := ⟨tx1, tx2, . . . , txe ⟩
for some e ∈ N. We write tx ∈ x to denote a transaction tx that is
in the transaction set x. If we particularly consider a transaction
set in the i-th block, we write xi .

The input inserted at each block of the chain C is a set of trans-
actions, i.e., x := ⟨tx1, tx2, . . . , txe ⟩. We then term the stable

5

tx

vk
σ

t̃x

ain

cin

Cr

vk
G(vk)

Debited/input account

Credited/output account(s) & amount(s)

aout
1

cout
1

aout
2

cout
2
...

aout
ℓ

cout
ℓ

vk1

G(vk1)

vk2

G(vk2)

...

vkℓ
G(vkℓ)

Figure 2: Transaction Data-structure Hierarchy, where cin =
∑ℓ
i=1 c

out
i .

blockchain payload (in this case, the stable blockchain transac-
tion) of the chain as ledger. Let κ denote the security parameter. We
formally present the definition of a ledger as follows.

Definition 4.5 (Ledger). Let κ be the security parameter. Consider
a chain C of the length ℓ ∈ N which contains a blockchain payload
xC := ⟨x1, . . . , xℓ⟩. We say Lℓ is the ledger (of length ℓ) of C, if
Lℓ = ⟨x1, . . . , xℓ−κ ⟩.

Informally, we have a ledger of length ℓ ∈ N consists of all trans-
actions except the last κ transaction sets, i.e., xC := ⟨x1, . . . , xℓ−κ ⟩,
where xi is the input of the i-th block inC and xi := ⟨tx1, tx2, . . . , txe ⟩.
In addition, it should hold that V(Lℓ) = 1, where V(·) is a payload
validation predicate (Definition 3.3).

Here we follow the work by Pass et al. [16], and define the
stable blockchain payload as the ledger. That is, in a ledger, the
last κ number of transaction sets of the blockchain will be simply
truncated.

4.3 Generalizing ledger: Snapshot

We here relax the definition of ledger so that more efficient realiza-
tions can be allowed. Note that, for many important applications
such as cryptocurrency, a properly relaxed version of ledger may
be sufficient.

Snapshot.Now, we still consider input inserted at each generalized
block of the generalized chain C is a sequence of transactions; that
is, x := ⟨tx1, tx2, . . . , txe ⟩. However, from the generalized chain
C of the length ℓ, we obtain a generalized ledger, called snapshot

and denoted SSℓ . Informally, the snapshot is constituted by apply-
ing a general operation ⋄ to the stable blockchain payload (in this
case, stable blockchain transaction— the sequence of transaction
sets truncating the last κ transaction sets), i.e., SSℓ = x1⋄ . . .⋄xℓ−κ ,
where xi := ⟨tx1, tx2, . . . , txe ⟩ is the input. In other words, the
snapshot SSℓ is the compressed stable blockchain payload. More-
over, it should hold that V(SSℓ) = 1, where V(·) is a compressed
payload validation predicate (Definition 3.5). We formally define a
snapshot as follows.

Definition 4.6 (Snapshot). Let κ be the security parameter. Con-
sider a generalized chain C := ⟨Hℓ , x̄C, x̃C⟩ of length ℓ ∈ N, with
an operation “⋄" , where x̄C := x1⋄x2⋄ . . .⋄xℓ−κ . We say SSℓ is the
snapshot (of length ℓ) of C, if SSℓ = x̄C.

Generalized operation rules. The snapshot SSℓ of C is consti-
tuted by a sequence of transaction sets via the operation“⋄". We
call the operation along with the compressed payload validation
predicate V(·), an operation rule, denoted (⋄,V(·)). More formally,
we define an operation rule as follows.

Definition 4.7 (Generalized operation rule). Let B∅,B1, . . . ,Bℓ be
the ordered sequence of blocks. Consider a generalized blockchain
C of the length ℓ ∈ N, with the corresponding snapshot SSℓ and the
operation ⋄. Let V(·) be a compressed payload validation predicate.
Let κ be the security parameter. We say (⋄,V(·)) is a generalized
operation rule if for any generalized chain C, it holds that (1) SSℓ =
x1 ⋄ . . . ⋄ xℓ−κ where xi is the payload of block Bi for i ∈ [1, . . . , ℓ],
and (2) V(SSℓ) = 1.

Security properties for snapshot. Once the snapshot has been
defined we inext nvestigate how to define the relaxed security
properties for the ledger protocol when nodes are running in the
snapshot mode to snapshot persistence and snapshot liveness.
Snapshot-persistence. Intuitively, the snapshot-persistence prop-
erty implies, during a time period, the recorded information (i.e.,
transactions) on two different snapshots of any pair of honest par-
ties should be consistent with each other. This means if a snapshot
of length ℓ of a player is progressed by a transaction set x, then
snapshots of any other players at the same length should also be pro-
gressed by the same transaction set. Formally, we state the definition
as follows.

Definition 4.8 (Snapshot persistence). Consider a generalized ledger
protocol ΠL with the operation rule (⋄,V(·)). Let κ be the security
parameter. Let ∆ denote the upper bound on network latency. Let
SS1

ℓ
be the resulting snapshot at round r1 of the length ℓ reported

by player P1, for ℓ ∈ N and ℓ > κ.
Here snapshot persistence property states that, if snapshot SS1

ℓ
is extended by a transaction set x such that SS1

ℓ+1 := SS1
ℓ
⋄ x, then

for any player P2 with the reported snapshot SS2
ℓ
(by player P2)

of the length ℓ, in a round r2 where r2 ≥ r1 + ∆, it holds that
SS2

ℓ+1 := SS2
ℓ
⋄ x.

Snapshot-liveness. Intuitively, the liveness guarantees that any
new transactions, that do not conflict with the recorded information,
will be definitely recorded on the ledger after a certain number of

6

rounds. Similarly, snapshot liveness guarantees that the new trans-
actions, if they do not conflict with the snapshot, will be accepted
and incorporated into the updated snapshot, after a certain number
of rounds.

Definition 4.9 (Snapshot liveness). Consider a generalized ledger
protocol ΠL with the operation rule (⋄,V(·)). Let κ be the security
parameter. Consider a “wait time” parameter t.

Here snapshot liveness property states that, if a valid transaction
tx is given as input to every honest player P continuously for t
rounds from a given round r , then there exist snapshots SSℓ , SSℓ+1
and a transaction set x (reported by P) of the length ℓ > κ, in round
r ′ ≤ r + t, such that SSℓ+1 := SSℓ⋄x and tx ∈ x.

4.4 From single mode to multi-mode

In a multi-mode protocol, denoted Πmulti, there exist multiple types
of modes. These modes should be compatible with each other so
that the system can run stably and securely. Moreover, each mode
is associated with an operation rule. Here, each operation rule
is defined by an operation and a multi-mode snapshot validation

predicate. Consider a mode i where i ∈ [m], the operation rule in
this mode is defined as (⋄i ,Vi), where Vi denotes a multi-mode
snapshot validation predicate and ⋄i denotes the general operation
in mode i .

Similar to the compressed payload validation predicate in Sec-
tion 3, we require constraints on the multi-mode snapshot validation

predicate. In addition to the constrains for the compressed payload
validation predicate, a multi-mode snapshot validation predicate in
the multi-mode system should hold that, different snapshots gener-
ated from the same stable blockchain payload (transaction) should
be rejected/accepted in the same way, and also always able to make
progress. We formally define a multi-mode snapshot validation
predicate as follows.

Definition 4.10 (Multi-mode snapshot validation predicate). Con-
sider amulti-mode ledger protocolΠmulti withmmodes M1, M2, . . . , Mm .
For each mode Mi with operation rule (⋄i ,Vi (·)), the correspond-
ing initial snapshot is SSMi

∅
. Consider a generalized blockchain C

of length ℓ, with the corresponding snapshot SSMi
ℓ
, in mode i-th,

where i ∈ [m]. We say (V1, . . . ,Vm) are a set of multi-mode snap-

shot validation predicates, if the following conditions hold for the
same generalized blockchain C

• for any mode Mi , where i ∈ [m], it holds that Vi (SSMi∅) = 1.
• for any mode Mi , where i ∈ [m], it holds that, ifVi (SSMiℓ) = 1,
then there exists a new payload x such that Vi (SSMiℓ , x) = 1,
• for any pair of modes Mi and Mj , where i, j ∈ [m], it holds
that Vi (SS

Mi
ℓ
) = Vj (SS

Mj
ℓ
).

A multi-mode system is composed bymmodes where eachmode-
i , for 1 ≤ i ≤ m, is an instantiation of the generalized ledger with
the operation rule (⋄i ,Vi (·)); concretely, for each mode, we need
to instantiate the content of the state of snapshot, the content of
the snapshot, along with its operation rule (⋄i ,Vi (·)).
Defining security for incorporating multiple modes. There
are multiple types of nodes, running in different modes, in our
multi-mode protocol. Intuitively, these nodes should be compati-
ble. We formalize this intuition via a security property, multi-mode

system soundness. More concretely, we need to provide the security
guarantee that new transactions should be accepted/rejected in
the same way by all nodes in different modes. That means, when
applying the operation rule to the i-th mode nodes and to the j-
th mode nodes, where i, j ∈ [m], the output should be the same.
This property can be trivially achieved if there is only a single
mode. However, this property is critical for designing multi-mode
cryptocurrencies that has more than one mode (e.g., PRUNE sys-
tem in the next section). Without this security requirement, trivial
protocols could be allowed.

Definition 4.11 (Multi-mode soundness). Consider a multi-mode
ledger protocol Πmulti. Letm be the total number of modes inΠmulti.
Consider any pair of a mode i-th with the multi-mode operation
rule (⋄i ,Vi (·)) and a mode j-th with the multi-mode operation
rule (⋄j ,Vj (·)) in Πmulti, where j, i ∈ [m]. Let κ be the security
parameter. Let ∆ denote the upper bound on network latency. Let
SSMi

ℓ
be the snapshot of player P1 in the mode i-th of the length

ℓ > κ (note that, ℓ ∈ N) at round r1.
Here multi-mode soundness property states that, for any player

P2 in themode j-th with resulting snapshot SSMj
ℓ
at round r2 ≥ r1+∆

of the length ℓ, it holds that, Vi (SSMiℓ , x) = Vj (SS
Mj
ℓ
, x), for any

input x.

5 FULL-MODE

5.1 Instantiating snapshot to FULL-mode

We use ΠFULL to denote the ledger protocol in the FULL-mode.
In ΠFULL, players are expected to store full sequence of historical
transaction sets. Please refer to Table 1 for how we instantiate to
the FULL-mode, and please also refer to Figure 3 for an illustration
of Table 1.

Table 1: Snapshot Instantiation: FULL-mode ΠFULL
over the

blockchain protocol ΠC (see Appendix A.1) via the specifica-

tion of SSℓ , ⋄, and V(·).

SSℓ Tℓ where Tℓ is a full sequence of transactions (truncating
the last κ transaction sets), i.e., Tℓ := ⟨x1, x2, . . . , xℓ−κ ⟩.

⋄ ||

V(·) Vfull operates in the following way: return true if the
argument is ϵ .
If the input is (Tℓ):

Parse Tℓ = ⟨x1, x2, . . . , xℓ−κ ⟩, which is a sequence
of transactions where Tℓ := ⟨tx1, tx2, . . . , txm⟩ for
some m ∈ N.
Vfull outputs true if and only if for all i ∈ [m], it
holds that
• Verify(txi) = 1,
• NonConflict(xiC, txi) = 1,
• and Traceable(xiC, txi) = 1, where x

i
C :=

⟨tx1, tx2, . . . , txi−1⟩ and x
0
C = ∅ initially.

If the input is (Tℓ , x): Vfull outputs true if and only if,
Vfull (Tℓ) = 1,
and Vfull (Tℓ+1) = 1, where Tℓ+1 := Tℓ | |x.

7

Time

header-chainHℓ

transaction sequence
Tℓ := ⟨x1, . . . , xℓ−κ ⟩

headℓ−κ−3 headℓ−κ−2 headℓ−κ−1 headℓ−κ . . . headℓ

xℓ−κ−3

Bℓ−κ−3

xℓ−κ−2

Bℓ−κ−2

xℓ−κ−1

Bℓ−κ−1

xℓ−κ

Bℓ−κ

. . . xℓ

Bℓ

. . .

. . .

Figure 3: The illustration of the blockchain in FULL-mode.

Since we are interested in transactions as the content of the
ledger, we instantiate the payload x in a block as a set of trans-
actions, and write x := ⟨tx1, tx2, . . . , txe ⟩. We use xi to denote
the payload of the i-th block. We then have a full sequence of
transaction sets of the length ℓ except the last κ transaction sets
Tℓ := ⟨x1, x2, . . . , xℓ−κ ⟩. Intuitively, if there is a new transaction
set (returned by operation▲, see Algorithm 1), then the sequence
of transaction sets is concatenated by one more transaction set
such that the new transaction sequence is valid with respect to
a multi-mode snapshot validation predicate. Note that, we need
instantiate the predicate V(·) to Vfull (·) in this FULL-mode. In
more detail, from Table 1, for any transaction set x (returned by op-
eration▲), it should follow that SSℓ+1 := SSℓ⋄x and Vfull (SSℓ+1),
where ⋄ := | |. This implies, Tℓ+1 := Tℓ | |x = ⟨x1, x2, . . . , xℓ−κ , x⟩;
here, the updated transaction sequence is valid with respect to data
validation predicate Vfull (·), i.e., Vfull (Tℓ+1) = 1 (see Table 1). In
a nutshell, the predicate Vfull (·) checks (1) the conflict between
any pair of transactions, and (2) the integrity of every transaction
from its input. Details are provided in Table 1.

5.2 Security analysis for FULL-mode

We begin by showing that the execution in FULL-mode satisfies
the snapshot persistence, with an overwhelming probability in κ
(see Section 4.4, Definition 4.8). The proof is essentially based on
the common-prefix property of the underlying header-chain and
the collision-resistance of the authenticated data structure used in
this mode.

Technical challenges.Different from the proof in [5], we need the
collision-resistance of the authenticated data structure to show the
security since our blockchain data structure is different from theirs.
More precisely, we include the one-way digest τ of transaction
set x into the header-chain. Therefore, we must ensure that each
transaction set corresponds to only a single header. In other words,
there should not be two different transaction sets having the same
header. If there exist those transaction sets, adversarial miners can
always rewrite the confirmed and processed transactions. This is
guaranteed by the collision-resistance of the authenticated data
structure. Thus, we need to reduce the security of the snapshot pro-
tocol to the collision-resistance of the authenticated data structure.
We first formally state the theorems as follows.

Theorem 5.1 (FULL-mode persistence). Consider the protocol
ΠFULL

(see Section 5.1). Letκ be the security parameter. Assume the au-

thenticated data structure Σau (see Definition 3.1) is collision-resistant.

Assume that γ = λβ and λ > 1. Then, it holds that the execution in

FULL-mode ΠFULL
satisfies the snapshot persistence property, with

probability at least 1 − ϵ (κ), where ϵ (·) is a negligible function.

Proof can be found in Appendix B.1.
Note that snapshot persistence property (see Section 4.4, Defini-

tion 4.9) in FULL-mode is useful but not enough to ensure that the
players in FULL-mode makes progress, i.e., that transactions are
eventually accepted (or recorded). This is captured by the snapshot
liveness property in FULL-mode. The snapshot liveness property in
FULL-mode is formally stated in Theorem 5.2. Proof can be found
in Appendix B.2.

Theorem 5.2 (FULL-mode liveness). Consider the protocolΠFULL

(see Section 5.1). Let κ be the security parameter. Assume the authen-

ticated data structure Σau (see Definition 3.1) is collision-resistant.

Assume that γ = λβ and λ > 1. Then, it holds that the execution
in FULL-mode ΠFULL

satisfies the snapshot liveness property where

t = (1+ δ) 2κ
γ , for δ > 0, with probability at least 1− ϵ (κ) where ϵ (·)

is a negligible function.

6 PRUNE-MODE

6.1 Building block: UTXO-set

Algorithm 2 UTXO operation ◦.
1: function ◦ (Uℓ , xℓ+1)
2: Uℓ+1 := Uℓ

3: for each transaction tx in xℓ+1 do ▷ transactions are stored in
temporal order

4: for each ain in tx do

5: if ain < Uℓ+1 then
6: return ⊥

7: else

8: remove ain from Uℓ+1
9: end if

10: end for

11: add all transaction outputs aout in tx to Uℓ+1
12: end for

13: return Uℓ+1
14: end function

In Bitcoin, each output of a particular transaction can only be
spent once; the outputs of all transactions included in the blockchain
can be categorized as either unspent transaction outputs [2, 12] or
spent transaction outputs (see Definition 4.4). For a payment to be

8

Uℓ−κ

UTXO-set

last κ transaction sets

Time

header-chainHℓheadℓ−κ−1 headℓ−κ headℓ−κ+1 · · · headℓ

xℓ−κ+1

Bℓ−κ+1

· · ·

· · ·

xℓ

Bℓ

. . .

Figure 4: The illustration of the blockchain in PRUNE-mode.

valid, it must use previously unspent outputs as inputs. Therefore,
spent transaction outputs are not necessary to be stored, and a set
of unspent transaction outputs could be abstracted and represented
as a UTXO-set, denotedU := ⟨aout

1 , a
out
2 , . . . , a

out
n
⟩ for some n ∈ N.

Now, instead of storing all historical and unnecessary transactions,
miners are expected to store a UTXO-set.

Jumping ahead, each UTXO-set corresponds to a blockchain
length. Let ℓ denotes the current length. Intuitively, a UTXO-setUi
of any player P denotes the UTXO set with the length i , where i ∈
[ℓ]. An initial UTXO-set, denoted asU0 can be updated into a new
setU1 by incorporating a set of transactions x1, i.e.,U1 := U0◦x1,
where operation ◦ is defined by Algorithm 2. Similarly, the first
UTXO-setU1 can be further updated into the second UTXO-setU2
by incorporating another set of transactions x2, i.e.,U2 := U1◦x2,
and furtherUℓ+1 := Uℓ◦xℓ+1 for any transaction set xℓ+1. If we
do not interest in a particular length, we ignore the subscript and
writeU . Also, if we interest in a particular player Pj ∈ P, where
j ∈ [n] and n is the total number of miners, we writeU j .

6.2 Instantiating snapshot to PRUNE-mode

Table 2: Snapshot instantiation: PRUNE-mode ΠPRUNE
over

the blockchain protocol ΠC (see Appendix A.1) via the spec-

ification of SSℓ , ⋄, and V(·).

SSℓ Uℓ−κ whereUℓ−κ is the (ℓ-κ)-th UTXO-set.
⋄ ◦

V Vprune () operates in the following way: return true if the
argument is ϵ .
If the input is (Uℓ−κ): If parse Uℓ−κ as a sequence of
transaction outputs whereUℓ−κ := ⟨aout

1 , a
out
2 , . . . , a

out
n
⟩

for some n ∈ N, then returns true.
If the input is (Uℓ−κ , x): Parse x as a sequence of trans-
action ⟨tx1, tx2, . . . , txe ⟩ for some e ∈ N. Vprune out-
puts true if and only if for all i ∈ [e], it holds that
txi .t̃x.ain ∈ Uℓ−κ .

This design goal is captured by the following instantiation of the
snapshot to PRUNE-mode ΠPRUNE (see Table 2). Let ℓ ∈ N denote
the current blockchain length. In ΠPRUNE, players are expected to
store the {ℓ-κ}-th UTXO-set. In Table 2, we instantiate the snapshot
SSℓ of any player P . (We write SS

j
ℓ
, if we are interested in the

snapshot of a particular player Pj , where 1 ≤ j ≤ n.) Please also
refer to Figure 4 for an illustration of Table 2.

Let U0 denote the initial UTXO-set such that Vprune (U0) =
1. For ℓ < κ, we set Uℓ−κ := U0. From Table 2, for any new
transaction set x (returned by operation ▲, see Algorithm 1), it
should follow that SSℓ+1 := SSℓ⋄x andVfull (SSℓ+1), where⋄ := ◦.
This implies,Uℓ−κ+1 := Uℓ−κ◦x.

Without lost of generality, we assume that the initial UTXO set
is valid with respect to the initialization of the ledger in the FULL-
mode. Our instantiation of SSℓ in the PRUNE-mode follows certain
rules which could be specified by a multi-mode snapshot validation
predicate Vprune. This predicate is used to validate a snapshot. If
it receives as inputUℓ−κ , the predicate returns True if and only if
Uℓ−κ is a valid UTXO-set to the application’s point of view.

6.3 Security analysis for PRUNE-mode

Similar to the proofs for the snapshot persistence and snapshot
liveness in FULL-mode ΠFULL, the proofs for the snapshot persis-
tence and snapshot liveness properties in PRUNE-mode ΠPRUNE

(see Section 4.4, Definitions 4.8 and 4.9), are essentially based on
the common-prefix property, chain-quality property, and chain
growth property for the header-chains together with the collision-
resistance of the authenticated data structure used in this mode.

We begin by introducing an important lemma to prove the se-
curity. Informally, the lemma states that if any pair of players has
the same UTXO-sets, then when the UTXO-sets are extended, they
are identical. The lemma is formally state as follows. (Proof can be
found in Appendix C.1.)

Lemma 6.1. Consider the protocol ΠPRUNE
(see Section 6.2). Let κ

be the security parameter. Assume the authenticated data structure

Σau (see Definition 3.1) is collision-resistant. Assume that γ = λβ and

λ > 1. Assume that U1
ℓ−κ = U

2
ℓ−κ , for any two honest players P1

9

and P2. It holds that U1
ℓ−κ+1 = U

2
ℓ−κ+1 with probability at least

1 − ϵ (κ), where ϵ (·) is a negligible function in κ.

We are now ready to prove the snapshot persistence considering
the execution in PRUNE-mode as follows.

Theorem 6.2 (PRUNE-mode persistence). Consider the protocol
ΠPRUNE

(see Section 6.2). Let κ be the security parameter. Assume

the authenticated data structure Σau (see Definition 3.1) is collision-

resistant. Assume that γ = λβ and λ > 1, it holds that the execution
in PRUNE-mode ΠPRUNE

satisfies the snapshot persistence property,

with probability at least 1 − ϵ (κ), where ϵ (·) is a negligible function.

Proof can be found in Appendix C.2.

Theorem 6.3 (PRUNE-mode liveness). Consider the generalized
ledger protocol ΠPRUNE

(see Section 6.2). Let κ be the security param-

eter. Assume the authenticated data structure Σau (see Definition 3.1)

is collision-resistant. Assume that γ = λβ and λ > 1. It holds that
the execution in PRUNE-mode ΠPRUNE

satisfies the snapshot liveness

property with probability at least 1 − ϵ (κ), where ϵ (·) is a negligible
function.

Proof can be found in Appendix C.3.

7 PRUNE: A MULTI-MODE SYSTEMWITH

FULL AND PRUNEMODES

There are twomodes, FULL-modeΠFULL (see Section 5), and PRUNE-
mode ΠPRUNE (see Section 6) in the PRUNE system, and we write
Πmulti = (ΠFULL,ΠPRUNE). Both modes are instantiations of the
generalized ledger. We remark that our PRUNE system can be
viewed as an abstract presentation of the Bitcoin Pruned proposal (in-
troduced in Bitcoin Core version 0.11 [1]). We also remark that,
our PRUNE can be easily modified to capture the Ethereum Pruned
proposal [21]. As an initial study and to simplify the analysis, we
assume that players will not change modes in the execution.

7.1 Security analysis for incorporating

FULL-mode and PRUNE-mode

In this section, we prove the multi-mode system soundness (see Sec-
tion 4.4, Definition 4.11). Intuitively, the multi-mode system sound-
ness property says that any transaction should be accepted/rejected
in the same way as by the PRUNE-mode players or by FULL-mode
players. The proof is essentially based on the snapshot persistence
property for PRUNE-mode and FULL-mode. Before going to the
details of the proof of multi-mode system soundness, we state a
lemma to show that unspent transaction outputs are as useful as the
full set of transactions. More precisely, new transactions should be
accepted/rejected in the same way with respect to the snapshot in
FULL-mode (generated from the full sequence of all processed trans-
actions truncating the lastκ transaction sets), and to the snapshot in
PRUNE-mode (containing the set of unspent transaction outputs).
This implies the multi-mode snapshot validation predicates in both
PRUNE and FULL mode should return the same output.

Note that, to distinguish the snapshots and the corresponding
operations in FULL-mode from PRUNE-mode, we denote SSf

ℓ
and

⋄f as the snapshot of length ℓ and operation in FULL-mode, re-
spectively. Similarly, we denote SS

p
ℓ
and ⋄p as the snapshot and

operation in PRUNE mode, respectively. If we are interested in the
snapshot of a particular player Pi , we write SSf,iℓ (or SSp,i

ℓ
).

Lemma 7.1. Consider PRUNE system Πmulti = (ΠPRUNE,ΠFULL).

Let κ be the security parameter. Consider a snapshot SSf
ℓ

:= Tℓ in

FULL mode where Tℓ := ⟨x1, x2, . . . , xℓ−κ ⟩, and SS
p
ℓ
= Uℓ−κ in

PRUNEmode, whereUℓ−κ := U0◦x1◦ . . . xℓ−κ . It holds that for any
transaction set x, Vfull (SS

f
ℓ
⋄f x) = Vprune (SS

p
ℓ
⋄px) where ⋄f := | |

and ⋄p := ◦.

Proof can be found in Appendix D.1.
Armed with Lemma 7.1 and Lemma 6.1 in Section 6.3, we are

now ready to prove our main theorem as follows.

Theorem 7.2 (Multi-mode soundness). Consider PRUNE sys-

tem Πmulti = (ΠPRUNE,ΠFULL) in Section 7. Let κ be the security

parameter. Let κ be the security parameter. Assume the authenticated

data structure πau (see Definition 3.1) is collision-resistant. Assume

that γ = λβ and λ > 1, it holds that PRUNE system Πmulti
satisfies

the multi-mode soundness property with probability at least 1 − ϵ (κ),
where ϵ (·) is a negligible function.

Proof can be found in Appendix D.2

REFERENCES

[1] Bitcoin core version 0.11.0 released. https://bitcoin.org/en/release/v0.11.0.
[2] Bitcoin developer guide – UTXO definition. https://bitcoin.org/en/

developer-guide#term-utxo.
[3] Ittay Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy,

pages 89–103. IEEE Computer Society Press, May 2015.
[4] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulner-

able. In Nicolas Christin and Reihaneh Safavi-Naini, editors, FC 2014, volume
8437 of LNCS, pages 436–454. Springer, Heidelberg, March 2014.

[5] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer,
Heidelberg, April 2015.

[6] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol with chains of variable difficulty. In CRYPTO, 2017. https://eprint.iacr.
org/2016/1048.

[7] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[8] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis.
Blockchainmining games. In Proceedings of the 2016 ACMConference on Economics

and Computation (EC), pages 365–382, 2016.
[9] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in

blockchain protocols. Cryptology ePrint Archive, Report 2015/1019, 2015.
http://eprint.iacr.org/2015/1019.

[10] Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions
in the blockchain. Cryptology ePrint Archive, Report 2016/545, 2016. http:
//eprint.iacr.org/2016/545.

[11] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 218–238. Springer, Heidelberg, August
1990.

[12] Andrew Miller. Storing utxos in a balanced merkle tree. 2012. https://bitcointalk.
org/index.php?topic=101734.0.

[13] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. https:
//bitcoin.org/bitcoin.pdf.

[14] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining:
Generalizing selfish mining and combining with an eclipse attack. Cryptology
ePrint Archive, Report 2015/796, 2015. http://eprint.iacr.org/2015/796.

[15] Parity Wiki. Warp sync. 2017. https://github.com/paritytech/parity/wiki/
Warp-Sync.

[16] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In EUROCRYPT, 2017. https://eprint.iacr.org/2016/454.

[17] Ayelet Sapirstein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining
strategies in bitcoin. In International Conference on Financial Cryptography and

Data Security, 2016.

10

https://bitcoin.org/en/release/v0.11.0
https://bitcoin.org/en/developer-guide#term-utxo
https://bitcoin.org/en/developer-guide#term-utxo
https://eprint.iacr.org/2016/1048
https://eprint.iacr.org/2016/1048
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2016/545
http://eprint.iacr.org/2016/545
https://bitcointalk.org/index.php?topic=101734.0
https://bitcointalk.org/index.php?topic=101734.0
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2015/796
https://github.com/paritytech/parity/wiki/Warp-Sync
https://github.com/paritytech/parity/wiki/Warp-Sync
https://eprint.iacr.org/2016/454

[18] Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive
compatibility of bitcoin mining pool reward functions. In International Conference
on Financial Cryptography and Data Security, 2016.

[19] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing
in bitcoin. In Rainer Böhme and Tatsuaki Okamoto, editors, FC 2015, volume
8975 of LNCS, pages 507–527. Springer, Heidelberg, January 2015.

[20] Parity Technologies. Fast, light, robust ethereum implementation. https://github.
com/paritytech/parity.

[21] Parity Wiki. Warp sync snapshot format. https://github.com/paritytech/parity/
wiki/Warp-Sync-Snapshot-Format.

[22] Gavin Wood. Ethereum: A secure decentralized transaction ledger. 2014. http:
//gavwood.com/paper.pdf.

A SUPPORTING MATERIAL FOR SECTION 3

A.1 The execution of miners

The blockchain protocol ΠC. We are now ready to describe
the blockchain protocol ΠC (Algorithm 3). First, each miner copies
all the new blocks received from the network into his local state.
Then the miner updates set of stored blokchains C with the blocks
and selects the best blockchain from the set by calling the BestChain
function (Algorithm 6). Every updated blockchain must be valid,
thus BestChain is calling chain validation function Validate (Algo-
rithm 4) under the hood. Then the miner tries to extend the best
blockchain by running randomized algorithm Pow (Algorithm 5)
which is issuing a single query to idealized hash function per round.
The pseudocode of main miner loop is provided in Algorithm 3.
Algorithm 3 The blockchain protocol ΠC.
1: C := ϵ
2: while True do

3: B← all blocks from the network.
4: ⟨C,C⟩ ← BestChain(C,B)
5: ⟨x,τ ⟩ ← a new payload and its corresponding digest from

the environment.
6: ⟨Hℓ , x̄C, x̃C⟩ ← C ▷ the length of C is ℓ
7: ⟨head1, head2, . . . , headℓ⟩ ← Hℓ

8: headℓ+1 ← Pow (headℓ ,τ)
9: if headℓ+1 , ϵ then

10: B := ⟨headℓ+1, x⟩
11: Hℓ+1 := ⟨head1, head2, . . . , headℓ , headℓ+1⟩
12: ⟨x̃ ′C, x

′⟩ := x̃C▲x

13: x̄′C := x̄C⋄x ′

14: C′ := ⟨Hℓ+1, x̄′C, x̃
′
C⟩

15: C := (C \ {C}) ∪ {C′}
16: Broadcast(B)
17: end if

18: round := round + 1
19: end while

Algorithm 5 The proof of work function Pow, parametrized by t
and hash function hash(·).
1: function Pow(headℓ ,τ)
2: h← hash(headℓ)
3: w← {0, 1}κ
4: headℓ+1 := ε
5: if hash(h,τ ,w) < t then

6: headℓ+1 := ⟨h,τ ,w⟩
7: end if

8: return headℓ+1
9: end function

Algorithm 4 Validation function Validate, parameterized by a tar-
get t, a hash function hash(·), and compressed payload validation
predicate V(·).

1: function Validate(C)
2: ⟨Hℓ , x̄C, x̃C⟩ ← C
3: b := V(x̄C)
4: if b then

5: ⟨head1, head2, . . . , headℓ⟩ ← Hℓ ▷ the length of C is ℓ
6: h

′ := 0
7: for each i in 1, . . . , ℓ do
8: parse headi into ⟨hi ,τi ,wi ⟩
9: if (hi = h

′) ∧ (hash(headi) < t) then
10: h

′ ← hash(headi)
11: else

12: return (b = 0)
13: end if

14: end for

15: end if

16: return (b)
17: end function

Algorithm 6 Best chain function BestChain.

1: function BestChain(C,B)
2: for each B ∈ B (reordered by using hash-links) do

3: ⟨head, x⟩ ← B ▷ iterating over B to append new blocks
4: for each C in C do

5: ⟨Hℓ , x̄C, x̃C⟩ ← C ▷ the length of C is ℓ
6: Hℓ+1 := ⟨Hℓ , head⟩
7: ⟨x̃ ′C, x

′⟩ := x̃C▲x

8: x̄′C := x̄C⋄x ′

9: C′ := ⟨Hℓ+1, x̄′C, x̃
′
C⟩

10: if C′ ,⊥ ∧Validate(C′) then
11: C := (C \ {C}) ∪ {C′}
12: end if

13: end for

14: end for

15: return ⟨C,C with a longest header-chain in C⟩
16: end function

A.2 Security analysis for the blockchain

The underlying header-chain in the blockchain is the same as the
Bitcoin blockchain in [5] except that we specify each payload xi
as the digest τi of a transaction xi . Indeed, the security of our
header-chain is implied from the security of the blockchain in
Bitcoin backbone; therefore, by the security of Bitcoin backbone
shown in [5], the blockchain protocol ΠC (Section A.1) achieves
the three security properties.We begin by recalling the following
two quantities introduced in [5, 16]. Consider the total number
of players is n, the portion of malicious computing power is ρ,
and p = t

2κ is the probability of success in a single PoW function
invocation.

Let α = 1 − (1 − p) (1−ρ)n be the probability that at least one
honest players mines a block successfully in a round.

11

https://github.com/paritytech/parity
https://github.com/paritytech/parity
https://github.com/paritytech/parity/wiki/Warp-Sync-Snapshot-Format
https://github.com/paritytech/parity/wiki/Warp-Sync-Snapshot-Format
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

Let β = ρnp be the expected number of blocks that malicious
players can find in a round.

Here, when pn ≪ 1, we have α ≈ (1 − ρ)np, and thus α
β ≈

1−ρ
ρ .

We assume 0 < α ≪ 1, 0 < β ≪ 1 and α = λβ where λ ∈ (1,∞).
We consider the network delay model as in [16]. We then have
γ = α

1+∆α can be viewed as a “discounted” version of α due to the
fact that the messages sent by honest parties can be delayed in ∆
rounds; γ corresponds to the “effective” honest computing resource.
We also assume (α + β)∆ ≪ 1.

Theorem A.1 (Chain growth). For any δ ,γ > 0, consider the
blockchain protocol ΠC (see Section A.1) among a set P of players.

For any honest player P ∈ P with the local chain C of length ℓ in

round r and C′ of length ℓ′ in round r ′, where r ′ − r = s > 0, in
View

ΠC,A,Z
, the probability that ℓ′ − ℓ ≥ д · s is at least 1 − e−Ω(s)

where д = (1 − δ)γ .

Theorem A.2 (Chain qality). Assume that γ = λβ and λ > 1.
For any δ > 0, consider the blockchain protocol ΠC (see Section A.1)

among a set P of players. For any honest player P ∈ P, with the local
chain C of length ℓ in View

ΠC,A,Z
, the probability that, for large

enough T consecutive blocks of C which are generated in s rounds,

the ratio of honest blocks is no less than µ = 1 − (1 + δ) βγ is at least

1 − e−Ω(T)
.

Theorem A.3 (Common prefix). Assume that γ = λβ and λ > 1.
For any δ > 0, consider the blockchain protocol ΠC (see Section A.1)

among a set P of players. For any two honest players, P ′ ∈ P with the

local chain C′ of length ℓ′ in round r ′, and P ′′ ∈ P in round r ′′ with
the local chain C′′ of length ℓ′′, in View

ΠC,A,Z
where r ′ ≤ r ′′, the

probability that C′[1, l] ⪯ C′′ is at least 1− e−Ω(κ)
where l = ℓ′ −κ.

Indeed, the underlying blockchain in the blockchain protocol
is the header-chain. Thus, the three theorems above are essen-
tially for the header-chain. In order words, the header-chains in the
blockchain protocol ΠC satisfy the three properties.

B SUPPORTING MATERIAL FOR SECTION 5

B.1 Proof of Theorem 5.1

Proof. By Theorem A.3, the generalized blockchain protocol
(the underlying header-chain) satisfies the common-prefix property
with the probability 1 − e−Ω(κ) . Now, suppose that the execution
in FULL-mode ΠFULL (see Section 5.1) satisfies the snapshot persis-
tence property, with probability at most 1 − ζ (κ) such that ζ (·) is a
non-negligible function. We then show that there exists a ppt adver-
sary A ′ against Σau that can win the collision-finding experiment
(see Definition 3.2) with probability at least ζ ′(κ), where ζ ′(·) is a
non-negligible function.

LetZ denote the environment in which protocol execution is
in the FULL-mode with n number of miners. We will construct A ′
from the execution of the FULL-mode ΠFULL that is directed by
Z and run in q(κ) rounds, where q(·) is a polynomial function, as
follows. The adversary A ′ is given 1κ . He then randomly chooses
pair of honest players P1 with the snapshot SS1

ℓ1
:= T 1

ℓ1
of length ℓ1

and P2 with the snapshot SS2
ℓ2

:= T 2
ℓ2

of length ℓ2 = ℓ1 = ℓ, where
T 1
ℓ1

:= ⟨x1
1 , . . . , x

1
ℓ1
⟩ and T 2

ℓ2
:= ⟨x2

1 , . . . , x
2
ℓ2
⟩ (note that, it holds

that ℓ2 ≥ ℓ1 when r2 ≥ ∆ + r1). Then output a pair (x1
ℓ
, x2

ℓ
) to its

challenger.
Note that, once τℓ appears on the corresponding header-chain

H 1
ℓ1

of any player P1 at round r1, then for any other honest player
P2 with the corresponding header-chain H 2

ℓ2
at round r2, by the

common-prefix property, τℓ also appears onH 2
ℓ2
.Since the execu-

tion in FULL-mode ΠFULL (see Section 5), satisfies the snapshot
persistence property, with probability at most 1 − ζ (κ), then there
exists a pair (T i

ℓi
,T

j
ℓj
) of players (Pi , Pj) such that Pr[xi

ℓ
, x

j
ℓ
] > ζ .

Thus,

Pr[x2
ℓ , x

1
ℓ] >

ζ

n2q

where 1
n2 is the probability that P1 = Pi and P2 = Pj , and 1

q
is the probability that ℓ is the length such that x2

ℓ
, x

1
ℓ
, and q

is a polynomial function. Note that, the transaction sets x1
ℓ
and

x
2
ℓ
have the same digest by the common-prefix property. Thus,

the ppt adversary A ′ against Σau can win the collision-resistant
experiment (see Definition 3.2) with non-negligible probability ζ ′

where ζ ′ = ζ
n2q . By the common-prefix property, we have H 1

ℓ
,

H 2
ℓ
(truncating the last κ headers) are the same with probability at

least 1 − e−Ω(κ) ; it follows that τ 1
ℓ
= τ 2

ℓ
(where τ 1

ℓ
:= Root(x1

ℓ
) and

τ 2
ℓ

:= Root(x2
ℓ
)) with probability that is close to 1. Thus, there exists

a pair (x1
ℓ
, x2

ℓ
) such that x1

ℓ
, x

2
ℓ
, Root(x1

ℓ
) = Root(x2

ℓ
) = τ 1

ℓ
= τ 2

ℓ
,

CheckRoot(x1
ℓ
,τ 1

ℓ
) = CheckRoot(x2

ℓ
,τ 2

ℓ
) = 1, with probability at

least ζ ′ where ζ ′ = ζ
n2q . □

B.2 Proof of Theorem 5.2

Proof. By Theorems A.2 and A.1, the generalized blockchain
protocol (the underlying header-chain) satisfies the chain growth
property and chain quality property with probability that is close to
1. Now, we need to prove that assuming all honest players receive
as input the transaction tx for at most t = (1 + δ) 2κ

γ rounds,
for δ > 0, then for any player P there exists snapshots SSℓ :=
Tℓ = x1 | |x2 | | . . . | |xℓ of length ℓ, SSℓ−1 := Tℓ−1 of length ℓ-1 and
a transaction set x , in the FULL mode, such that tx ∈ xℓ , with
probability at least 1 − ϵ (κ), where ϵ (·) is a negligible function and
⋄ := | |. Note that, by the chain-growth property (Theorem A.1),
we have that the header-chain of any honest party has increased
by at least 2κ headers, respectively. By the chain-quality property
(Theorem A.2), there exists a header with the digest of a transaction
set x that was computed by an honest party after t = (1 + δ) 2κ

γ
rounds, and tx ∈ x, with probability that is close to 1.

Now, suppose the execution in FULL-mode achieves the snap-
shot liveness, with probability at most 1 − ζ (κ), where ζ (·) is a
non-negligible function, then we need to show that there exists a
ppt adversary A ′ against Σau that can win the collision-resistant
experiment (see Definition 3.2) with probability at least ζ ′(κ), where
ζ ′(·) is a non-negligible function. LetZ denote the environment
in which protocol execution is in the FULL-mode with n miners.

We then construct the adversary A ′ from the execution in the
FULL-mode that is directed by Z and run in q(κ) rounds, where
q(·) is a polynomial function, as follows. The adversaryA ′ is given
1κ . Then, randomly choose a transaction set x that is input to the

12

execution in a particular round r , with the corresponding digest τ .
The adversary then randomly chooses a player P ′. Let SSℓ := Tℓ
be the snapshot of a player P ′ at round r ′ ≤ r + t where τ appears
on the corresponding header-chain of Tℓ , and Let SSℓ := Tℓ+1
be the latest snapshot of a player P ′ of length ℓ+1 before round
r + t. Let x ′ denote the corresponding transaction set such that
SSℓ+1 := SSℓ⋄x

′, where ⋄ := ∥. The adversary then outputs (x, x ′).
Since if the execution in FULL-mode ΠFULL (see Section 5.1)

satisfies the snapshot liveness property, with probability at most
1 − ζ (κ), then all transactions belong to a transaction set x such
that x appears on Tℓ of any honest player P , with probability at
most 1− ζ (κ). Thus, there exists a transaction set that is not on T ′

ℓ
of an honest player P ′ with probability at least ζ (κ), i.e., Pr[Tℓ ,
T ′
ℓ

] > ζ
n . It follows that

Pr[x , x
′] >

ζ

nq

where 1
q is the probability that tx ∈ x is the transaction that breaks

the property (function q is a polynomial function) and 1
n is the

probability that party P is P ′. Therefore, there exists x ′ , x, with
the same digest τ as x that appears on Tℓ of at least one player, with
probability at least ζ

nq .
Thus, the ppt adversary A ′ against Σau can win the collision-

resistant experiment (see Definition 3.2) with probability at least
ζ ′ =

ζ
nq . By the chain growth property and chain quality property,

the corresponding digest τ of x is definitely on a header in the
header-chain of each honest player after t = (1 + δ) 2κ

γ rounds,
for δ > 0. Thus, another transaction set x ′ , x, with the same
digest such that Root(x) = Root(x ′) = τ , CheckRoot(x ′,τ) = 1,
replaces x, with probability at least ζ ′ = ζ

nq , where ζ is a non-
negligible probability. Therefore, there exists a pair (x, x ′) such that
CheckRoot(x,τ) = CheckRoot(x ′,τ) = 1, with a non-negligible
probability. This completes the proof.

□

C SUPPORTING MATERIAL FOR SECTION 6

C.1 Proof of Lemma 6.1

Proof. We need to prove that P1 and P2 have the same transac-
tion set returned by operation▲ (see Algorithm 1), with probability
at least 1 − ϵ (κ) under the assumptions that the authenticated data
structure Σau (see Definition 3.1) is collision-resistant, and that
γ = λβ and λ > 1. By Theorem A.3, the generalized blockchain
protocol (the underlying header-chain) satisfies the common-prefix
property with probability at least 1 − e−Ω(κ) . Now, suppose by con-
tradiction that xi

ℓ−κ+1 = x
j
ℓ−κ+1, for all pairs of players (Pi , Pj),

with probability at most 1 − ζ (κ) where ζ (·) is a non-negligible
function, then we need to show there exists a ppt adversary A ′
that can win the collision-resistant experiment with probability at
least ζ ′(κ) where ζ ′(·) is a non-negligible function.

We construct the adversary A ′ as follows. The adversary A ′
upon receiving input 1κ from its challenger, runs the execution such
that all players have the same UTXO-sets, then when the UTXO-
sets are extended to the length ℓ − κ + 1, let all honest players
change to PRUNE mode. Let xi denote the new transaction set that

is injected when player Pi changes to PRUNE mode, for i ∈ [n]
(here, n is the number of players in the system). Then randomly
choose a pair of player (P1, P2), and output the pair of transaction
sets (x1

ℓ−κ+1, x
2
ℓ−κ+1).

Since we have xi
ℓ−κ+1 = x

j
ℓ−κ+1, for all pairs (Pi , Pj), with prob-

ability at most 1− ζ (κ). This implies that there exists a pair (Pi , Pj)
such that Pr[xi

ℓ−κ+1 , x
j
ℓ−κ+1] > ζ Thus, Pr[x1

ℓ−κ+1 , x
2
ℓ−κ+1] >

ζ
n2 where 1

n2 is the probability that P1 = Pi and P2 = Pj . Thus, the
adversary A ′ that can win the collision-resistant experiment with
a non-negligible probability ζ ′ = ζ

n2 . Therefore, we conclude that
x

1
ℓ−κ+1 = x

2
ℓ−κ+1 with probability at least 1 − ϵ (κ), where ϵ (·) is a

negligible function. It follows that, with probability at least 1−ϵ (κ)

U1
ℓ−κ+1 = U

1
ℓ−κ◦x

1
ℓ−κ+1 = U

2
ℓ−κ◦x

2
ℓ−κ+1 = U

2
ℓ−κ+1

□

C.2 Proof of Theorem 6.2

Proof. We prove by induction as follows. Initially, we have
SS1
∅
= SS2

∅
= U0. Assume it holds for length ℓ, where P1 and P2 are

both in PRUNE mode thatU1
ℓ−κ = U

2
ℓ−κ with probability at least

1 − ϵ (κ). From Lemma 6.1, it holds that U1
ℓ−κ+1 = U

2
ℓ−κ+1 with

probability at least 1 − ϵ (κ), where ϵ (·) is a negligible function.
□

C.3 Proof of Theorem 6.3

Proof. The proof for this theorem is similar to the proof for
Theorem B.2. However, since the adversary cannot derive a trans-
action set from a UTXO set, he would output his UTXO set with a
UTXO set of an honest player in the experiment. □

D SUPPORTING MATERIAL FOR SECTION 7

D.1 Proof of Lemma 7.1

Proof. We show that

Vfull (SS
f
ℓ , x) = Vprune (SS

p
ℓ
, x) (1)

where SSf
ℓ

:= Tℓ and SS
p
ℓ

:= Uℓ−κ . Now, consider two cases:
Case 1: If the transaction inputs of all valid transactions tx in x

are in Uℓ−κ , then by definition, the data validation predicate in
PRUNE mode Vprune (See Table 2) will return true. In addition, the
transaction inputs are from the unspent transaction outputs, those
transactions in x will not conflict with the ones in Tℓ , by definition,
predicate Vfull (see Table 1) will return true.
Case 2: If the transaction inputs of any valid transactions tx in x

are not inUℓ−κ , then the data validation predicate in PRUNEmode
Vprune will return false. In this case, the transaction outputs might
be originated from spent transaction outputs in Tℓ or not from any
outputs in Tℓ . In the former case where they are from the spent
transaction outputs, NonConflict(·) will return 0. In the later case
where they are not from any output, Traceable(·) will return 0. In
any cases, the predicate Vfull will return false.

□

13

D.2 Proof of Theorem 7.2

Proof. Consider any honest player P1 having the generalized
chain (with the corresponding snapshot) of length ℓ1 at round r1
and honest player P2 having the generalized chain (with the corre-
sponding snapshot) of length ℓ2 at round r2. By the common-prefix
property of the generalized blockchain protocol (the underlying
header-chain), the header-chain of P2 will be at least as long the
header-chain of P1 at round r2 ≥ r1 + ∆, i.e., ℓ2 ≥ ℓ1. Consider that
ℓ2 = ℓ1 = ℓ, we then have the following important cases:
Case 1: If P1 and P2 are both in FULL mode. Here, the snapshot
of P1 in FULL mode SSf,1

ℓ
:= T 1

ℓ
and the snapshot of P2 in FULL

mode SSf,2
ℓ

:= T 2
ℓ
. By Theorem 5.1, we have that T 2

ℓ
= T 1

ℓ
, with

probability at least 1−ϵ (κ), where ϵ (·) is a negligible function. Thus,
for any transaction set x, it follows that

Vfull (SS
f,1
ℓ
, x) = Vfull (SS

f,2
ℓ
, x)

with probability at least 1 − ϵ (κ).
Case 2: If both P1 and P2 are in PRUNEmode. Here, the snapshot of
P1 in PRUNEmode SSp,1

ℓ
:= U1

ℓ−κ and the snapshot of P2 in PRUNE
mode SS

p,2
ℓ

:= U2
ℓ−κ . By Theorem 6.2, we have U1

ℓ−κ = U
2
ℓ−κ .

Thus, for any transaction set x, it follows that

Vprune (SS
p,1
ℓ
, x) = Vprune (SS

p,2
ℓ
, x)

with probability at least 1−ϵ (κ), where ϵ (·) is a negligible function.
Case 3: If P1 or P2 is not in the FULL mode. Consider player P1 in
the FULL mode and P2 in PRUNE mode. Initially, we have SSf,1

∅
=

ϵ and SS
p,1
∅
= U0. By definitions of the predicates Vfull (·) and

Vprune (·′), and the assumption that the initial UTXO set is valid
with respect to the initialization of the ledger in the FULL-mode
(see Section 6.2), it holds that Vfull (SSf,1∅) = Vprune (SS

p,2
∅

) = 1,
where SSf,1

∅
= ϵ and SS

p
∅
= U0 denote the initial snapshots in

PRUNE and FULL modes, respectively.
By the full mode snapshot persistence (Theorem 5.1), it holds

that, for any pair of (P1, P2), we have x1
i = x

1
i , for all i ∈ [ℓ − κ],

with probability at least 1−ϵ (κ). We also have the snapshot of P1 in
FULLmode SSf,1

ℓ
:= T 1

ℓ
= ⟨x1

1 , . . . , x
1
ℓ−κ ⟩, and the snapshot of P2 in

PRUNE mode SSp,2
ℓ

:= U2
ℓ−κ = U0◦x2

1◦ . . . ◦x
2
ℓ−κ . From Lemma

7.1, we conclude that, for any transaction set x, with probability at
least 1 − ϵ (κ),

Vfull (SS
f,1
ℓ
, x) = Vprune (SS

p,2
ℓ
, x)

□

14

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Model
	2.1 The model of protocol execution

	3 Proof-of-work blockchain
	3.1 Building block: Authenticated data structure
	3.2 A block and a blockchain
	3.3 Stable and unstable blockchain payload.
	3.4 Security properties for the blockchain

	4 Ledger and its generalization
	4.1 Preliminary: Transaction
	4.2 Preliminary: Ledger
	4.3 Generalizing ledger: Snapshot
	4.4 From single mode to multi-mode

	5 FULL-mode
	5.1 Instantiating snapshot to FULL-mode
	5.2 Security analysis for FULL-mode

	6 PRUNE-mode
	6.1 Building block: UTXO-set
	6.2 Instantiating snapshot to PRUNE-mode
	6.3 Security analysis for PRUNE-mode

	7 PRUNE: A multi-mode system with FULL and PRUNE modes
	7.1 Security analysis for incorporating FULL-mode and PRUNE-mode

	References
	A Supporting material for Section 3
	A.1 The execution of miners
	A.2 Security analysis for the blockchain

	B Supporting material for Section 5
	B.1 Proof of Theorem 5.1
	B.2 Proof of Theorem 5.2

	C Supporting material for Section 6
	C.1 Proof of Lemma 6.1
	C.2 Proof of Theorem 6.2
	C.3 Proof of Theorem 6.3

	D Supporting material for Section 7
	D.1 Proof of Lemma 7.1
	D.2 Proof of Theorem 7.2

