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Abstract

A hash function family is called correlation intractable if for all sparse relations, it is hard to find,
given a random function from the family, an input-output pair that satisfies the relation (Canetti et al.,
STOC 98). Correlation intractability (CI) captures a strong Random-Oracle-like property of hash func-
tions. In particular, when security holds for all sparse relations, CI suffices for guaranteeing the soundness
of the Fiat-Shamir transformation from any constant round, statistically sound interactive proof to a non-
interactive argument. However, to date, the only CI hash function for all sparse relations (Kalai et al.,
Crypto 17) is based on general program obfuscation with exponential hardness properties.

We construct a simple CI hash function for arbitrary sparse relations, from any symmetric encryption
scheme that satisfies some natural structural properties, and in addition guarantees that key recovery at-
tacks mounted by polynomial-time adversaries have only exponentially small success probability - even in
the context of key-dependent messages (KDM). We then provide parameter settings where ElGamal en-
cryption and Regev encryption plausibly satisfy the needed properties. Our techniques are based on those
of Kalai et al., with the main contribution being substituting a statistical argument for the use of obfusca-
tion, therefore greatly simplifying the construction and basing security on better-understood intractability
assumptions.

In addition, we extend the definition of correlation intractability to handle moderately sparse relations
so as to capture the properties required in proof-of-work applications (e.g. Bitcoin). We also discuss the
applicability of our constructions and analyses in that regime.
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1 Introduction

The random oracle methodology [FS86, BR93] models cryptographic hash functions as completely random
functions. The model yields simple constructions of cryptographic primitives both in theory and practice,
but is known to be inherently unsound in principle [CGH98, Nie02, GK03, DOP05, HK07]. A natural al-
ternative is to formalize concrete “random-oracle-like” properties of hash functions, and then (a) construct
hash functions that provably demonstrate these properties based on established hardness assumptions, and
(b) show how security of applications follow from these properties. Indeed, a number of such notions have
been proposed and used in the literature, with multiple applications e.g. [Can97, CMR98, CGH98, IKNP03,
BLV06, HMR08, BCFW09, GOR11, BHK13].

Correlation intractability. We focus on one of such notion called correlation intractability, defined by
Canetti, Goldreich and Halevi [CGH98]. Correlation intractability attempts to capture the following property
of random functions. Consider a random function O from {0, 1}n to {0, 1}m, along with some fixed binary
relation R : {0, 1}n × {0, 1}m → {0, 1} such that for any x ∈ {0, 1}n, the fraction of y ∈ {0, 1}m such
that R(x, y) holds is at most µ. Then, the best possible way to find x such that R(x,O(x)) holds is to
randomly try different x’s. The probability of success after t attempts is at most tµ. A function family is
correlation intractable (CI) if it behaves similarly against polytime algorithms. Specifically, a function family
H is correlation intractable if, for any relation R with negligible density µ, no polytime adversary can, given
the description of a function h : {0, 1}n → {0, 1}m chosen randomly from H , find x such that R(x, h(x))
holds, except with negligible probability. Note that there are no secrets here: The adversary sees the entire
description of h, which succinctly encodes the values h(x) for all possible values of x.

Correlation intractability captures a large class of natural properties of random functions. For example, the
infeasibility of finding preimages of any fixed value c in the range can be formalized as correlation intractabil-
ity w.r.t. any constant relations Rc = {(x, c) | ∀x in the domain}. The “fixed output value” in the example
can be extended to “a sufficiently long fixed prefix”, e.g. sufficiently many leading 0s. Indeed, correlation
intractability (in its quantitative form) is the natural formalization of the requirements expected from the hash
function used for mining chaining values in the Bitcoin protocol [Nak08] and other applications relied on
proof-of-work [DN92]. We further discuss these application later on.

Another natural and prominent application of correlation intractable hash functions is their use for sound
realization of the Fiat-Shamir (FS) heuristic [FS86]. Recall that, originally, the idea of Fiat and Shamir was
to transform a three-message, public coin identification scheme to a signature scheme by having the signer
first generate the first prover message α of the identification scheme (incorporating the message-to-be-signed
in the identity), then computing the verifier message as β = h(α) for some public hash function h, and
then having the signature consist of (α, γ), where γ is the corresponding third message of the identification
scheme. Verification first reconstructs β = h(α) and then verifies the identification. It can be seen that if h
is modeled as a random function, then the resulting signature scheme is unforgeable [AABN02]. In fact, the
same transform can be used to build a non-interactive argument from any public-coin interactive proof (even
multi-round ones), as long as the initial proof is resettably sound (see e.g. [BCS16]).1 Furthermore, if the
original proof is honest-verifier zero-knowledge, then the resulting non-interactive protocol (in the random
oracle model) is a non-interactive zero-knowledge argument [FS86, BR93].

It has been demonstrated that CI families that withstand arbitrary binary relations suffice for realizing the
Fiat-Shamir heuristic in the case of constant-round proofs. That is, if the initial interactive proof is constant-
round and is statistically sound, then computational soundness of the resulting non-interactive protocol holds
even when the random oracle is replaced by a CI hash function family that withstands arbitrary binary relations
(the only difference from the original Fiat-Shamir heuristic is that now the resulting protocol has an initial

1In particular, every constant-round interactive proof with negligible soundness, is resettably sound.

1



verifier message that determines the actual function h in the CI family.) Indeed, CI families that withstand
arbitrary binary relations are entropy preserving [CCR16], and entropy preserving families suffice for the
soundness of the Fiat-Shamir heuristic for constant-round proofs [BLV06]. A direct proof is also implicit in
[KRR17, Section 4]. (We note that soundness for the case of three-message proofs was observed already in
[HT06, DNRS03].)

Constructing correlation intractable hash functions. Canetti et al. [CGH98] show that there do not exist
CI function families where the key is shorter than the input, but leave open the possibility of CI functions with
longer keys. Still no construction of CI functions, even for restricted cases, was known until very recently.
Furthermore, over the years evidence accumulated that coming up with CI functions, and in particular a sound
instantiation of the FS paradigm, would not be easy. Goldwasser and Kalai [GK03] construct a public coin
interactive argument (i.e. a protocol that is only computationally sound) that becomes unsound if it is turned
into an non-interactive argument by applying the Fiat-Shamir transformation with any function. Bitansky et
al. show that it is impossible to prove soundness of the FS paradigm using a black-box reduction to falsifiable
assumptions [BDSG+13].

Recently, two papers independently suggested using an obfuscated puncturable pseudorandom function
family as a CI family. Canetti, Chen and Reyzin [CCR16] show that this construction is CI for relations that are
computable by circuits of a priori bounded polynomial size, assuming sub-exponentially secure puncturable
pseudorandom functions and indistinguishability obfuscation, and in addition, input hiding obfuscation for
evasive functions. Kalai, Rothblum and Rothblum [KRR17] show that the same construction is CI for arbi-
trary relations, assuming sub-exponentially secure puncturable pseudorandom functions and indistinguisha-
bility obfuscation, plus exponentially secure point obfuscation. In particular, the latter result implies that this
function family suffices for sound realization of the Fiat-Shamir heuristic (when applied to constant-round
interactive proofs).

1.1 Our results

We provide new constructions of CI function families for arbitrary binary relations. Compared to [CCR16,
KRR17], our constructions are dramatically more efficient, and are based on better-understood assumptions.
Furthermore, while sampling a hash function from the family of obfuscated puncturable PRFs involves secret
randomness, we present candidates where the sampling can be done with only public randomness.

The main tool (or, abstraction) we use is symmetric encryption with the following two properties: First,
the scheme should guarantee that polynomial time key-recovery attacks have only exponentially small suc-
cess probability even after seeing encryptions of key-dependent messages (KDM). That is, for any super-
polynomial function s, for an arbitrary key-dependency function f (not necessarily computable in polynomial
time), any polynomial time adversary that obtains c = Enc(k, f(k)) outputs k with probability no more than
s(λ)
2λ

, where λ is the key length.
The second property, which we refer to as universal ciphertexts, is statistical. Loosely speaking, it requires

that any ciphertext is “decryptable” under any key. More precisely, the requirement is that (a) for every key,
random ciphertexts decrypt to random messages; (b) for every key k and messagem, the encryption algorithm
generates ciphertexts that are uniformly sampled from the space of ciphertexts that are decrypted to m with
key k. (The actual definition includes also public parameters, which are omitted here for simplicity.) Given
an encryption scheme that satisfies the above requirements, we obtain the following result:

Theorem 1 (Informally stated). Assuming the existence of encryption schemes that have universal ciphertexts
and that are exponentially KDM-secure against polytime key-recovery attacks, there exist:

• Correlation intractable hash functions for arbitrary binary sparse relations.
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• Hash functions that guarantee soundness of the Fiat-Shamir transformation, when applied to interactive
proof-systems.

• Non-interactive, publicly verifiable arguments for all languages computable in polynomial-time and
bounded polynomial space (in particular, the class SC).

The last bullet follows by applying the Fiat-Shamir transformation to the recent public-coin, constant-
round interactive proof-system of Reingold et al. [RRR16].

Our second main contribution is in providing concrete instantiations of Theorem 1. Specifically, we show
that variants of El-Gamal encryption [ElG85] and Regev encryption [Reg05] satisfy the universal ciphertext
property and plausibly satisfy the foregoing exponential security against KDM key recovery.

Non-Interactive Zero Knowledge. As an additional result, we show that if the Fiat-Shamir transforma-
tion is applied to a three-round honest-verifier zero-knowledge proof, and the CI function family in use is
programmable, then the resulting protocol is a Non-Interactive Zero-Knowledge (NIZK) argument, with the
description of the hash function serving as a common reference string. (Here programmability means that,
given random values a, b from the family’s domain and range, respectively, it is possible to efficiently sample
a random function h from the family such that h(a) = b.) We also observe that the CI functions we construct
are programmable. Furthermore, if the initial three-round protocol is delayed-input (as in, e.g., [FLS99]), then
the resulting NIZK argument is both adaptive ZK and adaptively sound. We thus have:

Theorem 2 (Informally stated). Assuming the existence of encryption schemes that have universal ciphertexts
and that are exponentially KDM-secure against polytime key-recovery attacks, there exist NIZK arguments
for all of NP. Furthermore, these NIZKs have adaptive soundness and zero-knowledge.

We note that, prior to this work, NIZK arguments for NP were not known based on any variant of the
Diffie-Hellman assumption in groups that do not admit bilinear pairings, nor any variant of the LWE as-
sumption — even exponentially strong ones. Also, for the NIZK application we only need the CI family to
withstand relations that are exponentially sparse, which somewhat relaxes the assumption. For example, if the
soundness of the interactive proof system is 2−λ

ε
, then we can tolerate encryption schemes where the success

probability of polytime key-recovery attack is superpoly(λ)
2λ−λε

.

Quantitative correlation intractability and its connection to the Bitcoin protocol. A central component
in the Bitcoin protocol [Nak08] is a probabilistic mechanism for guaranteeing that the amount of influence
participants have on the process of producing the public ledger is proportional to their computing power. The
idea here is that since each individual entity has only a fraction of the overall computing power, the influence
of each entity is limited. Indeed, the core validity of the currency (i.e., the mechanism for preventing double
spending) hinges upon that guarantee.

The Bitcoin mechanism for limiting influence was sketched earlier in the introduction: In order to incor-
porate a block of new transactions in the public registry, the individual (“miner”) is asked to present a value
x such that the pair (x, h(x)) satisfies some known relation Rw, where h is a hash function defined by the
protocol, and w is determined by the current state of the system, the new block, and the miner’s identity. Rw
is set so that it is “moderately sparse”. That is, for any x,w the fraction of values y such that Rw(x, y) holds
is small, but not too small.

Clearly, if h were a random function then this mechanism would work well: Given w, the best way to
find x such that Rw(x, h(x)) holds is to keep guessing random x’s until one is found. This means that the
probability of success is proportional to the number of guesses, which is correlated to the computational
power of the miner. However, when h is an explicit function with a succinct description, it is not clear how
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to provide rigorous guarantees regarding the amount of time needed to find a “wining x” given w. Indeed,
“shortcut attacks” on the Bitcoin mechanism have been reported, e.g. [Han16].

We argue that correlation intractability, or more precisely a quantitative variant of the notion, captures
the properties needed from the underlying hash function so as to guarantee the soundness of the Bitcoin
mechanism for limiting influence. Specifically, say that a binary relation R : {0, 1}n × {0, 1}m → {0, 1} is
µ-sparse if for any x ∈ {0, 1}n, the fraction of y ∈ {0, 1}m such that R(x, y) holds is at most µ. A family H
of functions h : {0, 1}n → {0, 1}m is f -correlation intractable if for any binary µ-sparse relation R and for
any adversary Adv that runs in time t, the probability that Adv, given a random function h in H , outputs x
such that R(x, h(x)) holds is at most f(t, µ). The smaller f grows the better the guarantee. Clearly we must
have f(t, µ) ≥ tµ. A good “fudge function” f will not grow much faster than that.

It should also be stressed that the quantitative correlation intractability, as presented here, only bounds the
success probability in solving a single challenge. Asserting the overall stability of the protocol would require
bounding the aggregate success probability over multiple related challenges. Formalizing a set of properties
for concrete, non-idealized hash functions, that would suffice for the security of Bitcoin-like applications, as
well as proposing constructions with rigorous analyses is a fascinating research direction.

1.2 Our techniques

The construction of our CI hash function is simple. Let (Enc,Dec) be an encryption scheme with key space
K, message space M and ciphertext space C. The constructed hash function family H = {hc}c∈C , where
hc : K → M , is defined by hc(k) = Deck(c). That is, a function hc in the family is defined via a ciphertext
c ∈ C. Given an input k, the function hc decrypts c using key k and returns the decrypted plaintext.

In general, key generation (i.e., choosing a random c ∈ C) is done by encrypting a random message with
a random key. We note however that for both of our specific candidates, choosing a random ciphertext can be
done obliviously and publicly without any secret randomness.

A high level rationale for the construction may be the following: Consider a ciphertext c = Enc(k,m)
where both k and m are random. If the encryption scheme is good, then it should be guaranteed that, when
trying to decrypt c with any key k′ 6= k, then the result should be completely “random looking”. Intuitively,
this means that finding a key k′ such that Dec(k′, c) = m′ for some target m′ should be hard. The universal
ciphertexts property guarantees that a random ciphertext looks like the result of encrypting a random message
with a random key. KDM security guarantees that the above intuition applies even when considering rela-
tions that look at both the key and the corresponding message together (as is indeed the case for correlation
intractability.)

Indeed, the crux of the proof is in translating correlation intractability, which is a requirement on the
(in)ability of polynomial time adversaries to find structure in a succinctly represented public function (namely
the decryption algorithm along with a random ciphertext), to a secrecy requirement on the corresponding
encryption process.

The actual proof is strongly inspired by that of [KRR17]. In fact, we follow essentially the same sequence
of logical steps. However, the argumentation used to move from one step to the next is different in some key
places. Specifically, our goal is to turn an adversaryA that breaks correlation intractability of the hash function
into an adversary that breaks KDM security of the underlying encryption scheme. Following [KRR17], we
start by considering a conditional experiment where we fix some random value k∗, and consider only the
probability that A, given the hash key c, outputs a key k such that the correlation R(k,Dec(k, c)) holds, and
in addition k = k∗. While this probability is very small, it allows us to move (with some loss) to a different
experiment where the value c that A sees is the result of encrypting f(k∗) with key k∗, where f is a function
related to R. We now observe that recovering the right k∗ corresponds to breaking the KDM security of the
scheme.

As in [KRR17], the price of this analytical approach is an exponential loss in security against guessing
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attacks. On the other hand, in the case of the [KRR17] scheme and analysis, the critical switch from one
conditional experiment to another relies on sub-exponentially secure indistinguishability obfuscation. Here,
in contrast, the move is purely statistical.

1.3 A closer look at the hardness assumptions

We sketch the assumptions we use and briefly discuss their plausibility.

The scheme based on ElGamal encryption. We first consider the ElGamal based scheme. For simplicity,
we discuss a restricted case where both the key and the message are represented by group elements. (See
Section 6 for a more general construction and the associated assumption.) Assuming there exists a family
of groups G(λ) of sizes N(λ) ≈ 2λ, with a generator g and efficient group operations, such that for any
super-polynomial function s, any (not necessarily efficiently computable) function f : [N ] → [N ], and any
polynomial time adversary A:

Pr
k,a←[N ]

[
A
(
ga, gak+f(k)

)
= k

]
≤ s(λ)

2λ

We discuss the plausibility of this assumption. For the discrete-log problem over F∗q , there are well-known
sub-exponential time algorithms with constant success probability [Adl79, COS86]. However, a 2t-time algo-
rithm with constant success probability does not necessary imply a polynomial time algorithms with success
probability 2−t. For example, Pollard’s rho algorithm [Pol75] runs in time O(2λ/2) and achieves constant
success probability. But its polynomial time version only gives polynomial advantage over simply guessing.
In fact, Shoup [Sho97] shows that any generic algorithm (like Pollard’s rho algorithm) cannot achieve success
probability better than O(T 2/2λ) if it only makes T oracle queries.

However, the index-calculus algorithm does achieve a 2−λ/c success probability if it is allowed to have
a super-polynomial preprocessing phase, keep advices of polynomial size, and run a polynomial time online
phase. We leave the algorithm and analysis in Appendix A. Although it is not a complete polynomial time
algorithm (i.e. without a super-polynomial preprocessing phase) with non-trivial success probability, it sug-
gests that the extra structure of the group F∗q can be utilized even if the algorithm is restricted in polynomial
time in a meaningful model.

Still, the above assumption is plausible for the discrete-log problem over elliptic curve groups (ECDLP),
especially for those defined over prime fields. Over decades, ECDLP algorithms only out-perform generic
algorithms for specific families of curves (e.g. [MOV93, GHS02]). Useful factor bases for index calculus
algorithms were not known for the elliptic curve groups, until the work of Semaev [Sem04] which proposes
the use of summation polynomials, later developed by Gaudry [Gau09] and Diem [Die11]. But so far they are
only known to out-perform Pollard’s rho algorithm for elliptic curve groups defined over Fqn when certain
relations of q and n hold. For elliptic curve groups defined over prime fields, the recent attempts by [PKM16]
and others provide plausible factor bases. Still, no algorithms are known to achieve non-negligible success
probability with less than O(2λ/2) running time. See [GG16] for a survey of the recent progress on ECDLP.

To conclude, based on the current understanding ECDLP for curves defined over prime fields, polytime
algorithms that perform super-polynomially better than guessing appear to be out of reach. In particular, any
such algorithm must exploit more structures in the elliptic curve groups than in generic groups [Sho97].

The scheme based on Regev encryption. Consider the Regev scheme [Reg09] with an even polynomial
modulus q(λ) ∈ poly(λ), and key space {0, ..., B − 1}` where B` ∈ [2λ−log(λ), 2λ+log(λ)] and B ≤ q. The
message space is {0, 1}w where w(λ) ∈ poly(λ). For the security of this scheme we make the following
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assumption: for any (not necessarily efficiently computable) function f : {0, ..., B − 1}` → {0, 1}w, any
super-polynomial function s, and any polynomial time adversary A:

Pr
k∈R{0,...,B−1}`

{aj∈RZ1×`
q ,ej∈R[0,q/2)∩Z}

[
A
(
{aj ,aj · k + ej + fj(k) · q/2}j∈[w]

)
= k

]
≤ s(λ)

2λ

where fj(k) denotes the jth bit of f(k).
Note that super-polynomial algorithms that break LWE with constant success probability are known (e.g.

[LLL82, Bab86, Sch87, BKW03, KF15], see the analyses and surveys of [NS06, MR09, LP11, APS15,
HKM15]). Still, within this setting of parameters, especially given a polynomial size modulus q and high
noise magnitude q/2, we are not aware of any polynomial time algorithms that succeed in guessing the key
super-polynomially better than a random guess.

Possible relaxations on the assumptions of success probability. The restriction on the success probability
(smaller than s(λ)

2λ
for any super-polynomial s) mentioned in the foregoing paragraphs suffices for implying

correlation intractability for all negligible sparse relations under any given input and output length parameters.
We note that even if there are polynomial time algorithms that achieve better success probability for these
problems, our result may still apply to correlation intractability for certain classes of relations. For example,
if a polynomial time algorithm were found for LWE that succeeds with probability 2−λ/3, then the Regev-
based hash function may still be secure for Fiat-Shamir transformation applied on a 3-round proof system
where the length of the first message is λ, the length of the second message is 2λ/3, and the soundness of the
protocol is 2−2λ/3.

On the quantitative hardness of our assumptions. One may wonder if the ElGamal or Regev-like hash
functions were used for proof-of-work, what are the precise bounds of the “fudge function” f we can guar-
antee. For the ElGamal-based function, as we mentioned before, the Pollard’s rho algorithm achieves success
probability O(T 2/2λ) in T steps for any group of size ≈ 2λ. So the smallest possible f is O(T 2 · µ), which
is far from the dream bound T ·µ. For LWE, when T is relatively small (say a small polynomial), the success
probabilities of LWE solvers are typically tiny and less studied, so the precise bound is unclear to us. We leave
to future work any additional quantitative analysis of the possible values for f for the concrete functions.

1.4 Additional related works

Notions related to Fiat-Shamir paradigm. Hada, Tanaka [HT06] and Dwork et al. [DNRS03] show
that the existence of correlation intractable functions implies the soundness of Fiat-Shamir paradigm for
proofs, which in turn rules out the possibility of constant-round public-coin zero-knowledge proofs for lan-
guages beyond BPP. This means that, assuming KDM-secure encryption as defined above, there do not exist
constant-round public-coin zero-knowledge protocols with negligible soundness error for languages beyond
BPP.

Among the attempts to better capture the property of a hash function suitable for the Fiat-Shamir paradigm,
Barak et al. define entropy-preserving hashing and show it is sufficient for Fiat-Shamir [BLV06]. Dodis et al.
then provide a property of condensers that is necessary for entropy-preserving hashing [DRV12]. It is shown
by Canetti et al. that entropy-preservation is implied by correlation intractability w.r.t. sparse relations whose
memberships are not efficiently checkable [CCR16].

A different way of reducing rounds in interactive proofs was shown by Kalai and Raz [KR09]. However,
in contrast to the Fiat-Shamir paradigm, the Kalai-Raz transform inherently yields a private-coin argument-
system (and in particular does not yield NIZK proof-systems).
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Background on KDM. The potential security risk of encrypting one’s own key was noted already in the
seminal work of Goldwasser and Micali [GM84]. Potential applications and suitable formalizations were
provided by Camenisch and Lysyanskaya [CL01] and Black, Rogaway and Shrimpton [BRS02]. More re-
cently, Gentry’s breakthrough construction of fully homomorphic encryption also utilizes KDM security in
a fundamental way for the “bootstrapping” process (transforming somewhat homomorphic schemes to fully
homomorphic ones) [Gen09].

Encryption schemes that are KDM secure2 with respect to the class of affine functions were constructed
by Boneh et al. [BHHO08], Applebaum et al. [ACPS09] and Brakerski and Goldwasser [BG10]. Using tech-
niques developed in [BHHI10, BGK11, App14] the foregoing schemes can be amplified to provide security
for the class of KDM functions computable by polynomial-size circuits. Canetti et al. [CKVW10] construct
strong KDM-secure encryption from multi-bit point obfuscation. However, their construction inherently does
not have the universal ciphertexts property. We also note that fully-homomorphic encryption schemes that
are KDM secure w.r.t. the identity function are automatically KDM secure for arbitrary polynomial functions
[BHHI10]. However achieving KDM secure FHE w.r.t. the identity function from standard assumptions is an
open problem.

Haitner and Holenstein [HH09] showed limitations to the possibility of constructing KDM secure encryp-
tion schemes via blackbox techniques. They first show that there is no fully blackbox reduction from the
KDM security of an encryption scheme (with respect to a certain class of functions) to the existence of one-
way permutations. More relevant for us is their second result, which shows that there is no reduction from
the KDM security of an encryption scheme to “essentially any cryptographic assumption” if the adversary
can obtain an encryption of an arbitrary function g of the key, and the reduction treats both the adversary and
the function g as black boxes. A significant difference from our notion of KDM security with respect to all
functions is that [HH09] assume that the adversary also obtains oracle access to the function g, which is not
the case in our setting. Namely, we only provide the adversary with an encryption of g(k), where k is the key,
but no additional access to g. Indeed, the oracle constructed by Haitner and Holenstein becomes useless in
this setting.

The works of Halevi, Krawczyk [HK07] and Hofheinz, Unruh [HU08] construct several variants of KDM
symmetric encryption assuming only pseudorandom functions. However these schemes don’t achieve the
level of security we require (exponentially small probability of key-recovery) and we were unable to extend
them to schemes that do.

Relation to Extremely Lossy Functions (ELFs). Our work bears a high-level similarity to the work of
Zhandry [Zha16] in terms of the motivation, constructions and assumptions. However, the actual contributions
are very different.

In terms of the motivation, both papers attempt to capture the properties of random oracles. Our paper
focuses on correlation intractability and its implication to Fiat-Shamir, whereas [Zha16] defines the notion
of k-ary output-intractability, where the relation checks k output values and an additional auxiliary input w.
Indeed, as was mentioned in [Zha16], k-ary output-intractability roughly corresponds to a special case of
k-ary correlation intractability (namely, correlation intractability where the relation R takes k pairs of values
(x, y).) However, k-ary output-intractability is interesting only for k > 1. For k = 1, output intractability is
trivially satisfiable. In contrast, in this work we concentrate on correlation intractability with k = 1.

In terms of constructions and assumptions, both papers make exponential hardness assumptions on discrete-
log or DDH type problems. However the precise ways of making the assumptions are different. [Zha16]
assumes that for DDH over group size B(λ) ≈ 2λ, the best attack takes time B(λ)c for some constant c.
Whereas we assume (modulo KDM) that all the polynomial time algorithm solves discrete-log problem with
success probability less than superpoly(λ)

B(λ) .

2More precisely, the KDM security of these scheme reduces to their plain (i.e., non key dependent) semantic security.
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1.5 Organization

In Section 2 we provide standard notations and definitions that will be used throughout this work. In Section 3
we give an overview of our construction, focusing on the discrete-log based construction as a warm-up. In
Section 4 we formally define our notion of “universal ciphertexts” and strong KDM security. In Section 5 we
show how to use encryption schemes satisfying the foregoing properties to construct correlation intractable
functions. In Section 6 we describe parameter settings where the variants of ElGamal and Regev encryption
schemes plausibly satisfy these properties. Finally, in Section 7 we show how to construct NIZKs for NP from
our correlation intractable functions.

2 Preliminaries

Notations and terminology. Denote R, Z, N as the set of reals, integers and natural numbers. Let Zq denote
Z/(qZ). For n ∈ N, let [n] denote {1, 2, ..., n}. The rounding operation bae : Zq → Zp is defined as
multiplying a by p/q and rounding the result to the nearest integer.

In cryptography, the security parameter (denoted as λ) is a variable that is used to parameterize the com-
putational complexity of the cryptographic algorithm or protocol, and the adversary’s probability of breaking
security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time over λ.

For any definition based on computational hardness, we refer the relevant security level to the success
probability of any efficient adversary. For example, a security notion is subexponential if for every efficient
adversary there exists ε > 0 such that the adversary’s advantage is less or equal to 2−λ

ε
.

Many experiments and probability statements in this paper contain randomized algorithms. When a vari-
able v is drawn uniformly random from the set S we denote as v∈RS or v ← U(S), sometimes abbreviated
as v when the context is clear. Distributions written in multiple lines under Pr means they are sampled in
sequence.

A function ensemble F has a key generation function g : S → K; on a seed s ∈ S(λ), g produces a key
k ∈ K(λ) for a function with domain D(λ) and range C(λ):

F = {fk : D(λ)→ C(λ), k = g(s), s ∈ S(λ)}λ∈N

The bit-lengths of the seed, key, input and output are denoted as σ, κ, ` and w, unless specified otherwise.
The main object studied in this article is families of public key hash functions. We assume the key k is

public. For certain key generation algorithm g, publishing k implies publishing s (e.g. when g is the identity
function). We call such functions public-coin. By default we treat the bit-length of its input as being equal to
the security parameter, i.e. |D(λ)| = 2λ.

2.1 Correlation intractability

We recall the definition of correlation intractability [CGH04].

Definition 2.1 (Density of a binary relations). A binary relationR = R(λ) ⊆ { (x, y) | x ∈ D(λ), y ∈ C(λ) }
has density µ = µ(λ) if for every x ∈ D(λ) it holds that Pry∈C(λ)[ (x, y) ∈ R(λ) ] < µ(λ). A relation R is
sparse if it has negligible density.

Definition 2.2 (Correlation intractability w.r.t. binary sparse relations [CGH04]). A family of functions H =
{Hk : D(λ)→ C(λ)}λ∈N is correlation intractable w.r.t. binary sparse relations if for every polynomial-size
adversary A and every sparse relation R, there is a negligible function negl(·) such that:

Pr
k,

x←A(Hk)

[(
x,Hk(x)

)
∈ R

]
≤ negl(λ).
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We introduce a quantitative generalization of correlation intractability.

Definition 2.3 (f -correlation intractability). A family of functions H = {Hk : D(λ) → C(λ)}λ∈N is f -
correlation intractable w.r.t. a function f : N × [0, 1] → [0, 1] if for all time function T (·), for all density
function µ(·), for every adversary A of running time T (λ), and every relation R with density µ(λ), it holds
that

Pr
k,

x←A(Hk)

[(
x,Hk(x)

)
∈ R

]
≤ f(T, µ).

For example, random oracles satisfy f -correlation intractability for f(T, µ) = T ·µ. Definition 2.2 can be
viewed as f -correlation intractability w.r.t. f(T, µ) = T · µ, for all polynomial T (·), and all negligible µ(·).
In the rest of the paper, “correlation intractability” refers to Definition 2.2 unless explicitly stated otherwise.

Survey of impossible parameters for correlation intractability. For some parameters relevant to the
length of seed, key, input and output of the function, correlation intractability w.r.t. binary sparse relations is
impossible to achieve. We survey some of the results.

[CGH04] shows that a function family cannot be correlation intractable when the bit-length of the key
κ(λ) of the function is short compared to the bit-length of the input `(λ):

Claim 2.4 ([CGH04]). Hλ is not correlation intractable w.r.t. efficiently checkable relations when κ(λ) ≤
`(λ).

Proof. Consider the diagonalization relation Rdiag = {(k, hk(k))|k ∈ K(λ)}. The attacker outputs k.

The impossibility result generalizes to keys that are slightly larger than the bit-length of the input, but still
smaller than the sum of the bit-length of input plus output `(λ) + w(λ). The idea is to consider an extension
of the diagonalization relation s.t. the relation checks a prefix of k — as long as the key is not too long, the
relation is still sparse, albeit not necessarily efficient checkable.

Claim 2.5 ([CGH04]). Hλ is not correlation intractable w.r.t. possibly inefficiently checkable relations when
κ(λ) ≤ `(λ) + w(λ)− ω(log(λ)).

We also observe when the “family size” of the function is relatively small, precisely, when the seed
length is small w.r.t. the output length, then the function family is not correlation intractable w.r.t. possibly
inefficiently checkable relations. This case is not ruled out by Claim 2.5 when the key is potentially long but
derived from a short seed (e.g. from applying a PRG on a short seed).

Claim 2.6. Hλ is not correlation intractable when the seed space S(λ) and the range C(λ) satisfies |S(λ)| ≤
negl(λ) · |C(λ)|.

Proof. Fix the hash function familyHλ, consider the relation RH that collects every functions in the function
family RH = {(x, hk(x)) | s ∈ S, k = g(s), x ∈ D(λ)}. The density of the relation less or equal to
|S(λ)|/|C(λ)| ≤ negl(λ). The attacker simply outputs any input.

For the discussions of the other impossibility results, we refer the readers to [CGH04] for the details.

2.2 Fiat-Shamir heuristics

Definition 2.7 (Interactive proof-systems [GMR85]). An interactive proof-system for a language L is a proto-
col between a prover P and a verifier V . The prover’s runtime is unbounded. The verifier runs in probabilistic
polynomial time. The protocol satisfies
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• Completeness: For every x ∈ L, the verifier V accepts with probability 1 after interacting with P on
common input x.

• Soundness: For every x /∈ L and every cheating prover P ∗, the verifier accepts with negligible proba-
bility after interacting with P ∗ on common input x.

An interactive protocol is called an argument-system if it satisfies Definition 2.7 except that the prover is
restricted to run in (non-uniform) polynomial time. An interactive proof or argument is called public-coin if
the verifier’s messages are random coins.

Correlation intractability and public-coin interactive proofs. Consider a language L and a 3-round
public-coin interactive proof Π for L. Let α, β, γ be the 3 messages in the protocol (α and γ are sent by
the prover P , β is sent by the verifier V ). The relation R/∈L,Π is defined by

R/∈L,Π =
{(

(x, α), β) : x /∈ L and ∃γ s.t. V (x, α, β, γ) = Accept
}
. (1)

Observe that the relation R/∈L,Π is sparse due to the statistical soundness of the underlying proof, i.e. the
density of R/∈L,Π is equal to the soundness error of Π.

Interestingly, correlation intractability can also capture a stronger notion of soundness called adaptive
soundness. We say that a 3 message interactive proof-system as above has adaptive soundness, if the message
α sent by the honest prover does not depend on x, and soundness is guaranteed even if the adversary may
choose the input x 6∈ L on which to cheat after seeing β. For such protocols we define the relation R/∈L,Π as

R/∈L,Π =
{(
α, β

)
: ∃x, γ s.t. x /∈ L ∧ V (x, α, β, γ) = Accept

}
(2)

Again, the relation R/∈L,Π is sparse due to the adaptive soundness of Π.
Correlation intractability also implies the soundness of Fiat-Shamir for general constant-round public-

coin interactive proof-systems. Without loss of generality assuming the number of rounds in the starting
proof-system is 2c for a constant c. In the resulting 2-message argument, the verifier samples c indepen-
dent correlation intractable hash functions. For i ∈ {1, 2, ..., c}, the prover applies the ith hash function
on (α1||β1||...||αi−1||βi−1||αi) to generate βi, where αi is the ith message from the prover in the starting
proof-system. The message from the prover in the resulting 2-message argument is then (α1||β1||...||αc||βc).

It is shown that the transformation above yields a sound 2-message argument if the hash functions are
entropy preserving [BLV06]. Given that CI families that withstand arbitrary binary relations are entropy
preserving [CCR16], we have

Lemma 2.8 ([HT06, DNRS03, BLV06, CCR16]). Assuming correlation intractable function family w.r.t. all
binary sparse relations exists, then the Fiat-Shamir transformation is sound when applied on any constant-
round public-coin interactive proof-systems.

3 A warm-up construction from discrete logarithm

We present a simple construction based on the discrete-log program as a warm-up to the general scheme.
Along the way we will give the rationale of the proof strategy adapted from the work of Kalai, Rothblum and
Rothblum [KRR17], and explain the level of KDM security we need for the underlying discrete-log problem.

Let G be a cyclic group where the discrete-log problem is hard. Assume the size of G is roughly 2λ

where λ is the security parameter. Let g be a generator of G, A = ga, B = gb be two random elements in G.
Consider the following length preserving function H : {1, ..., |G|} → G

HA,B(x) := Ax ·B = gax+b ∈ G. (3)
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Theorem 3.1. Given G(λ) of sizes N(λ) ≈ 2λ, with a generator g and efficient group operations, such that
for any super-polynomial function s, any (not necessarily efficiently computable) function f : [N ] → [N ],
and any polynomial time adversary A:

Pr
k,a←[N ]

[
A
(
ga, gak+f(k)

)
= k

]
≤ s(λ)

2λ
.

Then HA,B is correlation intractable w.r.t. all sparse relations.

Towards a contradiction, let R be any sparse relation with negligible density µ(λ). Suppose there exists
an efficient adversary Adv that breaks correlation intractability w.r.t. R with non-negligible probability ν:

Pr
A,B

[(
Adv(HA,B)→ x

)
∧
((
x,HA,B(x)

)
∈ R

)]
≥ ν, (4)

where the notation Adv(HA,B)→ x simply means that we use x to refer to the string that Adv(HA,B) outputs.
In the first step, we translate the probability of outputting some x to the probability of outputting a par-

ticular x∗. For a random x∗ from the domain, the probability that the adversary outputs x∗ as the answer is
greater or equal to ν divided by the domain size

Pr
x∗∈R{0,1}λ

A,B

[(
Adv(HA,B)→ x′

)
∧
(
x′ = x∗

)
∧
((
x∗, HA,B(x∗)

)
∈ R

)]
≥ ν/2λ. (5)

Focusing on a single x∗ costs a huge loss in the success probability. The readers may wonder what
is the motivation of doing so. The purpose of fixing an input x∗ is to prepare for replacing the winning
condition

(
x∗, HA,B(x∗)

)
∈ R by another condition that is “key independent”. Towards this goal, consider

the following sampling procedure: first sample a random y∗ from the range, then sample the key (A′, B′)
randomly under the condition HA′,B′(x

∗) = y∗. Now we use the fact that H is a “one-universal” function,
which means that for a fixed input, a uniformly random key projects the input to a uniformly random output. In
turn, a uniformly random output corresponds to a uniformly random key. Therefore the key (A′, B′) obtained
from reverse sampling distributes the same as before. Hence we have

Pr
x∗∈R{0,1}λ
y∗∈RG,

A′,B′ s.t. HA′,B′ (x
∗)=y∗

[(
Adv(HA′,B′)→ x′

)
∧
(
x′ = x∗

)
∧
((
x∗, HA′,B′(x

∗)
)
∈ R

)]
≥ ν/2λ. (6)

Given that y∗ = HA′,B′(x
∗), we can change the winning condition in Eqn. (6) into one which is indepen-

dent from the function HA′,B′ :

Pr
x∗∈R{0,1}λ
y∗∈RG

A′,B′ s.t. HA′,B′ (x
∗)=y∗

[(
Adv(HA′,B′) = x′

)
∧
(
x′ = x∗

)
∧
(
(x∗, y∗) ∈ R

)]
≥ ν/2λ. (7)

Separating the winning condition (x∗, y∗) ∈ R from the hash key paves the way for connecting correlation
intractability to a property that is only about hiding one specific point in the key (instead of hiding a bunch of
potential input-output pairs in the relation). In the next statement, the first equality follows by the definition
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of conditional probability. The inequality follows from Eqn. (7) together with the fact that R is µ sparse:

Pr
x∗,y∗ s.t. (x∗,y∗)∈R,

A′,B′ s.t. HA′,B′ (x
∗)=y∗

[(
Adv(HA′,B′)→ x′

)
∧
(
x′ = x∗

)]
=

Pr
x∗∈R{0,1}λ
y∗∈RG

A′,B′ s.t. HA′,B′ (x
∗)=y∗

Adv(HA′,B′) = x′

x′ = x∗

(x∗, y∗) ∈ R


Pr

x∗∈R{0,1}λ
y∗∈RG

[
(x∗, y∗) ∈ R

]
≥ ν

2λ · µ(λ)
(8)

The LHS of Eqn. (8) spells out as an efficient adversary’s success probability of finding the input x∗

embedded in A′, B′, where the key A′, B′ is sampled conditioned on mapping some input-output pair in the
relation (x∗, y∗) ∈ R. Let’s examine A′, B′, and for simplicity consider only the constant relations Rc =
{(x, c) | ∀x ∈ {0, 1}λ}. Fix a c∗ ∈ G, a random input-output pair from Rc∗ distributes as (x∗, c∗), where x∗

is uniformly random from {0, 1}λ. For A′ = ga
′
, B = gb

′
sampled randomly from the set {ga′ , gb′ | gz∗ :=

c∗ = ga
′x∗+b′}, where z∗ is explicitly defined as the discrete-log of c∗ over base g for the convenience of

explanation. Observe that the marginal distribution of a′ is uniform, and b′ equals to z∗ − a′x∗. In other
words, the adversary is asked to find x∗ given A′ = ga

′
, B′ = gz

∗−a′x∗ where z∗ is fixed. The hardness of
this problem follows directly from the hardness of the discrete-log problem.

What is the hardness required for the underlying discrete-log problem in order to form a contradiction?
For the probability in the hypothesis ν(λ)

2λ·µ(λ)
, where ν is a non-negligible function; µ, the density of a sparse

relation, is an arbitrary negligible function. We can form a contradiction by assuming that every polynomial
time algorithm for the discrete-log problem over G succeeds with probability less than s(λ)/2λ for any super-
polynomial function s.

What happens when we consider all sparse relations instead of only the constant relations? For a general
sparse relation, sampling a random pair (x∗, y∗) from the relation may result into an output y∗ that is correlated
to the input x∗. Take the “fixed point” relation Rx=y := {(x, y) | x = y} as an example. A random input-
output pair from Rx=y distributes as (x∗, x∗), where x∗ is uniformly random. For A′ = ga

′
, B = gb

′
sampled

randomly from the set {ga′ , gb′ | gz∗(x∗) := x∗ = ga
′x∗+b′}, where z∗(x∗) is the discrete-log of x∗ over

base g (unlike in the previous example, now z∗ depends on the input x∗). The marginal distribution of a′

is still uniform, and b′ equals to z∗(x∗) − a′x∗. In other words, the adversary is asked to find x∗ given
A′ = ga

′
, B′ = gz

∗(x∗)−a′x∗ where z∗(·) is a function on x∗, a′ is independent from x∗ and uniform. The
latter corresponds to the hardness of finding the decryption key x∗ given a ciphertext of ElGamal encryption
with uniform randomness a′, and key-dependent message z∗(x∗).

To summarize, the proof strategy translates the hardness of finding any solution in a sparse relation to the
hardness of finding the key from the encryption of possibly key-dependent messages. The translation is purely
statistical, but it results into a significant cost in the final computational assumption — the success probability
for any polytime attacker has to be extremely small. To capture arbitrary relations, arbitrary key dependency
functions are considered.

4 Encryption Scheme with Universal Ciphertext and KDM Security

LetM = {Mλ}λ∈N be an ensemble of message spaces (i.e.,Mλ is the message space with respect to security
parameter λ ∈ N). An encryption scheme, with respect to the message spaceM, consists of three probabilistic
polynomial-time algorithm PP-Gen, Enc and Dec. The public-parameter generation algorithm PP-Gen gets
as input 1λ and outputs some public-parameters pp (without loss of generality we assume that pp contains λ).
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Given the public-parameters pp, a key k ∈ {0, 1}λ and a message m ∈ Mλ the encryption algorithm Enc
outputs a ciphertext c. The decryption algorithm Dec gets as input the public-parameters pp, a key k as well
as a ciphertext c and outputs a message inMλ. We require that (with probability 1), for every setting of the
public-parameters pp, message m ∈Mλ and key k ∈ {0, 1}λ it holds that Dec(pp, k,Enc(pp, k,m)) = m.

In many encryption schemes each ciphertext is associated with some particular key. We will be interested
in schemes where this is not the case. Namely, ciphertexts are not associated with a specific key, but rather
“make sense” under any possible key. We denote by Cpp the distribution obtained by encrypting a random
message using a random key. Namely, the distribution Enc(pp, k,m) where k ∈R {0, 1}λ and m ∈RMλ.

Definition 4.1 (Universal Ciphertexts). We say that an encryption scheme (PP-Gen,Enc,Dec) with respect to
message spaceM = {Mλ}λ∈N has universal ciphertexts if the following two conditions hold for all constant
η > 0, for all (sufficiently large) λ ∈ N and public parameters pp ∈ PP-Gen(1λ):

1. For every fixed key k∗ ∈ {0, 1}λ, a random ciphertext decrypts to a random message. Namely, the
distribution m← Dec(pp, k∗, c), where c← Cpp, is 2−(1+η)λ-statistically close to uniform.

2. For all k∗ ∈ {0, 1}λ and m∗ ∈Mλ, the following distributions are 2−(1+η)λ-statistically close

• c← Cpp conditioned on Dec(pp, k∗, c) = m∗.

• c is sampled from c ← Enc(pp, k∗,m∗) (i.e., a fresh encryption of m∗ under public parameters
pp and key k∗).

Definition 4.2 (ε-KDM Security). Let ε = ε(λ) ∈ [0, 1]. We say that an encryption scheme (PP-Gen,Enc,Dec)
is ε-KDM secure, if for every polynomial-time adversaryA, for all sufficiently large values of λ and any (pos-
sibly inefficient) function f : {0, 1}λ →Mλ it holds that:

Pr
pp←PP-Gen(1λ)

k∈R{0,1}λ

[
A
(
pp,Enc(pp, k, f(k)

)
= k

]
< ε.

5 Correlation Intractability from Universal-Ciphertexts KDM encryption

Let PP-Gen, Enc, Dec be an encryption scheme with respect to an ensemble of message spaces M =
{Mλ}λ∈N, as defined in Section 4. For public parameters pp recall that we denote by Cpp the distribution
obtained by encrypting a random message using a random key (with respect to public parameters pp).

Construction 5.1. We construct a hash function familyH = {Hλ : {0, 1}λ →Mλ}λ∈N as follows.
The key generation algorithm of the hash function takes input 1λ, samples public parameters pp of the

encryption scheme and a random ciphertext c ← Cpp. The hash key is hk = (pp, c). On input the key (pp, c)
and a message to be hashed α ∈ {0, 1}λ, the hashing algorithm views α as a key of the encryption scheme
and outputs Dec(pp, α, c).

The main result that we prove in this section is if the encryption scheme has universal ciphertexts (as
per Definition 4.1) and is ε-KDM secure (as per Definition 4.2), for sufficiently small ε = ε(λ) > 0, then
Construction 5.1 forms a correlation intractable hash function family.

Theorem 5.2. If there exists an encryption scheme with universal ciphertexts that is ε-KDM secure for
ε ≤

(
poly(λ) · 2λ · µ(λ)

)−1, then Construction 5.1 is correlation intractable for all sparse relations with
negligible density µ(λ).
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5.1 Proof of Theorem 5.2

Let R be any sparse relation with negligible density µ = µ(λ). Suppose toward a contradiction that there ex-
ists a probabilistic polynomial-time adversary Adv that breaks the correlation intractability of Construction 5.1
with non-negligible probability ν = ν(λ). Namely,

Pr
hk

[
Adv(Hhk) outputs some α ∧

(
α,Hhk(α)

)
∈ R

]
≥ ν(λ).

Thus, by construction of our hash function it holds that:

Pr
pp

c←Cpp

[
Adv(pp, c) outputs some α s.t.

(
α,Dec(pp, α, c)

)
∈ R

]
≥ ν(λ), (9)

where here and below we use pp to denote public parameters sampled from PP-Gen(1λ).
For the analysis, we consider a relaxed relation R′ where (α, β) ∈ R′ if (α, β) ∈ R or if the first

blog(ν/2µ)e bits of β are all 0. The density of R′ is bounded by µ′ ≤ 4µ/ν, which is negligible when µ is
negligible. Looking ahead, the purpose of “padding” R is so that the marginal distribution of α∗, obtained
from jointly sampling a pair (α∗, β∗) randomly from R′, is close to uniform. More specifically, following
[KRR17, Proposition 3.4] we can bound the point-wise multiplicative difference (or ratio) between these
distributions:

Fact 5.3. For all α′ ∈ {0, 1}λ, β′ ∈Mλ,

Pr
α∗

β∗ s.t (α∗,β∗)∈R′

[
α∗ = α′, β∗ = β′

]
≥ 1

4
· Pr
α∗,β∗ s.t (α∗,β∗)∈R′

[
α∗ = α′, β∗ = β′

]
(10)

Since R ⊆ R′, Eq. (9) implies that:

Pr
pp←PP-Gen(1λ),

c←Cpp

[
Adv(pp, c) outputs α s.t.

(
α,Dec(pp, α, c)

)
∈ R′

]
≥ ν(λ). (11)

We will use Eq. (11) to show that Adv breaks the KDM security of our encryption scheme, with respect
to the randomized KDM function f that given a key α∗, outputs a random β∗ such that (α∗, β∗) ∈ R′.

We now fix some setting of the public parameters pp. Using the structure of R′, and the fact that our
encryption scheme has universal ciphertexts (Property 2 of Definition 4.1), it holds that:

Pr
α∗

β∗ s.t (α∗,β∗)∈R′
c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]
≥ (1/4) · Pr

α∗,β∗ s.t (α∗,β∗)∈R′
c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]
(12)

≥ (1/4) ·

 Pr
α∗,β∗ s.t (α∗,β∗)∈R′

c←Cpp s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]
− 2−(1+η)λ


where the first inequality is due to Fact 5.3; the second is due to the universal ciphertexts property.

Our key step is captured by the following proposition, which relates the adversary’s advantage of recov-
ering the specific key α∗ in a ciphertext encrypting possibly key-dependent messages, to the advantage of
outputting any α that breaks correlation intractability. While the winning probability in the key-recovery
game is exponentially small, it is lower bounded by a function of the success probability of breaking correla-
tion intractability.
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Proposition 5.4. For every setting of the public-parameters pp it holds that:

Pr
α∗,β∗ s.t (α∗,β∗)∈R′
c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]
≥ 2−λ

µ′
·
(

Pr
c

[
Adv(pp, c) outputs α s.t.(
α,Dec(pp, α, c)

)
∈ R′

]
− 2−ηλ

)
,

Proof. Fix the public parameters pp. By the fact that the random variables (α∗, β∗) and c are independent, it
holds that:

Pr
α∗,β∗ s.t (α∗,β∗)∈R′
c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]
= Pr

α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

∣∣ (α∗, β∗) ∈ R′
]
.

(13)
By definition of conditional probability, it holds that:

Pr
α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

∣∣ (α∗, β∗) ∈ R′
]

=

Pr
α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

(α∗, β∗) ∈ R′
]

Pr
α∗,β∗

[
(α∗, β∗) ∈ R′

]
≥ (1/µ′) · Pr

α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗(
α∗,Dec(pp, α∗, c)

)
∈ R′

]
,

(14)

where the inequality follows from the density of R′.

Claim 5.5. The following two distributions are 2−(1+η)λ-close:

1. (α∗, c): such that α∗ ∈R {0, 1}λ, β∗ ∈RMλ and c← Cpp conditioned on Dec(pp, α∗, c) = β∗.

2. (α∗, c′): such that α∗ ∈R {0, 1}λ and c′ ← Cpp.

Proof. A different way to sample the exact same distribution as in item (2) is to first sample α∗ ∈R {0, 1}λ,
then c′′ ← Cpp and finally c′ ← Cpp conditioned on Dec(pp, α∗, c′) = Dec(pp, α∗, c′′).

By the universal ciphertext property 4.1.1 of the encryption scheme, the distribution Dec(pp, α∗, c′′) is
2−(1+η)λ close to the uniform distribution overMλ. The claim follows.

Combining Claim 5.5 together with Eqs. (13) and (14) yields that:

Pr
α∗,β∗ s.t (α∗,β∗)∈R′
c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]
≥ (1/µ′) ·

(
Pr
α∗,c

[
Adv(pp, c) outputs α∗(
α∗,Dec(pp, α∗, c)

)
∈ R′

]
− 2−(1+η)λ

)

= (1/µ′) ·
(

2−λ · Pr
c

[
Adv(pp, c) outputs α s.t.(
α,Dec(pp, α, c)

)
∈ R′

]
− 2−(1+η)λ

)
= (2−λ/µ′) ·

(
Pr
c

[
Adv(pp, c) outputs α s.t.(
α,Dec(pp, α, c)

)
∈ R′

]
− 2−ηλ

)
(15)

This concludes the proof of Proposition 5.4.
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Using Proposition 5.4 and Eq. (12) we obtain that:

Pr
pp
α∗

β∗ s.t (α∗,β∗)∈R′
c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]
= E

pp

 Pr
α∗

β∗ s.t (α∗,β∗)∈R′
c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]

≥ 1/4 · E
pp

 Pr
α∗,β∗ s.t (α∗,β∗)∈R′

c←Cpp s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]− 2−(1+η)λ

≥ 1

4 · 2λ · µ′
· E
pp

[
Pr
c

[
Adv(pp,c) outputs α s.t.(
α,Dec(pp,α,c)

)
∈R′

]
− 2−ηλ

]
− 2−(1+η)λ

=
1

4 · 2λ · µ′
·
(

Pr
pp,c

[
Adv(pp,c) outputs α s.t.(
α,Dec(pp,α,c)

)
∈R′

]
− 2−ηλ

)
− 2−(1+η)λ

≥ ν

8 · 2λ · µ′

= ω

(
poly(λ)

2λ

)
.

Thus, Adv breaks KDM security with probability ε ≥ (1/negl) · 2−λ, in contradiction to our assumption.

6 Candidate KDM encryption with universal ciphertexts

We present two encryption schemes that satisfy the ciphertext universality (Definition 4.1), and plausibly
satisfy ε-KDM security (Definition 4.2) for exponentially small ε.

6.1 Discrete-log based

We first present the encryption scheme based on a generic multiplicative group, and then specify its instanti-
ation over the elliptic curve groups. The scheme can be viewed as a bit-encryption variant of ElGamal.

Construction 6.1. Fix a small constant η > 0 (e.g. η = 0.01). Let the message space beM = {Mλ}λ∈N,
whereMλ = {0, 1}w(λ) and w = w(λ) ∈ N. We construct an encryption scheme as follows.

• Public parameters Generation PP-Gen(1λ): the key-generation algorithm selects a primeN = N(λ) ≥
2(1+2η)λ, a group G = G(λ) of size N , and a generator g (the exact algorithm for determining these
depends on the specific group family we use - see instantiations below).

Let ext : G→ {0, 1} be a deterministic efficiently computable function that outputs 0 on dN/2e of the
group elements, and 1 on the remaining bN/2c elements.

The public-parameters pp include a concise3 description of the group G, generator g, and function ext.

• Encrypt Enc(pp, k, y): We view k as an integer in [2λ]. Let y1 . . . yw ∈ {0, 1} be the bit decomposition
of y.

For each j ∈ [w], sample aj∈R{0, 1, ..., N−1} and letAj := gaj . SampleCj uniformly from ext−1(yj)
and let Bj = Cj ·Akj . Output c = (Aj , Bj)j∈[w] as the ciphertext.

3By concise description of the group, we mean a description of length poly(λ) that allows performing group operations such as
multiplication, inversion, equality testing and sampling random elements.
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• Decrypt Dec(pp, k, c): Decompose the ciphertext c as (Aj , Bj)j∈[w]. For j ∈ [w], let Cj = Bj/A
k
j and

let the jth output bit be ext(Cj).

Remark 6.2. To ensure the KDM problem is as hard as possible, the group order is set to be a prime so that
not only the discrete-log problem but also the decisional Diffie-Hellman problem is plausibly hard.

Since the group order is a prime, a deterministic function that extracts a bit from the group cannot be
perfectly balanced. So we set the group order to be slightly larger than 2(1+η)λ in order to allow 2−(1+η)λ-
statistical distance for the statistical properties.

We first show that the scheme satisfies the universal ciphertext requirement (see Definition 4.1).

Proposition 6.3. The encryption scheme of Construction 6.1 has universal ciphertexts.

Proof. The first condition in Definition 4.1 follows from the fact that for a fixed encryption key k, and random
ciphertext ((Aj , Bj))j∈[w], it holds that each Cj = Bj/A

k
j is uniformly distributed and so we only need to

account for the deviation from ext. Overall we get that the output is at most 2−(1+η)λ-close to uniform.
The second condition in Def 4.1 can be verified as follows. For every j ∈ [w] and every possible value of

Aj , there are exactly |ext−1(yj)| possible values Bj that Enc can output, and each of them is equally likely.
Therefore, each pair (Aj , Bj) subject to the condition ext(Bj · Akj ) = wj is equally likely to be output by
Enc, and thus the distribution output by Enc is identical to a random ciphertext for the given plaintext.

As noted above, we need to assume that Construction 6.1 is exponentially KDM secure.

Assumption 6.4 (KDM security for the discrete-log based encryption). Let λ ∈ N, w(λ) ∈ poly(λ). There
exists a family of groups G(λ) (of efficiently computable sizes N(λ), with efficiently computable generators,
efficient group operations, and efficient ext : G → {0, 1}) such that for all function f : {1, . . . , 2λ} →
{0, 1}w (including those that are not efficiently computable), the following holds. For any polynomial-time
adversary Adv, for a uniformly random k ∈ {1, . . . , 2λ}; for each j ∈ [w], sample aj∈R{0, 1, ..., N},
Cj∈Rext−1(f(k)j). The probability that adversary outputs k on input (Aj = gaj , Bj = gajk · Cj)j∈[w] is
smaller than 1

2λ·negl(λ)
, i.e.

Pr
k∈R{1,...,2λ}

{aj∈R{0,1,...,N},Cj∈Rext−1(f(k)j)}j∈[w]

{Aj=gaj ,Bj=gajk·Cj}j∈[w]

[
Adv({Aj , Bj}j∈[w]) = k

]
≤ 1

2λ · negl(λ)

Thus, using Theorem 5.2, we obtain the following corollary.

Corollary 6.5. Suppose that Assumption 6.4 holds. Then, there exists correlation intractable function for all
sparse relations.

Remark 6.6. In Assumption 6.4, if the function f is a constant (i.e. is independent of the key), the problem
can be reduced from the discrete-log problem over G with the key restricted to {1, . . . , 2λ}, i.e. computing
k ∈ {1, . . . , 2λ} given g, gk ∈ G. In the reduction, the discrete-log attacker, given g, gk, and f , can sample
(Aj , Bj)j∈[w] from the correct distribution, send over to the adversary in Assumption 6.4.

Remark 6.7. We chose bit encryption for simplicity of notation. Instead of representing messages as bits,
we can represent them in any base b, as long as there is an efficient and nearly-regular map ext from G
to {0, . . . , b − 1}. The regularity requirement, however, is quite strong: because of the first requirement in
Def 4.1, the preimage size of every digit under ext must be very close to the average, so that the statistical
distance between ext(G) and uniform is 2−(1+2η)λ.
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We can use seeded extractors and put the seed in the public parameters. Specifically, if we choose N to be
at least 22(1+2η)λ · b and ext : G→ [b] to be a pairwise independent hash function, then for the average seed,
by the leftover hash lemma [HILL99, Lemma 4.8], the output will be

√
|G|/b = 2−(1+2η)λ-close to uniform.

This ensures that a good seed exists (nonconstructively). If want to make sure the average seed is good with
all but exponential probability, we can choose N to be at least 24(1+2η)λ · b instead. Then for the average
seed, the output will be

√
|G|/b = 2−2(1+2η)λ-close to uniform, and therefore for all but a 1 − 2−(1+2η)λ

fraction of the seeds, it will be at least 2−(1+2η)λ-close to uniform, as required.

An instantiation over elliptic curves groups. The group G and the extraction function ext are chosen such
that they avoid the known weakness instances of the underlying ECDLP, and at the same time enjoy the
statistical properties.

An elliptic curve group E(Fq) is represent by the curve E (in the short Weierstrass form) over finite field
Fq: E(Fq) = { (x, y) | y2 = x3 + ax+ b mod q } ∪O. Choose the curve (namely, choose a, b and q) so that
q is an odd prime, the order of the group #E(Fq) is a prime N > 2(1+2η)λ.

In the short Weierstrass form, if (x, y) ∈ E(Fq), then (x,−y) ∈ E(Fq). Any point P whose y-coordinate
is zero does not exist in a prime order group, since P = (x, 0) implies the order of P is 2. So one option of
the extraction function ext : E(Fq) → {0, 1} is to take the sign of the y-coordinate of a point P = (x, y) ∈
E(Fq). To be precise, if y ∈ {1, ..., (q − 1)/2}, output 1; if y ∈ {(q + 1)/2, ..., q − 1}, output 0. As an
exception, if P = O, output 0.

6.2 LWE based

The LWE based encryption scheme is a variant of Regev’s scheme [Reg09]. We remark that the hash function
obtained by applying Construction 5.1 on Construction 6.8 yields a variant of Ajtai’s hash function [Ajt96],
in the sense that we apply rounding on the output vector.

Construction 6.8. The message space isM = {Mλ}λ∈N, whereMλ = {0, 1}w(λ) and w = w(λ) ∈ N. We
construct an encryption scheme as follows.

• Public parameters generation PP-Gen(1λ): Fix an even number q(λ) as the modulus. SelectB(λ), `(λ) ∈
N such that B` ∈ [2λ−log(λ), 2λ+log(λ)] and B ≤ q. The public-parameters pp are (B, q, `).

• Representation of the secret key: we view the secret key k ∈ {0, 1}λ as a vector k ∈ {0, ..., B(λ) −
1}`(λ), written as a column vector.

• Encryption Enc(pp,k, y): Given a message y ∈ {0, 1}w. For j ∈ [w], sample aj∈RZ1×`
q . compute

bj = yj · q2 + ej − aj · k (mod q), where ej ← U([0, q/2) ∩ Z). Output c = (aj , bj)j∈[w] as the
ciphertext.

• Decryption Dec(pp,k, c): View c as (aj , bj)j∈[w]. For j ∈ [w], let the jth output bit be bbj + aj · k mod qe2,
where b·e2 : Zq → {0, 1} outputs 0 if the input is from [0, q/2), 1 if the input is from [q/2, q − 1].

The parameters are set according to the following constraints to minimize the adversary’s advantage on
the KDM problem, and to guarantee the statistical properties. The choices of parameters are guided by the
reductions from the worst case problems, as well as the known attacks (e.g. [LLL82, Bab86, Sch87, BKW03,
AG11, KF15]), even though some of the attacks were designed to achieve non-trivial (sub)exponential running
time and do not clearly achieving non-trivial success probability when running in polynomial time.

1. q is even so that we can get perfect ciphertext-universality.
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2. The error term e is sampled uniformly from [0, q/2) ∩ Z, differing from the typical setting of discrete
Gaussian distribution. Noise sampled uniformly from a sufficiently large range is as good as Gaussian
for some parameter settings [DM13, MP13]. In particular, q/2 is sufficiently large, even larger than the
typical settings of the norm of the noise.

3. B, `, q are selected so that each coordinate of the secret vector has enough entropy (i.e. B >
√
n), the

vector dimension ` is sufficiently close to λ, B/q is not too small (i.e. q/B ∈ poly(λ)). One way of
setting the parameter is to let q = O(λ3), B(λ) = 2blog λe, `(λ) =

⌊
λ

blog λe

⌉
.

We first show that the scheme satisfies the universal ciphertext requirement (see Definition 4.1).

Proposition 6.9. The encryption scheme of Construction 6.8 has universal ciphertexts.

Proof. The first property (as per Def 4.1.1) follows immediately from the perfect 1-universality of the decryp-
tion function.

The second property (as per Def 4.1.2) can be verified as follows. For j ∈ [w], the randomness in the
encryption includes aj ∈ Z1×`

q and the error term ej ∈ Zq. For all y∗j ∈ {0, 1} and k∗ ∈ {0, ..., B − 1}`,
(bj ,aj) ∈ Zq × Znq is sampled uniformly random conditioned on bj + aj · k∗ mod q ∈ y∗j ·

q
2 + [0, q/2) ∩ Z.

Viewing the equality as a 1-universal function aj · k∗ mod q ∈ y∗j ·
q
2 + [0, q/2) ∩ Z − bj with key aj , the

marginal distribution of aj is uniform over Z1×`
q . Then, ej = bj − y∗j ·

q
2 + aj · k∗ is distributed uniformly

over [0, q/2) ∩ Z.

Assumption 6.10 (KDM security for LWE-based encryption). Let λ ∈ N, w(λ) ∈ poly(λ). For all functions
f : {0, ..., B − 1}` → {0, 1}w (including those who are not efficiently computable). The probably that
any polynomial time adversary Adv, given {aj ,aj · k + ej + fj(k) · q/2}j∈[w] where k∈R{0, ..., B − 1}`,
aj∈RZ1×`

q , ej∈R[0, q/2) ∩ Z, outputs k is smaller than 1
2λ·negl(λ)

, i.e.

Pr
k∈R{0,...,B−1}`

{aj∈RZ1×`
q ,ej∈R[0,q/2)∩Z,

bj=aj ·k+ej+fj(k)·q/2}j∈[w]

[
Adv({aj , bj}j∈[w]) = k

]
≤ 1

2λ · negl(λ)

Thus, using Theorem 5.2, we obtain the following corollary.

Corollary 6.11. Suppose that Assumption 6.10 holds. Then, there exists correlation intractable function for
all sparse relations.

Remark 6.12. In Assumption 6.10, if the function f is a constant (i.e. is independent of the key), then the
problem is equivalent to search-LWE (for the same distributions of secret, noise, and public matrices, and the
same requirement on the success probability as described in Assumption 6.10).

7 NIZK from Fiat-Shamir

In this section we show how to use our hash functions to construct non-interactive zero-knowledge (NIZK)
arguments for NP. We follow the folklore approach of applying the Fiat-Shamir transformation to a constant-
round public-coin honest-verifier zero-knowledge proof-system. The point however is that we can establish
soundness based on a concrete assumption (with a meaningful security reduction) rather than just heuristically
assuming that the Fiat-Shamir transformation preserves soundness. Further, we show that if we start from an
interactive proof with adaptive soundness (where the instance x can be chosen adaptively in the last message),
as in [FLS99]; then in the resulting NIZK, the soundness and zero-knowledge properties hold even if the
instance is chosen adaptively given the CRS.
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We remark that for this result to go through we require an additional property from the hash function fam-
ily that we use, beyond correlation intractability. Namely, that it is possible to efficiently sample a uniformly
random hash function h from the family, conditioned on h(a) = b, for some arbitrary fixed values a and b.
We refer to this property as “programmability”.

Definition 7.1 (Programmability of hash function). A hash function ensembleH = {hk : D(λ)→ C(λ)}λ∈N
is called programmable if there exists an efficient algorithm M that given x ∈ D(λ) and y ∈ C(λ), outputs a
uniformly random hash function hk from the family such that hk(x) = y.

Translating the requirement to the hash function instantiated using our KDM-secure encryption scheme,
it means the encryption algorithm given a key a and message b outputs the ciphertext efficiently.

We recall the definition of NIZK with adaptive soundness and zero-knowledge.

Definition 7.2 (NIZK with adaptive soundness and ZK [BFM88, FLS99]). Let λ ∈ N be the security parame-
ter. A non-interactive (computational) zero-knowledge argument system (NIZK) for an NP language L ∈ NP,
with witness relation RL, is a pair of probabilistic polynomial-time algorithms (P, V ) such that:

• Completeness: For every x ∈ L and witness w for x (i.e., (x,w ∈ RL)), for all σ ∈ {0, 1}poly(λ),

V
(
σ, x, P (x, σ, w)

)
= 1.

• Adaptive Soundness: For every polynomial-size cheating prover P ∗, we have

Pr
σ∈R{0,1}poly(λ)
(x,a)←P ∗(σ)

[(
V (x, σ, a) = 1

)
∧
(
x /∈ L

)]
< negl(λ).

• Adaptive Zero-Knowledge: There exists a probabilistic polynomial-time simulator S = (S1, S2) such
that for every polynomial time adversary A = (A1, A2),∣∣∣∣∣∣∣∣∣∣

Pr
σ∈R{0,1}poly(λ)
(x,w,ζ)←A1(σ)
π←P (x,σ,w)

[(
A2(σ, x, π, ζ) = 1

)
∧
(
x ∈ L

)]
− Pr

σ,τ←S1(1λ)
(x,w,ζ)←A1(σ)
π←S2(τ,x,σ)

[(
A2(σ, x, π, ζ) = 1

)
∧
(
x ∈ L

)]
∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where ζ (resp., τ ) denote an internal state of the adversary (resp., simulator).

The random string σ received by both P and V is referred to as the common random string or CRS.
We establish the following result.

Theorem 7.3. Assume there exists one-way functions and a programmable correlation intractable function
ensemble for all sparse relations. Then, any language in NP has a non-interactive zero-knowledge argument-
system with adaptive soundness and adaptive zero-knowledge.

As a corollary of Theorem 7.3 and the results obtained in the previous sections, we obtain that:

Corollary 7.4. If either Assumption 6.4 or Assumption 6.10 holds, then any language in NP has a non-
interactive zero-knowledge argument-system with adaptive soundness and adaptive zero-knowledge.
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7.1 Proof of Theorem 7.3

Our starting point will be a 4-message honest-verifier zero-knowledge proof-system for NP, where the in-
stance x can be chosen adaptively in the last message.

Proposition 7.5. Assume that one-way functions exist. Then, for any languageL ∈ NP, there exists an honest-
verifier (computational) zero-knowledge proof-system. Moreover, the proof-system is public-coin, consists of
4-messages, has adaptive soundness (with negligible soundness error) and adaptive zero-knowledge.

Proof Sketch. Proposition 7.5 follows by taking the protocol specified in [FLS99, Section 2.1], instantiating
the commitments using Naor’s commitment scheme [Nao91] (based on one-way functions), and observing
that parallel repetition reduces the soundness error of interactive proofs (at an exponential rate) and preserves
honest-verifier adaptive zero-knowledge.

Assume that one-way functions exist. Let L ∈ NP and let (P, V ) be the zero-knowledge proof-system
for L guaranteed by Proposition 7.5. We denote the 4-messages of this proof system by a1, b1, a2, b2, where
a1 and a2 are sent by the verifier (and consist only of random coin tosses), whereas b1 and b2 are sent by the
prover. Without loss of generality we assume the lengths of a1, b1, a2, b2 are bounded ahead of time and we
ignore the notations of the length parameter.

LetH be the programmable correlation intractable function family. Without loss of generality we assume
H is 1-universal.4 Namely, for any input α, the distribution of h(α), where h← H is selected uniformly from
the hash function family, is uniform over the range.

Let (P ′, V ′) be the 2-message protocol obtained by applying the Fiat-Shamir transformation to the pro-
tocol (P, V ) with respect to the function family H. Namely, the first message (which we think of as a CRS)
consists of (1) a random a1 and (2) a description of a hash function h ←R H. Given h, the (honest) NIZK
prover P ′ generates b1 = P (a1) and x, b2 = P (a1, b1, a2), where a2 = h(b1), sends (x, b1, b2) to V ′. The
NIZK verifier V ′, given CRS = (a1, h) and prover message (x, b1, b2) first computes a2 = h(b1) and then
accepts if and only if V (x, a1, b1, a2, b2) = 1.

Proposition 7.6. (P ′, V ′) is a non-interactive zero-knowledge argument-system for L.

Proof. The fact that P ′ and V ′ are computable in polynomial-time follows from the efficiency of P , V and
the hash function h. We proceed to show that completeness, soundness and zero-knowledge hold.

Completeness. Perfect completeness follows immediately from the perfect completeness of the proof-
system (P, V ).

Adaptive soundness. For any fixed a1, define the relation RL,a1 as

RL,a1 =
{

(b1, a2) : ∃x, b2 such that
(
x /∈ L

)
∧
(
V (x, a1, b1, a2, b2) = 1

)}
.

Claim 7.7. For all but a negligible fraction of a1’s, the relation RL,a1 is sparse.

Proof. Suppose otherwise. That is, there exists a set A1 such that (1) Pra1 [a1 ∈ A1] is non-negligible and (2)
for every a1 ∈ A1, there exists a corresponding b1 such that Pra2 [(b1, a2) ∈ RL,a1 ] is non-negligible.

Consider an (inefficient) cheating prover P̃ for the (adaptively sound) interactive proof (P, V ) that oper-
ates as follows. Given a1, it checks if a1 ∈ A1. If not it aborts, otherwise it sends the corresponding b1 value.

4For Construction 5.1, 1-univerality follows from the universal ciphertext of the encryption scheme. More generally though, given
a general programmable CI function family, we can make it 1-universal by sampling an additional random string as part of the hash
function description and XORing the string with the output.
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Now given a2 if checks (by a brute force search) if there exists (x, b2) such that V (x, a1, b1, a2, b2) = 1. If
not it aborts and otherwise it specifies x as the instance and b2 as its last message.

We claim that P̃ succeeds with non-negligible probability in contradiction to the adaptive soundness
of (P, V ). This is because a ∈ A1 with non-negligible probability and assuming that this is indeed the
case, for the corresponding b1, with non-negligible probability over a1, there exists x and b2 such that the V
accepts.

Suppose that there exists a polynomial-time cheating prover P̃ ′ for the NIZK (P ′, V ′). Namely:

Pr
h∈H,a1

(x,(b1,b2))←P̃ ′(a1,h)

[
V (x, a1, b1, a2, b2) = 1

]
is non-negligible, where a2 = h(b1).

Thus,
Pr
a1
h∈H

b1←P̃ ′(a1,h)

[(
b1, h(b1)

)
∈ RL,a1

]
(16)

is non-negligible. By an averaging argument, for a non-negligible fraction of fixed values of a1’s it holds that

Pr
h∈H

b1←P̃ ′(a1,h)

[(b1, h(b1)) ∈ RL,a1 ]

is non-negligible. For these values of a1, we have that P̃ breaks the correlation intractability of H with
respect to the relation RL,a1 . By Claim 7.7, and a union bound, we have that there exists some a1 such that
the foregoing relation is also sparse and we obtain a contradiction.

Adaptive zero-knowledge. Let S be the simulator for (P, V ). We construct a simulator S′ for our NIZK
protocol as follows. The simulator S′ first runs S to obtain the first 3 messages (a′1, b

′
1, a
′
2). Then, it

samples uniformly a programmed key for the correlation intractable function family k{b′1, a′2} such that
hk{b′1,a′2}(b

′
1) = a′2. The simulator S′ outputs

(
k{b′1, a′2}, a′1

)
as the CRS. The adversary then chooses an

instance x ∈ L together with a corresponding witness w. The simulator S′ continues the execution of S on
(a′1, b

′
1, a
′
2) with respect to the instance x, obtaining the last message b′2. The simulator S′ outputs (b′1, a

′
2, b
′
2).

By the adaptive honest-verifier zero-knowledge property of (P, V ) it holds that (a′1, b
′
1, a
′
2, b
′
2) is computa-

tionally indistinguishable from the real interaction (a1, b1, a2, b2) with respect to x that is efficiently sampled
based on the first three messages. This implies that (k{b′1, a′2}, a′1, b′1, a′2, b′2) is computationally indistinguish-
able from (k{b1, a2}, a1, b1, a2, b2).

Furthermore, by the 1-universality, the distribution (k{b1, a2}, a1, b1, a2, b2) is statistically close to the
distribution (k, a1, b1, hk(b1), b2), where k∈RH, and b2 is computed by the prover P given a2 = hk(b1).
Thus, the simulated distribution (k{b′1, a′2}, a′1, b′1, a′2, b′2) is computationally indistinguishable from the real
distribution (k, a1, b1, hk(b1), b2) and adaptive zero-knowledge of the argument-system follows.

Acknowledgments

We thank the anonymous reviewers for their helpful comments.

22



References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identification
to signatures via the fiat-shamir transform: Minimizing assumptions for security and forward-
security. In EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 418–433.
Springer, 2002.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In Advances in Cryptology-
CRYPTO 2009, pages 595–618. Springer, 2009.

[Adl79] Leonard Adleman. A subexponential algorithm for the discrete logarithm problem with appli-
cations to cryptography. In Foundations of Computer Science, 1979., 20th Annual Symposium
on, pages 55–60. IEEE, 1979.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Automata,
Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzer-
land, July 4-8, 2011, Proceedings, Part I, pages 403–415, 2011.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, pages
99–108, 1996.

[App14] Benny Applebaum. Key-dependent message security: Generic amplification and completeness.
J. Cryptology, 27(3):429–451, 2014.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.
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Appendices

A Success probability of polynomial time algorithms on discrete-log problem

The discrete-log problem over F∗q can be solved by the index calculus algorithms in heuristic subexponential
time exp(C(log q)1/3(log log q)2/3).

We consider a (commonly used) variant of the index calculus algorithm with an online phase and an
offline phase. The offline (preprocessing) phase only gets the modulus q and the generator g, the online
phase gets the challenge h ≡ gx mod q, computes x. The offline part calculates the discrete log of logg(2),
logg(3), ..., logg(B). The online phase picks a random r, try to factorize gr · h ≡ gr+x mod q in Z, see
if all the factors are smaller or equal to a prescribed prime bound B. If gr · h = 2x2 · 3x3 · ... · BxB , then
r + x ≡ logg(2) · x2 + logg(3) · x3 + ...+ logg(B) · xB mod φ(q).

The algorithm achievesO(2−
λ
c ) success probability even if the online phase is only allowed to run in poly-

nomial time, and the preprocessing phase is allowed to spend super-polynomial running time, but restricted
to leave polynomially many bits as the advice for the online phase. The analysis of the success probability
relies on the estimation of the number of smooth integers Ψ(q,B), which stands for the number of integers
in the range [1, q] whose factors are all under B. Since the online phase is forced to receive only polynomial
size advice and run in polynomial time, B will be chosen as a polynomial, whereas q ≈ 2λ.

The smooth integer bound can be derived from Rankin [Ran38] (see the survey of [Gra08]) that for any
A > 1:

Ψ(q, log(q)A) = q
1−1/A+O

(
1

log log q

)
(17)

This means the probability of a number within [1, 2λ] to be O(λc) smooth is 2
−λ
c

+O( λ
log λ

).
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