
Quasi-Optimal SNARGs via

Linear Multi-Prover Interactive Proofs

Dan Boneh∗ Yuval Ishai† Amit Sahai‡ David J. Wu§

Abstract

Succinct non-interactive arguments (SNARGs) enable verifying NP computations with signif-
icantly less complexity than that required for classical NP verification. In this work, we focus on
simultaneously minimizing the proof size and the prover complexity of SNARGs. Concretely, for
a security parameter λ, we measure the asymptotic cost of achieving soundness error 2−λ against
provers of size 2λ. We say a SNARG is quasi-optimally succinct if its proof length is Õ(λ), and
that it is quasi-optimal, if moreover, its prover complexity is only polylogarithmically greater than
the running time of the classical NP prover. We show that this definition is the best we could
hope for assuming that NP does not have succinct proofs. Our definition strictly strengthens the
previous notion of quasi-optimality introduced in the work of Boneh et al. (Eurocrypt 2017).

This work gives the first quasi-optimal SNARG for Boolean circuit satisfiability from a
concrete cryptographic assumption. Our construction takes a two-step approach. The first is an
information-theoretic construction of a quasi-optimal linear multi-prover interactive proof (linear
MIP) for circuit satisfiability. Then, we describe a generic cryptographic compiler that transforms
our quasi-optimal linear MIP into a quasi-optimal SNARG by relying on the notion of linear-only
vector encryption over rings introduced by Boneh et al. Combining these two primitives yields
the first quasi-optimal SNARG based on linear-only vector encryption. Moreover, our linear MIP
construction leverages a new robust circuit decomposition primitive that allows us to decompose
a circuit satisfiability instance into several smaller circuit satisfiability instances. This primitive
may be of independent interest.

Finally, we consider (designated-verifier) SNARGs that provide optimal succinctness for a
non-negligible soundness error. Concretely, we put forward the notion of “1-bit SNARGs” that
achieve soundness error 1/2 with only one bit of proof. We first show how to build 1-bit SNARGs
from indistinguishability obfuscation, and then show that 1-bit SNARGs also suffice for realizing
a form of witness encryption. The latter result highlights a two-way connection between the
soundness of very succinct argument systems and powerful forms of encryption.

1 Introduction

Proof systems are fundamental to modern cryptography. Many works over the last few decades have
explored different aspects of proof systems, including interactive proofs [GMR85, LFKN90, Sha90],
zero-knowledge proofs [GMR85], probabilistically checkable proofs [BFLS91, FGL+91, ALM+98],
and computationally sound proofs [Kil92, Mic00]. In this work, we study one such aspect: NP proof

∗Stanford and Center for Encrypted Functionalities. Email: dabo@cs.stanford.edu.
†Technion, UCLA, and Center for Encrypted Functionalities. Email: yuvali@cs.technion.ac.il.
‡UCLA and Center for Encrypted Functionalities. Email: sahai@cs.ucla.edu.
§Stanford and Center for Encrypted Functionalities. Email: dwu4@cs.stanford.edu.

1

systems where the proofs can be significantly shorter than the NP witness and can be verified much
faster than the time needed to check the NP witness. We say that such proof systems are succinct.

In interactive proof systems for NP with statistical soundness, non-trivial savings in communica-
tion and verification time are highly unlikely [BHZ87, GH98, GVW01, Wee05]. However, if we relax
the requirements and consider proof systems with computational soundness, also known as argument
systems [BCC88], significant efficiency improvements become possible. Kilian [Kil92] gave the first
succinct four-round interactive argument system for NP based on collision-resistant hash functions
and probabilistically checkable proofs (PCPs). Subsequently, Micali [Mic00] showed how to convert
Kilian’s four-round argument into a single-round argument for NP by applying the Fiat-Shamir
heuristic [FS86] to Kilian’s interactive protocol. Micali’s “computationally-sound proofs” (CS
proofs) represents the first candidate construction of a succinct non-interactive argument (that is, a
“SNARG” [GW11]). In the standard model, single-round succinct arguments are highly unlikely for
sufficiently hard languages [BP04a, Wee05], so we consider the weaker goal of two-message succinct
arguments systems where the initial message from the verifier is independent of the statement being
verified. We refer to this message as the common reference string (CRS).

In this work, we focus on simultaneously minimizing both the proof size and the prover complexity
of succinct non-interactive arguments. For a security parameter λ, we measure the asymptotic
cost of achieving soundness against provers of size 2λ with 2−λ error. We say that a SNARG is
quasi-optimally succinct if its proof length is Õ(λ), and that it is quasi-optimal if in addition, the
prover’s runtime is only polylogarithmically greater than the the running time of the classical prover.
In Section 5.1, we show that this notion of quasi-optimal succinctness is tight (up to polylogarithmic
factors): assuming NP does not have succinct proofs, no succinct argument system can provide
the same soundness guarantees with proofs of size o(λ). Our notion of quasi-optimality is a strict
strengthening of the previous notion from [BISW17], which imposed a weaker soundness requirement
on the SNARG. Notably, under the definition in [BISW17], we show that it is possible to construct
SNARGs with even shorter proofs than what they consider to be (quasi)-optimally succinct. We
discuss the differences in these notions of quasi-optimality in Section 1.1 as well as Remark 5.3.

In this paper, we construct the first quasi-optimal SNARG whose security is based on a concrete
cryptographic assumption similar in flavor to those of previous works [BCI+13, BISW17]. To our
knowledge, all previous candidates are either not quasi-optimal or rely on a heuristic security
argument (Remark 5.4). Similar to previous works [BCI+13, BISW17], we take a two-step approach
to construct our quasi-optimal SNARGs. First, we construct an information-theoretic proof system
that provides soundness against a restricted class of provers (e.g., linearly-bounded provers [IKO07]).
We then leverage cryptographic tools (e.g., linear-only encryption [BCI+13, BISW17]) to compile the
information-theoretic primitive into a succinct argument system. In this work, the core information-
theoretic primitive we use is a linear multi-prover interactive proof (linear MIP). One of the main
contributions in this work is a new construction of a quasi-optimal linear MIP that can be compiled
to a quasi-optimal SNARG using similar cryptographic tools as those in [BISW17]. We give an
overview of our quasi-optimal linear MIP construction in Section 2, and the formal construction in
Section 4.

Background on SNARGs. We briefly introduce several properties of succinct non-interactive
argument systems. In this work, we focus on constructing SNARGs for the problem of Boolean circuit
satisfiability. (This suffices for building SNARGs for general RAM computations, cf. [BCI+13].) A
SNARG is publicly verifiable if anyone can verify the proofs, and it is designated-verifier if only

2

the holder of a secret verification state (generated along with the CRS) can verify proofs. In this
work, we focus on constructing quasi-optimal designated-verifier SNARGs. In addition, we say a
SNARG is fully succinct if the setup algorithm (i.e., the algorithm that generates the CRS, and in
the designated-verifier setting, the secret verification state), is also efficient (i.e., runs in time that is
only polylogarithmic in the circuit size). A weaker notion is the concept of a preprocessing SNARG,
where the setup algorithm is allowed to run in time that is polynomial in the size of the circuit
being verified. In this work, we consider preprocessing SNARGs. We provide additional background
on SNARGs and other related work in Section 1.3.

1.1 Quasi-Optimal SNARGs

In this section, we summarize the main results of this work on defining and constructing quasi-optimal
SNARGs. In Section 2, we provide a more technical survey of our main techniques.

Defining quasi-optimality. In this work, we are interested in minimizing the prover complexity
and proof size in succinct non-interactive argument systems. To reiterate, our definition of quasi-
optimality considers the prover complexity and proof size needed to ensure soundness error 2−λ

against provers of size 2λ. We say a SNARG (for Boolean circuit satisfiability) is quasi-optimal if
the proof size is Õ(λ) and the prover complexity is Õ(|C|) + poly(λ, log |C|), where C is the Boolean
circuit.1 In Lemma 5.2, we show that this notion of quasi-optimality is the “right” one in the
following sense: assuming NP does not have succinct proofs, the length of any succinct argument
system that provides this soundness guarantee is necessarily Ω(λ). Thus, SNARG systems with
strictly better parameters are unlikely to exist. Our notion is a strict strengthening of the previous
notion of quasi-optimality from [BISW17] which only required soundness error negl(λ) against
provers of size 2λ. In fact, we show in Section 5.1 that the previous notion of quasi-optimality
from [BISW17] is not tight. If we only want ρ bits of soundness where ρ = o(λ), it is possible
to construct a designated-verifier SNARG where the proofs are exactly ρ bits. This means that
there exists a designated-verifier SNARG which meet the soundness requirements in [BISW17], but
whose size is strictly shorter than what would be considered “optimal.” We provide a more detailed
comparison of the two notions in Remark 5.3.

Previous SNARG constructions. Prior to this work, the only SNARG candidate that satisfies
our notion of quasi-optimal prover complexity is Micali’s CS proofs [Mic00]. However, to achieve
2−λ soundness, the length of a CS proof is Ω(λ2), which does not satisfy our notion of quasi-optimal
succinctness. Conversely, if we just consider SNARGs that provide quasi-optimal succinctness, we
have many candidates [Gro10, Lip12, GGPR13, BCI+13, Lip13, DFGK14, Gro16, BISW17]. With
the exception of [BISW17], the SNARG proof in all of these candidates contains a constant number
of bilinear group elements, and so, is quasi-optimally succinct. The drawback is that to construct
the proof, the prover has to perform a group operation for every gate in the underlying circuit. Since
each group element is Ω(λ) bits, the prover overhead is at least multiplicative in λ. Consequently,
none of these existing constructions satisfy our notion of quasi-optimal prover complexity. The
lattice-based construction in [BISW17] has the same limitation: the prover needs to operate on
an LWE ciphertext per gate in the circuit, which introduces a multiplicative overhead Ω(λ) in the
prover’s computational cost.

1We write Õ(·) to suppress factors that are polylogarithmic in the circuit size |C| and the security parameter λ.

3

Quasi-optimal linear MIPs. This work gives the first construction of a quasi-optimal SNARG
for Boolean circuit satisfiability from a concrete cryptographic assumption. Following previous
works on constructing SNARGs [BCI+13, BISW17], our construction can be broken down into two
components: an information-theoretic component (linear MIPs), and a cryptographic component
(linear-only vector encryption). We give a brief description of the information-theoretic primitive we
construct in this work: a quasi-optimal linear MIP. At the end of this section, we discuss why the
general PCPs and linear PCPs that have featured in previous SNARG constructions do not seem
sufficient for building quasi-optimal SNARGs.

We first review the notion of a linear PCP [IKO07, BCI+13]. A linear PCP over a finite field F
is an oracle computing a linear function π : Fm → F. On any query q ∈ Fm, the linear PCP oracle
responds with the inner product q>π = 〈q,π〉 ∈ F. More generally, if ` queries are made to the
linear PCP oracle, the ` queries can be packed into the columns of a query matrix Q ∈ Fm×`. In
this case, we can express the response of the linear PCP oracle as the matrix-vector product Q>π.

Linear MIPs are a direct generalization of linear PCPs to the setting where there are ` independent
proof oracles (π1, . . . ,π`), each implementing a linear function πi : Fm → F. In the linear MIP
model, the verifier’s queries consist of a `-tuple (q1, . . . ,q`) where each qi ∈ Fm. For each query
qi ∈ Fm to the proof oracle πi, the verifier receives the response 〈qi,πi〉. We review the formal
definitions of linear PCPs and linear MIPs in Appendix A.1.

In this work, we say that a linear MIP for Boolean circuit satisfiability is quasi-optimal if
the MIP prover (for proving satisfiability of a circuit C) can be implemented by a circuit of
size Õ(|C|) + poly(λ, log |C|), and the linear MIP provides soundness error 2−λ. As we note in
Remark A.6, existing linear PCP constructions [BCI+13, BISW17] (which can be viewed as linear
MIPs with a single prover) are not quasi-optimal: they either require embedding the Boolean circuit
into an arithmetic circuit over a large field [BCI+13], or rely on making O(λ) queries, each of length
m = O(|C|) [BISW17].

Constructing quasi-optimal linear MIPs. Our work gives the first construction of a quasi-
optimal linear MIP for Boolean circuit satisfiability. We refer to Section 2 for an overview of our
construction and to Section 4 for the full description. At a high-level, our quasi-optimal linear
MIP construction relies on two key ingredients: a robust circuit decomposition and a method for
enforcing consistency.

Robust circuit decomposition. Our robust decomposition primitive takes a circuit C and
produces from it a collection of constraints f1, . . . , ft, each of which can be computed by a circuit of
size roughly |C| /t. Each constraint reads a subset of the bits of a global witness (computed based
on the statement-witness pair for C). The guarantee provided by the robust decomposition is that
for any false statement x (that is, a statement x where for all witnesses w, C(x,w) = 0), no single
witness to f1, . . . , ft can simultaneously satisfy more than a constant fraction of the constraints.
Now, to prove satisfiability of a circuit C, the prover instead proves that there is a consistent
witness that simultaneously satisfies all of the constraints f1, . . . , ft. Each of these proofs can be
implemented by a standard linear PCP. The advantage of this approach is that for a false statement,
only a constant fraction of the constraints can be satisfied (for any choice of witness), so even if each
underlying linear PCP instance only provided constant soundness, the probability that the prover is
able to satisfy all of the instances is amplified to 2−Ω(t) = 2−Ω(λ) if we let t = Θ(λ). Finally, even
though the prover now has to construct t proofs for the t constraints, each of the constraints can

4

themselves be computed by a circuit of size Õ(|C| /t). The robustness property of our decomposition
is reminiscent of the relation between traditional PCPs and constraint-satisfaction problems, and one
might expect that we could instantiate such a decomposition using PCPs. However, in our settings,
we require that the decomposition be input-independent, which to the best of our knowledge, is not
satisfied by existing (quasilinear) PCP constructions. We discuss this in more detail in Remark B.7.

The robust decomposition can amplify soundness without introducing much additional overhead.
The alternative approach of directly applying a constant-query linear PCP to check satisfiability of
C has the drawback of only providing 1/poly(λ) soundness when working over a small field (i.e.,
as would be the case with Boolean circuit satisfiability). We state the formal requirements of our
robust decomposition in Section 4.1, and give one instantiation in Appendix B.1 by combining MPC
protocols with polylogarithmic overhead [DIK10] with the “MPC-in-the-head” paradigm [IKOS07].
Since the notion of a robust decomposition is a very natural one, we believe that our construction is
of independent interest and will have applications beyond quasi-optimal linear MIP constructions.

Enforcing consistency. The second ingredient we require is a way for the verifier to check that
the individual proofs the prover constructs (for showing satisfiability of each constraint f1, . . . , ft) are
self-consistent. Our construction here relies on constructing randomized permutation decompositions,
and we refer to Section 2 for the technical overview, and Section 4 for the full description.

Preprocessing SNARGs from linear MIPs. To complete our construction of quasi-optimal
SNARGs, we show a generic compiler from linear MIPs to preprocessing SNARGs by relying on the
notion of a linear-only vector encryption scheme over rings introduced by Boneh et al. [BISW17].
We give our construction in Section 5. Our primary contribution here is recasting the Boneh et al.
construction, which satisfies the weaker notion of quasi-optimality, as a generic framework for
compiling linear MIPs into preprocessing SNARGs. Combined with our information-theoretic
construction of quasi-optimal linear MIPs, this yields the first quasi-optimal designated-verifier
SNARG for Boolean circuit satisfiability in the preprocessing model (Corollaries 5.8 and 5.9).

Why linear MIPs? A natural question to ask is whether our new linear MIP to preprocessing
SNARG compiler provides any advantage over the existing compilers in [BCI+13, BISW17], which
use different information-theoretic primitives as the underlying building block (namely, linear
interactive proofs [BCI+13] and linear PCPs [BISW17]). After all, any k-query, `-prover linear
MIP with query length m can be transformed into a (k`)-query linear PCP with query length m`
by concatenating the proofs of the different provers together, and likewise, padding the queries
accordingly. While this still yields a quasi-optimal linear PCP (with sparse queries), applying the
existing cryptographic compilers to this linear PCP incurs an additional prover overhead that is
proportional to `. In our settings, ` = Θ(λ), so the resulting SNARG is no longer quasi-optimal.
By directly compiling linear MIPs to preprocessing SNARGs, our compiler preserves the prover
complexity of the underlying linear MIP, and so, combined with our quasi-optimal linear MIP
construction, yields a quasi-optimal SNARG for Boolean circuit satisfiability.

Alternatively, one might ask whether a similar construction of quasi-optimal SNARGs is possible
starting from standard PCPs or linear PCPs with quasi-optimal prover complexity. Existing
techniques for compiling general PCPs [Mic00, BCCT12, BCC+14] to succinct argument systems all
rely on some form of cryptographic hashing to commit to the proof and then open up a small number
of bits chosen by the verifier. In the random oracle model [Mic00], this kind of construction achieves

5

quasi-optimal prover complexity, but not quasi-optimal succinctness [BISW17, Remark 4.16]. In the
standard model [BCCT13, BCC+14], additional cryptographic tools (notably, a private information
retrieval protocol) are needed in the construction, which do not preserve the prover complexity of
the underlying construction.

If instead we start with linear PCPs and apply the compilers in [BCI+13, BISW17], the challenge
is in constructing a quasi-optimal linear PCP that provides soundness error 2−λ over a small field F.
As noted above (and in Remark A.6), existing linear PCP constructions [BCI+13, BISW17] are not
quasi-optimal for Boolean circuit satisfiability.

1.2 Optimally-Laconic Arguments and 1-Bit SNARGs

More broadly, we can view our quasi-optimal SNARGs in the preprocessing model as a quasi-optimal
interactive argument system with a maximally laconic prover. Here, we allow the verifier to send an
arbitrarily long string (namely, the CRS), and our goal is to minimize the prover’s computational
cost and the number of bits the prover communicates to the verifier. Our quasi-optimal SNARG
thus gives the first interactive argument system with a quasi-optimal laconic prover.

Optimally-laconic arguments and 1-bit SNARGs. Independent of our results on construct-
ing quasi-optimal SNARGs, we also ask the question of what is the minimal proof length needed
to ensure ρ bits of soundness where ρ is a concrete soundness parameter. Lemma 5.2 shows
that achieving 2−ρ soundness error only requires proofs of length Ω(ρ). When ρ = Ω(λ), many
existing SNARG candidates, including the one we construct in this paper, are quasi-optimally
succinct [Gro10, GGPR13, BCI+13, BISW17]. More generally, this question remains interesting
when ρ = o(λ), and even independently of achieving quasi-optimal prover complexity. A natural
question to ask is whether there exist SNARGs where the size of the proofs achieves the lower bound
of Ω(ρ) for providing ρ bits of soundness. Taken to the extreme, we ask whether there exists a 1-bit
SNARG with soundness error 1/2 + negl(λ). We note that a 1-bit SNARG immediately implies
an optimally-succinct SNARG for all soundness parameters ρ: namely, to build a SNARG with
soundness error 2−ρ, we concatenate ρ independent instances of a 1-bit SNARG.

In Section 6, we show that the designated-verifier analog of the Sahai-Waters [SW14] construction
of non-interactive zero-knowledge proofs from indistinguishability obfuscation and one-way functions
is a 1-bit SNARG. In the interactive setting, we show that we can construct 1-bit laconic arguments
from witness encryption. We do not know how to build 1-bit SNARGs and 1-bit laconic arguments
for general languages from weaker assumptions,2 and leave this as an open problem.

The power of optimally-laconic arguments. Finally, we show an intriguing connection be-
tween 1-bit laconic arguments and a variant of witness encryption. Briefly, a witness encryption
scheme [GGSW13] allows anyone to encrypt a message m with respect to a statement x in an NP
language; then, anyone who holds a witness w for x is able to decrypt the ciphertext. In Section 6.2,
we show that a 1-bit laconic argument (or SNARG) for a cryptographically-hard3 language L implies
a relaxed form of witness encryption for L where semantic security holds for messages encrypted to
a random false instance (as opposed to an arbitrary false instance in the standard definition). While

2Note that for some special languages such as graph non-isomorphism, we do have 1-bit laconic arguments [Gol01].
3Here, we say a language is cryptographically-hard if there exists a distribution over yes instances that is computa-
tionally indistinguishable from a distribution of no instances for the language.

6

this is a relaxation of the usual notion of witness encryption, it already suffices to realize some
of the powerful applications of witness encryption described in [GGSW13]. This implication thus
demonstrates the power of optimally-laconic arguments, as well as some of the potential challenges
in constructing them from simple assumptions.

Our construction of witness encryption from 1-bit arguments relies on the observation that for a
(random) false statement x, any computationally-bounded prover can only produce a valid proof
π ∈ {0, 1} with probability that is negligibly close to 1/2. Thus, the proof π can be used to hide
the message m in a witness encryption scheme (when encrypting to the statement x). Here, we
implicitly assume that a (random) statement x has exactly one accepting proof—this assumption
holds for any cryptographically-hard language. Essentially, our construction shows how to leverage
the soundness property of a proof system to obtain a secrecy property in an encryption scheme.
Previously, Applebaum et al. [AIK10] showed how to leverage secrecy to obtain soundness, so in
some sense, we can view our construction as a dual of their secrecy-to-soundness construction. The
recent work of Berman et al. [BDRV17] also showed how to obtain public-key encryption from
laconic zero-knowledge arguments. While their construction relies on the additional assumption of
zero-knowledge, their construction does not require the argument system be optimally laconic.

We can also view a 1-bit argument for a cryptographically-hard language as a “predictable
argument” (c.f., [FNV17]). A predictable argument is one where there is exactly one accepting
proof for any statement. Faonio et al. [FNV17] show that any predictable argument gives a witness
encryption scheme. In this work, we show that soundness alone suffices for this transformation,
provided we make suitable restrictions on the underlying language. We discuss this in greater detail
in Remark 6.13.

1.3 Additional Related Work

Gentry and Wichs [GW11] showed that no construction of an adaptively-secure SNARG (for general
NP languages) can be proven secure via a black-box reduction from any falsifiable cryptographic
assumption [Nao03].4 As a result, most existing SNARG constructions (for general NP languages)
in the standard model have relied on non-falsifiable assumptions such as knowledge-of-exponent as-
sumptions [Dam91, HT98, BP04b, Mie08, Gro10, Lip12, GGPR13, Lip13, DFGK14, Lip16, GM17],
extractable collision-resistant hashing [BCCT12, DFH12, BCC+14], extractable homomorphic en-
cryption [BC12, GGPR13], and linear-only encryption [BCI+13, BISW17]. Other constructions
have relied on showing security in idealized models such as the random oracle model [Mic00, Val08]
or the generic group model [Gro16]. In many of these constructions, the underlying SNARGs also
satisfy a knowledge property, which says that whenever a prover generates an accepting proof π
of a statement x, there is an efficient extractor that can extract a witness w from π such that
C(x,w) = 1. SNARGs with this property are called SNARGs of knowledge, or more commonly,
SNARKs. In many cases, SNARGs also have a zero-knowledge property [Gro10, Lip12, GGPR13,
BCI+13, Lip13, DFGK14, Lip16, GM17] which says that the proof π does not reveal any additional
information about the witness w other than the fact that C(x,w) = 1.

A compelling application of succinct argument systems is to verifiable delegation of computation.
Over the last few years, there has been significant progress in leveraging SNARGs (and their
variants) for implementing scalable systems for verifiable computation both in the interactive

4In the case of non-adaptive SNARGs, Sahai and Waters give a construction from indistinguishability obfuscation and
one-way functions [SW14].

7

setting [GKR08, CMT12, TRMP12, SMBW12, SVP+12, Tha13, VSBW13, WHG+16, WJB+17]
as well as the non-interactive setting [PHGR13, BCG+13, BFR+13, BCTV14, WSR+15, CFH+15].
We refer to [WB15] and the references therein for a more comprehensive survey of this area.

2 Quasi-Optimal Linear MIP Construction Overview

In this section, we give a technical overview of our quasi-optimal linear MIP construction for
arithmetic circuit satisfiability over a finite field F. Combined with our cryptographic compiler
based on linear-only vector encryption over rings, this gives the first construction of a quasi-optimal
SNARG from a concrete cryptographic assumption.

Robust circuit decomposition. The first ingredient we require in our quasi-optimal linear MIP
construction is a robust way to decompose an arithmetic circuit C : Fn′ ×Fm′ → Fh′ into a collection
of t constraint functions f1, . . . , ft, where each constraint fi : Fn × Fm → {0, 1} takes as input a
common statement x ∈ Fn and witness w ∈ Fm. More importantly, each constraint fi can be
computed by a small arithmetic circuit Ci of size roughly |C| /t. This means that each arithmetic
circuit Ci may only need to read some subset of the components in x and w. There is a mapping
inp : Fn′ → Fn that takes as input a statement x′ for C and outputs a statement x for f1, . . . , ft,
and another mapping wit : Fn′ × Fm′ → Fm that takes as input a statement-witness pair (x′,w′)
for C, and outputs a witness w for f1, . . . , ft. The decomposition must satisfy two properties:
completeness and robustness. Completeness says that whenever a statement-witness pair (x′,w′) is
accepted by C, then fi(x,w) = 1 for all i if we set x = inp(x′) and w = wit(x′,w′). Robustness says
that for a false statement x′ ∈ Fn′ , there are no valid witnesses w ∈ Fm that can simultaneously
satisfy more than a constant fraction of the constraints f1(x, ·), . . . , ft(x, ·), where x = inp(x′).

Roughly speaking, a robust decomposition allows us to reduce checking satisfiability of a large
circuit C to checking satisfiability of many smaller circuits C1, . . . , Ct. The gain in performance will
be due to our ability to check satisfiability of all of the C1, . . . , Ct in parallel. The importance of
robustness will be critical for soundness amplification. We give the formal definition of a robust
decomposition in Section 4.1.

Instantiating the robust decomposition. In Appendix B.1, we describe one way of instanti-
ating the robust decomposition by applying the “MPC-in-the-head” paradigm of [IKOS07] to MPC
protocols with polylogarithmic overhead [DIK10]. We give a brief overview here. For an arithmetic
circuit C : Fn′ ×Fm′ → Fh′ , the encoding of a statement-witness pair (x,w) will be the views of each
party in a (simulated) t-party MPC protocol computing C on (x,w), where the bits of the input
and witness are evenly distributed across the parties. Each of the constraint functions fi checks that
party i outputs 1 in the protocol execution (indicating an accepting input), and that the view of
party i is consistent with the views of the other parties. This means that the only bits of the encoded
witness that each constraint fi needs to read are those that correspond to messages that were sent
or received by party i. Then, using an MPC protocol where the computation and communication
overhead is polylogarithmic in the circuit size (c.f., [DIK10]), and where the computational burden
is evenly distributed across the computing parties, each f1, . . . , ft can be implemented by a circuit
of size Õ(|C| /t). Robustness of the decomposition follows from security of the underlying MPC
protocol. We give the complete description and analysis in Appendix B.1.

8

Blueprint for linear MIP construction. The high-level idea behind our quasi-optimal linear
MIP construction is as follows. We first apply a robust circuit decomposition to the input circuit to
obtain a collection of constraints f1, . . . , ft, which can be computed by smaller arithmetic circuits
C1, . . . , Ct, respectively. Each arithmetic circuit takes as input a subset of the components of the
statement x ∈ Fn and the witness w ∈ Fm. In the following, we write xi and wi to denote the
subset of the components of x and w, respectively, that circuit Ci reads. We can now construct a
linear MIP with t provers as follows. A proof of a true statement x′ with witness w′ consists of t
proof vectors (π1, . . . ,πt), where each proof πi is a linear PCP proof that Ci(xi, ·) is satisfiable.
Then, in the linear MIP model, the verifier has oracle access to the linear functions π1, . . . ,πt,
which it can use to check satisfiability of Ci(xi, ·). Completeness of this construction is immediate
from completeness of the robust decomposition.

Soundness is more challenging to argue. For any false statement x′, robustness of the de-
composition of C only ensures that for any witness w ∈ Fm, at least a constant fraction of the
constraints fi(x,w) will not be satisfied, where x = inp(x′). However, this does not imply that a
constant fraction of the individual circuits Ci(xi, ·) is unsatisfiable. For instance, for all i, there
could exist some witness wi such that Ci(xi,wi) = 1. This does not contradict the robustness of
the decomposition so long as the set of all satisfying witnesses {wi} contain many “inconsistent”
assignments. More specifically, we can view each wi as assigning values to some subset of the
components of the overall witness w, and we say that a collection of witnesses {wi} is consistent
if whenever two witnesses wi and wj assign a value to the same component of w, they assign the
same value. Thus, robustness only ensures that the prover cannot find a consistent set of witnesses
{wi} that can simultaneously satisfy more than a fraction of the circuits Ci. Or equivalently, if x is
the encoding of a false statement x′, then a constant fraction of any set of witnesses {wi} where
Ci(xi,wi) = 1 must be mutually inconsistent.

The above analysis shows that it is insufficient for the prover to independently argue satisfiability
of each circuit Ci(xi, ·). Instead, we need the stronger requirement that the prover uses a consistent
set of witnesses {wi} when constructing its proofs π1, . . . ,πt. Thus, we need a way to bind each
proof πi to a specific witness wi, as well as a way for the verifier to check that the complete set
of witnesses {wi} are mutually consistent. For the first requirement, we introduce the notion of a
systematic linear PCP, which is a linear PCP where the linear PCP proof vector πi contains a copy
of a witness wi where Ci(xi,wi) = 1 (Definition 4.2). Now, given a collection of systematic linear
PCP proofs π1, . . . ,πt, the verifier’s goal is to decide whether the witnesses w1, . . . ,wt embedded
within π1, . . . ,πt are mutually consistent. Since the witnesses wi are part of the proof vectors πi,
in the remainder of this section, we will simply assume that the verifier has oracle access to the
linear function 〈wi, ·〉 for all i since such queries can be simulated using the proof oracle 〈πi, ·〉.

2.1 Consistency Checking

The robust decomposition ensures that for a false statement x′, any collection of witnesses {wi}
where Ci(xi,wi) = 1 for all i is guaranteed to have many inconsistencies. In fact, there must
always exists Ω(t) (mutually disjoint) pairs of witnesses that contain some inconsistency in their
assignments. Ensuring soundness thus reduces to developing an efficient method for testing whether
w1, . . . ,wt constitute a consistent assignment to the components of w or not. This is the main
technical challenge in constructing quasi-optimal linear MIPs, and our construction proceeds in
several steps, which we describe below.

9

Notation. We begin by introducing some notation. First, we pack the different witnesses
w1, . . . ,wt ∈ Fq into the rows of an assignment matrix W ∈ Ft×q. Specifically, the ith row of
W is the witness wi. Next, we define the replication structure for the circuits C1, . . . , Ct to be a
matrix A ∈ [m]t×q. Here, the (i, j)th entry Ai,j encodes the index in w ∈ Fm to which the jth

entry in wi corresponds. With this notation, we say that the collection of witnesses w1, . . . ,wt are
consistent if for all indices (i1, j1) and (i2, j2) where Ai1,j1 = Ai2,j2 , the assignment matrix satisfies
Wi1,j1 = Wi2,j2 .

Checking global consistency. To check whether an assignment matrix W ∈ Ft×q is consistent
with respect to the replication structure A ∈ [m]t×q, we can leverage an idea from Groth [Gro09],
and subsequently used in [IPS09, BISW17] for performing similar kinds of consistency checks. The
high-level idea is as follows. Take any index z ∈ [m] and consider the positions (i1, j1), . . . , (id, jd)
where z appears in A. In this way, we associate a disjoint set of Hamiltonian cycles over the entries
of A, one for each of the m components of w. Let Π be a permutation over the entries in the
matrix A such that Π splits into a product of the Hamiltonian cycles induced by the entries of
A. In particular, this means A = Π(A), and moreover, W is consistent with respect to A if and
only if W = Π(W). The insight in [Gro09] is that the relation W = Π(W) can be checked using

two sets of linear queries. First, the verifier draws vectors r1, . . . , rt
r←− Fq and defines the matrix

R ∈ Ft×q to be the matrix whose rows are r1, . . . , rt. Next, the verifier computes the permuted
matrix R′ ← Π(R). Let r′1, . . . , r

′
t be the rows of R′. Similarly, let w1, . . . ,wt be the rows of W.

Finally, the verifier queries the linear MIP oracles 〈wi, ·〉 on ri and r′i for all i and checks the relation∑
i∈[t]

〈wi, ri〉
?
=
∑
i∈[t]

〈
wi, r

′
i

〉
∈ F. (2.1)

By construction of Π, if W = Π(W), this check always succeeds. However, if W 6= Π(W), then
by the Schwartz-Zippel lemma (Lemma A.1), this check rejects with probability 1/ |F|. When
working over a polynomial-size field, this consistency check achieves 1/poly(λ) soundness (where
λ is a security parameter). We can use repeated queries to amplify the soundness to negl(λ)
without sacrificing quasi-optimality. However, this approach cannot give a linear MIP with 2−λ

soundness and still retain prover overhead that is only polylogarithmic in λ (since we would require
Ω(λ) repetitions). This is one of the key reasons the construction in [BISW17] only achieves
negl(λ) soundness rather than 2−λ soundness. To overcome this problem, we require a more robust
consistency checking procedure.

Checking pairwise consistency. The consistency check described above and used in [Gro09,
IPS09, BISW17] is designed for checking global consistency of all of the assignments in W ∈ Ft×q.
The main disadvantage of performing the global consistency check in Eq. (2.1) is that it only
provides soundness 1/ |F|, which is insufficient when F is small (e.g., in the case of Boolean circuit
satisfiability). One way to amplify soundness is to replace the single global consistency check with
t/2 pairwise consistency checks, where each pairwise consistency check affirms that the assignments
in a (mutually disjoint) pair of rows of W are self-consistent. Specifically, each of the t/2 checks
consists of two queries (ri, rj) and (r′i, r

′
j) to 〈wi, ·〉 and 〈wj , ·〉, constructed in exactly the same

manner as in the global consistency check, except specialized to only checking for consistency in
the assignments to the variables in rows i and j. Since all of the pairwise consistency checks are
independent, if there are Ω(t) pairs of inconsistent rows, the probability that all t/2 checks pass is

10

bounded by 2−Ω(t). This means that for the same cost as performing a single global consistency
check, the verifier can perform Ω(t) pairwise consistency checks. As long as many of the pairs of
rows the verifier checks contain inconsistencies, we achieve soundness amplification.

Recall from earlier that our robust decomposition guarantees that whenever x1, . . . ,xt correspond
to a false statement, any collection of witnesses {wi} where Ci(xi,wi) is satisfied for all i necessarily
contains many pairs wi and wj that are inconsistent. Equivalently, many pairs of rows in the
assignment matrix W contain inconsistencies. Now, if the verifier knew which pairs of rows of W
are inconsistent, then the verifier can apply a pairwise consistency check to detect an inconsistent W
with high probability. The problem, however, is that the verifier does not know a priori which pairs
of rows in W are inconsistent, and so, it is unclear how to choose the rows to check in the pairwise
consistency test. However, if we make the stronger assumption that not only are there many pairs of
rows in W that contain inconsistent assignments, but also, that most of these inconsistencies appear
in adjacent rows, then we can use a pairwise consistency test (where each test checks for consistency
between an adjacent pair of rows) to decide if W is consistent or not. When the assignment matrix
W has many inconsistencies in pairs of adjacent rows, we say that the inconsistency pattern of W
is “regular,” and can be checked using a pairwise consistency test.

Regularity-inducing permutations. To leverage the pairwise consistency check, we require
that the assignment matrix W has a regular inconsistency structure that is amenable to a pairwise
consistency check. To ensure this, we introduce the notion of a regularity-inducing permutation. Our
construction relies on the observation that the assignment matrix W is consistent with a replication
structure A if and only if Π(W) is consistent with Π(A), where Π is an arbitrary permutation
over the entries of a t-by-q matrix. Thus, if we want to check consistency of W with respect to
A, it suffices to check consistency of Π(W) with respect to Π(A). Then, we say that a specific
permutation Π is regularity-inducing with respect to a replication structure A if whenever W has
many pairs of inconsistent rows with respect to A (e.g., W is a set of accepting witnesses to a false
statement), then Π(W) has many inconsistencies in pairs of adjacent rows with respect to Π(A).
In other words, a regularity-inducing permutation shuffles the entries of the assignment matrix
such that any inconsistency pattern in W maps to a regular inconsistency pattern according to the
replication structure Π(A). In the construction, instead of performing the pairwise consistency test
on W, which can have an arbitrary inconsistency pattern, we perform it on Π(W), which has a
regular inconsistency pattern. We define the notion more formally in Section 4.2 and show how to
construct regularity-inducing permutations in Appendix B.2.

Decomposing the permutation. Suppose Π is a regularity-inducing permutation for the repli-
cation structure A associated with the circuits C1, . . . , Ct from the robust decomposition of C.
Robustness ensures that for any false statement x′, for all collections of witnesses {wi} where
Ci(xi,wi) = 1 for all i, and x = inp(x′), the permuted assignment matrix Π(W) has inconsistencies
in Ω(t) pairs of adjacent rows with respect to Π(A). This can be detected with probability 1−2−Ω(t)

by performing a pairwise consistency test on the matrix W′ = Π(W). The problem, however, is
that the verifier only has oracle access to 〈wi, ·〉, and it is unclear how to efficiently perform the
pairwise consistency test on the permuted matrix W′ given just oracle access to the rows wi of
the unpermuted matrix. Our solution here is to introduce another set of t linear MIP provers for
each row w′i of W′ = Π(W). Thus, the verifier has oracle access to both the rows of the original
assignment matrix W, which it uses to check satisfiability of Ci(xi, ·), as well as the rows of the

11

permuted assignment matrix W′, which it uses to check consistency of the assignments in W. The
verifier accepts only if both sets of checks pass. The problem with this basic approach is that there
is no reason the prover chooses the matrix W′ so as to satisfy the relation W′ = Π(W). Thus, to
ensure soundness from this approach, the verifier needs a mechanism to also check that W′ = Π(W),
given oracle access to the rows of W and W′.

To facilitate this check, we decompose the permutation Π into a sequence of α permutations
(Π1, . . . ,Πα) where Π = Πα ◦ · · · ◦Π1. Moreover, each of the intermediate permutations Πi has the
property that they themselves can be decomposed into t/2 independent permutations, each of which
only permutes entries that appear in 2 distinct rows of the matrix. This “2-locality” property on
permutations is amenable to the linear MIP model, and we show in Construction 4.8 a way for
the verifier to efficiently check that two matrices W and W′ (approximately) satisfy the relation
W = Πi(W

′), where Πi is 2-locally decomposable. To complete the construction, we have the
prover provide not just the matrix W and its permutation W′, but all of the intermediate matrices
Wi = (Πi ◦Πi−1 ◦ · · · ◦Π1)(W) for all i = 1, . . . , α. Since each of the intermediate permutations
applied are 2-locally decomposable, there is an efficient procedure for the prover to check each
relation Wi = Πi(Wi−1), where we write W0 = W to denote the original assignment matrix. If
each of the intermediate permutations are correctly implemented, then the verifier is assured that
W′ = Π(W), and it can apply the pairwise consistency check on W′ to complete the verification
process. We use a Beneš network to implement the decomposition. This ensures that the number
of intermediate permutations required is only logarithmic in t, so introducing these additional
steps only incurs logarithmic overhead, and does not compromise quasi-optimality of the resulting
construction.

Randomized permutation decompositions. There is one additional complication in that the

intermediate consistency checks W′ ?
= Πi(W) are imperfect. They only ensure that most of the

rows in W′ agree with the corresponding rows in Πi(W). What this means is that when the prover
crafts its sequence of permuted assignment matrices W = W0,W1, . . . ,Wα, it is able to “correct”
a small number of inconsistencies that appear in W in each step. Thus, we must ensure that for
the particular inconsistency pattern that appears in W, the prover is not able to find a sequence of
matrices W1, . . . ,Wα, where each of them approximately implements the correct permutation at
each step, but at the end, is able to correct all of the inconsistencies in W. To achieve this, we
rely on a randomized permutation decomposition, where the verifier samples a random sequence of
intermediate permutations Π1, . . . ,Πα that collectively implement the target regularity-inducing
permutation Π. There are a number of technicalities that arise in the construction and its analysis,
and we refer to Appendix B.2 for the full description.

Putting the pieces together. To summarize, our quasi-optimal linear MIP for circuit satisfi-
ability consists of two key components. First, we apply a robust decomposition to the circuit to
obtain many constraints with the property that for a false statement, a malicious prover either
cannot satisfy most of the constraints, or if it does satisfy all of the constraints, it must have used
an assignment with many inconsistencies. The second key ingredient we introduce is an efficient
way to check if there are many inconsistencies in the prover’s assignments in the linear MIP model.
Our construction here relies on first constructing a regularity-inducing permutation to enable a
simple method for consistency checking, and then using a randomized permutation decomposition
to enforce the consistency check. We give the formal description and analysis in Section 4.

12

3 Preliminaries

We begin by defining some notation. For an integer n, we write [n] to denote the set of integers
{1, . . . , n}. We use bold uppercase letters (e.g., A,B) to denote matrices and bold lowercase letters
(e.g., x,y) to denote vectors. For a matrix A ∈ Ft×q over a finite field F, we write A[i1,i2] (where
i1, i2 ∈ [t]) to denote the sub-matrix of A containing rows i1 through i2 of A (inclusive). For i ∈ [t]
and j ∈ [q], we use Ai,j and A[i, j] to refer to the entry in row i and column j of A.

For a graph G with n nodes, labeled with the integers 1, . . . , n, a matching M is a set of edges
(i, k) ∈ [n]× [n] with no common vertices. For a finite set S, we write x

r←− S to denote that x is
drawn uniformly at random from S. For a distribution D, we write x← D to denote a draw from
distribution D. Unless otherwise noted, we write λ to denote the security parameter. We say that a
function f(λ) is negligible in λ if f(λ) = o(1/λc) for all c ∈ N. We write f(λ) = poly(λ) to denote
that f is bounded by some (fixed) polynomial in λ, and f = polylog(λ) if f is bounded by a (fixed)
polynomial in log λ. We say that an algorithm is efficient if it runs in probabilistic polynomial time
in the length of its input.

For a Boolean circuit C : {0, 1}n × {0, 1}m → {0, 1}, the Boolean circuit satisfaction problem
is defined by the relation RC = {(x,w) ∈ Fn × Fm : C(x,w) = 1}. We refer to x ∈ {0, 1}n as the
statement and w ∈ {0, 1}m as the witness. We write LC to denote the language associated with
RC : namely, the set of statements x ∈ {0, 1}n for which there exists a witness w ∈ {0, 1}m such
that C(x,w) = 1. In many cases in this work, it will be more natural to work with arithmetic
circuits. For an arithmetic circuit C : Fn × Fm → Fh over a finite field F, we say that C is satisfied
if on an input (x,w) ∈ Fn × Fm, all of the outputs are 0. Specifically, we define the relation
for arithmetic circuit satisfiability to be RC =

{
(x,w) ∈ Fn × Fm : C(x,w) = 0h

}
. We include

additional preliminaries in Appendix A.

4 Quasi-Optimal Linear MIPs

In this section, we present our core information-theoretic construction of a linear MIP with quasi-
optimal prover complexity. We refer to Section 2 for a high-level overview of the construction. In
Sections 4.1 and 4.2, we introduce the key building blocks underlying our construction. We give the
full construction of our quasi-optimal linear MIP in Section 4.3. We show how to instantiate our
core building blocks in Appendices B.1 and B.2.

4.1 Robust Decomposition for Circuit Satisfiability

In this section, we formally define our notion of a robust decomposition of an arithmetic circuit. We
refer to the technical overview in Section 2 for a high-level description of how we implement our
decomposition by combining the MPC-in-the-head paradigm [IKOS07] with robust MPC protocols
with polylogarithmic overhead [DIK10]. We provide the complete description in Appendix B.1.

Definition 4.1 (Quasi-Optimal Robust Decomposition). Let C : Fn′ × Fm′ → Fh′ be an arithmetic
circuit of size s over a finite field F, RC be its associated relation, and LC ⊆ Fn′ be its associated
language. A (t, δ)-robust decomposition of C consists of the following components:

• A collection of functions f1, . . . , ft where each function fi : Fn×Fm → {0, 1} can be computed
by an arithmetic circuit Ci of size Õ(s/t) + poly(t, log s). Note that a function fi may only

13

depend on a (fixed) subset of its input variables; in this case, its associated arithmetic circuit
Ci only needs to take the (fixed) subset of dependent variables as input.

• An efficiently-computable mapping inp : Fn′ → Fn that maps between a statement x′ ∈ Fn′ for
C to a statement x ∈ Fn for f1, . . . , ft.

• An efficiently-computable mapping wit : Fn′ × Fm′ → Fm that maps between a statement-
witness pair (x′,w′) ∈ Fn′ × Fm′ to C to a witness w ∈ Fm for f1, . . . , ft.

Moreover, the decomposition must satisfy the following properties:

• Completeness: For all (x′,w′) ∈ RC , if we set x = inp(x′) and w = wit(x′,w′), then
fi(x,w) = 1 for all i ∈ [t].

• δ-Robustness: For all statements x′ /∈ LC , if we set x = inp(x′), then it holds that for all
w ∈ Fm, the set of indices Sw = {i ∈ [t] : fi(x,w) = 1} satisfies |Sw| < δt. In other words,
any single witness w can only simultaneously satisfy at most a δ-fraction of the constraints.

• Efficiency: The mappings inp and wit can be computed by an arithmetic circuit of size
Õ(s) + poly(t, log s).

Systematic linear PCPs. Recall from Section 2 that our linear MIP for checking satisfiability of
a circuit C begins by applying a robust decomposition to the circuit C. The MIP proof is comprised
of linear PCP proofs π1, . . . ,πt to show that each of the circuits C1(x1, ·), . . . , Ct(xt, ·) in the robust
decomposition of C is satisfiable. Here, xi denotes the bits of the statement x that circuit Ci reads.
To provide soundness, the verifier needs to perform a sequence of consistency checks to ensure that
the proofs π1, . . . ,πt are consistent with some witness w. To facilitate this, we require that the
underlying linear PCPs are systematic: namely, each proof πi contains a copy of some witness wi

where (xi,wi) ∈ RCi . The consistency check then affirms that the witnesses w1, . . . ,wt associated
with π1, . . . ,πt are mutually consistent. We give the formal definition of a systematic linear PCP
below, and then describe one such instantiation by Ben-Sasson et al. [BCG+13, Appendix E].

Definition 4.2 (Systematic Linear PCPs). Let (P,V) be an input-oblivious k-query linear PCP for
a relation RC where C : Fn × Fm → Fh. We say that (P,V) is systematic if the following conditions
hold:

• On input a statement-witness pair (x,w) ∈ Fn × Fm the prover’s output of P(x,w) has the
form π = [w,p] ∈ Fd, for some p ∈ Fd−m. In other words, the witness is included as part of
the linear PCP proof vector.

• On input a statement x and given oracle access to a proof π∗ = [w∗,p∗], the knowledge
extractor Eπ∗(x) outputs w∗.

Fact 4.3 ([BCG+13, Claim E.3]). Let C : Fn × Fm → Fh be an arithmetic circuit of size s over a
finite field F where |F| > s. There exists a systematic input-oblivious 5-query linear PCP (P,V) for
RC over F with knowledge error O(s/ |F|) and query length O(s). Moreover, letting V = (Q,D),
the prover and verifier algorithms satisfy the following properties:

• the prover algorithm P is an arithmetic circuit of size Õ(s);
• the query-generation algorithm Q is an arithmetic circuit of size O(s);
• the decision algorithm D is an arithmetic circuit of size O(n).

14

4.2 Consistency Checking

As described in Section 2, in our linear MIP construction, we first apply a robust decomposition
to the input circuit C to obtain smaller arithmetic circuits C1, . . . , Ct, each of which depends on
some subset of the components of a witness w ∈ Fm. The proof then consists of a collection of
systematic linear PCP proofs π1, . . . ,πt that C1, . . . , Ct are individually satisfiable. The second
ingredient we require is a way for the verifier to check that the prover uses a consistent witness to
construct the proofs π1, . . . ,πt. In this section, we formally introduce the building blocks we use
for the consistency check. We refer to Section 2.1 for an overview of our methods. We begin by
defining the notion of a replication structure induced by the decomposition C1, . . . , Ct, and what it
means for a collection of assignments to the circuit C1, . . . , Ct to be consistent.

Definition 4.4 (Replication Structures and Inconsistency Matrices). Fix integers m, t, q ∈ N. A
replication structure is a matrix A ∈ [m]t×q. We say that a matrix W ∈ Ft×q is consistent with
respect to a replication structure A if for all i1, i2 ∈ [t] and j1, j2 ∈ [q], whenever Ai1,j1 = Ai2,j2 ,
Wi1,j1 = Wi2,j2 . If there is a pair of indices (i1, j1) and (i2, j2) where this relation does not hold,
then we say that there is an inconsistency in W (with respect to A) at locations (i1, j1) and (i2, j2).
For a replication structure A ∈ [m]t×q and a matrix of values W ∈ Ft×q, we define the inconsistency
matrix B ∈ {0, 1}t×q where Bi,j = 1 if and only if there is an inconsistency in W at location (i, j)
with respect to the replication structure A. In the subsequent analysis, we will sometimes refer to
an arbitrary inconsistency matrix B ∈ {0, 1}t×q (independent of any particular set of values W or
replication structure A).

Definition 4.5 (Consistent Inputs to Circuits). Let C1, . . . , Ct be a collection of circuits where
each Ci : Fm → Fh only depends on at most q ≤ m components of an input vector w ∈ Fm. For

each i ∈ [t], let a
(i)
1 , . . . , a

(i)
q ∈ [m] be the indices of the q components of the input w on which Ci

depends. The replication structure of C1, . . . , Ct is the matrix A ∈ [m]t×q, where the ith row of

A is the vector a
(i)
1 , . . . , a

(i)
q (namely, the subset of indices on which Ci depends). We say that a

collection of inputs w1, . . . ,wt ∈ Fq to C1, . . . , Ct is consistent if the assignment matrix W, where
the ith row of W is wi for i ∈ [t], is consistent with respect to the replication structure A.

To simplify the analysis, we introduce the notion of an inconsistency graph for an assignment
matrix W ∈ Ft×q with respect to a replication structure A ∈ [m]t×q. At a high level, the
inconsistency graph of W with respect to A is a graph with t nodes, one for each row of W, and
there is an edge between two nodes i, j ∈ [t] if assignments wi and wj (in rows i and j of W,
respectively) contain an inconsistent assignment with respect to A.

Definition 4.6 (Inconsistency Graph). Fix positive integers m, t, q ∈ N and take a replication
structure A ∈ [m]t×q. For any assignment matrix W ∈ Ft×q, we define the inconsistency graph
GW,A of W with respect to A as follows:

• Graph GW,A is an undirected graph with t nodes, with labels in [t]. We associate node i ∈ [t]
with the ith row of A.

• Graph GW,A has an edge between nodes i1 and i2 if there exists j1, j2 ∈ [q] such that
Ai1,j1 = Ai2,j2 but Wi1,j1 6= Wi2,j2 . In other words, there is an edge in GW,A whenever there
is an inconsistency in the assignments to rows i1 and i2 in W (with respect to the replication
structure A).

15

Definition 4.7 (Regular Matchings). Fix integers m, t, q ∈ N where t is even, and take any
replication structure A ∈ [m]t×q and assignment matrix W ∈ Ft×q. We say that the inconsistency
graph GW,A contains a regular matching of size s if GW,A contains a matching M of size s, where
each edge (v1, v2) ∈M satisfies (v1, v2) = (2i− 1, 2i) for some i ∈ [t/2]. In other words, all matched
edges are between nodes corresponding to adjacent rows in W.

Having defined these notions, we can reformulate the guarantees provided by the (t, δ)-robust
decomposition (Definition 4.1). For a constant δ > 0, let (f1, . . . , ft, inp,wit) be a (t, δ)-robust
decomposition of a circuit C. Let A be the replication structure of the circuits C1, . . . , Ct computing
f1, . . . , ft. Take any statement x′ /∈ LC , and consider any collection of witnesses w1, . . . ,wt where
Ci(xi,wi) = 1 for all i ∈ [t]. As usual, xi denotes the bits of x = inp(x′) that Ci reads. Robustness
of the decomposition ensures that no single w can be used to simultaneously satisfy more than a
δ-fraction of the constraints. In particular, this means that there must exist Ω(t) pairs of witnesses
wi and wj which are inconsistent. Equivalently, we say that the inconsistency graph GW,A contains
a matching of size Ω(t). We prove this statement formally in Lemma B.21.

Approximate consistency check. By relying on the robust decomposition, it suffices to con-
struct a protocol where the verifier can detect whether the inconsistency graph GW,A of the prover’s
assignments W with respect to a replication structure A contains a large matching. To facilitate
this, we first describe an algorithm to check whether two assignment matrices W,W′ ∈ Ft×q
(approximately) satisfy the relation W′ = Π(W) in the linear MIP model, where Π is a 2-locally
decomposable permutation. This primitive can then be used directly to detect whether an incon-
sistency graph GW,A contains a regular matching (Corollary 4.11). Subsequently, we show how to
permute the entries in W according to a permutation Π′ so as to convert an arbitrary matching in
GW,A into a regular matching in GΠ′(W),Π′(A). Our construction of the approximate consistency
check is a direct generalization of the pairwise consistency check procedure described in Section 2.1.

Construction 4.8 (Approximate Consistency Check). Fix an even integer t ∈ N, and let P1, . . . , Pt,
P ′1, . . . , P

′
t be a collection of 2 · t provers in a linear MIP system. For i ∈ [t], let πi ∈ Fd be the proof

vector associated with prover Pi and π′i ∈ Fd be the proof vector associated with prover P ′i . We can
associate a matrix W ∈ Ft×d with provers (P1, . . . , Pt), where the ith row of W is πi. Similarly, we
associate a matrix W′ with provers (P ′1, . . . , P

′
t). Let Π be a 2-locally decomposable permutation

on the entries of a t-by-d matrix. Then, we describe the following linear MIP verification procedure
for checking that W′ ≈ Π(W).

• Verifier’s query algorithm: The verifier chooses a random matrix R
r←− Ft×d, and sets

R′ ← Π(R). Let ri and r′i denote the ith row of R and R′, respectively. The query algorithm
outputs the query ri for prover Pi and the query r′i to prover P ′i .

• Verifier’s decision algorithm: Since Π is 2-locally decomposable, we can decompose Π
into t′ = t/2 independent permutations, Π1, . . . ,Πt′ , where each Πi only operates on a pair
of rows (j2i−1, j2i), for all i ∈ [t′]. Given responses yi = 〈πi, ri〉 ∈ F and y′i = 〈π′i, r′i〉 ∈ F for
i ∈ [t], the verifier checks that the relation

yj2i−1 + yj2i
?
= y′j2i−1

+ y′j2i ,

for all i ∈ [t′]. The verifier accepts if the relations hold for all i ∈ [t′]. Otherwise, it rejects.

16

By construction, we see that if W′ = Π(W), then the verifier always accepts.

Lemma 4.9 (Consistency Check Soundness). Define t, Π, W, and W′ as in Construction 4.8.
Then, if the matrix W′ disagrees with Π(W) on κ rows, the verifier in Construction 4.8 will reject
with probability at least 1− 2−Ω(κ).

Proof. Consider the event where W′ disagrees with Ŵ = Π(W) on κ rows. We show that the
probability of the verifier accepting in this case is bounded by 2−Ω(κ). In the linear MIP model, the
verifier’s decision algorithm corresponds to checking the following relation:〈

πj2i , rj2i
〉

+
〈
πj2i+1 , rj2i+1

〉 ?
=
〈
π′j2i , r

′
j2i

〉
+
〈
π′j2i+1

, r′j2i+1

〉
. (4.1)

By assumption, there are at least κ/2 indices i ∈ [t] where W′
[j2i−1,j2i]

6= Ŵ[j2i−1,j2i]. By the

Schwartz-Zippel lemma, for the indices i ∈ [t] where W′
[j2i,j2i+1] 6= Ŵ[j2i,j2i+1], the relation in

Eq. (4.1) holds with probability at most 1/ |F| (over the randomness used to sample rj2i−1 and rj2i)
Since there are at least κ/2 such indices, the probability that Eq. (4.1) holds for all i ∈ [t′] is at
most (1/ |F|)κ/2 = 2−Ω(κ). Hence, the verifier rejects with probability 1− 2−Ω(κ).

The approximate consistency check from Construction 4.8 immediately gives a way to check
whether an inconsistency graph GW,A contains a regular matching of size Ω(t). To show this, it
suffices to exhibit a 2-locally decomposable permutation Π where the assignment matrix W is
consistent on adjacent pairs of rows if and only if W = Π(W). The construction can be viewed as
composing many copies of the global consistency check permutation used in [Gro09] (and described
in Section 2.1), each applied to a pair of adjacent rows. We give the construction below.

Construction 4.10 (Pairwise Consistency in Adjacent Rows). Fix integers m, t, q ∈ N with t even,
and let A ∈ [m]t×q be a replication structure. Let t′ = t/2. For each i ∈ [t′], let Πi be a permutation
over 2-by-q matrices such that Πi splits into a disjoint set of Hamiltonian cycles based on the entries
of A[2i−1,2i]. Define a permutation Π on t-by-q matrices where the action of Π on rows 2i− 1 and
2i is given by Πi for all i ∈ [t′]. By construction, the permutation Π is 2-locally decomposable,
and moreover, W ∈ Ft×q is pairwise consistent on adjacent rows with respect to A if and only if
W = Π(W).

Corollary 4.11. Fix integers m, t, q ∈ N with t even. Let A ∈ [m]t×q be a replication structure,
and Π be the pairwise consistency test permutation for A from Construction 4.10. Then, for any
assignment matrix W ∈ Ft×q where the inconsistency graph GW,A contains a regular matching of

size Ω(t), the verifier Construction 4.8 will reject the relation W
?
= Π(W) with probability 1−2−Ω(t).

Proof. Since GW,A contains a regular matching of size Ω(t), there are inconsistencies in Ω(t) pairs
of adjacent rows of W. By construction of Π, this means that W and Π(W) differ on Ω(t) rows.
The claim then follows by Lemma 4.9.

Regularity-inducing permutations. Recall that our objective in the consistency check is to
give an algorithm that detects whether an inconsistency graph GW,A contains a matching of size
Ω(t). Corollary 4.11 gives a way to detect if the inconsistency graph GW,A contains a regular
matching of size Ω(t) with soundness error 2−Ω(t). Thus, to perform the consistency check, we
first construct a permutation Π on W such that whenever GW,A contain a matching of size Ω(t),

17

the inconsistency graph GΠ(W),Π(A) contains a regular matching of similar size Ω(t). We say that
such permutations are regularity-inducing. While we are not able to construct a single permutation
Π that is regularity-inducing for all assignment matrices W, we are able to construct a family of
permutations (Π1, . . . ,Πz) for a fixed replication structure A such that for all assignment matrices
W ∈ Ft×q, there is at least one β ∈ [z] where GΠβ(W),Πβ(A) contains a regular matching of size Ω(t).

Definition 4.12 (Regularity-Inducing Permutations). Fix integers m, t, q ∈ N, and let A ∈ [m]t×q

be a replication structure. Let Π be a permutation on t-by-q matrices and W ∈ Ft×q be a matrix
such that the inconsistency graph GW,A contains a matching M of size s. We say that Π is
ρ-regularity-inducing for W with respect to A if the inconsistency graph GΠ(W),Π(A) contains a
regular matching M ′ of size at least s/ρ. Moreover, there is a one-to-one correspondence between
the edges in M ′ and a subset of the edges in M (as determined by Π). We say that (Π1, . . . ,Πz) is
a collection of ρ-regularity-inducing permutations with respect to a replication structure A if for all
W ∈ Ft×q, there exists β ∈ [z] such that Πβ is ρ-regularity-inducing for W.

In this work, we will construct regularity-inducing permutations where ρ = O(1). To simplify
the following description, we will implicitly assume that ρ = O(1). Given an assignment matrix W
and a collection of ρ-regularity-inducing permutations (Π1, . . . ,Πz) for a replication structure A, we
can affirm that the inconsistency graph GW,A does not contain a matching of size Ω(t) by checking
that each of the graphs GΠβ(W),Πβ(A) does not contain a regular matching of size Ω(t/ρ) = Ω(t) for
all β ∈ [z] and assuming ρ = O(1). By Corollary 4.11, each of these checks can be implemented in
the linear MIP model using Construction 4.8. However, to apply the protocol in Construction 4.8
to Πβ(W), the verifier requires oracle access to the individual rows of Πβ(W). Thus, in the linear
MIP construction, in addition to providing oracle access to the rows of the assignment matrix W,
we also provide the verifier oracle access to the rows of Πβ(W) for all β ∈ [z]. Of course, a malicious
MIP prover may provide the rows of a different matrix W′ ∈ Ft×q (so as to pass the consistency
check). Thus, the final ingredient we require is a way for the verifier to check that two matrices
W,W′ ∈ Ft×q satisfy the relation W′ = Πβ(W). Note that Construction 4.8 does not directly
apply because the permutation Πβ is not necessarily 2-locally decomposable.

Decomposing the permutation. To complete the description, we now describe a way for the
verifier to check that two matrices W,W′ ∈ Ft×q satisfy the relation W′ = Π(W), for an arbitrary
permutation Π. We assume that the verifier is given oracle access to the rows of W and W′ in the
linear MIP model. Construction 4.8 provides a way to check the relation whenever Π is 2-locally
decomposable, so a natural starting point is to decompose the permutation Π into a sequence
of 2-locally-decomposable permutations Π1, . . . ,Πα, where Π = Πα ◦ · · · ◦ Π1. This is possible,
for instance, by first applying Lemma A.8 and Construction A.12 to Π. Then, the linear MIP
proof consists of the initial and final matrices W and W′, as well as the intermediate matrices
Wi = (Πi ◦ · · · ◦ Π1)(W). The linear MIP proof would consist of the rows of all of the matrices
W = W0,W1, . . . ,Wα = W′, and the verifier would apply Construction 4.8 to check that for all
` ∈ [α], Wi = Πi(Wi−1).

While this general approach seems sound, there is a subtle problem. The soundness guarantee
for the consistency check in Construction 4.8 only states that on input W,W′ and a permutation
Π, the verifier will only reject with probability 1− 2Ω(t) when W′ and Π(W) differ on Ω(t) rows.
This means that a malicious prover can provide a sequence of matrices W,W1, . . . ,Wα where each
W` differs from Π`(W`−1) on a small number of rows (e.g., o(t) rows), and in doing so, correct all
of the inconsistent assignments that appear in the final matrix Wα.

18

Randomizing the decomposition. Abstractly, we can view the problem as follows. Let B ∈
{0, 1}t×q be the inconsistency matrix for W with respect to A (Definition 4.4). In other words,
Bi,j = 1 whenever Wi,j encodes a value that is inconsistent with another assignment elsewhere
in W. Since GW,A contains a matching of size Ω(t), we know that there are at least Ω(t) rows in
B that contain a 1. The permutation Π is chosen so that Π(W) has a regular matching of size
Ω(t) with respect to Π(A). In particular, this means that the permuted inconsistency matrix Π(B)
contains a 1 in Ω(t) adjacent pairs of rows.

Consider the sequence of matrices W1, . . . ,Wα chosen by the prover. Using the approximate
pairwise consistency check, we can ensure that Wi agrees with Πi(Wi−1) on all but some κ1 rows.
Now suppose that there exists some ` ∈ [α] where B` = (Π` ◦ · · · ◦ Π1)(B) has the property that all
of the locations with a 1 in B appear in just κ1 rows of B`. If this happens, then the malicious
prover can construct W1, . . . ,W`−1 honestly, and then choose W` such that W` = Π`(W`−1) on
all rows where B` does not contain a 1, and set the values in the rows where B` does contain a 1 to
be consistent with the other rows of W. Notably, all the entries in W` are now consistent, and
moreover, W` differs from Π`(W`−1) on at most κ1 rows (and so, will not be detected with high
probability by the pairwise consistency check). This means that from the verifier’s perspective, the
final matrix Π(W) has no inconsistencies, and thus, the verifier’s final pairwise consistency check
passes with probability 1 (even though the original inconsistency graph GW,A contains a matching
of size Ω(t)). Thus, we require a stronger property on the permutation decomposition. It is not
sufficient that there is a matching of size Ω(t) in the starting and ending configurations W and W′.
Rather, we need that the size of the matching in every step of the decomposition cannot shrink by
too much, or equivalently, the intermediate permutations Π1, . . . ,Πα cannot “concentrate” all of the
inconsistencies in W into a small number of rows (which the malicious prover can fix without being
detected). We say permutation decompositions with this property are non-concentrating. We now
formally define the notion of a non-concentrating permutation decomposition and what it means for
a collection of permutation sequences to be non-concentrating.

Definition 4.13 (Non-Concentrating Permutations). Fix positive integers t, q ∈ N, and let
Γ = (Π1, . . . ,Πα) be a sequence of permutations over t-by-q matrices. Let B ∈ {0, 1}t×q be
an inconsistency matrix. For ` ∈ [α], define B` = (Π` ◦ · · · ◦Π1)(B). We say that Γ is a sequence
of (κ1, κ2)-non-concentrating permutations with respect to B if for all ` ∈ [α], the inconsistency
matrix B` has the property that no subset of κ1 rows contains more than κ2 inconsistencies (indices
where the value is 1). Next, we say a collection of permutation sequences Γ(1), . . . ,Γ(γ) where each

Γ(j) =
(
Π

(j)
1 , . . . ,Π

(j)
α

)
is (κ1, κ2)-non-concentrating for a set B ⊆ {0, 1}t×q of inconsistency matrices

if for all B ∈ B, there is some j ∈ [γ] such that Γ(j) is (κ1, κ2)-non-concentrating with respect to B.

Putting the pieces together. To summarize, the goal of the consistency check is to decide
whether the inconsistency graph GW,A of some assignment matrix W with respect to a replication
structure A contains a matching of size Ω(t). Our strategy relies on the following:

• Let (Π1, . . . ,Πz) be a collection of regularity-inducing permutations with respect to A.

• For each β ∈ [z], let Γ
(1)
β , . . . ,Γ

(γ)
β be a collection of non-concentrating permutations that

implement Πβ, where Γ
(j)
β = (Π

(j)
β,1, . . . ,Π

(j)
β,α) for all j ∈ [γ], and each of the intermediate

permutations Π
(j)
β,` are 2-locally decomposable for all j ∈ [γ], β ∈ [z], and ` ∈ [α].

19

The proof then consists of the initial assignment matrix W in addition to all of the intermediate

matrices W
(j)
β,` = Π

(j)
β,`(W

(j)
β,`−1), where we define W

(j)
β,0 = W for all j ∈ [γ], β ∈ [z]. The verifier

checks consistency of all of the intermediate matrices using Construction 4.8, and applies a pairwise

consistency test (Construction 4.10) to each of W
(j)
β,α for all j ∈ [γ] and β ∈ [z]. The soundness

argument then proceeds roughly as follows:

• Since (Π1, . . . ,Πz) is regularity-inducing, there is some β ∈ [z] where GΠβ(W),Πβ(A) contains a
regular matching.

• Since Γ
(1)
β , . . . ,Γ

(γ)
β is a collection of non-concentrating permutations that implement Πβ,

and all of the intermediate consistency checks pass, then there must be some j ∈ [γ] such
that G

W
(j)
β,α,Πβ(A)

contains a regular matching of size Ω(t). The verifier then rejects with

exponentially-small probability (in t) by soundness of the pairwise consistency test.

Finally, in our concrete instantiation (described in Appendix B.2), we show how to construct our
collection of regularity-inducing permutations and non-concentrating permutations sequences where
z = O(1), γ = O(log3 t), α = Θ(log t). For this setting of parameters, the overall consistency check
only incurs polylogarithmic overhead to the prover complexity and the proof size. In Section 4.3, we
give the formal description and analysis of our linear MIP construction.

4.3 Quasi-Optimal Linear MIP Construction

In this section, we describe our quasi-optimal linear MIP for circuit satisfiability. We give our
construction (Construction 4.14) but defer the security theorem (Theorem B.20) and analysis to
Appendix B.3. By instantiating Construction 4.14 with the appropriate primitives (described in
Appendices B.1 and B.2), we obtain the first quasi-optimal linear MIP (Theorem 4.15).

Construction 4.14 (Linear MIP). Fix parameters t, δ, k, ε, d, ρ, κ1, κ2, and let C be an arithmetic
circuit of size s over a finite field F. The construction relies on the following ingredients:

• Let (f1, . . . , ft, inp,wit) be a quasi-optimal (t, δ)-robust decomposition of C. Let Ci be the
arithmetic circuit that computes each constraint fi : Fn × Fm → {0, 1}.

• Let (P1,V1), . . . , (Pt,Vt) be k-query systematic linear PCP systems for circuits C1, . . . , Ct,
respectively, with knowledge error ε and query length d.

• Let A ∈ [m]t×q be the replication structure of C1, . . . , Ct (where q is a bound on the number of
indices in a witness w ∈ Fm on which each circuit depends). Let Π1, . . . ,Πz be a collection of
ρ-regularity-inducing permutations on t-by-q matrices with respect to the replication structure
A (Definition 4.12).

• For β ∈ [z], let Bβ ⊆ {0, 1}t×q be the set of inconsistency patterns where B and Πβ(B)

have at most one inconsistency in each row. Let Γ
(1)
β , . . . ,Γ

(γ)
β be a collection of permutation

sequences implementing Πβ that is (κ1, κ2)-non-concentrating for Bβ (Definition 4.13). In

particular, each Γ
(j)
β is a sequence of α permutations

(
Π

(j)
β,1, . . . ,Π

(j)
β,α

)
, where each intermediate

permutation Π
(j)
β,` is 2-locally decomposable.

The linear MIP with t · (1 + αγz) provers and query length d is defined as follows:

20

• Syntax: The linear MIP consists of t · (1 + αγz) provers. We label the provers as Pi and

P
(j)
β,`,i for i ∈ [t], j ∈ [γ], β ∈ [z], and ` ∈ [α]. To simplify the description, we will often pack

the proof vectors from different provers into the rows of a matrix (as in Construction 4.8). To
recall, when we say we associate a matrix Ŵ ∈ Ft×d with provers (P1, . . . , Pt), we mean that
the ith row of Ŵ is the proof vector assigned to prover Pi for all i ∈ [t]. Similarly, when we
say the verifier distributes a query matrix Q ∈ Ft×d to provers (P1, . . . , Pt), we mean that it
submits the ith row of Q as a query to Pi for all i ∈ [t].

• Prover’s algorithm: On input the statement x′ ∈ Fn′ and witness w′ ∈ Fm′ , the prover
prepares the proof vectors as follows:

– Linear PCP proofs. First, the prover computes x← inp(x′) and w← wit(x′,w′). For
each i ∈ [t], it computes a proof πi ← Pi(xi,wi), where xi and wi denote the bits of the
statement x and witness w on which circuit Ci depends, respectively. Since (Pi,Vi) is
a systematic linear PCP, we can write πi = [wi,pi] where wi ∈ Fq and pi ∈ Fd−q. For
i ∈ [t], the prover associates the vector πi with Pi.

– Consistency proofs. Let W ∈ Ft×q be the matrix where the ith row is the vector wi.

Now, for all j ∈ [γ], β ∈ [z], and ` ∈ [α], let W
(j)
β,` =

(
Π

(j)
β,` ◦Π

(j)
β,`−1 ◦ · · · ◦Π

(j)
β,1

)
(W). Let

Ŵ
(j)
β,` =

[
W

(j)
β,`,0

t×(d−q)]. The prover associates Ŵ
(j)
β,` with provers (P

(j)
β,`,1, . . . , P

(j)
β,`,t).

• Verifier’s query algorithm: To simplify the description, we will sometimes state the query

vectors the verifier submits to each prover Pi and P
(j)
β,`,i rather than the explicit query matrices.

The verifier’s queries are constructed as follows:

– Linear PCP queries. For i ∈ [t], the verifier invokes the query generation algorithm
Qi for each of the underlying linear PCP instances (Pi,Vi) to obtain a query matrix
Qi ∈ Fd×k and some state information sti. The verifier gives Qi to prover Pi, and saves
the state st = (st1, . . . , stt).

– Routing consistency queries. For all j ∈ [γ], β ∈ [z], and ` ∈ [α], the verifier

invokes the query generation algorithm of Construction 4.8 on permutation Π
(j)
β,` to obtain

two query matrices R
(j)
β,` and S

(j)
β,` ∈ Ft×q. The verifier pads the matrices to obtain

R̂
(j)
β,` =

[
R

(j)
β,`,0

t×(d−q)] and Ŝ
(j)
β,` =

[
S

(j)
β,`,0

t×(d−q)]. There are two cases:

∗ If ` = 1, the verifier distributes the queries R̂
(j)
β,` to provers (P1, . . . , Pt).

∗ If ` > 1, the verifier distributes the queries R̂
(j)
β,` to provers

(
P

(j)
β,`−1,1, . . . , P

(j)
β,`−1,t

)
.

In addition, the verifier distributes the queries Ŝ
(j)
β,` to provers

(
P

(j)
β,`,1, . . . , P

(j)
β,`,t

)
. Intu-

itively, the verifier is applying the approximate consistency check from Construction 4.8

to every permutation Π
(j)
β,`.

– Pairwise consistency queries. For each β ∈ [z], let Aβ = Πβ(A), and let Π′β be the
pairwise consistency test matrix for Aβ (Construction 4.10). The verifier invokes the
query generation algorithm of Construction 4.8 on permutation Π′β to obtain two query

matrices Rβ and Sβ ∈ Ft×q. It pads the matrices to obtain R̂β = [Rβ,0
t×(d−q)] and

Ŝβ = [Sβ,0
t×(d−q)]. Next, it distributes R̂β and Ŝβ to (P

(j)
β,α,1, . . . , P

(j)
β,α,t) for all j ∈ [γ].

21

In this step, the verifier is checking pairwise consistency of the permuted assignment

matrices W
(j)
β,α for all j ∈ [γ] and β ∈ [z].

In total, the verifier makes a total of k + αγz queries to each prover Pi for i ∈ [t]. It makes
O(1) queries to the other provers.

• Verifier’s decision algorithm: First, the verifier computes the statement x← inp(x′). For
i ∈ [t], let xi denote the bits of x on which circuit Ci depends. The verifier processes the
responses from each set of queries as follows:

– Linear PCP queries. For i ∈ [t], let yi ∈ Fk be the response of prover Pi to the
linear PCP queries. For i ∈ [t], the verifier invokes the decision algorithm Di for each of
the underlying linear PCP instances (Pi,Vi) on the state sti, the statement xi, and the
response yi. It rejects the proof if Di(sti,xi,yi) = 0 for any i ∈ [t].

– Consistency queries. For each set of routing consistency query responses (for checking

consistency of the intermediate permutations Π
(j)
β,`), and for each set of pairwise consistency

query responses (for checking consistency of the final configurations Π′β), the verifier
applies the decision algorithm from Construction 4.8, and rejects if any check fails.

If all of the checks pass, then the verifier accepts the proof.

Instantiating the construction. We defer the security analysis of Construction 4.14 to Ap-
pendix B.3. In Appendices B.1 and B.2, we show how to instantiate the robust decomposition,
the regularity-inducing permutations, and the non-concentrating permutation sequences needed to
apply Construction 4.14. Combining Construction 4.14 with our concrete instantiations, we obtain a
quasi-optimal linear MIP. We state the formal theorem below, and give the proof in Appendix B.3.

Theorem 4.15 (Quasi-Optimal Linear MIP). Fix a security parameter λ. Let C : Fn × Fm → Fh
be an arithmetic circuit of size s over a poly(λ)-size finite field F where |F| > s. Then, there exists
an input-oblivious k-query linear MIP (P,V) with ` = Õ(λ) provers for RC with soundness error
2−λ, query length Õ(s/λ) + poly(λ, log s), and k = polylog(λ). Moreover, letting V = (Q,D), the
prover and verifier algorithms satisfy the following properties:

• the prover algorithm P is an arithmetic circuit of size Õ(s) + poly(λ, log s);

• the query-generation algorithm Q is an arithmetic circuit of size Õ(s) + poly(λ, log s);

• the decision algorithm D is an arithmetic circuit of size Õ(λn).

Remark 4.16 (Soundness Against Affine Provers). To leverage our linear MIP to construct a
SNARG, we often require that the linear MIP provide soundness against affine provers. We note
that Construction 4.14 inherits this property as long as the underlying linear PCPs and approximate
consistency check primitives provide soundness against affine strategies. It is straightforward to see
that Construction 4.8 remains sound even against affine adversarial strategies, and the underlying
linear PCPs can be made robust against affine strategies with minimal overhead by applying the
transformation in Remark A.3. Importantly, these modifications do not increase the asymptotic
complexity of Construction 4.14.

22

5 Quasi-Optimal SNARGs

In this section, we formally introduce the notion of a quasi-optimal SNARG. Next, in Section 5.2,
we show how to compile a linear MIP into a designated-verifier SNARG in the preprocessing model
using the notion of a linear-only vector encryption over rings introduced in [BISW17]. Combined
with our quasi-optimal linear MIP from Section 4, this yields a quasi-optimal designated-verifier
SNARG for Boolean circuit satisfiability in the preprocessing model. We refer to Appendix A.3 for
the formal definition of a succinct non-interactive argument (SNARG), and to Appendix A.4 for the
definitions of a linear-only vector encryption that we use in our construction.

5.1 Defining Quasi-Optimality

In this section, we formally define our notion of a quasi-optimal SNARG. Then, in Remarks 5.3
and 5.4, we compare our notion to the previous notion of quasi-optimality introduced in [BISW17],
as well as describe a heuristic approach for instantiating quasi-optimal SNARGs.

Definition 5.1 (Quasi-Optimal SNARG). Let ΠSNARG = (Setup,Prove,Verify) be a SNARG for a
family of Boolean circuits C = {Cn}n∈N. Then, ΠSNARG is quasi-optimal if it achieves 2−λ soundness
error against provers of size 2λ and satisfies the following properties:

• Prover Complexity: The running time of Prove is Õ(|Cn|) + poly(λ, log |Cn|).

• Succinctness: The length of the proof output by Prove is Õ(λ).

Next, in Lemma 5.2, we show that our notion of quasi-optimality is tight in the following sense:
assuming NP does not have succinct proofs, any argument system for NP that provides soundness
error 2−λ must have proofs of length Ω(λ). .

Lemma 5.2. Let C = {Cn}n∈N be a family of Boolean circuits for some language L =
⋃
n∈N LCn,

where Cn : {0, 1}n × {0, 1}m(n) → {0, 1} for all n ∈ N. Fix a soundness parameter ρ and a security
parameter λ. Let ΠSNARG = (Setup,Prove,Verify) be a SNARG for C with soundness 2−ρ against
provers of size poly(λ). If LCn 6⊆ DTIME(2o(n)), then the length `(ρ) of an argument in ΠSNARG

is Ω(ρ).

Proof. Let ΠSNARG = (Setup,Prove,Verify) be a SNARG for L with soundness error 2−ρ against
provers of size poly(λ) and argument length `(ρ) ≤ cρ for all constants c > 0. Let 1/2δ denote
the probability that there exists a statement x /∈ LCn and a proof π such that Verify(τ,x,π) = 1,
where (σ, τ) ← Setup(1λ, 1n), and the probability is taken over the coins of the Setup algorithm.
Since ΠSNARG has soundness error 2−ρ, it follows that 2−(δ+`) ≤ 2−ρ. Otherwise, a prover with
x hard-wired inside it can guess π and break soundness with probability 2−(δ+`). Equivalently,
this means that δ + ` ≥ ρ. Since ` ≤ cρ for all c > 0, this means that δ = Ω(ρ). We use ΠSNARG

to construct a proof system for L by concatenating 2 · n/δ instances of ΠSNARG. The length of
the proofs in this new system is then 2 · n`/δ = o(n), which is succinct. Moreover, for any false
statement x ∈ {0, 1}n, the probability that there exists a proof π that causes the verifier to accept
is now (1/2δ)(2n/δ) = 1/22n. Taking a union bound over all 2n possible statements, the probability
that there exists any false statement with a proof that convinces the verifier is at most 2−n. This
yields a succinct proof system for L with soundness error 2−n, which contradicts the assumption
that L does not have succinct proofs. Thus, there must exist some constant c > 0 such that ` > cρ,
from which we conclude that ` = Ω(ρ).

23

Remark 5.3 (Previous Notions of Quasi-Optimality). Previously, Boneh et al. [BISW17] introduced
a weaker notion of quasi-optimality that only required the prover complexity and succinctness
properties in Definition 5.1 to hold for SNARG constructions that provide negl(λ) soundness (as
opposed to 2−λ soundness) against provers of size 2λ. In the case of publicly-verifiable SNARGs,
this notion still captures the right notion of quasi-optimal succinctness, since achieving any level of
soundness against 2λ-bounded provers requires proofs of length Ω(λ). Otherwise, a cheating prover
can just enumerate all of the possible proofs and run the verification algorithm to check whether a
particular proof is valid or not. In the (non-reusable) designated-verifier setting, however, the prover
does not learn whether a candidate proof is valid or not. This negates the basic enumeration strategy,
and as we show in Construction 6.1 (Theorem 6.2), in the designated-verifier setting, achieving
soundness 2−ρ against 2λ-bounded provers is possible with proofs of length exactly ρ. Moreover,
Lemma 5.2 shows that for general NP languages, this is the best we can hope to do. Thus, the
notion of succinctness given in Definition 5.1 is the “correct” definition of quasi-optimal succinctness
in the designated-verifier setting, and represents a strict strengthening of the corresponding notion
introduced in [BISW17].

Remark 5.4 (Heuristic Construction of Quasi-Optimal SNARGs). One approach for constructing
a quasi-optimal SNARG is to compose a SNARG that provides quasi-optimal prover complexity
with one that is quasi-optimally succinct. To prove that C(x,w) = 1, the prover first constructs a
proof π for the statement using the “inner” SNARG that provides quasi-optimal prover complexity.
Then, the prover uses the “outer” SNARG that is quasi-optimally succinct to prove that it knows a
proof π of the statement x under the inner SNARG. The additional cost of generating this second
proof is proportional to the size of the verifier for the inner proof system, which is polylogarithmic
in the size of C. Thus, this composition is quasi-optimal. Note that to show soundness of the
composition, we additionally require that both SNARGs satisfies a knowledge property (namely,
that they are SNARKs). However, to our knowledge, the only candidate SNARK with quasi-optimal
prover efficiency is Micali’s CS proofs [Mic00] in the random oracle model. Thus, composing CS
proofs with a quasi-optimally succinct SNARK (e.g., [GGPR13, BCI+13, BISW17]) can only yield
a construction whose security is heuristic. This is because the prover in the outer SNARK needs
access to the circuit description of the verification algorithm of the inner SNARK (in order to prove
knowledge of an accepting proof π), but the verification algorithm in the inner SNARK necessarily
makes random oracle queries.

5.2 Quasi-Optimal SNARGs from Quasi-Optimal Linear MIPs

In this section, we show how to combine a linear MIPs with linear-only vector encryption over rings
to obtain a quasi-optimal SNARG. We refer to Appendix A.4 for the definition of a linear-only
vector encryption from [BISW17]. We give our construction and security analysis below.

Construction 5.5 (SNARG from Linear MIP). Fix a prime p and let C = {Cn}n∈N be a family of
arithmetic circuits over Fp. Let RC be the relation associated with C. Let (P,V) be a k-query linear
MIP with ` provers and query length d for the relationRC . Let Πvenc = (KeyGen,Encrypt,Decrypt) be
a secret-key vector encryption scheme over Rk where R ∼= F`p. Our single-theorem, designated-verifier
SNARG ΠSNARG = (Setup,Prove,Verify) in the preprocessing model for RC is given below:

• Setup(1λ, 1n)→ (σ, τ): On input the security parameter λ and the circuit family parameter n,
the setup algorithm does the following:

24

1. Invoke the query-generation algorithm Q for the linear MIP to obtain a tuple of query
matrices Q1, . . . ,Q` ∈ Fd×kp and state information st.

2. Generate a secret key sk← KeyGen(1λ, 1`) for the vector encryption scheme.

3. Pack the ` query matrices Q1, . . . ,Q` into a single query matrix Q ∈ Rd×k (recall that
the ring R splits into ` isomorphic copies of Fp).

4. Encrypt each row of Q (an element of Rk) using the vector encryption scheme. In other
words, for i ∈ [d], let qi ∈ Rd be the ith row of Q. In this step, the setup algorithm
computes ciphertexts cti ← Encrypt(sk,qi).

5. Output the common reference string σ = (ct1, . . . , ctd) and the verification state τ =
(sk, st).

• Prove(σ,x,w)→ π. On input the common reference string σ = (ct1, . . . , ctd), a statement x,
and a witness w, the prover’s algorithm works as follows:

1. For each i ∈ [`], invoke the linear MIP prover algorithm Pi on input x and w to obtain a
proof πi ← Pi(x,w) ∈ Fdp.

2. Pack the ` proof vectors π1, . . . ,π` ∈ Fdp into a single proof vector π ∈ Rd. Then, viewing
the ciphertexts ct1, . . . , ctm as vector encryptions of the rows of the query matrix Q ∈
Rd×k, homomorphically compute an encryption of the matrix-vector product Q>π ∈ Rk.
In particular, the prover homomorphically computes the sum ct′ =

∑
i∈d πi · cti.

3. Output the proof ct′.

• Verify(τ,x,π)→ {0, 1}: On input the verification state τ = (sk, st), the statement x, and the
proof π = ct′, the verifier does the following:

1. Decrypt the proof ct′ using the secret key sk to obtain the prover’s responses y ←
Decrypt(sk, ct′). If y = ⊥, the verifier terminates with output 0.

2. The verifier decomposes y ∈ Rk into vectors y1, . . . ,y` ∈ Fkp. It then invokes the
linear MIP decision algorithm D on the statement x, the responses y1, . . . ,y`, and the
verification state st and outputs D(st,x,y1, . . . ,y`).

Theorem 5.6. Fix a security parameter λ and a prime p. Let C = {Cn}n∈N be a family of arithmetic
circuits over Fp, RC be the relation associated with C, and (P,V) be a k-query linear MIP with `
provers, query length d, and soundness error ε(λ) against affine provers for the relation RC. Let
Πvenc = (KeyGen,Encrypt,Decrypt) be a vector encryption scheme over a ring R ∼= F`p with linear
targeted malleability (Definition A.20). Then, applying Construction 5.5 to (P,V) and Πvenc yields
a non-adaptive designated-verifier preprocessing SNARG with soundness error 2 · ε(λ) + negl(λ).

Proof. The proof proceeds similarly to the analogous proofs in [BCI+13, Lemma 6.3] and [BISW17,
Theorem 4.6]. Let P∗ be a (non-adaptive) malicious prover that successfully convinces the verifier
of some false statement x /∈ LC with some non-negligible probability ε. Let V = (Q,D), where Q
is the query-generation algorithm, and D be the verifier’s decision algorithm. Next, since Πvenc

satisfies linear targeted malleability, there exists a simulator S such that the following distributions
are computationally indistinguishable:

25

Real Distribution:

1. sk← KeyGen(1λ, 1n)
2. (st,Q)← Q(1λ, 1n) where Q ∈ Rd×k
3. cti ← Encrypt(sk,qi) for all i ∈ [d] where

qi ∈ Rk is the ith row of Q
4. ct′ ← P∗(ct1, . . . , ctq; x) where

Decrypt(sk, ct′) 6= ⊥
5. y← Decrypt(sk, ct′) ∈ Rk
6. Output (Q, st,y)

Ideal Distribution:

1. (st,Q)← Q(1λ, 1n) where Q ∈ Rd×k
2. (π,b)← S(x) where π ∈ Rd, b ∈ Rk
3. ŷ← Q>π + b
4. Output (Q, st, ŷ)

By assumption, P∗ outputs a proof ct′ that convinces the verifier with probability ε′(λ). This means
that, in the real distribution, D(st,x,y1, . . . ,y`) = 1, where y1, . . . ,y` ∈ Fkp is the decomposition of

the vector y ∈ Rk (recall that each ring element in R can be viewed as a vector of ` values in Fp).
Since the decision algorithm D is efficiently computable, this means that D(st,x, ŷ1, . . . , ŷ`) = 1
with probability at least ε′(λ)− negl(λ), where ŷ1, . . . , ŷ` ∈ Fkp is the decomposition of ŷ ∈ Rk. By
construction, in the ideal distribution, the affine function (π,b) is generated independently of the
verifier’s queries Q and state st. Thus, by an averaging argument, there exists some affine function
(π∗,b∗) such that with probability at least ε′(λ)/2− negl(λ), we have that D(x, st,y∗1, . . . ,y

∗
`) = 1,

where y∗1, . . . ,y
∗
` ∈ Fkp are the components of y∗ = Q>π∗ + b∗. Since the linear MIP has soundness

error ε(λ), it must be the case that ε′(λ)/2− negl(λ) < ε(λ), and the claim follows.

Theorem 5.7. Fix a security parameter λ and a prime p. Let C = {Cn}n∈N be a family of
arithmetic circuits over Fp, RC be the relation associated with C, and (P,V) be a k-query linear
MIP with ` provers, query length d, and soundness error ε(λ) against affine provers for the
relation RC. Let Πvenc = (KeyGen,Encrypt,Decrypt) be a linear-only vector encryption scheme
(Definition A.21). Then, applying Construction 5.5 to (P,V) and Πvenc yields an adaptive designated-
verifier preprocessing SNARG with soundness error ε(λ) + negl(λ).

Proof (Sketch). The proof proceeds similarly to the analogous proof in [BCI+13, Lemma 6.2]. Let
P∗ be a malicious prover that takes as input the common reference string σ = (ct1, . . . , ctd) and
outputs a statement x /∈ LC and a proof ct′ that is accepted by the verifier with probability ε′(λ).
By construction, the ciphertexts ct1, . . . , ctd are encryptions of the rows qi ∈ Rk of a query matrix
Q ∈ Rd×k. Since Πvenc is a linear-only vector encryption scheme, there exists an efficient extractor
E that extracts an affine function (π∗,b∗) ∈ Rd × Rk from the ciphertexts {cti}i∈[d] such that

Decrypt(sk, ct′) = Q>π∗ + b∗ ∈ Rk with probability 1 − negl(λ). Let y∗ = Q>π∗ + b∗ ∈ Rk and
let y∗1, . . . ,y

∗
` ∈ Fkp be the components of y∗ ∈ Rk. Since the verifier accepts the proof ct′, it must

be the case that D(st,x,y∗1, . . . ,y
∗
`) = 1. Moreover, by semantic security of Πvenc, the extracted

proof (π∗,b∗) cannot be locally satisfying (i.e., (π∗,b∗) is a valid proof only with respect to the
particular Q encrypted in σ), but rather, it must be satisfying for all but a negligible fraction of
queries Q. Otherwise, if the output distribution of the extractor E is noticeably different when run
on different choices of the query matrix Q, then E can be used to break semantic security of Πvenc.
Thus, if P∗ succeeds in convincing the verifier of a statement x /∈ LC with probability ε′(λ), then
with probability ε′(λ)− negl(λ), the extractor E for Πvenc can be used to produce a proof (π∗,b∗)
of x /∈ LC that is accepted by the linear MIP verifier. Since the linear MIP has soundness error
ε(λ), we conclude that ε′(λ) ≤ ε(λ) + negl(λ).

26

Instantiating the construction. To conclude this section, we show that combining the candidate
vector encryption scheme Πvenc over polynomial rings Rk, where R ∼= F`p from [BISW17, §4.4] with
our quasi-optimal linear MIP construction from Theorem 4.15 yields a quasi-optimal SNARG
from linear-only vector encryption. We first recall from [BISW17, §4.4] that the candidate vector
encryption scheme Πvenc has the following properties:

• When k = polylog(λ), ` = Õ(λ), and |F| = poly(λ), each ciphertext encrypting an element of
Rk has length Õ(λ).

• Scalar multiplication and homomorphic addition of two ciphertexts can be performed in time
Õ(λ).

When we apply Construction 5.5 to the linear MIP from Theorem 4.15 and Πvenc, the prover
complexity and proof sizes are then as follows (targeting soundness error 2−λ):

• Prover complexity: The SNARG prover first invokes the underlying linear MIP prover to
obtain proofs π1, . . . ,π` for each of the ` = Õ(λ) provers. From Theorem 4.15, this step
requires time Õ(s) + poly(λ, log s), where s is the size of the circuit. To construct the proof,
the prover has to perform d homomorphic operations, where d = Õ(s/λ) + poly(λ, log s) is
the query length of the construction from Theorem 4.15. Since each homomorphic operation
can be computed in Õ(λ) time, the overall prover complexity is Õ(s) + poly(λ, log s).

• Proof size: The proof in Construction 5.5 consists of a single ciphertext, which for our
parameter settings, have length Õ(λ).

From this analysis, we obtain the following quasi-optimal SNARG instantiations:

Corollary 5.8. Assuming the vector encryption scheme Πvenc from [BISW17, §4.4] satisfies linear
targeted malleability (with exponential security), then applying Construction 5.5 to the quasi-optimal
linear MIP from Theorem 4.15 and Πvenc yields a non-adaptive designated-verifier quasi-optimal
SNARG for Boolean circuit satisfiability in the preprocessing model.

Corollary 5.9. Assuming the vector encryption scheme Πvenc from [BISW17, §4.4] (with the
“double-encryption” transformation described in [BISW17, Remark C.4]) is linear-only (with expo-
nential security), then applying Construction 5.5 to the quasi-optimal linear MIP from Theorem 4.15
and Πvenc yield an adaptive designated-verifier quasi-optimal SNARG for Boolean circuit satisfiability
in the preprocessing model.

Construction 5.5 gives a construction of a single-theorem SNARG from any linear MIP system.
Below, we discuss some of the challenges in extending our construction to provide multi-theorem
security.

Remark 5.10 (Multi-Theorem SNARGs). Construction 5.5 gives a construction of a single-theorem
SNARG from any linear MIP system. The works of [BCI+13, BISW17] show how to construct
multi-theorem designated-verifier SNARGs by relying on a stronger notion of soundness at the
linear PCP level coupled with a stronger interactive linear-only encryption assumption. While we
could rely on the same type of cryptographic assumption as in [BISW17], our linear MIP from
Section 4 does not satisfy the notion of “reusable” or “strong” soundness from [BCI+13]. Strong
soundness essentially says that for all proofs, the probability that the verifier accepts or that it

27

rejects is negligible close to 1 (where the probability is taken over the randomness used to generate
the queries). In particular, whether the verifier decides to accept or reject should be uncorrelated
with the randomness associated with its secret verification state. In our linear MIP model, we
operate over a polynomial-size field, so a prover making a local change will cause the verifier’s
decision procedure to change with noticeable probability. This reveals information about the secret
verification state, which can enable the malicious prover to break soundness. We leave it as an open
problem to construct a quasi-optimal linear MIP that provides strong soundness. Such a primitive
would be useful in constructing a quasi-optimal multi-theorem SNARGs.

6 Optimally-Succinct SNARGs and Laconic Arguments

Recall from Section 1 that a “1-bit SNARG” is a SNARG that achieves soundness error 1/2+negl(λ)
with just a single bit of proof. In this section, we show that a variant of the Sahai-Waters NIZK
construction from indistinguishability obfuscation (and one-way functions) [SW14] can be used to
construct a 1-bit SNARG. As noted in the introduction (Section 1), we can also view a 1-bit SNARG
as a 1-bit laconic interactive argument system. Thus, our results also gives the first 1-bit laconic
argument system for NP assuming indistinguishability obfuscation and one-way functions. Then,
in Section 6.2, we show that in the interactive setting, we can also build 1-bit laconic arguments
from witness encryption [GGSW13]. Here, we also demonstrate that a variant of the converse holds:
namely, a 1-bit argument system for a “cryptographically-hard” language implies a relaxed notion
of witness encryption for the same language. While the notion of witness encryption we obtain is
weaker than the traditional one, we show that it still suffices for instantiating some of the main
applications of witness encryption.

6.1 1-Bit SNARGs from Indistinguishability Obfuscation

In this section, we show how to construct 1-bit SNARGs from indistinguishability obfuscation
(iO). We refer to Appendix A.5 for the definitions of iO and puncturable PRFs that we rely on
for our construction. Our construction is essentially the Sahai-Water NIZK [SW14] specialized to
the designated-verifier setting. The CRS is an obfuscated program that takes as input a statement
x and a witness w, and outputs a 1-bit PRF on x if C(x,w) = 1, and ⊥ otherwise. The PRF
key is hard-coded inside the obfuscated program. The secret verification key is the PRF key. We
can essentially view the CRS as an obfuscated program that checks whether (x,w) is a satisfying
assignment, and if so, outputs a 1-bit message authenticated code (MAC) on the statement x. We
now give the construction and its security analysis.

Construction 6.1 (1-Bit SNARG from iO). Let C = {Cn}n∈N be a family of Boolean circuits,

where each Cn : {0, 1}n×{0, 1}m(n) → {0, 1} for all n ∈ N. Let RC be the associated relation and LC
be the associated language. Let Fn : Kn×{0, 1}n → {0, 1} be a puncturable PRF family (indexed by
a parameter n). We construct a 1-bit designated-verifier SNARG ΠSNARG = (KeyGen,Prove,Verify)
in the preprocessing model for RC as follows:

• Setup(1λ, 1n): The setup algorithm samples a puncturable PRF key k ← Fn.Setup(1λ), and
constructs the obfuscated program P ← iO(Prove[Cn, k]),5 where the program Prove[Cn, k] is
defined as follows:

5Note that we pad the program Prove[Cn, k] to the maximum size of any program that appears in the proof of
Theorem 6.2.

28

Constants: a circuit Cn : {0, 1}n × {0, 1}m(n) → {0, 1} and a key k for Fn

On input x ∈ {0, 1}n,w ∈ {0, 1}m(n):

1. If C(x,w) = 1, then output Fn(k,x). Otherwise, output ⊥.

Figure 1: The program Prove[Cn, k]

The setup algorithm outputs the common reference string σ = P and the verification state
τ = k.

• Prove(σ,x,w) → π: On input the common reference string σ = P a statement x ∈ {0, 1}n
and a witness w ∈ {0, 1}m, the prover runs P on (x,w) to obtain a proof π ← P (x,w) and
outputs π ∈ {0, 1}.

• Verify(τ,x, π)→ {0, 1}: On input the secret verification state τ = k, a statement x ∈ {0, 1}n,
and a proof π ∈ {0, 1}, the verifier outputs 1 if π = Fn.Eval(k,x), and 0 otherwise.

Theorem 6.2. Suppose Fn is a family of puncturable PRFs and iO is an indistinguishability
obfuscator. Then, Construction 6.1 is a non-adaptive designated-verifier 1-bit SNARG for C =
{Cn}n∈N in the preprocessing model. In particular, ΠSNARG achieves soundness error 1/2 + negl(λ)
against polynomial-time bounded provers.6

Proof. Completeness of the construction follows immediately by correctness of the indistinguishability
obfuscator, so it suffices to show soundness. Take any statement x∗ /∈ LCn . We show that no
efficient prover can produce a proof π∗ ∈ {0, 1} where Verify(τ,x∗, π∗) = 1 except with probability
1/2 + negl(λ) over the randomness used to sample (σ, τ) ← Setup(1λ, 1n). Our proof follows the
same structure as the corresponding proof in [SW14, Theorem 9]. In particular, we define a sequence
of hybrid arguments:

• Hyb0: This is the real game, where the challenger generates (σ, τ)← Setup(1λ, 1n), and gives
σ to the prover. The prover outputs π∗ ∈ {0, 1}. The output of the experiment is 1 if
Verify(τ,x∗,π∗) = 1, and 0 otherwise.

• Hyb1: This is the same game as Hyb0, except during the setup algorithm, the challenger
first computes kx∗ ← Fn.Puncture(k,x

∗). When constructing the obfuscated program P , the
challenger replaces the invocation Fn(k,x) with Fn.Eval(kx∗ ,x).

• Hyb2: This is the same game as Hyb1, except in the verification procedure, the challenger

samples b
r←− {0, 1} and accept if π∗ = b.

We now argue that each pair of consecutive hybrid experiments is computationally indistinguishable.

• Hybrids Hyb0 and Hyb1 are computationally indistinguishable by security of iO and correctness
of the puncturable PRF family. In particular, by correctness of the puncturable PRF, Fn(k, ·)

6If we make the stronger assumption that the underlying primitives (the indistinguishability obfuscator and the
puncturable PRF family) are secure against subexponential-time adversaries, then we correspondingly achieve
soundness error 1/2 + negl(λ) against all subexponential-time provers.

29

and Fn.Eval(kx∗ , ·) agree on all inputs x ∈ {0, 1}n where x 6= x∗. Moreover, the programs
P in Hyb0 and Hyb1 never needs to evaluate the PRF at x∗, since by assumption, for all
w ∈ {0, 1}m, C(x∗,w) = 0. This means that the outputs of P in Hyb0 and Hyb1 are identical
on all inputs (x,w). Indistinguishability then follows by security of iO.

• Hybrids Hyb1 and Hyb2 are computationally indistinguishable by security of the punctured
PRF. Concretely, suppose there is an adversary A that can distinguish the outputs of Hyb2

and Hyb3. We can build an adversary B that breaks the puncturing security of Fn as follows.
Algorithm B submits x∗ as the punctured point to the puncturing security challenger and
receives a punctured key kx∗ and a challenge value y ∈ {0, 1}. Algorithm B constructs the
obfuscated program P as in Hyb1 and Hyb2 using the punctured key kx∗ , and gives σ = P
to adversary A. At the end of the experiment, after A output π∗ ∈ {0, 1}, B outputs 1 if
y = π∗ and 0 otherwise. By construction, B perfectly simulates the output distribution of Hyb1

if y = Fn(k,x∗) is pseudorandom and the output distribution of Hyb2 if y is truly random.
We conclude that by puncturing security of Fn, hybrids Hyb1 and Hyb2 are computationally
indistinguishable.

To conclude the proof, we note that the output distribution of Hyb2 is 1 with probability 1/2 (since
y is uniform and independent of the prover’s view). Since Hyb0 and Hyb2 are computationally
indistinguishable, this means that the output of Hyb0 is 1 with probability at most 1/2 + negl(λ).
We conclude that ΠSNARG provides soundness error 1/2 + negl(λ).

Remark 6.3 (Additional Properties). By the same argument in [SW14, Theorem 8], the 1-bit
SNARG in Construction 6.1 is perfect zero-knowledge. Moreover, by a standard hybrid argument,
we can show that it is non-adaptively reusable in the following sense. For any set of statements
x1, . . . ,xk /∈ LCn , the probability that a malicious prover can produce proofs π1, . . . ,πk such that
V(τ,xi,πi) = 1 for all i ∈ [k] and (σ, τ)← Setup(1λ, 1n) is bounded by 1/2k + negl(λ).

Remark 6.4 (Adaptivity via VBB Obfuscation). If we replace the indistinguishability obfuscator
in Construction 6.1 with a VBB obfuscator [BGI+01], then it is straightforward to prove that the
resulting construction is adaptively sound. We leave it as an open problem to construct adaptively
sound 1-bit SNARGs without relying on such strong forms of obfuscation.

6.2 1-Bit Laconic Arguments and Witness Encryption

A 1-bit SNARG immediately implies a 2-round laconic argument where the prover communicates
just a single bit. Namely, in the first round, the verifier runs the setup algorithm for the 1-bit
SNARG, and sends the CRS to the prover. The prover’s response consists of the 1-bit SNARG proof
for the statement. Thus, Theorem 6.2 shows that assuming the existence of indistinguishability
obfuscation and one-way functions, there exists a 1-bit laconic argument for NP.

While we do not know of alternative constructions of 1-bit SNARGs from weaker assumptions,
such constructions are possible in the interactive setting. Importantly, in the interactive setting, the
verifier’s initial message (i.e., the Setup algorithm) can depend on the statement x, while in the
standard non-interactive setting, the setup algorithm (that generates the CRS) is independent of the
statement. We now show how to construct a 2-round laconic argument for NP from any semantically-
secure witness encryption scheme for NP [GGSW13]. Recall that in a witness encryption scheme for
an NP relation R (and associated language L), the encrypter can encrypt a message m with respect

30

to a statement x. Then, anyone who knows a witness w such that (x,w) ∈ R is able to decrypt.
The security guarantee states that ciphertexts encrypted to a statement x /∈ L are semantically
secure. We review the definition of witness encryption below, and then describe our 2-round laconic
argument construction from witness encryption.

Definition 6.5 (Witness Encryption [GGSW13]). A witness encryption for an NP language L
(with corresponding NP relation R) is a tuple of algorithms ΠWE = (Encrypt,Decrypt) with the
following properties:

• Encrypt(1λ,x,m) → ct: On input the security parameter λ, a statement x and a message
m ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

• Decrypt(ct,w) → m′: On input a ciphertext ct and a witness w, the decryption algorithm
outputs a message m′ ∈ {0, 1} ∪ {⊥}.

Moreover, ΠWE must satisfy the following properties:

• Correctness: For all messages m ∈ {0, 1}, and any statement-witness pair (x,w) where
R(x,w) = 1, it follows that

Pr[Decrypt(Encrypt(1λ,x,m),w) = m] = 1.

• Semantic Security: For all efficient adversaries A, and all statements x /∈ L,∣∣∣Pr[A(Encrypt(1λ,x, 0)) = 1]− Pr[A(Encrypt(1λ,x, 1)) = 1]
∣∣∣ = negl(λ). (6.1)

Remark 6.6 (Equivalent Security Notion). In our analysis, it will often be easier to work with the
following equivalent notion of security for witness encryption:

• Unguessable: For all efficient adversaries A, and all statements x /∈ L,∣∣∣∣Pr[m
r←− {0, 1} : A(Encrypt(1λ,x,m)) = m]− 1

2

∣∣∣∣ = negl(λ). (6.2)

To see the equivalence, take any adversary A. Without loss of generality, assume that A always
outputs a bit. Let p0 = Pr[A(Encrypt(1λ,x, 0)) = 0] and p1 = Pr[A(Encrypt(1λ,x, 1)) = 1]. Then,
the guessing advantage (Eq. (6.2)) of A is |(1− p0 − p1)/2|, and the distinguishing advantage
(Eq. (6.1)) of A is |1− p0 − p1|. In particular, this means that if the guessing advantage of A is ε,
then the distinguishing advantage of A is 2ε.

Construction 6.7 (1-Bit Laconic Argument for NP from Witness Encryption). Let L be an NP
language, and let ΠWE = (Encrypt,Decrypt) be a witness encryption scheme for L. We construct an
interactive 1-bit laconic argument system Πarg = (Setup,Prove,Verify) for L as follows:7

• Setup(1λ,x)→ (σx, τx): On input the security parameter λ and a statement x, the setup algo-

rithm chooses a random messagem
r←− {0, 1} and computes the ciphertext ct← Encrypt(1λ,x,m).

It outputs the initial message σx = ct and the verification state τx = m.

7We use the same schema as a SNARG (Definition A.18) to describe our 2-round interactive argument. The main
difference is that the verifier’s first message (i.e., the output of the Setup algorithm) can depend on the statement x.

31

• Prove(σx,w)→ π: On input the verifier’s initial message σx = ct and a witness w, the prover
computes m′ ← Decrypt(ct,w), and outputs the proof π = m′.

• Verify(τx, π)→ {0, 1}: On input the verification state τ = m and the proof π = m′, the verifier
outputs 1 if m = m′, and 0 otherwise.

Theorem 6.8 (Laconic Arguments from Witness Encryption). Let L be an NP language. If ΠWE

is a witness encryption scheme for L, then Construction 6.7 is a 1-bit laconic argument for L.

Proof. Completeness follows from correctness of the witness encryption scheme. Soundness follows
from security of the witness encryption scheme. Namely, if x /∈ L, then ct is a semantically-secure
encryption of the message m ∈ {0, 1}. Since m is sampled uniformly at random, the probability
that the adversary outputs m′ where m′ = m is at most 1/2 + negl(λ).

This construction shows that any witness encryption for a language L yields a 1-bit laconic
interactive argument system for the same language L. It is unclear how to leverage this construction
to construct a 1-bit preprocessing SNARG (critically, the verifier’s message is not oblivious, and
depends on the underlying statement). We leave it as an open construction to construct 1-bit
SNARGs from witness encryption or other weaker assumptions. Along those same lines, it is also
interesting to construct 1-bit laconic interactive arguments from weaker assumptions.

Witness encryption from 1-bit laconic arguments. Next, we show that a 1-bit laconic
argument implies a weaker variant of witness encryption where semantic security is only required to
hold when encrypting to a randomly sampled statement x /∈ L rather than any statement x /∈ L.
Our results here are conceptually similar to those of Faonio et al. [FNV17], who previously showed
how to construct witness encryption from any predictable argument system. In our setting, we do
not impose any additional restriction on the underlying argument system. Instead, we show that for
a class of “cryptographically-hard” languages, soundness of an optimally laconic argument alone
already implies a “predictability” property, which suffices to give our relaxed variant of witness
encryption We discuss the connection between our 1-bit arguments for cryptographically-hard
languages and the notion of predictable arguments from [FNV17] in greater detail in Remark 6.13.

Definition 6.9 (Distributional Witness Encryption). Fix a parameter n ∈ N. Let L ⊆ {0, 1}n be
an NP language, and let D be a probability distribution over {0, 1}n \ L. A distributional witness
encryption scheme for L with respect to D is a tuple of algorithms ΠWE = (Encrypt,Decrypt) with
the same properties and requirements as Definition 6.5, except the semantic security requirement is
replaced by a weaker D-semantic security requirement:

• D-Semantic Security: For all efficient adversaries A and x← D∣∣∣Pr[A(Encrypt(1λ,x, 0)) = 1]− Pr[A(Encrypt(1λ,x, 1)) = 1]
∣∣∣ = negl(λ),

where the probability is taken over the randomness of sampling x, the encryption randomness,
as well as the adversary’s randomness.

As described in Remark 6.6, we can replace D-semantic security with an equivalent notion of
D-unguessability.

32

Construction 6.10. Fix a parameter n. Let L ⊆ {0, 1}n be an NP language and let D be a
distribution over {0, 1}n \L. Let Πarg = (Setup,Prove,Verify) be a 1-bit laconic argument for L. We
construct a distributional witness encryption scheme ΠWE = (Encrypt,Decrypt) for L with respect
to D as follows:

• Encrypt(1λ,x,m): On input the security parameter λ, a statement x, and a message m ∈
{0, 1}, the encryption algorithm samples parameters (σx, τx)← Setup(1λ,x), and computes
α0 ← Verify(τx, 0) and α1 ← Verify(τx, 1). Then, it does the following:

– If α0 = 1 = α1, then the encryption algorithm outputs the message m in the clear.

– If α0 = 0 = α1, then the encryption algorithm outputs ⊥.

– Otherwise, the encryption algorithm outputs (σx,m⊕ b) where b ∈ {0, 1} is such that
αb = 1.

• Decrypt(ct,w) → {0, 1} ∪ ⊥. If ct = 0, ct = 1, or ct = ⊥, then the decryption algorithm
outputs ct. Otherwise, it parses ct = (σx, β), computes b← Prove(σx,w), and outputs β ⊕ b.

Next, we show that Construction 6.10 gives a distributional witness encryption scheme for
any language that is “cryptographically-hard.” Intuitively, we say that an NP language L is
cryptographically-hard if there exists a distribution Dyes over yes instances that is computationally
indistinguishable from a distribution Dno of no instances.

Definition 6.11 (Cryptographically-Hard Language). Let L ⊆ {0, 1}n be an NP language. We say
that L is a cryptographically-hard language if there exists distributions Dyes over L and Dno over

{0, 1}n \ L such that Dyes
c
≈ Dno.

Theorem 6.12. Fix a security parameter λ and let L ⊆ {0, 1}n(λ) be an NP language, and suppose
that L is cryptographically-hard (Definition 6.11). Let Dyes and Dno be the distributions over yes
instances and no instances, respectively, for L from Definition 6.11. Assume moreover that Πarg

is a 1-bit laconic argument for L. Then, ΠWE from Construction 6.10 is a distributional witness
encryption scheme for L with respect to Dno.

Proof. We show correctness and security separately.

Correctness. Take any statement x ∈ L and any witness w where R(x,w) = 1. We show that

Pr[Decrypt(Encrypt(1λ,x,m),w) = m] = 1.

Let ct← Encrypt(1λ,x,m), and (σx, τx) be the parameters sampled by the encryption algorithm.
By perfect completeness of Πarg, if b ← Prove(σx,x,w), then Verify(τx, b) = 1. We consider two
possible scenarios:

• Suppose Verify(τx, 1− b) = 1. In this case, ct = m, and the decryption algorithm also outputs
m. Correctness holds.

• Suppose Verify(τx, 1 − b) = 0. In this case, ct = (σx,m ⊕ b), and the decryption algorithm
outputs (m⊕ b)⊕ b = m.

33

Security. By assumption, Dyes
c
≈ Dno. Now, we show that

Pr[x← Dno; (σx, τx)← Setup(1λ,x) : Verify(τx, 0) = Verify(τx, 1)] = negl(λ).

We consider the two possibilities separately:

• Suppose Verify(τx, 0) = 0 = Verify(τx, 1) with probability ε. This implies that Dyes and Dno

are distinguishable with the same advantage ε. Specifically, on input an instance x, the
distinguisher samples (σx, τx)← Setup(1λ,x) and outputs 1 if Verify(τx, 0) = 0 = Verify(τx, 1).
If x← Dyes, then x ∈ L and by perfect completeness of Πarg, the distinguisher outputs 1 with
probability 0. Conversely, if x← Dno, then by assumption, the distinguisher outputs 1 with
probability ε.

• Suppose Verify(x, 0) = 1 = Verify(x, 1) with probability ε. Then, we can construct an adversary
that breaks soundness of Πarg with advantage 1/2 + ε/2− negl(λ). Consider the adversary

that samples a statement x ← Dno and outputs a random bit b
r←− {0, 1} as its proof. We

compute the probability that Verify(τx, b) = 1, where (σx, τx)← Setup(1λ,x). From the first
case, we have that Verify(τx, 0) = 0 = Verify(τx, 1) with negligible probability. Thus, with
probability 1− negl(λ), at least one of b ∈ {0, 1} is a valid proof for x. The probability that
the guessing adversary succeeds in breaking soundness is then

Pr[Verify(τx, b) = 1] ≥ ε+
1

2
(1− ε− negl(λ)) =

1

2
+
ε

2
− negl(λ).

This contradicts soundness of Πarg.

We conclude that with overwhelming probability over the choice of x and the Setup randomness,
there is exactly one proof b ∈ {0, 1} such that Verify(τx, b) = 1. To show the claim, suppose there
exists an efficient adversary A whose guessing advantage (Eq. (6.2)) is ε. Without loss of generality,

suppose that given an encryption of m
r←− {0, 1}, adversary A outputs m with probability at least

1/2 + ε (if A outputs m with probability less than 1/2− ε, we can consider an adversary that runs
A and outputs the complement of A’s output). We use A to construct an adversary B that breaks
soundness of Πarg with probability 1/2 + ε. Algorithm B works as follows:

1. At the beginning of the game, algorithm B samples a statement x ← Dno and gives x to
the challenger for the soundness game. It receives a common reference string σx from the
soundness challenger.

2. Algorithm B samples a random bit β
r←− {0, 1} and sends (σx, β) to the guessing adversary A.

3. When A outputs a guess m ∈ {0, 1}, B submits m⊕ β as its proof.

First, we argue that B correctly simulates the unguessability game for adversary A. From above,
we have that with overwhelming probability (over the choice of x and the randomness in the Setup
algorithm), Verify(τx, 0) 6= Verify(τx, 1). Let b ∈ {0, 1} be such that Verify(τx, b) = 1. In this case, a
valid ciphertext for a message m consists of the tuple (σx, b⊕m). In the unguessability game, the
message m is sampled uniformly at random, and so the bit b⊕m is also uniformly random. This is
precisely the distribution B simulates in the reduction.

By assumption A is able to guess the message with probability at least 1/2 + ε. In particular,
this means that the bit m output by A satisfies m = β ⊕ b where Verify(τx, b) = 1. But in this case,
b = m⊕ β, and algorithm B has produced an accepting proof for the statement x. We conclude
that if A has guessing advantage ε, then B breaks soundness with advantage 1/2 + ε.

34

Remark 6.13 (1-Bit Arguments and Predictable Arguments). We can interpret the first step in
our soundness proof of Theorem 6.12 as showing that a 1-bit argument for a cryptographically-hard
language is essentially a predictable argument (c.f., [FNV17]). Specifically, we show that for a
randomly-sampled statement x, there is exactly one proof that the verifier accepts. Previously,
Faonio et al. [FNV17] showed that any predictable argument for a language L implies a witness
encryption for the same language. Since our arguments are predictable (for a randomly-sampled
instance) when the underlying language is cryptographically-hard, we obtain the distributional
variant of witness encryption for cryptographically-hard languages.

Distributional witness encryption to public-key encryption. Although 1-bit laconic ar-
guments only suffice for constructing a weaker distributional variant of witness encryption, this
variant still suffices to instantiate some of the applications of witness encryption from [GGSW13].
Here, we recall the construction of public-key encryption from witness encryption from [GGSW13,
§4.1] and show how we can instantiate it using a distributional witness encryption scheme for
the same language. In particular, this means that a 1-bit SNARG, and more generally, a 1-bit
laconic argument implies a public-key encryption scheme where the complexity of the key-generation
algorithm is independent of the complexity of the underlying argument system. Key-generation in
this scheme only requires a single evaluation of a pseudorandom generator. The only public-key
encryption schemes that have this property rely on witness encryption (or stronger assumptions).
This provides some evidence on the difficulty of realizing optimally laconic arguments from simpler
assumptions.

Construction 6.14 (Public Key Encryption from Witness Encryption [GGSW13, §4.1]). Fix a se-
curity parameter λ and let G : {0, 1}λ → {0, 1}2λ be a length-doubling PRG. Define the language L ⊂
{0, 1}2λ as L =

{
y ∈ {0, 1}2λ : y = G(x) for some x ∈ {0, 1}λ

}
. Let ΠWE = (WE.Encrypt,WE.Decrypt)

be a witness encryption scheme for L. We define the public key encryption scheme ΠPKE =
(KeyGen,Encrypt,Decrypt) as follows:

• KeyGen(1λ) → (pk, sk): On input the security parameter λ, the key-generation algorithm

samples a seed s
r←− {0, 1}λ, computes t← G(s), and outputs pk = (λ, t) and sk = s.

• Encrypt(pk,m): On input the public key pk = (λ, t) and a message m ∈ {0, 1}, the encryption
algorithm outputs the ciphertext ct←WE.Encrypt(1λ, t,m).

• Decrypt(sk, ct): On input the secret key sk = s and a ciphertext ct, the decryption algorithm
outputs WE.Decrypt(ct, s).

Theorem 6.15. Fix a security parameter λ and let G : {0, 1}λ → {0, 1}2λ be a length-doubling PRG.
Define the language L ⊂ {0, 1}2λ as in Construction 6.14. Let Dno be the uniform distribution over
{0, 1}2λ \ L. If ΠWE is a witness encryption scheme for L with respect to Dno and G is a secure
PRG, then ΠPKE from Construction 6.14 is a semantically-secure PKE scheme.

Proof. The proof is essentially identical to the corresponding proof in [GGSW13, Appendix A.1].
We give the formal hybrid argument below:

• Hyb0: This is the semantic security game where the challenger samples (pk, sk)← KeyGen(1λ)
and responds to the adversary’s query with Encrypt(pk,m0).

35

• Hyb1: Same as Hyb0 except instead of setting pk = (λ, t) where t = G(s) and s
r←− {0, 1}λ, the

challenger samples t
r←− {0, 1}2λ. Hybrids Hyb0 and Hyb1 are computationally indistinguishable

by PRG security of G.

• Hyb2: Same as Hyb1, except the challenger samples t
r←− {0, 1}2λ \ L. Hyb1 and Hyb2 are

statistically indistinguishable.

• Hyb3: Same as Hyb2 except the challenger encrypts message m1 when responding to the
adversary’s challenge. Hybrids Hyb2 and Hyb3 are computationally indistinguishable by
distributional semantic security of ΠWE.

• Hyb4: Same as Hyb3 except the challenger samples t
r←− {0, 1}2λ. Hybrids Hyb3 and Hyb4 are

statistically indistinguishable.

• Hyb5: Same as Hyb4 except the challenger sets t = G(s) where s
r←− {0, 1}λ. This is the

semantic security game where the challenger samples (pk, sk) ← KeyGen(1λ) and respond
to the adversary’s query with Encrypt(pk,m1). Hybrids Hyb4 and Hyb5 are computationally
indistinguishable by PRG security of G.

To instantiate Construction 6.14 from a 1-bit laconic argument for NP (or more specifically, for
the language L in Construction 6.14), it suffices to show that there exists a distribution Dyes over L
such that Dyes

c
≈ Dno, where Dno is the distribution from Construction 6.14. This follows from PRG

security. Specifically, let Dyes be the distribution {s r←− {0, 1}λ : G(s)}. By PRG security, Dyes is
computationally indistinguishable from the uniform distribution over {0, 1}2λ. Finally, the uniform
distribution over {0, 1}2λ is statistically indistinguishable from Dno and the claim follows. Thus, a
1-bit laconic argument for NP implies a public-key encryption scheme where the complexity of the
key-generation algorithm is independent of the complexity of the witness encryption scheme.

Acknowledgments

We thank the anonymous reviewers for helpful feedback on the presentation. D. Boneh and D. J. Wu
are supported by NSF, DARPA, a grant from ONR, and the Simons Foundation. Y. Ishai and
A. Sahai are supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award
1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, NSF-BSF grant
2015782, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant. Y. Ishai is additionally supported by ISF
grant 1709/14 and ERC grant 742754. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The
views expressed are those of the authors and do not reflect the official policy or position of the
Department of Defense, the National Science Foundation, or the U.S. Government.

References

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In ICALP, 2010.

36

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3), 1998.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive
proofs and their efficiency benefits. In CRYPTO, 2012.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2), 1988.

[BCC+14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The hunting of the SNARK. IACR Cryptology ePrint
Archive, 2014, 2014.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In ITCS, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In STOC, 2013.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: verifying program executions succinctly and in zero knowledge. In
CRYPTO, 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In TCC, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of
extractable one-way functions. In STOC, 2014.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In USENIX Security
Symposium, 2014.

[BDRV17] Itay Berman, Akshay Degwekar, Ron Rothblum, and Prashant Nalini Vasudevan.
From laconic zero-knowledge to public-key cryptography. Electronic Colloquium on
Computational Complexity (ECCC), 2017, 2017.

[Ben64] Václad E Beneš. Optimal rearrangeable multistage connecting networks. Bell Labs
Technical Journal, 43(4), 1964.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computa-
tions in polylogarithmic time. In STOC, 1991.

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J.
Blumberg, and Michael Walfish. Verifying computations with state. In SOSP, 2013.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
2001.

37

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In PKC, 2014.

[BHZ87] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-np have short interactive
proofs? Inf. Process. Lett., 25(2), 1987.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and
their application to more efficient obfuscation. In EUROCRYPT, 2017.

[BP04a] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge.
In TCC, 2004.

[BP04b] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In CRYPTO, 2004.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short pcps with polylog query complexity. SIAM J.
Comput., 38(2), 2008.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic encryp-
tion for restricted computations. In ITCS, 2012.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In ASIACRYPT, 2013.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1), 2000.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In IEEE SP, 2015.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified compu-
tation with streaming interactive proofs. In ITCS, 2012.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In CRYPTO, 1991.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span
programs with applications to succinct NIZK arguments. In ASIACRYPT, 2014.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation with
low communication. In TCC, 2012.

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty compu-
tation and the computational overhead of cryptography. In EUROCRYPT, 2010.

[Din06] Irit Dinur. The PCP theorem by gap amplification. In STOC, 2006.

[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Ap-
proximating clique is almost np-complete (preliminary version). In FOCS, 1991.

38

[FNV17] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable arguments of
knowledge. In PKC, 2017.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, 1986.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In EUROCRYPT, 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In STOC, 2013.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett., 67(4), 1998.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In EUROCRYPT, 2012.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, 2008.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC, 1982.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable snarks. In CRYPTO, 2017.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In STOC, 1985.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, 2001.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO,
2009.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT,
2016.

[GVW01] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. In ICALP, 2001.

39

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, 2011.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols.
In CRYPTO, 1998.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short
PCPs. In CCC, 2007.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In STOC, 2007.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with
no honest majority. In TCC, 2009.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In STOC, 1992.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In ACM CCS, 2013.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. In FOCS, 1990.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In TCC, 2012.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs
and linear error-correcting codes. In ASIACRYPT, 2013.

[Lip16] Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge snarks. In
AFRICACRYPT, 2016.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4), 2000.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. J. Mathematical Cryptology,
2(4), 2008.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, 2003.

[OTW71] D.C. Opferman and N.T. Tsao-Wu. On a class of rearrangeable switching networks
part I: Control algorithm. Bell Labs Technical Journal, 50(5), 1971.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE Symposium on Security and Privacy, 2013.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4), 1980.

[Sha90] Adi Shamir. IP=PSPACE. In FOCS, 1990.

40

[SMBW12] Srinath T. V. Setty, Richard McPherson, Andrew J. Blumberg, and Michael Walfish.
Making argument systems for outsourced computation practical (sometimes). In NDSS,
2012.

[SVP+12] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg,
and Michael Walfish. Taking proof-based verified computation a few steps closer to
practicality. In USENIX Security Symposium, 2012.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, 2014.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO,
2013.

[TRMP12] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Verifiable
computation with massively parallel interactive proofs. In HotCloud, 2012.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In TCC, 2008.

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In IEEE SP, 2013.

[Wak68] Abraham Waksman. A permutation network. Journal of the ACM (JACM), 15(1),
1968.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting
them. Commun. ACM, 58(2), 2015.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In ICALP, 2005.

[WHG+16] Riad S. Wahby, Max Howald, Siddharth J. Garg, Abhi Shelat, and Michael Walfish.
Verifiable asics. In IEEE Symposium on Security and Privacy, 2016.

[WJB+17] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler, Michael Walfish,
and Thomas Wies. Full accounting for verifiable outsourcing. In ACM CCS, 2017.

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael
Walfish. Efficient RAM and control flow in verifiable outsourced computation. In NDSS,
2015.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, 1979.

A Additional Preliminaries

In this section, we review some additional preliminaries. First, we review the Schwartz-Zippel
lemma [Sch80, Zip79]:

Lemma A.1 (Schwartz-Zippel [Sch80, Zip79]). Let p be a prime and let f ∈ Fp[x1, . . . , xn] be a
multivariate polynomial of total degree d that is not identically zero. Then,

Pr[α1, . . . , αn
r←− Fp : f(α1, . . . , αn) = 0)] ≤ d

p
.

41

A.1 Linear PCPs and Linear MIPs

Similar to [IKO07, BCI+13, BISW17], our starting point in this paper is a linear proof system. In
this section, we review the notion of linear probabilistically-checkable proofs (PCPs) and linear
multi-prover interactive proofs (MIPs). In a linear PCP system for a relation R over a finite field F,
the PCP oracle is restricted to computing a linear function π : Fd → F over the verifier’s queries. The
linear MIP model directly generalizes the linear PCP model to the setting where there are multiple
provers, each implemented by a linear PCP. We now review the formal definitions. Afterwards, we
introduce the notion of a quasi-optimal linear MIP.

Definition A.2 (Linear PCP [IKO07, BCI+13, adapted]). Let R be a binary relation, L be the
associated language, F be a finite field, P be a prover algorithm, and V be an oracle verifier algorithm.
Then, the pair (P,V) is an (input-oblivious) k-query linear PCP for R over F with soundness error
ε and query length d if it satisfies the following requirements:

• Syntax: The prover algorithm P takes as input a statement x and a witness w, and outputs
a vector π ∈ Fd. The verification algorithm Vπ = (Q,D) consists of an input-oblivious
probabilistic query-generation algorithm Q and a deterministic decision algorithm D. The
query algorithm Q generate a query matrix Q ∈ Fd×k and some additional state information
st. The decision algorithm D takes as input the statement x, the verification state st, and
the prover response y = Q>π ∈ Fk, and either “accepts” (with output 1) or rejects (with
output 0).

• Completeness: For every (x,w) ∈ R, setting π ← P(x,w), it follows that Vπ(x) accepts
with probability 1.

• Soundness: For every x /∈ L, and all proofs π∗ ∈ Fd, the probability that Vπ∗(x) accepts is
at most ε. We say that (P,V) satisfy soundness against affine provers if soundness holds even
against affine adversarial strategies (π∗,b∗) where π∗ ∈ Fd and b∗ ∈ Fk, and the prover’s
response is computed as y = Q>π∗ + b∗ ∈ Fk.

We say that (P,V) is an input-oblivious k-query linear PCP for R over F with knowledge error ε
and query length d if (P,V) satisfies the properties above, but the soundness property is replaced
by the following (stronger) knowledge property:

• Knowledge: There exists a knowledge extractor E such that for every vector π∗ ∈ Fd, if
Vπ∗(x) accepts with probability at least ε, then Eπ∗(x) outputs w such that (x,w) ∈ R. As
with soundness, we can correspondingly define a notion of knowledge against affine strategies.

Remark A.3 (Soundness Against Affine Provers). Given a k-query linear PCP over a finite field
F with soundness error ε against linear provers, Bitansky et al. [BCI+13, Construction 3.1] give
a generic construction of a k + 1 query linear PCP over F with soundness error ε+ 1/ |F| against
affine provers by introducing an additional consistency check. In fact, the construction in [BCI+13]
provides even stronger soundness guarantees, but those will not be needed in this work.

Definition A.4 (Linear MIPs [IKO07, adapted]). Let R be a binary relation, F be a finite field,
P = (P1, . . . , P`) be a tuple of ` prover algorithms, and V be an oracle verifier algorithm. Then, the
pair (P,V) is an (input-oblivious) k-query linear multi-prover interactive proof (MIP) with ` provers
for R over F with soundness error ε and query length d if it satisfies the following requirements:

42

• Syntax: Each prover algorithm Pi (for i ∈ [`]) takes as input a statement x and a witness w
and outputs a vector πi ∈ Fd. We write P(x,w) to denote the tuple (P1(x,w), . . . , P`(x,w)).
The verification algorithm Vπ1,...,π` = (Q,D) consists of an input-oblivious probabilistic query-
generation algorithm Q and a deterministic decision algorithm D. The query algorithm Q
generates a tuple of query matrices Q1, . . . ,Q` ∈ Fd×k and some additional state information
st. The decision algorithm D takes as input the statement x, the verification state st, and the
prover responses y1, . . . ,y` where each yi = Q>i πi ∈ Fk, and either “accepts” (with output 1)
or “rejects” (with output 0).

• Completeness: For every (x,w) ∈ R, and setting πi ← Pi(x,w) for all i ∈ [`], we have that
Vπ1,...,π`(x) accepts with probability 1.

• Soundness: For every x /∈ L, and all proof vectors (π∗1, . . . ,π
∗
`) where each π∗i ∈ Fd, the

probability that Vπ∗1,...,π∗` (x) accepts is at most ε. As in Definition A.2, we can define a
corresponding notion of soundness against affine provers where soundness holds against
provers who each implement a different affine strategy (π∗i ,b

∗
i) ∈ Fd × Fk.

Similar to Definition A.2, we can replace the soundness property with a stronger knowledge property.

Definition A.5 (Quasi-Optimal Linear MIPs). Let λ be a security parameter, and C be an
arithmetic circuit of size s over a finite field F. A k-query linear MIP (P,V) with ` provers for RC
with soundness error 2−λ is quasi-optimal if the prover P = (P1, . . . , P`) can be implemented by an
arithmetic circuit of size Õ(s) + poly(λ, log s), where the Õ(·) notation is suppressing terms that
are polylogarithmic in s and λ.

Remark A.6 (Existing Linear PCP Construction). Existing linear PCP constructions [BCI+13,
BISW17] (which can be viewed as linear MIPs with a single prover) are not quasi-optimal for
arithmetic circuit satisfiability over a polynomial-size field (i.e., for Boolean circuit satisfiability). To
provide soundness error 2−λ, the linear PCP constructions in [BCI+13, BISW17] either embed the
circuit satisfiability instance inside a field of size 2Ω(λ), or have query complexity O(λ). In both cases,
the prover complexity becomes Ω(λs) + poly(λ, log s). Thus, the existing SNARG constructions
in [BCI+13, BISW17] are not quasi-optimal for Boolean circuit satisfiability.

A.2 Routing Networks

Our quasi-optimal linear MIP construction in Section 4 relies on an efficient method for checking
whether two matrices W,W′ ∈ Ft×q satisfy W = Π(W′) where Π is an arbitrary permutation over
the entries of a t-by-q matrix. We begin by stating a lemma from [GHS12] that states that an
arbitrary permutation Π over the entries of a t-by-q matrix can be decomposed into the composition
of a small number of permutations, where each permutation implements a row-wise permutation or
a column-wise permutation of the matrix entries.

Definition A.7 (Matrix Permutations). Fix integers t, q and let Π be a permutation over the
entries of a t-by-q matrix. We say that Π is row-wise restricted if Π only permutes elements within
the rows of the matrix (that is, the permutation only changes the column, and not the row, of each
element). Similarly, we say that Π is column-wise restricted if Π only permutes elements within the
columns of the matrix.

43

Figure 2: A Beneš network over 8 = 23 nodes (beneš3)

Lemma A.8 ([GHS12, Lemma 1]). Fix positive integers t, q ∈ N, and let Π be a permutation over
the entries of a t-by-q matrix. Then, there exist permutations Π1,Π2,Π3 such that Π = Π3 ◦Π2 ◦Π1,
where Π1 and Π3 are row-wise restricted, and Π2 is column-wise restricted. Moreover, there is an
efficient algorithm to compute Π1,Π2,Π3 given Π.

Beneš networks. A Beneš permutation network [Ben64] is a special graph that can model all
permutations Π on a collection of m = 2d elements. We give the precise definition below, and then
state an elementary property on the structure of Beneš networks. We show an example of a Beneš
network in Figure 2.

Definition A.9 (Beneš Network [Ben64]). For a non-negative integer d, a d-dimensional Beneš
network, denoted benešd, is a directed graph with 2d + 1 layers (labeled 0, . . . , 2d). Each layer
contains m = 2d nodes (labeled 0, . . . , 2d − 1), and edges only go from nodes in layer i− 1 to nodes
in layer i for i ∈ [2d]. The first layer (layer 0) is the input layer and the final layer (layer 2d) is the
output layer. The graph structure is defined recursively as follows:

• A 0-dimensional Beneš network beneš0 consists of a single node.

• A d-dimensional Beneš network benešd consists of an input layer (with 2d nodes) that feeds
into two stacked benešd−1 networks, which feed into an output layer. The edge configuration
of the input and output layers are then defined as follows, for i = 0, . . . , 2d−1 − 1:

– Input edges: There is an edge from the ith input of benešd to the ith input of each of

the benešd−1 networks. There is also an edge from the (i+ 2d−1)
th

input of benešd to
the ith input of each of the benešd−1 networks.

– Output edges: There is an edge from the ith output of each of the benešd−1 networks
to the ith output of benešd. There is also an edge from the ith output of each benešd−1

network to the (i+ 2d−1)
th

output of the benešd network.

Fact A.10 (Structure of Beneš Networks). Fix a positive integer d ∈ N, and let S =
{

0, . . . , 2d − 1
}

.
Then, a benešd network has the following structural properties:

• For j ∈ {0, . . . , d}, we can partition the nodes in layer j into `j = 2d−j disjoint sets

S
(j)
0 , . . . , S

(j)
`j−1 ⊆ S, each containing 2j nodes, with the following properties:

44

– For k ∈
{

0, . . . , 2d−j − 1
}

, S
(j)
k contains all indices i ∈ S where the least-significant d− j

bits of i is equal to k.

– For all nodes is, it ∈ S(j)
k for some k, there is a unique path of length j from the iths input

node to the itht node in layer j of benešd.

– For any two nodes is ∈ S(j)
k , it ∈ S(j)

k′ where k 6= k′, there are no paths from the iths input
node to the itht node in layer j of benešd.

• For j ∈ {d, . . . , 2d}, we can partition the nodes in layer j into `j = 2j−d disjoint sets

S
(j)
0 , . . . , S

(j)
`−1 ⊆ S, each containing 22d−j nodes, with the following properties:

– For k ∈
{

0, . . . , 2j−d − 1
}

, S
(j)
k contains all indices i ∈ S where the least-significant j − d

bits of i is equal to k.

– For all nodes is, it ∈ S(j)
k for some k, there is a unique path of length j from the iths node

in layer j to the itht output node in benešd.

– For all nodes is ∈ S(j)
k , it ∈ S(j)

k′ where k 6= k′, there are no paths from the iths node in
layer j to the itht output node of benešd.

A key property of Beneš networks is that they are rearrangeable: any permutation Π on m = 2d

values can be mapped to a set of 2d node-disjoint paths in a d-dimensional Beneš network benešd
where the ith path maps from input i to output Π(i). We state the following fact from [Wak68,
OTW71].

Fact A.11 (Rearrangeability of Beneš Networks [Wak68, OTW71]). Let d ∈ N be a positive integer
and let S =

{
0, . . . , 2d − 1

}
. For all permutations Π: S → S there exists a set of 2d node-disjoint

paths from each input node i ∈ S in benešd to its corresponding output node Π(i). Moreover, these
paths can be computed in time O(d · 2d). We say that the paths P implement the permutation Π.

Randomized routing in Beneš networks. Fact A.11 states that we can route any permutation
Π on [2d] elements using a d-dimensional Beneš network. In our construction, we will use the
following procedure to randomize the routing configuration.

Construction A.12 (Randomized Routing). Let d ∈ N be a positive integer and S =
{

0, . . . , 2d − 1
}

.
For a permutation Π: S → S on S, let P be a collection of node-disjoint paths in benešd that
routes each input node i ∈ S to its corresponding output node Π(i). Namely, for each i ∈ S and
j ∈ {0, . . . , 2d}, let P[i, j] be the value of node i in layer j of the benešd network. We construct a
new collection of paths P ′ as follows:

1. Initialize P ′ ← P. Then for j ∈ [d] and k = 0, . . . , 2j−1 − 1, do the following:

(a) Choose a random bit bj,k
r←− {0, 1}.

(b) For i ∈ S, let i1i2 · · · id be the binary representation of i. Then, if bj,k = 1, for all nodes
i ∈ S where i1i2 · · · ij−1 = k and ij = 0, swap the values P ′[i, j′] and P ′[i+ 2d−j , j′], for
all j′ = j, . . . , d− j.

2. Output the randomized collection of paths P ′.

45

At a high level, Construction A.12 takes a set of paths P implementing a specific permutation
Π in a benešd network and produces a new set of paths P ′ in benešd that implement the same
permutation. The procedure relies on the recursive structure of the Beneš network. For example, in
the first layer of a benešd network, the input nodes are partitioned into two disjoint sets, one of
which is routed using the top benešd−1 network, and the other is routed using the bottom benešd−1

network. The randomization procedure in Construction A.12 maintains the same partitioning of
input nodes, but each partition is either routed using the top benešd−1 network or the bottom
benešd−1 network with equal probability. This process is then iteratively applied to permute the
routing configuration for each of the benešd−1 networks in the first layer, and so on. We state the
formal correctness guarantee in the following lemma:

Lemma A.13. Let d ∈ N be a positive integer, S =
{

0, . . . , 2d − 1
}

, and Π: S → S be a permutation
on S. Let P be a collection of node-disjoint paths in benešd that implements the permutation Π.
Then, the new collection of paths P ′ obtained by applying the randomized routing procedure in
Construction A.12 to P is also a collection of node-disjoint paths in benešd that implements the
same permutation Π.

For any sequence of paths P implementing a permutation Π in a benešd network, the set P ′ of
randomized paths output by Construction A.12 has the property that if we consider the path of any
single input node i ∈

{
0, . . . , 2d − 1

}
to Π(i) in P ′, its path is distributed uniformly over all of the

2d possible paths from i to Π(i) in benešd. We state the precise guarantee in the following lemma:

Lemma A.14. Let d ∈ N be a positive integer, S =
{

0, . . . , 2d − 1
}

, and Π: S → S be a permutation
on S. Let P be a collection of node-disjoint paths in benešd that implements Π, and let P ′ be
the set of randomized paths output by Construction A.12 applied to P. For a node i ∈ S, let
i = i0, i1, . . . , i2d = Π(i) denote the path of i in P ′. Then the following holds:

• For j ∈ {0, . . . , d}, let S
(j)
0 , . . . , S

(j)
`j−1 be the partition of the nodes in layer j from Fact A.10.

Let k ∈ {0, . . . , `j − 1} such that i ∈ S(j)
k . Then, for all i′ ∈ S(j)

k , Pr[ij = i′] = 1/
∣∣S(j)
k

∣∣ = 1/2j.

• For j ∈ {d, . . . , 2d}, let S
(j)
0 , . . . , S

(j)
`j−1 be the partition of the nodes in layer j from Fact A.10.

Let k ∈ {0, . . . , `j − 1} such that Π(i) ∈ S(j)
k . Then, for all i′ ∈ S(j)

k , Pr[ij = i′] = 1/
∣∣S(j)
k

∣∣ =
1/22d−j.

In both cases, the probability is taken over the random coins in the randomization algorithm
(Construction A.12).

Permutations from Beneš networks. We can view a collection of paths in a Beneš network
as providing a systematic decomposition of an arbitrary permutation Π on t = 2d elements into
a sequence of ` = O(log t) permutations Π1, . . . ,Π`, where each Π1, . . . ,Π` can be expressed as
a product of disjoint 2-cycles, and Π = Π` ◦ · · · ◦ Π1. More precisely, we can associate values
x0, . . . , xt−1 with the input nodes of the benešd network (e.g., value xi with the ith input node).
Given a path from an input node to an output node, we associate the value of the input node with
every node along the path. Then, any collection of t node-disjoint paths P from input nodes to
output nodes induces an assignment to every node in the network. Now, for any permutation Π on
t values x0, . . . , xt−1, we define Π1, . . . ,Π` so that (Πi ◦ · · · ◦ Π1)(x0, . . . , xt−1) gives the values of
the nodes in layer i+ 1 of benešd on input x0, . . . , xt−1 and paths determined by P . The structure

46

of the Beneš network ensures that each of the Π1, . . . ,Π` is a product of disjoint 2-cycles. We say
that permutations with this property (generalized to permutations over the entries of a matrix) are
2-locally decomposable (Definition A.15). We give a more precise description of this decomposition
in Construction A.16. We formalize two properties satisfied by the decomposition in Lemma A.17.

Definition A.15 (2-Local Decomposability). Fix an even integer t ∈ N, an integer q ∈ N, and set
t′ = t/2. Let Π be a permutation on the entries of a t-by-q matrix. We say that Π is 2-locally
decomposable if there exists a partition {j1, j2} , . . . , {jt′−1, jt′} of [t] and permutations Π1, . . . ,Πt′

over 2-by-q matrices such that for all matrices W ∈ Fq×t, we have that Ŵ = Π(W) if and only if
for all i ∈ [t′],

Ŵ[j2i,j2i+1] = Πi

(
W[j2i,j2i+1]

)
.

In other words, a permutation Π is 2-locally decomposable if Π can be written as a composition of
t′ = t/2 disjoint permutations that each operate on exactly two rows of the matrix.

Construction A.16 (Randomized 2-Local Decomposition). Let t, q ∈ N be integers where t = 2d

for some d ∈ N. Let Π be an arbitrary column-wise restricted permutation on the entries of a
t-by-q matrix. The randomized 2-local decomposition of Π is a sequence of 2d matrices Π1, . . . ,Π2d

constructed as follows:

• For each column i ∈ [q], let Pi be a collection of paths in a benešd network that implements
the permutation Π on the entries in column i. Let P ′i be the output of the randomized routing
procedure in Construction A.12 applied to Pi.

• For j ∈ [2d], we take Πj to be a column-wise restricted permutation on t-by-q matrices. We

write Π
(i)
j to denote the permutation Πj implements on column i ∈ [q]. We define Π1, . . . ,Π2d

so that for all i ∈ [q] and j ∈ [2d], (Π
(i)
j ◦ · · · ◦Π

(i)
1)(x0, . . . , xt−1) gives the values of the nodes

in layer j of a benešd network on input (x0, . . . , xt−1) and using paths defined by P ′i.

Lemma A.17. Let t, q ∈ N be integers where t = 2d for some d ∈ N. Let Π be an arbitrary
column-wise restricted permutation on the entries of a t-by-q matrix, and let (Π1, . . . ,Π2d) be the
randomized 2-local decomposition of Π from Construction A.16. The local decomposition satisfies
the following properties:

• Each Π1, . . . ,Π2d is a column-wise restricted and 2-locally decomposable.

• Π = Π2d ◦ · · · ◦Π1.

Proof. The first property follows immediately from the structure of Beneš networks, and the second
follows by construction.

A.3 Succinct Non-Interactive Arguments

In this section, we review the definitions of succinct non-interactive arguments for the problem of
Boolean circuit satisfiability.

Definition A.18 (Succinct Non-Interactive Argument [BCCT12]). Let C = {Cn}n∈N be a family
of Boolean circuits indexed by a parameter n. A succinct non-interactive argument (SNARG) for
the relation RC =

⋃
n∈NRCn (and corresponding language LC =

⋃
n∈N LCn) is a tuple of algorithms

ΠSNARG = (Setup,Prove,Verify) with the following properties:

47

• Setup(1λ, 1n)→ (σ, τ): On input a security parameter λ and a circuit family parameter n, the
setup algorithm outputs a reference string σ and a verification state τ .

• Prove(σ,x,w) → π: On input the reference string σ, a statement x, and a witness w, the
prove algorithm outputs a proof π.

• Verify(τ,x,π)→ {0, 1}: On input the verification state τ , a statement x, and a proof π, the
verification algorithm outputs 1 if it “accepts” and 0 otherwise.

Moreover, ΠSNARG satisfies the following additional properties.

• Completeness: For all λ ∈ N, all n ∈ N, and all instances (x,w) ∈ RCn ,

Pr[(σ, τ)← Setup(1λ, 1n);π ← Prove(σ,x,w) : Verify(τ,x,π) = 1] = 1.

• Soundness: Depending on the notion of soundness:

– Non-adaptive Soundness: For all n ∈ N, every polynomial-size prover P∗ and all
statements x /∈ LCn ,

Pr[(σ, τ)← Setup(1λ, 1n);π ← P∗(σ,x) : Verify(τ,x,π) = 1] = negl(λ).

– Adaptive Soundness: For all n ∈ N, and every polynomial-size prover P∗,

Pr[(σ, τ)← Setup(1λ, 1n); (x,π)← P∗(σ) : Verify(τ,x,π) = 1 and x /∈ LCn] = negl(λ).

• Succinctness: Depending on the notion of succinctness:

– Fully Succinct: There exists a universal polynomial p (independent of RC) such
that Setup runs in time p(λ + log |Cn|), Prove runs in time p(λ + |Cn|), Verify runs in
time p(λ + |x| + log |Cn|), and the length of the proof output by Prove is bounded by
p(λ+ log |Cn|).

– Preprocessing: There exists a universal polynomial p (independent of RC) such that
Setup runs in time p(λ + |Cn|), Prove runs in time p(λ + |Cn|), and Verify runs in
time p(λ + |x| + log |Cn|), and the length of the proof output by Prove is bounded by
p(λ+ log |Cn|).

A.4 Linear-Only Vector Encryption over Rings

In this section, we review the notion of linear-only vector encryption over rings introduced
in [BISW17]. In Section 5.2, we show how to combine linear-only vector encryption over rings with
quasi-optimal linear MIPs to obtain quasi-optimal SNARGs. A vector encryption encryption over
a ring R is an encryption scheme where the message space R` is a vector of ring elements, where
` here denotes the dimension of the vector. In our constructions, the ring R = Fp[x]/Φm(x) is a
polynomial ring (where Φm(x) here denote the mth cyclotomic polynomial), and the parameters
m and p are chosen so that R splits into m isomorphic copies of Fp. We now introduce the basic
schema.

48

Definition A.19 (Vector Encryption Scheme over R [BISW17]). Fix a ring R. A secret-key vector
encryption scheme over R` is a tuple of algorithms Πvenc = (KeyGen,Encrypt,Decrypt) with the
following properties:

• KeyGen(1λ, 1`)→ sk: On input the security parameter λ and the dimension ` of the message
space, the key-generation algorithm outputs a secret key sk.

• Encrypt(sk,v)→ ct: On input the secret key sk and a vector v ∈ R`, the encryption algorithm
outputs a ciphertext ct.

• Decrypt(sk, ct)→ R` ∪ {⊥}: On input the secret key sk and a ciphertext ct, the decryption
algorithm either outputs a vector v ∈ R` or a special symbol ⊥ (to denote an invalid ciphertext).

We can define the usual notions of correctness and semantic security [GM82] for a vector
encryption scheme. We say a vector encryption scheme over R` is additively homomorphic if given
encryptions ct1, ct2 of two vectors v1,v2 ∈ R`, there is a public operation for computing ct′ of
the component-wise sum v1 + v2 ∈ R`. We now recall the notions of linear targeted malleability
and its strengthened analog, linear-only vector encryption that will be essential for constructing
SNARGs. Intuitively, both of these definitions capture the property that the vector encryption
scheme only supports affine homomorphisms. In other words, given a collection of ciphertexts,
any new ciphertext produced by the adversary can be explained as taking a linear combination of
existing ciphertexts.

Definition A.20 (Linear Targeted Malleability [BSW12, adapted]). Fix a security parameter λ. A
secret-key vector encryption scheme Πvenc = (KeyGen,Encrypt,Decrypt) over a ring R satisfies linear
targeted malleability if for all efficient adversaries A and plaintext generation algorithms M (on
input 1`, algorithm M outputs vectors in R`), there exists a (possibly computationally unbounded)
simulator S such that for any auxiliary input z ∈ {0, 1}poly(λ), the following two distributions are
computationally indistinguishable:

Real Distribution:

1. sk← KeyGen(1λ, 1`)
2. (s,v1, . . . ,vm)←M(1`)
3. cti ← Encrypt(sk,vi) for all i ∈ [m]
4. ct′ ← A({cti}i∈[m] ; z) where

Decrypt(sk, ct′) 6= ⊥
5. Output

(
{vi}i∈[m] , s,Decrypt(sk, ct

′)
)

Ideal Distribution:

1. (s,v1, . . . ,vm)←M(1`)
2. (π,b)← S(z) where π ∈ Rm, b ∈ R`
3. v′ ← [v1|v2| · · · |vm] · π + b

4. Output
(
{vi}i∈[m] , s,v

′
)

Definition A.21 (Linear-Only Vector Encryption [BCI+13, adapted]). Fix a security parameter
λ. A secret-key vector encryption scheme Πvenc = (KeyGen,Encrypt,Decrypt) over a ring R is
a linear-only vector encryption scheme if for all efficient adversaries A, there exists an efficient
extractor E such that for all auxiliary inputs z ∈ {0, 1}λ, and any plaintext generation algorithms
M (on input 1`, algorithm M outputs a vector in R`), we have that for sk ← KeyGen(1λ, 1`),
(v1, . . . ,vm) ← M(1`), cti ← Encrypt(sk,vi) for all i ∈ [m], ct′ ← A({cti}i∈[m] ; z), (π,b) ←
E({cti}i∈[m] ; z), v′ ← [v1|v2| · · · |vm] · π + b,

Pr[Decrypt(sk, ct′) 6= v′] = negl(λ).

49

Remark A.22 (Multiple Ciphertexts). Similar to [BSW12, BCI+13], we can define analogs of
linear targeted malleability and linear-only vector encryption where the adversary is allowed to
output multiple ciphertexts ct′1, . . . , ct

′
m. To extend the definitions to this case, we modify the

simulator S in Definition A.20 and the extractor E in Definition A.21 to output an affine function
(Π,B) where Π ∈ Rm×m and B ∈ R`×m that explains the ciphertexts ct′1, . . . , ct

′
m.

Remark A.23 (Auxiliary Input Distributions). In Definitions A.20 and A.21, the simulator S
and the extractor E , respectively, are required to succeed for all auxiliary inputs z ∈ {0, 1}poly(λ).
This seems like a very strong requirement since z can be used to encode difficult problems that the
simulator or extractor needs to solve in order to correctly simulate the output distribution [BCPR14].
However, the definitions can be relaxed to only consider “benign” auxiliary-input distributions for
which the property holds. For instance, in many scenarios, it suffices that the auxiliary input z is a
uniformly random string.

A.5 Indistinguishability Obfuscation and Puncturable PRFs

In this section, we review the definitions of indistinguishability obfuscation and puncturable PRFs.

Definition A.24 (Indistinguishability Obfuscation [BGI+01, GGH+13]). An indistinguishability
obfuscator iO for a circuit family C = {Cλ}λ∈N is a uniform and efficient algorithm satisfying the
following requirements:

• Correctness. For all λ ∈ N, all circuits C ∈ Cλ, and all inputs x, we have that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1.

• Indistinguishability. For all λ ∈ N, and any two circuits C0, C1 ∈ Cλ, if C0(x) = C1(x) for
all inputs x, then for all efficient adversaries A, we have that

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| = negl(λ).

Definition A.25 (Puncturable PRFs [BW13, KPTZ13, BGI14]). A puncturable pseudorandom
function with key-spaceK, domain X , and range Y is an efficiently computable function F : K×X → Y
with three additional algorithms (F.Setup,F.Puncture,F.Eval) defined as follows:

• F.Setup(1λ)→ k: On input the security parameter λ, the setup algorithm outputs a PRF key
k ∈ K.

• F.Puncture(k, x∗) → kx∗ : On input the PRF key k ∈ K and a point x∗ ∈ X , the puncture
algorithm outputs a punctured key kx∗ .

• F.Eval(kx∗ , x)→ y: On input a punctured key kx∗ , the evaluation algorithm outputs a value
y ∈ Y ∪ {⊥}.

Moreover F satisfies the following properties:

• Correctness: For all x∗ ∈ X and x 6= x∗, and letting k ← F.Setup(1λ), kx∗ ← F.Puncture(k, x∗),
we have that

Pr[F.Eval(kx∗ , x) = F(k, x)] = 1.

50

• Pseudorandom at punctured points: For all efficient adversaries A = (A1,A2), and

letting k ← F.Setup(1λ), (st, x∗)← AF(k,·)
1 (1λ), kx∗ ← F.Puncture(k, x∗), and y

r←− Y, we have
that ∣∣∣Pr

[
AF(k,·)

2 (st, kx∗ ,F(k, x∗))
]
− Pr

[
AF(k,·)

2 (st, kx∗ , y)
]∣∣∣ = negl(λ),

provided that A1 and A2 do not query F(k, ·) on the challenge point x∗.

B Quasi-Optimal Linear MIP Construction

In this section, we define and analyze the primitives needed for our quasi-optimal linear MIP
construction. First, in Appendix B.1, we show how to instantiate our robust decomposition by
combining MPC protocols with polylogarithmic overhead [DIK10] with the “MPC-in-the-head”
paradigm [IKOS07]. Next, in Appendix B.2, we show how to construct our sequence of non-
concentrating permutations that we use for consistency checking. Finally, in Appendix B.3, we
provide the formal security analysis of our quasi-optimal linear MIP construction.

B.1 Robust Decomposition via MPC

In this section, we show how to instantiate our robust decomposition using secure multiparty
computation (MPC) protocols with polylogarithmic overhead [DIK10]. Our decomposition follows
the “MPC-in-the-head” paradigm of Ishai et al. [IKOS07].

MPC preliminaries. We begin by reviewing some standard MPC definitions [Gol04, Can00].
Let t be the number of players, denoted P1, . . . , Pt. We assume that all players communicate
synchronously over secure point-to-point channels. We model the functionality f computed by
the t parties as an arithmetic circuit C over a finite field F. In this section, it suffices to consider
functionalities whose outputs consists of a single field element F. We assume each party Pi has a
common input x ∈ Fn and a local input wi ∈ Fm.

We specify a t-party MPC protocol Π by its next-message function. In particular, on input a
party index i ∈ [t], the public input x, the party’s local input wi and randomness ri, and the messages
Pi received (m1, . . . ,mj) in the first j rounds of the protocol execution, Π(i, s,wi, ri, (m1, . . . ,mj))
outputs a set of t− 1 messages that Pi sends to each of the other parties in round j + 1. The view
of a party Pi, denoted viewi, in the protocol execution consists of its local input wi, randomness ri,
and all of the messages that Pi both sends and receives8 during the execution of Π. At the end of
the protocol execution (or if Π signals an early termination), each party Pi also computes some
output (as a function of its local state). We say that a pair of views viewi and viewj for two distinct
parties Pi and Pj is consistent (with respect to Π and the public input x) if the set of messages sent
by Pi (in viewi) are identical to the messages Pj receives (in viewj). We now define the correctness
and robustness requirement we require in our construction.

Definition B.1 (Correctness). An MPC protocol Π realizes a deterministic t-party functionality
f(x,w1, . . . ,wn) with perfect correctness if on all inputs x,w1, . . . ,wn, the probability (taken over
each party’s randomness) that the output of some player Pi is different from the output of f is 0.

8Typically, one defines the view of a party to only consist of the messages it receives during the computation. In our
setting, it will be useful to also include the messages the party sends as part of the view, even though those messages
can be computed implicitly from the other components in the view.

51

Definition B.2 (δ-Robustness). An MPC protocol Π realizes a deterministic t-party functionality
with perfect δ-robustness if it is perfectly correct in the presence of a semi-honest adversary (as
in Definition B.1), and furthermore, for any adversary that corrupts up to δt parties, and for any
input (x,w1, . . . ,wt), the following robustness property holds: if there are no inputs (w′1, . . . ,w

′
t)

where f(x,w′1, . . . ,w
′
t) = 1, then the probability (taken over each party’s randomness) that some

uncorrupted party outputs 1 in an execution of Π where the inputs of the honest parties are
consistent with (x,w1, . . . ,wt) is 0.

Note that in our settings, we do not require an additional privacy property from the MPC
protocol. With this in mind, we now present our robust decomposition for an arithmetic circuit C.

Construction B.3 (Robust Decomposition via MPC). Let δ > 0 be a constant and t ∈ N be an
integer. Let C : Fn′ × Fm′ → Fh′ be an arithmetic circuit, and Πf be a t-party MPC protocol for
the t+ 1-input function

f(x,w1, . . . ,wn) =

{
1 if C(x,w1‖w2‖ · · · ‖wn) = 0h

′

0 otherwise
(B.1)

where each wi is a vector of dimension O(m′/t). Our (t, δ)-robust decomposition (f1, . . . , ft, inp,wit)
of C is then defined as follows:

• The input encoding function inp : Fn′ → Fn, where n′ = n, is the identity function.

• The witness encoding function wit takes as input a statement x′ ∈ Fn′ and a witness w′ ∈ Fm′

and simulates an execution of Πf on inputs x′ and w′1, . . . ,w
′
t where w′ = w′1‖w′2‖ · · · ‖w′t.

Let view1, . . . , viewt be the views of each of the t parties in the simulated MPC protocol. The
output of the witness encoding functions is a new witness w = (view1, . . . , viewt) consisting of
the views of the t parties in the execution of Πf .

• Each of the constraint functions fi for i ∈ [t] takes as input the statement x ∈ Fn and the
witness w = (view1, . . . , viewt) and outputs 1 if the following conditions hold:

– The output of party Pi (as determined by viewi) is 1 (indicating an accepting output).

– The view viewi of party Pi is consistent with an honest evaluation of Πf (with respect to
the global input x′). Recall that viewi includes not only the local state of party Pi and
the set of messages Pi receives from the other parties during the protocol execution, but
also the messages Pi sends to each of the other parties during the protocol execution.
This step verifies that the messages Pi sends and its output are consistent with those
that would be computed assuming an honest evaluation of Πf .

– The messages sent by party Pi (as specified in viewi) are consistent with the messages
each of the other parties Pj receives (as specified in viewj).

In particular, each fi only needs to read the components of the statement x that party Pi
needs to read during the protocol execution. In addition, fi only needs to read the components
of w that pertain to party Pi: namely, viewi and the components of viewj (for all j 6= i)
containing the messages Pj received from Pi.

52

Theorem B.4. Let δ > 0 be a constant and t ∈ N be an integer. Let C : Fn′ × Fm′ → Fh′ be
an arithmetic circuit, and let Πf be a perfectly δ-robust t-party MPC protocol for the function in
Eq. (B.1). Then, the decomposition (f1, . . . , ft, inp,wit) in Construction B.3 is (t, 1− δ)-robust.

Proof. We show completeness and robustness separately.

Completeness. If (x′,w′) ∈ RC , then by perfect correctness of Πf , each of the honest parties will
output 1. Moreover, in an honest protocol execution, all of the views viewi for i ∈ [t] are internally
and pairwise consistent.

Robustness. To show that the decomposition is (1 − δ)-robust, we need to show that for a
statement x′ /∈ LC , there is no setting of view w = (view1, . . . , viewt) that can satisfy more than a
(1− δ)-fraction of the constraints fi. Our argument here is similar to the soundness analysis of the
zero-knowledge proof systems from MPC in [IKOS07, Theorem 4.1]. At a high-level, suppose that
all inconsistencies (if any) among the views view1, . . . , viewt can be resolved by eliminating at most
δt views. In this case, the protocol execution defined by (view1, . . . , viewt) can be realized by an
adversary that corrupts at most δt parties. But since Πf is perfectly δ-robust, on input x′, all of
the uncorrupted parties will output 0. In this case, there are at most δt corrupted parties, so there
are at least (1− δ)t honest parties Pi where the output is 0, and correspondingly, fi(x,w) = 0 for
those parties. Conversely, if there are more than δt views that are inconsistent, then for any viewi
that has an inconsistency, fi(x,w) = 0.

More formally, for a collection of views w = (view1, . . . , viewt), we say that the view of party Pi
for i ∈ [t] is “bad” if viewi is either inconsistent with an honest evaluation of Πf on input x, or if
there is a discrepancy between an outgoing message from Pi in viewi and an incoming message for
Pj (from Pi) in viewj . Let B ⊆ [t] be the subset of “bad” parties. We consider two cases:

• If |B| < δt, then consider a protocol execution of Πf where the adversary corrupts the set
of parties B and behaves in a way so that the view of any party Pj for j /∈ B is viewj . By
construction of the set B, this means that the views between any two parties i, j ∈ [t] \B are
mutually consistent with an honest execution of Πf on input x′. Thus, since Πf is perfectly
δ-robust, the output of all parties Pj , where j /∈ B will be 0. Equivalently, for all j ∈ [t] \B,
fj(x,w) = 0, so there are at most (1− δ)t indices i where fi(x,w) = 1.

• If |B| ≥ δt, then for all i ∈ B, fi(x,w) = 0. This means that there are at most (1− δ)t indices
i ∈ [t] \B where fi(x,w) = 1, and the claim follows.

Fact B.5 ([DIK10]). Let t ∈ N be an integer. For any constant 0 < δ < 1/3 and arithmetic circuit
C(x,w1, . . . ,wt) on t + 1 inputs with width Ω(t), there exists a t-party MPC protocol Π which
computes C with perfect δ-robustness and where the total computational complexity is

|C| · polylog(t, |C|) + poly(t, log |C|) · depth(C)2

Corollary B.6. Fix an integer t ∈ N. Then, for any constant 0 < δ < 1/3, there exists a
quasi-optimal (t, 1− δ)-robust decomposition for any arithmetic circuit C : Fn × Fm → Fh of size
Ω(t).

Proof. We instantiate Construction B.3 using the information-theoretic MPC protocol from Fact B.5.
To obtain the required asymptotics, we make the following observations:

53

• First, we need to construct an arithmetic circuit that implements the functionality in Eq. (B.1).
We construct the circuit C ′ : Fn × Fm → {0, 1} from C as follows. Circuit C ′ first evaluates
C on (x,w) and then projects the h outputs of C onto {0, 1} (mapping 0 to 0 and all
non-zero elements in F to 1). Projecting each element can be done with a circuit of size
and depth O(log |F|). Finally C ′ computes the Boolean and on the negation of each of the
projected output bits. When F is polynomial-sized (e.g., |F| = O(|C|)), this transformation
only adds logarithmic overhead to C. In particular, depth(C ′) = depth(C) +O(log |F|) and
|C ′| = |C|+O(h · log |F|).

• For proof verification, we can also assume without loss of generality that the circuit C has
constant depth. In particular, for verifying that (x,w) is a satisfying input to C, we can
always construct a new circuit of size |C| which takes as input the statement x and the value
of each wire in C(x,w). The new circuit then simply checks that every wire is correctly
computed, and that the output value of C(x,w) is 0h

′
. Coupled with the transformation

from the previous step, we conclude that checking satisfiability of an arithmetic circuit C
can always be reduced to checking satisfiability of a related circuit C ′ of size O(|C| log |C|)
and depth O(log |C|). Invoking Fact B.5 on the circuit C ′, we conclude that the inp and wit
encoding functions satisfy the efficiency requirements of Definition 4.1.

• Moreover, when simulating an execution of the MPC protocol from Fact B.5, we uniformly
distribute the inputs (i.e., the bits of the witness) across the t parties. This ensures that the
computational costs are distributed evenly across all t parties, and so the local computational
complexity of each party becomes

|C| /t · polylog(t, |C|) + poly(t, log |C|).

Since each fi is verifying integrity of viewi, we conclude that each fi can be computed by a
circuit of size Õ(|C| /t) + poly(t, log |C|).

Remark B.7 (Robust Decomposition and Quasilinear PCPs). Our robust decomposition essentially
provides a way to convert a circuit satisfiability instance into checking satisfiability of a collection of
smaller constraint functions defined over a common set of variables. This is reminiscent of viewing
a traditional PCP (for a circuit satisfiability instance) as a constraint satisfaction problem (CSP),
where each constraint in the CSP reads a small number of bits of the PCP. Thus, another potential
way of obtaining a quasi-optimal robust decomposition is to use quasilinear PCPs [Din06, BS08].
Specifically, we view the PCP as a CSP instance; an encoding of a statement-witness pair corresponds
to an assignment to the variables in the CSP, and the constraint functions in the robust decomposition
simply implement the constraints of the CSP. However, with traditional PCPs, the variables on
which each constraint depends varies with the statement being proved. One of the requirements of
our robust decomposition is that each constraint only depends on a fixed subset of the bits of the
encoded statement and witness, irrespective of the statement being proved. Thus, it is not clear
how to leverage traditional PCPs to implement our robust decomposition.

In contrast, our MPC-based robust decomposition satisfies this input-independence property.
Specifically, the components of the encoded statement-witness pair read by the ith constraint just
correspond to the view of the ith party in the simulated MPC protocol, which is always a fixed
subset of the encoded statement-witness pair, and independent of the statement being proved. It is
an interesting problem to construct an input-independent quasilinear PCP, which may in turn yield
another approach for realizing our robust decomposition primitive.

54

B.2 Constructing Randomized Permutation Decompositions

In this section, we show how to instantiate the underlying building blocks we require for performing
our consistency checks. First, we construct a regularity-inducing permutation assuming that every
value in the replication structure A appears at most twice. This assumption is satisfied, for instance,
by the replication structure of our robust decomposition based on MPC from Appendix B.1.

Construction B.8 (Regularity-Inducing Permutations). Fix integers m, t, q ∈ N, with t even,
and let A ∈ [m]t×q be a replication structure where every value in A appears at most twice. We
construct permutations Π1,Π2 over the entries of A as follows:

• First, we partition A into t′ = t/2 blocks, each containing a pair of rows: for i ∈ [t′], let
Ai = A[2(i−1)+1,2i].

• We construct matrices A(1),A(2) ∈ [m]t×q as follows. For each block i ∈ [t′], we associate with

it two sets of values S
(1)
i , S

(2)
i ⊆ [m]. For j ∈ {1, 2}, S(j)

i is the set of values that appear in the

jth row of Ai, but not in any previous set S
(j)
i′ where i′ < i. Matrix A(j) is then constructed

as follows:

1. Initialize all values in A(j) with ⊥ to denote an “unassigned” position.

2. Let A
(j)
i = A

(j)
[2(i−1)+1,2i] denote the ith block of A(j). Let v1, . . . , vd ∈ [m] be the elements

in S
(j)
i where d ≤ q. Then, for k ∈ [d], let cvk be the total number of times vk appears in

A. Set the first cvk entries of column k of A
(j)
i to the value vk.

3. For all remaining values that appear in A but not A(j), assign them arbitrarily to any
unassigned position in A(j).

• By construction, each A(j) is a permutation of the entries in A. Output the permutations
Π1,Π2 where A(1) = Π1(A) and A(2) = Π2(A).

Lemma B.9. Fix integers m, t, q ∈ N, with t even, and let A ∈ [m]t×q be a replication structure
where every entry appears at most twice. Let Π1,Π2 be the permutations of A from Construction B.8.
Then, (Π1,Π2) is a collection of 2-regularity-inducing permutations (Definition 4.12) with respect to
A.

Proof. Set t′ = t/2, and for i ∈ [t′], let Si = {2(i− 1) + 1, 2i}. Let M be the matching in GW,A of
size s. Take any edge (i1, i2) ∈M , and define i′1, i

′
2 ∈ [t′] so that i1 ∈ Si′1 and i2 ∈ Si′2 . Without loss

of generality, suppose i′1 ≤ i′2. This means that there exists j1, j2 ∈ [q] where Ai1,j1 = Ai2,j2 , but
Wi1,j1 6= Wi2,j2 . Let v = Ai1,j1 ∈ [m]. Since each entry in A appears at most twice, the first block
in A that contains v is i′1. We consider two cases:

• Suppose i1 = 1 mod 2. This means that v ∈ S(1)
i′1

in Construction B.8. Thus, Π1 maps entries

in positions (i1, j1) and (i2, j2) to some column in rows i1 and i1 + 1. Thus, GW1,A1 contains
an inconsistency in rows (i1, i1 + 1) ∈ Si′1 .

• Suppose i1 = 0 mod 2. By an analogous argument as that used in the previous case, we
conclude that GW2,A2 contains an inconsistency in rows (i1 − 1, i1) ∈ Si′1 .

55

The above analysis shows that each edge (i1, i2) ∈M either contributes an edge (i1, i1 + 1) ∈ Si′1
to GW1,A1 or contribute an edge (i1 − 1, i1) ∈ Si′1 to GW2,A2 . In other words, each edge (i1, i2)
contributes a single edge to a regular matching in GW1,A1 or GW2,A2 Since |M | ≥ s, we conclude
that at least one of the graphs GW1,A1 ,GW2,A2 must contain a regular matching of size at least s/2.
Moreover, the correspondence between the edges in the regular matching for graphs GW1,A1 and
GW2,A2 and the edges in M is immediate from the above analysis.

Randomized permutation decomposition. Next, we show how to construct a sequence of
non-concentrating 2-locally decomposable permutations. Recall that a non-concentrating sequence
of permutations Γ implementing a permutation Π is an ordered set of permutations (Π1, . . . ,Πα)
such that if we start with any inconsistency matrix B ∈ {0, 1}t×q where both B and Π(B) have at
most one inconsistency in each row, then the positions of the inconsistencies in the intermediate
matrices B` = Π`(B`−1) and B0 = B do not concentrate in a small number of rows. We begin by
giving a high-level outline of how we sample such sequences for a target permutation Π.

• First, we apply Lemma A.8 to Π to obtain three permutations Π1,Π2,Π3 where Π1 and Π3 are
row-wise restricted and Π2 is column-wise restricted. Moreover, the decomposition satisfies
Π = Π3 ◦Π2 ◦Π1.

• Next, we randomize the first row-rise restricted permutation Π1. Our randomization procedure
exploits the observation that if two entries j1, j2 in the same row have the same target column
(under Π), then we can swap the entries j1 and j2 under Π1 and undo the swap in Π3. We
describe this procedure in Construction B.10. Then, we show in Theorem B.12 that as long as
there are many entries in each row of Π that map to the same column, this randomization
procedure distributes the inconsistencies in B across many columns.

• After randomizing Π1, we apply the randomized 2-local decomposition from Construction A.12
based on randomized routing in a Beneš network to Π2 to obtain a (randomized) sequence of 2-
local permutations implementing Π2. We show in Theorem B.13 that over the randomness used
to sample the randomized 2-local decomposition, the inconsistencies in B do not concentrate
in a small number of rows. Intuitively, this follows from the fact that the inconsistencies in B
are distributed across many columns (from the row-wise shuffling procedure in the previous
step), and the fact that each column is independently randomized in Construction A.12. We
can then show that the probability that the inconsistencies across many columns concentrate
in a small number of rows is exponentially small.

• Theorems B.12 and B.13 show that for a fixed inconsistency pattern B, the probability that
the inconsistencies in B concentrate in a small number of rows is exponentially small. Here,
the probability is taken over the randomness used to sample the row-wise and column-wise
decompositions. To construct a collection of permutation sequences Γ(1), . . . ,Γ(γ) such that for
all inconsistency patterns B, there is a non-concentrating sequence, we simply sample many
independent sequences Γ(j). In Theorem B.18, we show that if we sample γ = O(log3 t) such
sequences, then with probability 1− 2−Ω(t), for all inconsistency patterns B that contain at
most one inconsistency in each row, at least one of the sequences Γ(j) will be non-concentrating.
We give the overall construction in Construction B.17.

56

Construction B.10 (Row-Wise Random Permutation Decomposition). Fix positive integers
t, q ∈ N. Let Π be a permutation over the entries of a t-by-q matrix. The row-wise random
permutation decomposition (Π1,Π2,Π3) is then defined as follows:

• First let (Π̂1, Π̂2, Π̂3) be the decomposition of Π from Lemma A.8. In particular, Π̂1 and Π̂3

are row-wise restricted permutations and Π̂2 is a column-wise restricted permutation.

• Since Π̂1 is a row-wise restricted permutation, we can decompose it into a product of t

independent permutations Π̂
(1)
1 , . . . , Π̂

(t)
1 , where the ith permutation Π̂

(i)
1 : [q]→ [q] is applied

to the ith row of the matrix. Similarly, we can express Π̂2 as a product of q independent

permutations Π̂
(1)
2 , . . . , Π̂

(q)
2 , where each Π̂

(j)
2 : [t] → [t] is applied to the jth column of the

matrix.

• For each i ∈ [t], define the vector ĉ(i) ∈ [t]q, where for all j ∈ [q], ĉ
(i)
j is the permuted

row-index of the (i, j)th entry of the matrix under Π̂2 ◦ Π̂1. Specifically, ĉ
(i)
j = Π̂

(Π̂
(i)
1 (j))

2 (i).

Then, define sets T̂
(i)
1 , . . . , T̂

(i)
t ⊆ [q] where T̂

(i)
β is the set of indices j ∈ [q] where ĉ

(i)
j = β.

Clearly, T̂
(i)
1 , . . . , T̂

(i)
t form a partition for [q]. For each β ∈ [t], sample a random permutation

π
(i)
β : [q]→ [q] that randomly permutes the indices in T̂

(i)
β and leaves the other indices unchanged.

Define Π
(i)
1 = π

(i)
q ◦ · · · ◦ π(i)

1 ◦ Π̂
(i)
1 and Π1 to be the row-wise restricted permutation where its

action on row i is given by Π
(i)
1 .

• Let Π2 = Π̂2 and choose Π3 such that Π = Π3 ◦Π2 ◦Π1.

Lemma B.11. Fix positive integers t, q ∈ N and let Π be a permutation over the entries of a
t-by-q matrix. Let (Π1,Π2,Π3) be the row-wise random permutation decomposition of Π from
Construction B.10. Then, Π = Π3 ◦ Π2 ◦ Π1, both Π1 and Π3 are row-wise restricted, and Π2 is
column-wise restricted.

Proof. By construction, Π = Π3 ◦Π2 ◦Π1. Let Π̂1, Π̂2, Π̂3 be the permutations used to construct
Π1,Π2,Π3 in Construction B.10. Since Π̂1 is row-wise restricted and permutation Π̂2 is column-wise
restricted, Π1 and Π2 are by construction row-wise restricted and column-wise restricted, respectively.
It suffices to show that Π3 is row-wise restricted.

Take any entry (i, j) ∈ [t]× [q], and let (it, jt) be its image under permutation Π. Let (i1, j1) =
Π1(i, j) and (i2, j2) = Π2(i1, j1). We show that i2 = it, or equivalently, after applying Π2 ◦Π1, every
entry (i, j) ends up in the same row as Π(i, j). In this case, the permutation Π3 only needs to
changes the column of each entry, and the claim follows. We show this in a sequence of steps.

• Let (i′1, j
′
1) = Π̂1(i, j) and (i′2, j

′
2) = Π̂2(i′1, j

′
1) = Π2(i′1, j

′
1), since Π2 = Π̂2.

• For j ∈ [q], let Π
(j)
2 : [t]→ [t] be the permutation Π2 implements on the jth column. In addition,

let Π
(i)
1 , Π̂

(i)
1 : [q]× [q] be the permutations Π1 and Π̂1 implement on ith row, respectively.

• Since Π1, Π̂1, and Π̂3 are row-wise restricted, i′1 = i = i1 and i′2 = it. Moreover, by definition,

i′2 = Π
(j′1)
2 (i), i2 = Π

(j1)
2 (i), j′1 = Π̂

(i)
1 (j), and j1 = Π

(i)
1 (j).

• By construction,

j1 = Π
(i)
1 (j) =

(
π(i)
q ◦ · · · ◦ π

(i)
1

)(
Π̂

(i)
1 (j)

)
=
(
π(i)
q ◦ · · · ◦ π

(i)
1

)
(j′1).

57

By design, each π
(i)
β for β ∈ [q] only permutes indices j ∈ [q] where Π̂

(Π̂
(i)
1 (j))

2 (i) = β. In

particular, this means that if j1 =
(
π

(i)
q ◦ · · · ◦π(i)

1

)
(j′1), it must be the case that i′2 = Π̂

(j′1)
2 (i) =

Π̂
(j1)
2 (i) = i2. Since i′2 = it, this means that i2 = it, which complete the proof.

Theorem B.12 (No-Concentration in Columns). Fix integers t, q ∈ N, where q = poly(t), and let
Π be a permutation over the entries of a t-by-q matrix. Define the following quantities:

• Let (Π1,Π2,Π3) be the row-wise random permutation decomposition of Π from Construc-
tion B.10.

• Let B ∈ {0, 1}t×q be an inconsistency matrix with z inconsistencies at indices (i1, j1), . . . , (iz, jz) ∈
[t]× [q]. In particular, Biβ ,jβ = 1 for all β ∈ [z].

• Let (i′1, j
′
1), . . . , (i′z, j

′
z) be the positions of the inconsistencies in Π1(B).

Suppose that the following condition holds:

• Condition 1: All of the i1, . . . , iz are distinct. Namely, each row of B contains at most one
inconsistency.

• Condition 2: For every pair of rows i1, i2 ∈ [t], there are at least t indices j ∈ [q] such that
Π(i1, j) is in row i2.

For a set S ⊆ [q] of column indices, let nS denote the number of indices β ∈ [z] where j′β ∈ S. Then,

for every constant ccol > 0, there exists a constant scol > 0 such that with probability 1− 2−Ω(t/ log t)

(taken over the randomness used to sample Π), the following condition holds: for all sets S ⊆ [q]
where |S| ≤ scol · t/ log2 t, we have that nS < ccol · t/ log t.

Proof. Let ccol > 0 be any constant, and fix a constant scol > 0. Let S ⊆ [q] be a set where
|S| ≤ scol · t/ log2 t. Suppose Conditions 1 and 2 hold and consider the event where nS ≥ ccol · t/ log t.
We first show that this event happens with probability 2−k·ccol·t/ log t for some constant k > 0
(independent of scol), where the probability is taken over the randomness used to sample Π1 in
Construction B.10.

• First, let Π̂2 be the column-wise restricted permutation from Construction B.10, and for

j ∈ [q], let Π̂
(j)
2 : [t] → [t] be the permutation Π̂2 implements on column j. By Condition 2

and the fact that Π̂1 and Π̂3 are both row-wise restricted, this means that for all pairs

of rows i1, i2 ∈ [t], there are at least t indices j ∈ [q] where Π̂
(j)
2 (i1) = i2. This means

that for each row i ∈ [t], the sets T̂
(i)
1 , . . . , T̂

(i)
t in Construction B.10 all contain at least t

elements. Thus, over the randomness used to sample Π1, for any inconsistency (iβ, jβ), the
value of j′β is uniformly random over a set of size at least t. This means that for all β ∈ [z],

Pr[j′β ∈ S] ≤ |S| /t = O(1/ log2 t) since |S| = O(t/ log2 t). In particular, for all β ∈ [z] (and
sufficiently large t), Pr[j′β ∈ S] ≤ ccol/(2 log t)

• For β ∈ [z], let Xβ be an indicator random variable for the event j′β ∈ S. From the above
analysis, we have that Pr[Xβ = 1] ≤ ccol/(2 log t). Moreover, Π1 is composed of t independent
row permutations, and there is only one inconsistency in each row of B (Condition 1), so the

58

variables X1, . . . , Xz are all independent. By definition, nS =
∑

β∈[z]Xβ, so by a Chernoff
bound,

Pr[nS ≥ ccol · t/ log t] ≤ 2−k·ccol·(t/ log t),

where k > 0 is a constant.

To conclude the proof, we apply a union over all sets S ⊆ [q] of size scol · t/ log2 t. The number of
such sets is bounded by (

q

scol · t/ log2 t

)
≤ qscol·t/ log2 t ≤ 2k

′·scol·(t/ log t),

for some constant k′ > 0 (independent of scol) since q = poly(t). The claim follows by taking
scol < k/k′ · ccol.

Theorem B.13 (No-Concentration in Rows). Fix positive integers m, t, q ∈ N where t = 2d for
some d ∈ N, and q = poly(t). Then, define the following quantities:

• Let Π be a column-wise restricted permutation over the entries of a t-by-q matrix, and
Π1, . . . ,Π2d be a randomized 2-local decomposition of Π from Construction A.16.

• Let B ∈ {0, 1}t×q be an inconsistency matrix with z = Ω(t) inconsistencies at locations
(i1, j1), . . . , (iz, jz) ∈ [t]× [q]. In other words, Bi1,j1 = · · · = Biz ,jz = 1.

• For ` ∈ [2d], let (i
(`)
1 , j

(`)
1), . . . , (i

(`)
z , j

(`)
z) be the positions (i1, j1), . . . , (iz, jz) permuted according

to the permutation Π` ◦ · · · ◦Π1.

• For a subset S ⊆ [t] of row indices, let n
(`)
S =

∣∣{β ∈ [z] : i
(`)
β ∈ S

}∣∣. In words, n
(`)
S is the

number of inconsistencies in (Π` ◦ · · · ◦Π1)(B) that fall into the rows identified by S.

Suppose that the following conditions hold:

• Condition 1: All of the i1, . . . , iz are distinct. Similarly, i
(2d)
1 , . . . , i

(2d)
z are also all distinct.

Namely, each row of B and Π(B) contain at most one inconsistency. In particular, z ≤ t.

• Condition 2: For every constant ccol > 0, there exists a constant scol > 0 such that the
following holds: for all sets S ⊆ [q] of column indices where |S| ≤ scol · t/ log2 t, the number of
indices β ∈ [z] where jβ ∈ S is less than ccol · t/ log t.

Then, for all constants crow > 0 and srow > 0, with probability 1− 2−Ω(t/ log2 t) (taken over the choice
of randomness in sampling the 2-local decomposition of Π), the following holds: for all indices

` ∈ [2d] and sets S ⊆ [t] where |S| ≤ srow · t/ log5 t, it holds that n
(`)
S < crow · t/ log t.

Proof. Fix constants crow, srow > 0, a set S ⊆ [t] where |S| ≤ srow · t/ log5 t and an index ` ∈ [2d].

Suppose that Conditions 1 and 2 hold, and consider the event where n
(`)
S ≥ crow · t/ log t. We now

show that this event occurs with probability 2−Ω(t/ log2 t). We first analyze the case where ` ≤ d.
The ` > d case is analogous. First, by appealing to Condition 2, we argue that the inconsistencies
in B must be distributed across many columns.

59

Claim B.14. Let scol > 0 be the constant from Condition 2 for the case where ccol = crow. Then,
there exists a set T ⊆ [q] of column indices where |T | ≥ (scol/2) · t/ log2 t satisfying the following
properties:

• For all j ∈ T , the number of indices β ∈ [z] where jβ = j is at most 2/scol · log2 t. That is,
the jth column of B contains at most (2/scol) · log2 t inconsistencies.

• For all j ∈ T , there is at least one β ∈ [z] where i
(`)
β ∈ S and j

(`)
β = j. That is, after applying

Π1, . . . ,Π` to B, there is an inconsistency in row i and column j of the resulting matrix.

Proof. Let T̂ =
{
j

(`)
β : β ∈ [z] and i

(`)
β ∈ S

}
be the set of column indices of the inconsistencies whose

row indices fall into set S in layer `. Our argument proceeds in two steps:

• Since Π1, . . . ,Π` are column-wise restricted, it follows that j
(`)
β = jβ for all β ∈ [z]. By

assumption, n
(`)
S ≥ crow · t/ log t. This means that

∣∣T̂ ∣∣ > scol · t/ log2 t, since otherwise, T̂ is a
set with at most scol · t/ log2 t indices that contains crow · t/ log t = ccol · t/ log t indices from
the multiset {j1, . . . , jz}. This violates Condition 2.

• Define T ⊆ T̂ to be the set of indices j ∈ T̂ where the jth column of B contains fewer
than (2/scol) · log2 t inconsistencies. By construction, the set T satisfies both of the required
properties. It suffices to argue that |T | ≥ (scol/2) · t/ log2 t. Suppose otherwise. From above,
we know that

∣∣T̂ ∣∣ > scol · t/ log2 t, and so if |T | < (scol/2) · t/ log2 t, there are more than
(scol/2) · t/ log2 t columns in B that contain 2/scol · log2 t inconsistencies, which means that B
contains more than t inconsistencies, which is a contradiction. Thus, |T | ≥ (scol/2) · t/ log2 t,
and the claim follows.

In the following, we take scol > 0 to be the constant from Claim B.14. Now, since the
permutations Π1, . . . ,Π2d are generated according to Construction A.16, the entries in each column
of the inconsistency matrix are routed using independent benešd networks (each of which implements
the permutation Π on its respective column). This means that in layer `, we can partition the t rows
of W into r = 2d−` disjoint subsets R1, . . . , Rr, each containing 2` rows, such that the permutation
Π` ◦ · · · ◦Π1 factors into the product of r independent permutations, each operating on one of the
subsets R1, . . . , Rr (Fact A.10). Let w = |S| and w1, . . . , wr be the number of rows of S that fall
into each of the subsets R1, . . . , Rr, respectively. We now show that there are not many blocks in B
where a large fraction of the rows within those blocks contain an inconsistency.

Claim B.15. For any constant ε > 0 (and sufficiently large t), there are at most (scol/4) · t/ log2 t
rows i ∈ [t] where i ∈ Rk for some k ∈ [r] where wk/2

` > ε/ log2 t.

Proof. Suppose there are (scol/4) · t/ log2 t = (scol/4)(r · 2`)/ log2 t rows i where i ∈ Rk and
wk/2

` > ε/ log2 t. Since each block contains 2` rows, this means there are at least (scol/4) · r/ log2 t
blocks k ∈ [r] where wk/2

` > ε/ log2 t. But now,

w =
∑
k∈[r]

wk > (scol/4)(r/ log2 t)(2` · ε/ log2 t) = ε · (scol/4) · t/ log4 t = Θ(t/ log4 t).

This is a contradiction since w = |S| = O(t/ log5 t).

60

Let T be the set of column indices from Claim B.14 where for all j ∈ T , the jth column in B
contains at most 2/scol · log2 t inconsistencies. To complete the proof, we first say that a column
j ∈ T is “good” if for all (iβ, jβ) where jβ = j, then iβ ∈ Rk for some k where wk/2

` < scol/(4 log2 t).
Otherwise, we say the column is “bad.” By Condition 1, each row has at most one inconsistency,
and by Claim B.15, the number of rows where iβ ∈ Rk for some k where wk/2

` > scol/(4 log2 t)
is at most (scol/4) · t/ log2 t. Thus, there can be at most (scol/4) · t/ log2 t “bad” columns. Since
|T | ≥ (scol/2) · t/ log2 t, we conclude that there are at least (scol/4) · t/ log2 t “good” columns in T .
We now show the following claim:

Claim B.16. If j ∈ T is a “good” column, then the probability that there exists β ∈ [z] where

j
(`)
β = j and i

(`)
β ∈ S is at most 1/2. Here, the probability is taken over the randomness used to

sample the routing configuration for column j.

Proof. Take any inconsistency (iβ, jβ) where jβ = j. Set k ∈ [r] so that iβ ∈ Rk. By Lemma A.14,
over the choice of the randomness used to sample the routing configuration for column j, the

distribution of i
(`)
β is uniform over Rk. Therefore, Pr[i

(`)
β ∈ S] = wk/2

` < scol/(4 log2 t), since j is a

“good” column. Finally, since j ∈ T , column j contains at most (2/scol) · log2 t inconsistencies. By

a union bound, the probability that there exists β ∈ [z] where jβ = j and i
(`)
β ∈ S is bounded by

1/2.

From above, there are at least (scol/4) · t/ log2 t “good” columns in T . Moreover, for every

j ∈ T , there is a β ∈ [z] where i
(`)
β ∈ S and j

(`)
β = j. Since Construction A.16 samples the routing

configuration for each of the columns of Π randomly and independently, we conclude from Claim B.16
that

Pr[∀j ∈ T : i
(`)
β ∈ S and j

(`)
β = j] ≤ 2−(scol/4)·t/ log2 t = 2−Ω(t/ log2 t),

where the probability is taken over the randomness used to sample the decomposition Π. Corre-

spondingly, this implies that the probability that n
(`)
S ≥ crow · t/ log t is bounded by 2−Ω(t/ log2 t).

To conclude the proof, we apply a union over all sets S ⊆ [q] of size s = O(t/ log5 t) and all

indices ` ∈ [2d]. The number of such sets is bounded by qs ≤ 2O(t/ log4 t) since q = poly(t). Moreover,
d = log t, so by a union bound, the probability that there exists S ⊆ [t] of size |S| ≤ s and ` ∈ [2d]

where n
(`)
S ≥ crow · t/ log t is 2−Ω(t/ log2 t). The claim follows.

Construction B.17 (Randomized Permutation Decomposition). Fix positive integers t, q, γ ∈ N
where t = 2d for some d ∈ N, and q, γ = poly(t). Let Π be a permutation over the entries of a
t-by-q matrix. The randomized permutation decomposition of Π is a collection of γ sequences of

permutations Γ(1), . . . ,Γ(γ) where each Γ(i) =
(
Π

(1)
1 ,Π

(1)
2,1, . . . ,Π

(1)
2,2d,Π

(1)
3

)
is a sequence of α = 2d+ 2

2-locally decomposable permutations on the entries of a t-by-q matrix. We construct each sequence
Γ(i) as follows:

• For each i ∈ [γ], apply the row-wise random permutation decomposition from Construction B.10

to Π to obtain permutations (Π
(i)
1 ,Π

(i)
2 ,Π

(i)
3).

• For each i ∈ [γ], apply the randomized 2-local decomposition from Construction A.12 to Π
(i)
2

to obtain Π
(i)
2,1, . . . ,Π

(i)
2,2d.

61

By construction, each permutation sequence Γ(i) implements Π in the following sense: Π =

Π
(i)
3 ◦Π

(i)
2,2d ◦ · · · ◦Π

(i)
2,1 ◦Π

(i)
1 .

Theorem B.18 (Randomized Permutation Decomposition). Fix positive integers t, q, γ ∈ N where
t = 2d for some d ∈ N and q = poly(t). Then, define the following quantities:

• Let Π be a permutation over t-by-q matrices where for every pair of rows i1, i2 ∈ [t], there are
at least t indices j ∈ [q] such that Π(i1, j) is in row i2.

• Let Γ(1), . . . ,Γ(γ) be the collection of permutation sequences obtained by applying Construc-

tion B.17 to Π. In particular, Γ(j) =
(
Π

(j)
1 ,Π

(j)
2,1, . . . ,Π

(j)
2,2d,Π

(j)
3

)
for all j ∈ [γ].

• Let B ⊆ {0, 1}t×q be the set of inconsistency patterns B where B and Π(B) have at most one
inconsistency in each row.

Let c1, c2 > 0 be arbitrary constants, and let κ1 = c1 · t/ log5 t and κ2 = c2 · t/ log t. Then, there exists
γ = O(log3 t) such that with probability 1−2−Ω(t) over the choice of randomness in Construction B.17,
the collection of permutation sequences Γ(1), . . . ,Γ(γ) implementing Π is (κ1, κ2)-non-concentrating
for B (Definition 4.13).

Proof. We use a union bound. Let B ∈ B be an inconsistency matrix with z inconsistencies at indices
(i1, k1), . . . , (iz, kz). Consider the probability (over the randomness used by Construction B.17) that

the sequence Γ(j) =
(
Π

(j)
1 ,Π

(j)
2,1, . . . ,Π

(j)
2,2d,Π

(j)
3

)
is (κ1, κ2)-concentrating for B.

• For β ∈ [z], let kβ,1 denote the column index of (iβ, kβ) after applying the first permutation Π
(j)
1 .

By Theorem B.12, for all constants ccol > 0, there exists a constant scol > 0 such that with
probability 1− 2−Ω(t/ log t), the following holds: for all sets S ⊆ [q] where |S| ≤ scol · t/ log2 t,
the number of indices β ∈ [z] where kβ,1 ∈ S is less than ccol · t/ log t.

• For β ∈ [z] and ` ∈ [2d], let iβ,2,` denote the row index of (iβ, kβ) after applying the sequence

of permutations Π
(j)
2,` ◦ · · · ◦Π

(j)
2,1 ◦Π

(j)
1 . By Theorem B.13, with probability 1− 2−Ω(t/ log2 t),

the following holds: for all indices ` ∈ [2d] and all sets S ⊆ [t] where |S| ≤ c1 · t/ log5 t,
the number of indices β ∈ [z] where iβ,2,` ∈ S is less than c2 · t/ log t. In other words, with

probability 1 − 2−Ω(t/ log2 t), no subset of κ1 rows in Π
(j)
2,` ◦ · · · ◦ Π

(j)
2,1 ◦ Π

(j)
1 (B) contain more

than κ2 inconsistencies.

• By assumption, B has at most 1 inconsistency in each row. Thus, no subset of κ1 rows

can contain κ2 inconsistencies (for sufficiently large t). Since Π
(j)
1 is a row-wise restricted

permutation, Π
(j)
1 (B) also contains at most 1 inconsistency in each row. Finally, by assumption

Π(B) contains at most 1 inconsistency in each row, so no subset of κ1 rows of Π(B) can
contain κ2 inconsistencies.

By the above analysis, the probability that Γ(j) is not (κ1, κ2)-non-concentrating for B is bounded by

2−Ω(t/ log2 t). Since Construction B.17 samples all of the permutation sequences Γ(j) independently,
the probability that Γ(j) is not (κ1, κ2)-non-concentrating for B for all j ∈ [γ] is bounded by

2−Ω(γt/ log2 t). Concretely, let 2−c
′
1·γt/ log2 t where c′1 > 0 is a constant be a bound on the probability

that Γ(j) is not (κ1, κ2)-non-concentrating for B for all j ∈ [γ]

62

To complete the analysis, we use a union bound to bound the probability that Γ(1), . . . ,Γ(γ) is
not (κ1, κ2)-non-concentrating for the set B. First, we have |B| ≤ (q + 1)t, since B only contains
inconsistency matrices with at most one inconsistency in each row. Since q = poly(t), this means that
|B| ≤ 2c

′
2·t log t for some constant c′2 > 0. By the union bound, the probability that there exists B ∈ B

for which Γ(1), . . . ,Γ(γ) is not (κ1, κ2)-non-concentrating for B is at most 2c
′
2·t log t−c′1·γt/ log2 t. Setting

γ = 2 · c′2/c′1 log3 t = O(log3 t), this probability becomes 2−c
′
2·t log t = 2−Ω(t). Thus, with probability

1 − 2−Ω(t), the collection of permutation sequences Γ(1), . . . ,Γ(γ) is (κ1, κ2)-non-concentrating
for B.

Remark B.19 (Padding the Linear PCPs). Theorem B.18 requires that the permutation Π over
t-by-q matrices has the property that for every pair of rows i1, i2 ∈ [t], there are at least Ω(t) indices
j ∈ [q], where Π(i1, j) is in row i2. In the quasi-optimal linear MIP construction (Construction 4.14),
the permutations Π on which we apply the randomized permutation decomposition may not natively
satisfy this property. This problem can be addressed by defining a new permutation Π′ that operates
on t-by-(q + t2) matrices as follows:

• For all i ∈ [t] and j ≤ q, Π′(i, j) := Π(i, j).

• For all i ∈ [t] and j > q, Π′(i, j) := (i+ j mod t, j).

This construction ensures that for all pairs of rows i1, i2 ∈ [t], there are at least t indices j ∈ [q] such
that Π′(i1, j) is in row i2, while preserving the operation of Π in the leftmost t-by-q block of the
matrix. In Construction 4.14, we would thus pad the assignment matrices W accordingly (with a
q-by-t2 block of 0’s that are used only for the consistency checks). Padding the assignment matrices
in this way increases the query dimension of the linear MIP in Construction 4.14 from Õ(s/t) to
Õ(s/t) + t2, thus increasing the overall prover overhead by an additive factor of poly(t) = poly(λ).

B.3 Quasi-Optimal Linear MIP Analysis

In this section, we give the formal security analysis of our linear MIP from Section 4.3 (Construc-
tion 4.14). First, we state and prove the main theorem on the properties satisfied by Construction 4.14.
We conclude by giving the proof of Theorem 4.15.

Theorem B.20. Let λ be a security parameter, and let C be an arithmetic circuit over F. Then,
define parameters t, δ, k, ε, d, κ1, κ2, α, γ, z as in Construction 4.14. Suppose δ > 0 is a constant,
ε ≤ 1/poly(λ), and α ·κ2 < (1− δ)/(8ρ) · t. Then, Construction 4.14 is an input-oblivious (k+αγz)-
query linear MIP for the language LC of arithmetic circuit satisfiability with t · (1 + αγz) provers
and soundness error 2−Ω(t/ρ) + α · 2−Ω(κ1).

Proof. We show completeness and soundness of the linear MIP separately.

Completeness. Completeness follows from completeness of the underlying linear PCP systems
and completeness of the consistency check procedure (Construction 4.8).

Soundness. Take any x /∈ LC , and consider the probability (taken over the randomness of query
generation) that there exists a proof that the verifier accepts. For i ∈ [t], let yi = Q>i πi denote
the responses the verifier obtains from prover Pi on its linear PCP query Qi. We appeal to the
soundness of the underlying linear PCP instances to argue that with probability 1− 2−Ω(t), if the

63

verifier accepts all of the linear PCP queries responses, then the inconsistency graph GW,A contains
a matching of size Ω(t). Recall that W is the matrix with rows w1, . . . ,wt.

Lemma B.21. For any x /∈ LC , it holds that for all proofs π1, . . . ,πt ∈ Fd to the underlying linear
PCP instances (P1,V1), . . . , (Pt,Vt), with probability 1− 2−Ω(t), one of the following conditions hold:

• There is an i ∈ [t] such that Vi rejects πi.

• If for all i ∈ [t], Vi accepts πi = [wi,pi], then the inconsistency graph GW,A contains a
matching of size

(
1−δ

2

)
· t2 = Ω(t).

Here the probability is taken over the random coins used to generate the queries for the underlying
linear PCP instances (P1,V1), . . . , (Pt,Vt).

Proof. To show the lemma, consider the event where for all i ∈ [t], Vi accepts πi = [wi,pi], but there
are fewer than

(
1−δ

2

)
· t2 mutually disjoint pairs of indices i, i′ ∈ [t] where wi and wi′ correspond

to inconsistent assignments. We argue that this event occurs with probability 2−Ω(t) over the
choice of the verifier’s randomness. Let wi1 , . . . ,wi` be a subset of (w1, . . . ,wt) that represents
a consistent assignment to the shared inputs in Ci1 , . . . , Ci` . There are at most

(
1−δ

2

)
· t2 disjoint

pairs of witnesses that are inconsistent, so there must exist a consistent subset of witnesses of size
` ≥ t−

(
1−δ

2

)
· t =

(
1+δ

2

)
· t. Let w ∈ Fm be an assignment that is consistent with wi1 , . . . ,wi` .

Now, since x /∈ LC , by δ-robustness of the decomposition (f1, . . . , ft, inp,wit), at most δ · t of the
constraints f1(x,w), . . . , ft(x,w) can be satisfied. This means that there are at least `−δt ≥

(
1−δ

2

)
·t

indices j ∈ [`] where fij (x,w) = 0, or equivalently, Cij (xij ,wij) = 0. Since each of the linear PCP
systems used to verify Ci are systematic and have knowledge error at most ε, the probability that
Vi accepts πi when Ci(xi,wi) = 0 is at most ε. The linear PCP instances are independent, so

Pr[∀i ∈ [t] : Vπii (xi) = 1] ≤ ε(1−δ)/2·t = 2−Ω(t),

since there are at least (1− δ)/2 · t indices i where C(xi,wi) = 0. Thus, with probability 1− 2−Ω(t),
there are at least

(
1−δ

2

)
· t2 mutually disjoint pairs of indices where wi and wi′ are inconsistent.

Each disjoint pairs of indices contributes an edge to a matching in GW,A, and the claim follows.

Thus, for a false statement x /∈ LC , with probability 1− 2−Ω(t), either the verifier rejects the
proof or there is a matching of size

(
1−δ

4

)
· t in the inconsistency graph GW,A. We now show that

if there exists such a matching, then at least one of the consistency checks fails with probability
1− α · 2−Ω(κ1) − 2−Ω(t/ρ).

Lemma B.22. Suppose there exists a matching of size
(

1−δ
4

)
· t in GW,A. Then, at least one of the

consistency checks fails with probability 1− α · 2−Ω(κ1) − 2−Ω(t/ρ).

Proof. Suppose there exists a matching of size
(

1−δ
4

)
· t in GW,A. Since (Π1, . . . ,Πz) is a collection

of ρ-regularity-inducing permutations, there exists some β ∈ [z] where the inconsistency graph of
Wβ = Πβ(W) with respect to Aβ = Πβ(A) contains a regular matching of size s =

(
1−δ
4ρ

)
· t. Let

M be the regular matching of size s in GWβ ,Aβ
. For each edge (i1, i2) ∈M , we associate with it two

indices j1, j2 ∈ [q] where Wβ [i1, j1] 6= Wβ [i2, j2] but Aβ [i1, j1] = Aβ [i2, j2]. Note that j1, j2 always
exists by definition of GWβ ,Aβ

. Define the inconsistency matrix Bβ ∈ {0, 1}t×q where for each

(i1, i2) ∈M , Bβ[i1, j1] = 1 = Bβ[i2, j2]. All other values in Bβ are set to 0. Let B = Π−1
β (Bβ). By

construction, Bβ has at most a single 1 in each row, and moreover, since each edge in M corresponds

64

to an edge in a matching of the inconsistency graph GW,A, matrix B also has at most a single 1 in
each row. Note that even through W and Wβ may have more inconsistent assignments than those
indicated in B and Bβ, it is not necessary to consider them in the analysis.

By construction, B and Πβ(B) have at most one inconsistency in each row (where an inconsistency

is an entry with value 1). This means that B ∈ Bβ. Next, since Γ
(1)
β , . . . ,Γ

(γ)
β is a collection of

permutation sequences that is non-concentrating for Bβ, there exists some j ∈ [γ] where Γ
(j)
β =(

Π
(j)
β,1, . . . ,Π

(j)
β,α

)
is non-concentrating for B. For all ` ∈ [α], let B` = Π

(j)
β,`(B`−1) where B0 = B.

The non-concentration property states that no subset of κ1 rows of B` contains κ2 inconsistencies.
Consider now the sequence of consistency checks the verifier performs for the permutations

Π
(j)
β,1, . . . ,Π

(j)
β,α. By construction of the consistency check queries, the verifier’s behavior precisely

corresponds to performing the approximate consistency check procedure in Construction 4.8 to
verify the following relations:

W
(j)
β,1 ≈ Π

(j)
β,1(W) and W

(j)
β,` ≈ Π

(j)
β,`(W

(j)
β,`−1) for all 1 < ` ≤ α.

Consider the first relation. By construction, the inconsistency matrix B encodes the positions of s
pairs of inconsistent assignments in W, and the matrix B1 encodes the (permuted) positions of the

same s pairs of inconsistent assignments in Π
(j)
β,1(W). We now argue that W

(j)
β,1 contains at least

s− κ2 pairs of inconsistent assignments, except with probability 2−Ω(κ1). This follows immediately

from the assumption that Γ
(j)
β is (κ1, κ2)-non-concentrating (Definition 4.13) and soundness of

the consistency check (Lemma 4.9). In particular, by soundness of the consistency check, with

probability 1− 2−Ω(κ1) (over the randomness of the query generation algorithm), matrices W
(j)
β,1 and

Π
(j)
β,1(W) can differ on at most κ1 rows. But since Γ

(j)
β is (κ1, κ2)-non-concentrating, no subset of κ1

rows of B1 contains κ2 inconsistencies. We conclude that W
(j)
β,1 must contain at least s− κ2 pairs of

inconsistent rows. Applying this argument α times, once for each permutation Π
(j)
β,` for ` ∈ [α], we

conclude that with probability at least 1− α · 2−Ω(κ1), the number of pairs of inconsistent rows in

the final matrix W
(j)
β,α is at least

s− α · κ2 =

(
1− δ

4ρ

)
· t− α · κ2 ≤

(
1− δ

8ρ

)
· t.

Finally, Bα = Πβ(B) is the inconsistency matrix derived from a regular matching. Thus, if the final

matrix W
(j)
β,α contains at least

(
1−δ
8ρ

)
· t pairs of inconsistent rows according to the inconsistency

pattern Bα, then Πβ′(W
(j)
β,α) and W

(j)
β,α differs on at least

(
1−δ
8ρ

)
· t pairs of adjacent rows. But then,

by Corollary 4.11, the probability that the verifier accepts is at most 2−Ω(t/ρ). Putting everything
together, the probability that the verifier accepts is bounded by α · 2−Ω(κ1) + 2−Ω(t/ρ), and the claim
follows.

Combining Lemmas B.21 and B.22, we conclude that the verifier accepts a proof of a false statement
x /∈ LC with probability at most α · 2−Ω(κ1) + 2−Ω(t/ρ).

Proof of Theorem 4.15. First, we describe how we instantiate each of the primitives in Con-
struction 4.14:

65

• We instantiate the (t, δ)-robust decomposition using the construction from Corollary B.6,
where t = Θ(λ), and δ > 0 is a constant. Let (f1, . . . , ft, inp,wit) be the robust decomposition
of C, and let C1, . . . , Ct be the arithmetic circuits that compute f1, . . . , ft, respectively. Each
of the circuits Ci can be computed by an arithmetic circuit of size Õ(s/t) + poly(t, log s).

• We use the k-query linear PCP from Fact 4.3 to instantiate each of the linear PCP (Pi,Vi)
instances for Ci for all i ∈ [t]. In this case, ε = 1/poly(λ), k = O(1), and the query length is
d = Õ(s/t) + poly(t, log s).

• We use Construction B.8 to instantiate the regularity-inducing permutations. In this case,
ρ = O(1) and z = O(1).

• We use Construction B.17 to instantiate the non-concentrating sequence of permutations,
where we set κ1 = t/ log5 t and κ2 = c · t/ log t, where the constant c is chosen so that
κ2 · (log t+ 2) < 1−δ

8ρ · t. In this case, α = log t+ 2 = Θ(log t) and γ = O(log3 t).

Note that in order to argue that the sequences of permutations output by Construction B.17 is
non-concentrating (Theorem B.18), we may additionally need to pad the query (and proof) vectors
with an extra t2 = O(λ2) components (Remark B.19). Putting everything together then, we have
the following:

• The number of provers in the linear MIP system is t · (1 + αγz) = t · polylog(t) = Õ(λ).

• The query length is determined by the query length d of the underlying linear PCP instances
(and any extra padding from Remark B.19). Thus, the query length is Õ(s/λ) + poly(λ, log s).

• The total number of queries is k + αγz. Since k = O(1), α = Θ(log t), γ = O(log3 t), and
z = O(1), the total number of queries is k +O(log4 t) = polylog(λ).

• The prover’s computation can be broken down as follows. First, the robust encoding x← inp(x′)
and w ← wit(x′,w′) can be computed by an arithmetic circuit of size Õ(s) + poly(t, log s).
From Fact 4.3, each of the underlying linear PCP proofs can be computed by a circuit of size
Õ(s/t) + poly(t, log s). Thus, all t proofs for each of the underlying linear PCP instances can
be constructed by a circuit of size Õ(s) + poly(t, log s). Finally, permuting the entries in an
assignment matrix (of size Õ(s) + t2) can be performed also by a circuit of size Õ(s) + poly(t).
There are a total of αγz = polylog(t) such permutations, which adds another polylogarithmic
overhead to the overall prover complexity. Summing together the different contributions and
noting that t = Θ(λ), we conclude that the prover’s algorithm can be computed by a circuit
of size Õ(s) + poly(λ, log s).

• The query-generation procedure can be broken down as follows. From Fact 4.3, generating
the queries for the underlying linear PCP instance requires a circuit of size Õ(s/t). There
are t instances, so generating all of the queries requires a circuit of size Õ(s). To perform the
consistency checks, the query-generation algorithm additionally generates αγz = polylog(t)
random matrices, each of size Õ(s) + poly(t). Thus, the overall algorithm can be modeled by
a circuit of size Õ(s) + poly(λ, log s).

• The verifier’s decision algorithm consists of checking t independent linear PCP instances,
which can be computed by a circuit of size at most O(tn) (Fact 4.3). In addition, the decision

66

algorithm needs to perform O(αγz) = polylog(t) consistency checks (Construction 4.8), each
of which requires computing t linear relations. This incurs an additive cost of Õ(t). Thus, the
overall cost is bounded by Õ(λn).

• Finally, by Theorem B.20, for this particular choice of parameters, the overall construction
achieves soundness error

α · 2−Ω(κ1) + 2−Ω(t/ρ) = (log t+ 2) · 2−Ω(t/ log5 t) + 2−Ω(t) = 2−Ω(λ/polylog(λ)).

We can amplify the soundness to 2−λ by parallel repetition. Since we only require polylog(λ)
parallel instances, this introduces an additional polylog(λ) overhead to the prover complexity
and the proof size. Thus, the resulting construction remains quasi-optimal.

67

	Introduction
	Quasi-Optimal SNARGs
	Optimally-Laconic Arguments and 1-Bit SNARGs
	Additional Related Work

	Quasi-Optimal Linear MIP Construction Overview
	Consistency Checking

	Preliminaries
	Quasi-Optimal Linear MIPs
	Robust Decomposition for Circuit Satisfiability
	Consistency Checking
	Quasi-Optimal Linear MIP Construction

	Quasi-Optimal SNARGs
	Defining Quasi-Optimality
	Quasi-Optimal SNARGs from Quasi-Optimal Linear MIPs

	Optimally-Succinct SNARGs and Laconic Arguments
	1-Bit SNARGs from Indistinguishability Obfuscation
	1-Bit Laconic Arguments and Witness Encryption

	Additional Preliminaries
	Linear PCPs and Linear MIPs
	Routing Networks
	Succinct Non-Interactive Arguments
	Linear-Only Vector Encryption over Rings
	Indistinguishability Obfuscation and Puncturable PRFs

	Quasi-Optimal Linear MIP Construction
	Robust Decomposition via MPC
	Constructing Randomized Permutation Decompositions
	Quasi-Optimal Linear MIP Analysis

