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Abstract
Machine learning algorithms are used by more and more online applications to improve the services. Machine
learning-based online services are usually accessed by thousands of clients concurrently through a relatively nar-
row bandwidth, such as a WiFi network or a cell phone network. When applying secure computations to such online
services, however, current methods for generating multiplication triplets might take a long time, especially when only
a narrow bandwidth is available or large-scale matrices are involved in the computation. In this paper, we present a
more practical method for generating multiplication triplets that are specified for additively shared matrices from ho-
momorphic encryption. With our algorithmic and implement optimizations, our protocol is faster than and consumes
less communication traffic than the existing methods. Experimental results show that, under a 100 Mbps network,
our protocol took about 18.0 seconds to generate triplets for matrices with more than 2.6× 105 entries. It was about
20− 108 times faster than existing methods. As the concrete example, we applied our protocol to two existing se-
cure computation frameworks of machine learning, i.e., SecureML (S&P’17) and MiniONN (CCS’17). Experimental
results show that our method reduced about 74%− 97% of the triplet generation time of these frameworks when a
narrow bandwidth was used.

1 Introduction

Machine learning algorithms have been employed to more and more online services for improving the service, espe-
cially along with the rapid development of deep neural networks [44, 47, 50]. For hosting the service with a specific
machine learning algorithm F , a service operator first trains a model W . Then the operator receives new data x from a
client. Subsequently, the service operator will conduct prediction on client’s data using its model. The predication re-
sult F (W,x) will be sent back to the client. Such a service is usually called as machine learning as a service (MLaaS).
For a large variety of machine learning algorithms, e.g., linear regression, logistic regression and neural networks, the
most fundamental operation is computing products of matrices. Typically, large-scale matrices are commonly involved
in machine learning algorithms like deep neural networks, requiring to compute millions of multiplications.

When the online service involves sensitive information of the clients, potential information leakage of clients’ data
to these online services is an important issue to overcome. A naive solution is to have clients download the model W ,
and run the prediction locally. However, on the opposite side, the model itself also demands privacy. For example,
details of the trained model often constitute the service operator’s commercial secrets, and thus confidentiality is
needed. In other scenarios, the model might have been trained from sensitive data such as patients’ medical records or
personal genetic data [51]. Publishing such a model can be at the risk of attacks such as model inversion attacks [19,
46]. Also, it might violate certain regulations such as [1] to publish such a model.

Secure two-party computation (S2C) [23, 54], which allows two players to compute a joint function on their
secret inputs without showing anything except the result, is thought as a potential solution for addressing the privacy
requirements of online applications like MLaaS. We focus on two-stage S2C that allows a short response time since
it is one of the important factors for a good user experience to the online applications. A two-stage S2C protocol



Table 1: Generating MTs in the existing two-stage S2C frameworks of machine learning would take a long time,
especially when only a narrow bandwidth is available.

MTs are MTs Bandwidth Time Communication
used for generated by (Mbps) (sec) (MB)

Neural
Networks
Evaluation

[35] 1024 472 3072

Ours 100 19.2 13710 119
Model
Training
(e.g., linear
regression)

[40] (OT) 72 420.2 1945
[40] (LHE) 72 252.9 20

Ours 100 29.3 15910 148

consists of an online evaluation stage and a data-independent pre-computation stage, e.g., offline optimization for
Yao’s garbled circuit [6, 27] and pre-computing Beaver’s multiplication triplets (MT) [5]. More specifically, we focus
on the two-stage S2C protocols, e.g., [14, 30, 15, 16, 40], that use additive secret shares and pre-computed MTs from
the consideration that, the product of two additively shared matrices can be evaluated efficiently with pre-computed
MTs without any cryptographic operations. Therefore, the evaluation stage (i.e., the response time) of such a two-stage
S2C for privacy-preserving machine learning can be very fast.

The end-to-end running time of generating MTs in the pre-computation stage is also a critical factor for a good user
experience to the online applications. A shorter pre-computation stage should lead to a better user experience because
the client might access to the service for multiple times. Given the fact that, a specific MT can only be used once and
a “fresh” MT should be re-generated for another evaluation of the secure computation. For such a scenario that a fast
network between the client and the service operator is available, e.g., a 10 Gbps backbone network, generating MTs for
products of large-scale matrices can be fast using the existing oblivious transfer (OT) based methods, e.g., [16, 40]. For
applications like MLaaS, however, it would be more realistic to assume a limited network speed between the service
operator and the client for some reasons. For example, there might be thousands of clients accessing to the service
concurrently through a WiFi network or a cell phone network. It will be a technically difficult task for the service
operator to prepare such a wide bandwidth for thousands of clients, even though he can elastically scale his computing
power using public cloud services such as Amazon AWS. Also, other potential factors constrain the network speed
between the clients and the service operator too, such as the long network delay due to the geographically remote
distance between them.

When only a narrow bandwidth is available, generating MTs for the matrix products in machine learning algorithms
might take a long time. We take two S2C frameworks of machine learning as the example (Table 1), i.e., MiniONN [35]
and SecureML [40]. Both of these frameworks generate MTs during the pre-computation stage. For MiniONN, it took
more than 470 seconds (even under a 1 Gbps bandwidth) to generate MTs that are used in a single evaluation of a
neural network model, not to mention that more than 3 gigabytes data were transferred which was about 2000 times
larger than the size of the neural model itself. For SecureML, two MT generation methods were proposed1. The OT-
based method in SecureML took more than 420 seconds (under a 72 Mbps bandwidth) and transferred more than 1.9
gigabytes data to generate MTs that are used for training a linear regression model from a 7.6 megabytes dataset. The
alternative method is built from linearly homomorphic encryption (LHE) [43, 13]. This LHE-based method consumed
less network traffic but its running time was still long due to a cubic number of public-key operations with respect to
the matrix size.

As described herein, we consider two-stage S2C protocols that involve products of large-scale matrices. We present
an efficient method to generate the triplets that are used for multiplying two additively shared matrices. The running
time of our method can outperform the existing methods under a narrow bandwidth, especially when the matrix size
is large. According to our results (§ 6), our method was 99− 106 times faster than the OT-based method used in
SecureML, and was 18− 21 faster than the fully homomorphic encryption (FHE) based method used in MiniONN,
when matrices with more than 216 entries were involved. Consequently, our method can reduce more than 90% of the
running time of the pre-computation stage of SecureML and MiniONN. (§ 7).

1Although SecureML is originally designed for training a machine learning model privately which it differs from the MLaaS setting that we are
discussing, MT generation is also a heavy task in SecureML.
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1.1 Related Work
Many works have pushed S2C towards practical applications e.g., [9, 15, 4, 16, 40, 27, 52, 34, 49], to name a few. By
the virtue of these improvements, many S2C protocols for privacy-preserving machine learning have been proposed,
e.g., [24, 42, 2, 53, 8, 7, 40, 35]. For most the these S2C protocols, the evaluation time would take a long time due to
expensive cryptographic operations.

The two-stage S2C that uses additive secret shares and pre-computed MTs [5] can allow a short evaluation time
by performing relatively heavy tasks in the pre-computation stage, such as generating MTs, pre-computing-OT [6],
and preparing OT-extension [29, 4]. On the other hand, only lightweight cryptographic primitives are used in the
evaluation stage. Therefore, the evaluation stage can be very fast. Several generic secure computation frameworks
in this class have been developed, e.g., SPDZ [15] and ABY [16]. Also, the two-stage secure computation has been
applied to machine learning, e.g., SecureML [40] and MiniONN [35].

When applying two-stage S2C to machine learning algorithms, generating MTs for matrix products might take
a long time or consume a tremendously large amount of network traffic. To reduce this cost, vectorized MTs are
proposed [40, 35]. Specifically, the vectorized MT is specialized for computing inner products of two additively
shared vectors. Then, the product of additively shared matrices is evaluated using multiple vectorized MTs. The first
method [40] is built from OT. It might lead to a long pre-computation stage if only a narrow bandwidth is available.
As we have already mentioned, the alternative LHE-based method [40] might also take a long computing time due
to a large number of public-key operations. MiniONN [35] uses a message packing technique [48] from an FHE
scheme [12] to speed up the LHE-based method of [40], while this FHE-based method needs to send a cubic number
of ciphertexts with respect to the matrix size. As a result, the communication and decryption of this FHE-based method
might be too expensive, especially when large-scale matrices are considered.

Current methods for MT generation are unbalanced between the communication cost and computation cost. That
is, the computationally light OT-based method will consume too wide bandwidth while the communication-friendly
methods require too much computation efforts. If only a limited amount of bandwidth is available, all these methods
would lead to a long pre-computation stage. This might hinder the employment of secure computations to online
services such MLaaS, especially for a client who might access the service for multiple times.

There are some other tools and methods that can be used for generating MT. For example, MT can be generated
from generic cryptographic tools such as Yao’s garbled circuit [54, 31, 56] and garbled arithmetic circuit [3]. However,
such generic tools also require a wide bandwidth as the OT-based methods. The FHE-based method [25] uses expen-
sive homomorphic rotation operations [20], and thus is more computation critical, not to mention that this method
needs to transfer a significantly larger public key, e.g., more than 4 gigabytes, which is an unignorable overhead. The
other ad hoc methods [39, 17] are more efficient in computation time but the matrix size is constrained, e.g., smaller
than 16×16, which might be not sufficient for modern machine learning algorithms like deep neural networks.

1.2 Our Contributions
In this paper, we present a more efficient S2C protocol for generating MTs that are used for multiplying additively
shared matrices (§ 4). Our protocol is built from homomorphic encryption and works for large matrices. We pro-
pose algorithmic (§4.3) and implement (§4.4) optimizations to improve its computational and communication per-
formances. Specifically, we propose a technique to compute a batch of inner products at the cost of a single ho-
momorphic operation. It reduces the homomorphic operation time considerably and also reduces the number of
ciphertexts transferred through the network. Furthermore, we provide a 24− 800 times faster implementation for
extracting the computed inner products. Experimental results show that our protocol can work fast even under a
narrow bandwidth (§6). For example, under a 10 Mbps network, our protocol only took about 8 seconds to com-
pute a product of matrices in the size of 128× 128, with less than 9 megabytes communication cost. It was about
3∼ 110 times faster the previous methods [40, 35]. The source code of our implementation is freely available online
at https://github.com/OpenSMP/SMP.

Existing two-stage S2C of machine learning can benefit from our method. As the concrete example, we applied our
protocol to SecureML [40] and MiniONN [35]. According to our empirical results, our method reduced 95%∼ 97%
of the running time of the pre-computation stage of SecureML (§ 7.1), and 74%∼ 95% of that of MiniONN (§ 7.2).
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Table 2: Notations

Notation Description

[ℓ] set of positive integers {0,1, . . . , ℓ−1}
r $← E uniformly sample r at random from E
a,ai vector and its i-th entry

U,U[i, j] matrix and its (i, j)-th entry
U[i, :],U[:, j] the i-th row and j-th column of U

P,P[i] polynomial and its i-th coefficient
X determinant of polynomials

⟨a⟩0 ,⟨a⟩1 additive share of a
Aq plaintext space Aq := Zq[X ]/(Xm +1)

2 Preliminaries

We begin with the notations used in this paper (Table 2). Typically, we write [ℓ] to denote the set of positive integers
{0,1, . . . , ℓ−1}, and write the upper case Roman character X to denote the determinant of polynomials.

We define our setting and the threat model (§ 2.1). We then summarize additive secret shares and multiplication
triplets (§ 2.2), then the underlying homomorphic encryption scheme used in our method (§ 2.3).

2.1 Two-Party Setting and Security Against Semi-Honest Adversaries
In this work, we focus on S2C protocols that use additive secret shares and pre-computed multiplication triplets.

We use the semi-honest adversary model. That is, the protocol players P0 and P1 follow the protocol specification
but might attempt to learn more information via the protocol communication. Our security definitions follow the
real-world/ideal-world paradigm of [11, 22]. Specifically, we compare the protocol execution in the real world to
an execution in the ideal world. In the real world, protocol players follow the specification of a protocol Π, and in
the ideal world, protocol players have access to a trusted third party (TTP) that evaluates the functionality F . The
protocol execution is viewed as occurring in the existence of an adversary A and campaigned with an environment
C = {Cκ} which is modeled as a class of polynomial-size circuits parameterized by a security parameter κ . The role
of the environment is to choose the input to the protocol execution and to distinguish experiments in the real world
and the ideal world. We use the notation of privacy in [28]. Informally, a protocol Π privately implements F if the
adversary A can not learn anything about the inputs of the other protocol player beyond what is explicitly revealed by
the outputs of the computation.

2.2 Additive Secret Shares and Multiplication Triplets
We assume inputs to the secure computation are shared additively between two protocol players P0 and P1 unless
specifically mentioned. That is, a ∈ Zq is distributed as ⟨a⟩0 ,⟨a⟩1 ∈ Zq where a = ⟨a⟩0 + ⟨a⟩1 mod q for a prime q.
Additionally, we write ⟨a⟩k and ⟨U⟩k respectively denoting additive shares of the vector a and matrix U. Given ⟨a⟩k
and ⟨b⟩k, the shares can be added easily by having Pk evaluate ⟨c⟩k = ⟨a⟩k + ⟨b⟩k mod q for k ∈ {0,1}. However, a
secure protocol is necessary to multiply two shared values.

Beaver’s multiplication triplet (MT) [5] is a common technique for multiplying two additive shares. MT generation
is independent with a and b, and thus is usually performed in the pre-computation stage. However, reusing one MT for
multiple times can risk the security, and thus for the multiple runs of a secure computation, MT generation is required
for each run.

For a secure computation that involves matrix products, e.g., deep learning methods [10, 47], the cost of generating
MTs can be extremely expensive. This issue becomes even more crucially important when the secure computation
would be executed multiple times. To address this issue, specialized triplet generation methods are developed [16, 35,
40]. Specifically, these methods generate a vector product triplet (VPT) for inner products of additively shared vectors
at a smaller pre-computation cost than generating the Beaver’s MTs separately. One VPT consists of three components
(⟨u⟩k ,⟨v⟩k ,⟨z⟩k) where ⟨u⟩k and ⟨v⟩k are uniform random vectors, and z = u⊤v mod q. The inner product of two
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P0 inputs a private matrix A.
P1 inputs a private matrix B.
Pk outputs its share of the product matrix ⟨AB⟩k.

Figure 1: Ideal functionality FMP for matrix product.

additively shared vectors a and b takes two steps. The first step is to have Pk locally compute

⟨e⟩k = ⟨a⟩k−⟨u⟩k ⟨f⟩k = ⟨b⟩k−⟨v⟩k ,

and have Pk exchange ⟨e⟩k and ⟨f⟩k with P1−k. Then, Pk computes ⟨d⟩k = f⊤ ⟨a⟩k + e⊤ ⟨b⟩k + ⟨z⟩k− k · e⊤f. Finally,
we have d = a⊤b.

The product of two additively shared matrices is evaluated through iterations of inner products of vectors, and thus
multiple VPTs are necessary for a single matrix product. When the matrix size is huge, as it usually does in modern
machine learning algorithms, pre-computing the necessary VPTs can be expensive in terms of the communication and
computation cost. In this work, we present a method to efficiently generate these VPTs by batching several hundreds
of VPTs at the cost of generating a single VPT. Specially, we designate VPTs that are used for the matrix product as
matrix product triplet (MPT) which will be discussed in more details in § 3.

2.3 Ring-based Homomorphic Encryption
We use a ring learning with errors [38] based homomorphic encryption for which plaintext space is defined as the
quotient ring Aq = Zq[X ]/(Xm +1) with a prime q and a 2-power number m. Many existing encryption schemes can
be used in our construction, such as BGV’s leveled homomorphic encryption scheme [9] and FV’s somewhat homo-
morphic scheme [18]. Typically, we use the symmetric version of the BGV scheme because of the most functioning
implementation, i.e., HElib [45].

We give notations of functions of the underlying encryption scheme but leave the details to their paper [9]. The
BGV scheme consists of five functions {KeyGen,Enc,Dec,Add,Mult}. The key generation function takes as input a
security parameter κ and outputs a private key sk and an evaluation key evk. The encryption of a plaintext A ∈ Aq is
written as JAK = Enc(A;sk), and the decryption is denoted as Dec(JAK;sk). The private key sk in the encryption and
decryption functions will be omitted if sk is inferred clearly from the context.

We can perform addition of ciphertexts and scalar multiplication between plaintexts and ciphertexts using the
evaluation key evk. Let A,B ∈ Aq be two plaintexts.

• Homomorphic addition of ciphertexts

Dec(Add(Enc(A),Enc(B);evk)) = A+B.

• Homomorphic addition and multiplication between ciphertexts and plaintexts

Dec(Add(Enc(A),B;evk)) = A+B,

Dec(Mult(Enc(A),B;evk)) = A×B.

Simply, we write JAK⊕ JBK and JAK⊗ B to indicate the homomorphic addition and homomorphic multiplication,
respectively. Furthermore, we write⊖ to denote the homomorphic subtraction. Indeed, the BGV scheme also supports
multiplication of ciphertexts: Mult(Enc(A),Enc(B);evk). However, we do not need this operation in our method.

Using homomorphic encryption for generating MPT has two natural advantages. One is a relatively low commu-
nication cost comparing to the OT-based one. The other lies on the shallow multiplicative depth of the matrix product
itself, i.e., multiplicative depth of one. Therefore, protocols that built from leveled and somewhat homomorphic en-
cryption scheme is able to generate MPT efficiently if a proper message packing is used.
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Pk inputs the shares ⟨U⟩k and ⟨V⟩k for k ∈ {0,1}.
Pk outputs share of matrix ⟨Z⟩k where Z = UV.

Figure 2: Ideal functionality FMPT for generating MPT with two shared matrices.

2.4 Message Packing
Message packing techniques are used to reduce the spatial and computational overhead of FHE-based secure protocols,
e.g., [37, 20, 41, 21, 36]. Generally, multiple messages are encrypted as a single ciphertext by the virtue of the algebraic
structure of Aq. Therefore, fewer ciphertexts are generated. More importantly, various types of computation can be
operated efficiently, according to the packing method.

The Chinese-Remainder-Theorem (CRT) packing presented in [48] is the most commonly used technique for
developing efficient FHE-based protocols. This technique decomposes the plaintext space Aq into ℓ plaintext slots,
allowing ℓ messages (i.e., elements from sub-spaces of Aq) to be encrypted as a single ciphertext. Then homomorphic
operations on the packed ciphertexts will be carried to each slot simultaneously, reducing the time of homomorphic
computation by a factor of ℓ. Specifically, the polynomial Xm + 1 is factorized into ℓ distinct and degree-d factor
polynomials Fk such that

Xm +1 =
ℓ−1

∏
k=0

Fk mod q, and m = d · ℓ.

According to the Chinese Remainder Theorem, the plaintext Aq is isomorphic to the product of ℓ sub-spaces Aq ∼=
∏ℓ−1

j=0Zq[X ]/(Fk). It is noteworthy that sub-space Zq[X ]/(Fk) is usually viewed as the vector space Zd
q . However, we

examine the property of Fk, and thus we keep using the polynomial view. We write πcrt to denote the CRT-packing
that converts ℓ polynomials to an element of Aq, and write π−1

crt as the reversing function. Moreover, the computation
of π−1

crt for P ∈ Aq is basically doing P mod Fk for each factor Fk.
Homomorphic additions and multiplications of CRT-packed ciphertexts are carried to each plaintext slot simulta-

neously. Let x and y be vectors of ℓ polynomials, where xk,yk ∈ Zq[X ]/(Fk) for k ∈ [ℓ]. One homomorphic operation
yields ℓ results. That is, from the computation

Enc(πcrt(x))⊕Enc(πcrt(y))
Enc(πcrt(x))⊗Enc(πcrt(y)), (1)

ℓ additions {xk + yk mod Fk}k∈[ℓ], and ℓ products {xk× yk mod Fk}k∈[ℓ] can be obtained after applying π−1
crt to the

decryptions.

3 Problem Statements

The core functionality of this work is described in Figure 1, where A and B is the private input (not additive shares) of
P0 and P1, respectively. This primitive functionality is then used for generating MPT. Specifically, we present a S2C
protocol for this FMP functionality.

SMP(A,B)→ (⟨AB⟩0 ,⟨AB⟩1).
By using SMP, the MPT (⟨U⟩k ,⟨V⟩k) 7→ ⟨Z⟩k where Z = UV can be generated. Precisely, we consider two settings
according to the status of V.

In the first setting (Figure 2), matrices ⟨U⟩k ,⟨V⟩k are considered as uniform random matrices for k ∈ {0,1}.
This type of MPT can be used in a secure computation without having any knowledge of the protocol players’ input
(except the matrix size). For instance, the protocols [16, 40] consider a general scenario in which all inputs are
shared additively between two collusion-free servers in advance, and MPTs are then generated between these two
servers. None of the servers is aware of the inputs. Thereby, the servers use random matrices during MPT generation.
MPT generation uses the fact that Z = ⟨U⟩0 ⟨V⟩0 + ⟨U⟩1 ⟨V⟩1 + ⟨U⟩0 ⟨V⟩1 + ⟨U⟩1 ⟨V⟩0 holds. Since ⟨U⟩k ⟨V⟩k can be
evaluated by Pk locally, what they need to compute jointly is ⟨U⟩0 ⟨V⟩1 and ⟨U⟩1 ⟨V⟩0, i.e., two matrix products.

Furthermore, we also consider the setting of Figure 3, in which the server (i.e., P1) already knows its input to the
online stage. In this case, P0 and P1 only need to compute jointly a single matrix product ⟨U⟩1 V. This functionality is
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P0 inputs the share ⟨U⟩0.
P1 inputs the share ⟨U⟩1 and its private matrix V.
Pk outputs share of matrix ⟨Z⟩k where Z = UV.

Figure 3: Ideal functionality FsingleMPT for generating MPT with single shared matrix.

useful for client/server applications such as [53, 8, 35], in which the server’s (i.e., P1) input to the online computation
is already known to the server in the pre-computation stage.

The functionality FMPT can be achieved from SMP(⟨U⟩0 ,⟨V⟩1) and SMP(⟨U⟩1 ,⟨V⟩0). On the other hand, only
one SMP(⟨U⟩1 ,V) is needed to achieve the FsingleMPT functionality.

3.1 Issues of the Current Methods
Let matrices A ∈ Zn1×n2

q and B ∈ Zn2×n3
q . We now clarify the issues of using the existing methods for computing the

matrix product AB privately. Specifically, we discuss the two methods from SecureML (i.e., one OT-based method
and one LHE-based method), and the FHE-based method from MiniONN. Generally, the main issue of these methods
lies on the unbalanced trade-off between the computation cost and the communication cost as described in Table 1.
Consequently, these methods would lead to a long pre-computation stage when only a narrow bandwidth is available.

The OT-based method from SecureML was improved from [16]. The communication complexity of this method
is cubic with respect to the matrix size. Precisely, both players need to perform n1n2n3 log2 q/2 instances of correlated
OT [4], according to the analysis from SecureML. In total, about O(n1n2n3 log2 q(log2 q+κ)) bits are transferred by
this method, where κ is the security level. From a simple calculation, we know that this method will transfer more
than 380 megabytes data even for small size matrices, i.e., n1,n2,n3 = 128, log2 q = 16, and κ = 80.

The alternative LHE-based method in SecureML has P0 encrypt all entries of A, and send n1n2 ciphertexts to
P1. Then P1 can homomorphically compute the matrix product with O(n1n2n3) public-key operations. The total
communication cost of this method is n1n2 +n1n3 LHE ciphertexts which is significantly smaller than that of the OT-
based method. However, the cubic number of public-key operations is still expensive, especially when the matrix size
is large, e.g., a few hundreds.

MiniONN suggests to use FHE and the CRT-packing to reduce the number of public-key operations. That is, P1

can perform a single homomorphic multiplication which can be carried to ℓ integers simultaneously if P0 has CRT-
packed its matrix. Thereby, the workload on P1’s side is reduced to O(n1n2n3/ℓ), but it must send O(n1n2n3/ℓ)
ciphertexts to P0 because the CRT packing does not support to sum up the packed values. As a result, P0 must to
operate O(n1n2n3/ℓ) decryptions and unpackings. We remark that unpacking π−1

crt , is a relatively expensive operation,
which could take about 50−200 ms per operation. The computation overhead on P0’s side is unignorable.

To employ S2C to online services like MLaaS, we need the secure matrix product protocol to have a better balance
between the computation cost and communication cost.

4 Proposed Building Blocks

Before presenting our secure protocol for the matrix product, we first demonstrate the building blocks used in our
protocol. Our building blocks allow batching ℓ inner products with a single homomorphic multiplication as opposed
to the batch of ℓ polynomial multiplications of the CRT-packing. Specifically, we introduce a forward-backward (FB)
encoding for processing integer vectors (§ 4.1). From the combination of this FB encoding and the CRT-packing, we
first show how to compute ℓ inner products of vectors with d/2 elements within a single homomorphic multiplication
(§ 4.2). Recall that m = ℓd holds for the underlying encryption scheme. Then, we show how to double this length
from d/2 to d. Finally, we present a faster unpacking method for extracting the inner products using a pre-computed
table (§ 4.4).
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4.1 Forward-backward Encoding
The FB-encoding allows evaluating the inner product of two encrypted integer vectors efficiently, which is inspired
by [55, 37]. Intuitively, when multiplying two general polynomials of degree-δ , the coefficient of Xδ−1 in the product
is the inner product of the two coefficient vectors in opposite orders. Specifically, two functions are used to convert
vectors u,v ∈ Zδ

q to polynomials

→
e (u) =

δ−1

∑
i=0

uiX i,
←
e (v) =

δ−1

∑
j=0

v jXδ−1− j.

We write
→
e and

←
e as respectively representing the forward encoding and backward encoding. The inner product u⊤v

can be given by one polynomial multiplication as shown below.

P[δ −1] = u⊤v, where P =
→
e (u)×←e (v). (2)

The correctness of Equation 2 can be shown as

P[δ −1] = ∑
i, j:i+δ−1− j=δ−1

uiv j = ∑
i, j:i= j

uiv j.

It is equal to u⊤v. It is noteworthy that this equation works for any positive δ > 0. In other words, by processing
integer vectors with

→
e and

←
e , the inner product can be computed with one polynomial multiplication. It connects to

the plaintext slots of the CRT-packing.
Additionally, in the context of secure computation, the coefficients of P in Equation 2 (except P[δ − 1]) should

be randomized properly because these coefficients contain extra information about u and v. This can be done by

subtracting a uniform polynomial R from P, i.e., P−R, where R[δ −1] = 0 and R[ j] $← Zq for 0≤ j < δ −1.

4.2 Batching Inner Products
The combination of the FB-encoding and the CRT-packing allows batching the evaluation of ℓ inner products within
a single homomorphic multiplication. One should recall that the polynomial multiplication inside the plaintext slot is
over the modulo Fk, where Fk is a degree-d polynomial with coefficients from Zq for k ∈ [ℓ]. Without any assumption
about the arrangement of Fks’ coefficients, to maintain the correctness of Equation 2, the maximum length of u and c
is d/2.

Theorem 1. Presume integer vectors u,v∈Zδ
q . Let Fk be one of the degree-d factor polynomial from the CRT-packing.

If 0 < δ ≤ d/2, then the following

P[δ −1] = u⊤v, where P =
→
e (u)×←e (v) mod Fk

is correct.

Proof. If the vector length δ ≤ d/2, then the degree of the product polynomial
→
e (u)×←e (v) is less than d. As a result,

taking modulo of the degree-d polynomial Fk does not change the correctness of Equation 2.

4.2.1 Double the Feasible Length

The factor polynomials Fks of the CRT-packing are determined by the encryption scheme parameters m and q. Gener-
ally, the arrangement of coefficients of Fk is not specified. In this general case, as we have already shown, the best we
can do is batching inner products of vectors with d/2 entries K.

We now present a way to double this feasible length from d/2 to d which helps reducing half of the computation
time and communication cost of our secure matrix product protocol. To do so, we must find a such prime q that
“shapes” all polynomials Fk into a specific form

Fk = Xd +βk s.t. βk ̸= 0. (3)

For example, polynomial X1024 +1 can be decomposed as (X256 +10)(X256 +41)(X256 +96)(X256 +127) mod 137,
i.e., m = 1024, d = 256, and q = 137. With such Fk’s, we can apply Equation 2 to the plaintext slots with vectors of
more than d entries.
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Table 3: Prime q that satisfies Eq. 3 when m = 4096.

q 84961 82241 82561 70913 84481 87041

ℓ 16 32 64 128 256 512

Theorem 2. Suppose integer vectors u,v ∈ Zd
q and βk ̸= 0. The following

P[d−1] = u⊤v, where P =
→
e (u)×←e (v) mod Xd +βk

is correct.

Proof. Before taking the modulo Xd +βk, the (d−1)-th coefficient of the product
→
e (u)×←e (v) equals to u⊤v accord-

ing to Equation 2. In addition, the degree of this polynomial is 2d− 2. Therefore, the (d− 1)-th coefficient remains
unchanged, even taking the modulo Xd +βk.

4.3 Put Everything Together
Suppose a proper combination of m and q is used so that all the factor polynomials Fk of the CRT-packing follow
Equation 3. We write

→
πw and

←
πw : (Zd

q)
ℓ 7→ Aq to denote

→
πw(u0, . . . ,uℓ−1) = πcrt(

→
e (u0), . . . ,

→
e (uℓ−1))

←
πw(v0, . . . ,vℓ−1) = πcrt(

←
e (v0), . . . ,

←
e (vℓ−1)).

Then, ℓ inner products {u⊤k vk mod q}k∈[ℓ] is obtainable from a polynomial A′ with one polynomial multiplication and
one polynomial addition over Aq.

A =
→
πw(u0, . . . ,uℓ−1)×

←
πw(v0, . . . ,vℓ−1),

A′ = A−πcrt(R0,R1, . . . ,Rℓ), (4)

where Rk
$← Zq[X ]/(Fk) is a random polynomial with the (d−1)-th coefficient set to 0, i.e., Rk[d−1] = 0.

Theorem 3. Presuming that all the factor polynomials Fk of the CRT-packing follows Equation 3 and uk,vk ∈ Zd
q for

k ∈ [ℓ], the inner products {u⊤k vk mod q}k∈[ℓ] is computed correctly in Equation 4.

Proof. Because all Fk follows the form Fk = Xd +βk by assumption, then the correctness of Theorem 3 is immediately
given by the correctness of Theorem 2 and the property of the CRT-packing (Equation 1).

We write π−1
w : Aq 7→ Zℓ

q as the function that extracts the computed inner products from A′ of Equation 4. To do
so, it is necessary to compute the (d−1)-th coefficient of the polynomial A′ mod Fk for each modulo Fk = Xd +βk.
This can be accomplished by using π−1

crt : take the modulo A′ mod Fk; then keep only the (d− 1)-th coefficient of
the resulting polynomial and discard the remains. In other words, the effort of computing the discarded coefficients
becomes meaningless. In the next subsection, we present a faster version of π−1

w .
Parameter Choosing. The polynomial degree m is determined by the security level of the underlying encryption
scheme, and ℓ is usually determined by application scenarios. As a result, we tend to seek a prime q that satisfies
Equation 3 with the given m and ℓ. More precisely, the prime q should make sure that there exist ℓ distinct values
βk < q such that the multiplicative order of βk of the modulo q is exactly 2ℓ, i.e., β 2ℓ

k = 1 mod q. Empirically, we
have found many primes that satisfy this requirement. In Table 3, we present some examples of practical m and ℓ for
the matrix product functionality. Specifically, the underlying encryption scheme should provide at least 80-bit security
level when m = 4096, according to the security analysis from [20, 25]. It is a subject of our future work to clarify the
condition of finding such prime values given any 2-power m.
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Let sk be a private key and evk be the corresponding evaluation key of the underlying homomorphic encryption scheme.
P0 holds the private key sk.

-P0 input: private matrix A ∈ Zℓ×d
q

-P1 input: private matrix B ∈ Zd×ℓ
q

-P0 output: additively shared matrix ⟨AB⟩0 ∈ Zℓ×ℓ
q

-P1 output: additively shared matrix ⟨AB⟩1 ∈ Zℓ×ℓ
q

1: For k ∈ {0,1}, Pk initializes Ck ∈ Zℓ×ℓ
q to a zero matrix.

2: P0 pre-processes each row of A and sends the ciphertext ctx= Enc
(→

πw (A[0, :], . . . ,A[ℓ−1, :])
)

to P1, attached with its
evaluation key evk.

3: For each column B[:, j], P1 computes

ctx j = ctx⊗
←
πw(B[:, j],B[:, j], . . . ,B[:, j]︸ ︷︷ ︸

ℓ-copies

).

4: For each ctx j, P1 randomizes it by
ctx′j = ctx j⊖πcrt(R j,0, . . . ,R j,ℓ−1),

where R j,k
$← Zq[X ]/(Fk). Also, P1 stores the (d−1)-th coefficient in the j-th row of C1[ j,k] = R j,k[d−1] for k ∈ [ℓ].

5: P1 sends back ℓ ciphertexts {ctx′j} j∈[ℓ] to P0.
6: For each ctx′j, P

0 decrypts it and uses π−1
w presented in § 4.4 to extract ℓ values, which are placed in the j-th row of C0.

7: P0 outputs C0 and P1 outputs C1.

Figure 4: Secure matrix product protocol SMP.

4.4 Accelerate the Unpacking π−1
w

We now present a faster π−1
w by examining the algebraic property (−βk)

t−1Xd−1 = X td−1 mod Xd +βk for positive
t > 0. This gives us a way to directly compute the (d− 1)-th coefficient of A′ mod Xd + βk. We explicitly write
A′ = ∑m−1

i=0 aiX i, and compute the (d−1)-th coefficient of A′ mod Xd +βk as

ad−1 +a2d−1(−βk)+ · · ·+aℓd−1(−βk)
ℓ−1. (5)

Because βks are known during the key generation, the values (−βk)
2, · · · ,(−βk)

ℓ−1 can be computed once and reused
for many unpackings. For the case of secure matrix product, thousands of unpackings is usually required, and thus
Equation 5 can significantly accelerate our secure matrix product protocol. From our empirical results (§ 6), this faster
π−1
w contributed more than 49%−75% reduction of the end-to-end running time of our protocol.

5 Secure Matrix Product Protocol

With the techniques presented in the previous section, we now present our secure matrix product protocol SMP in
Figure 4. It is noteworthy that we fix the matrix size of A to ℓ×d and the size of B to d× ℓ for the sake of simplicity.
The protocol in Figure 4 can be easily extended for general matrices, as described later.

The matrix product AB is computed through inner products between the row vectors of A and the column vectors
of B. Specifically, P0 pre-processes rows of A with

→
πw before the encryptions in Step 2. This step produces one

ciphertext ctx which is sent to P1. In Step 3, P1 applies
←
πw on ℓ-copies of a single column of B, and then multiplies

the packed copies to ctx, resulting a ciphertext of one row of the product matrix. In Step 4, uniform random poly-
nomials {R j,k}k∈[ℓ] are used by P1 to prevent extra information from being learned by P0. Also, P1 stores the proper
coefficients, i.e.., R j,k[d−1] into its share C1 for k ∈ [ℓ]. In Step 6, P0 decrypts all the ciphertexts and uses the faster
π−1
w to obtain its share C0. We now show that C0 +C1 = AB mod q.

Theorem 4. The protocol of Figure 4 computes correctly the functionality FMP of Figure 1.
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Proof. In Step 2, P0 processes the rows of A with
→
πw. According to Theorem 3, ctx j of Step 3 gives the inner

products between the rows of A and j-th column of B, which forms the j-th row of AB. By iterating all columns of B,
the matrix product AB is then encrypted in ciphertexts {ctx j} j∈[ℓ]. The additive shares C0[ j,k] = AB[ j,k]−R j,k[d−1]
are constructed in Step 4 by homomorphic subtractions, and R j,k[d−1] is kept in C1[ j,k]. Thus we have C0+C1 =AB
mod q.

Theorem 5. The protocol of Figure 4 privately implements the functionality FMP of Figure 1 under the semi-honest
setting.

Proof. We defer explanation of the security proof to the Appendix.

General Case and Complexity Analysis. For the case of general matrices, A and B can be partitioned into block
matrices {Aik} and {Bk j} where the size of Aik is ℓ×d and the size of Bk j is d× ℓ. Zero-padding might be necessary
to align the size. Now, P0 must pre-process each block Aik in Step 2. Then AB is computed through a summation
of products of the block matrices, i.e., ∑k AikBk j. The block-matrix product AikBk j is computed by Step 3 of Fig-
ure 1, and the summation can be accomplished from homomorphic additions. The correctness of Theorem 4 follows.
Furthermore, no extra interaction between the protocol players is introduced. Therefore, Theorem 5 follows, too.

In total, P0 pre-processes O(n1n2/m) blocks. P1 operates O(n1n2n3/m) homomorphic multiplications and addi-
tions, resulting O(n1n3/ℓ) ciphertexts which will be transferred to P0. Although the computational and communica-
tion complexity of our method are in the same order with that of the LHE-based method of [40], our method takes a
significantly less computing time than theirs given the fact that m≥ 212 is usually a large value.
Special Case: Matrix–Vector Product. When n1 = 1 (i.e., A becomes a single row matrix), the matrix product AB
can be specially regarded as the matrix–vector product. The algorithm of Figure 4 does cover this special case by
zero-padding A, although with a small modification, the complexity of the algorithm can be improved in this setting.
That is, in Step 2 of Figure 4, P0 sends a ciphertext of ℓ-copies of A, ctx = Enc

(→
πw(A[0, :], . . . ,A[0, :])

)
. In Step 3,

P1 operates the homomorphic multiplication with ℓ columns of B instead of just one, i.e.,

ctx0 = ctx⊗πw(B[:,0],B[:,1], . . . ,B[:, ℓ−1]).

The remaining steps of the algorithm follows. In this case, P1 only performs O(n2n3/m) homomorphic operations,
and transfers O(n3/ℓ) ciphertexts to P0.

6 Evaluations

In the following section, we detail our experimental setups and measurements (§ 6.1). We then compare the perfor-
mance of our matrix product protocol SMP with the state-of-the-art from SecureML and MiniONN using general
matrices A ∈ Zn1×n2

q and B ∈ Zn2×n3
q (§ 6.2). Specifically, n1 = n3 were changed from 128 to 512 and n2 was fixed as

n2 = 128. We also present more micro-benchmarks of SMP using a stronger security level and larger matrices (§ 6.3).
Finally, we present the performance of the faster unpacking π−1

w (§ 6.4).

6.1 Setups
Implementations. We implemented SMP using HElib [45]. The parameters m = 4096 and q = 70913 were used to
provide ℓ = 128 slots. The other parameters of HElib were set properly to provide at least κ = 80-bit security level.
One FHE ciphertext under this setting was about 64 kilobytes. Additionally, the parameter m = 8192 which provides
at least κ = 160-bit security level was used in the micro-benchmarks of SMP.

We compared SMP with other three existing methods, including the OT-based method and the LHE-based method
from SecureML2, and the FHE-based method from MiniONN. Specifically, for the OT-based method, we used 16-
bit inputs for a fair comparison because log2 q ≈ 16. For the LHE-based method, we instantiated LHE with the
DGK scheme [13] with a 1024-bit RSA modulus using the implementation from [16]. For the FHE-based method of
MiniONN, parameters were set as m = 4096 and q = 65537, aiming to provide ℓ= 4096 plaintext slots.
Measurements. We measured the end-to-end running time using a high resolution clock (i.e., the standard chrono
library), and the total communication cost. For the OT-based method, the end-to-end running time includes the com-
puting time of OT-extension [4]. For SMP, the end-to-end running time includes the key generation time and the

2We used the same OT implementation as SecureML.
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Table 4: Comparing the end-to-end running time and communication cost of SMP with the LHE-based method and
the OT-based method from SecureML [40], and the FHE-based method from MiniONN [35]. The values inside
the parenthesis are ratios between the end-to-end running time of the existing methods and that of SMP. All the
performance numbers were averaged from 10−50 runs. Smallest numbers are given in bold.

Matrix Dimensions
Method

End-to-End Time (seconds) Communication
n1,n2,n3 10 Mbps 100 Mbps 1 Gbps (MB)

128,128,128

SecureML (LHE-based) 28.2 (3.67x) 24.3 (10.9x) 24.1 (11.6x) 3.98
SecureML (OT-based) 763 (99.2x) 78.3 (35.3x) 10.5 (5.05x) 108

MiniONN 145 (18.9x) 120 (53.8x) 125 (60.3x) 32.3
Ours 7.69 2.21 2.07 8.25

256,128,256

SecureML (LHE-based) 97.8 (3.56x) 89.1 (16.4x) 89.8 (18.4x) 11.9
SecureML (OT-based) 2.93e3 (107x) 293 (53.9x) 39.1 (8.02x) 416

MiniONN 573 (20.9x) 489 (89.8x) 486 (99.6x) 129
Ours 27.5 5.44 4.88 32.5

384,128,384

SecureML (LHE-based) 209 (3.48x) 195 (18.4x) 195 (19.0x) 23.9
SecureML (OT-based) 6.64e3 (111x) 664 (62.7x) 81.3 (8.50x) 924

MiniONN 1.29e3 (21.4x) 1.10e3 (103x) 1.09e3 (114x) 289
Ours 60.1 10.6 9.56 64.5

512,128,512

SecureML (LHE-based) 362 (3.43x) 342 (20.4x) 343 (21.5x) 39.8
SecureML (OT-based) 1.16e4 (110x) 1.16e3 (64.5x) 143 (8.96x) 1630

MiniONN 2.28e3 (21.6x) 1.94e3 (108x) 1.88e3 (118x) 513
Ours 106 18.0 16.0 129

computing time of Equation 5. Moreover, we provide five more micro-benchmarks of SMP. That is, the computation
time of packing

→
πw, encryption (ENC), decryption (DEC), and unpacking π−1

w on P0’s side, and the evaluation (EVA)
time on P1’s side.
Environment. Experiments were run on two machines (32 GB RAM, Xeon E5-2640 v3@2.60 GHz CPU; Intel
Corp.) within a LAN with less than 0.1 ms ping delay. Only one core of each machine was used. The experiments
were repeated under three bandwidths, i.e., 10 Mbps, 100 Mbps and 1 Gbps.All the programs were written in C++ and
compiled with gcc-6.3 on Ubuntu 14.04. Our implementation is available online at https://github.com/OpenSMP/
SMP.

6.2 Comparing with the State-of-the-Art
The comparison results of SMP and the state-of-the-art are given in Table 4.

SMP was about 3− 21 times faster than the LHE-based method of SecureML. Although the consumed network
traffic of SMP was 2−3 times larger than that of the LHE-based method, the absolute amount of the network traffic
was still small enough to be transferred through a narrow bandwidth within a reasonable time.

By the virtue of our new batching method and its extension (§ 4), the total amount of the data transferred by SMP
was about one-twelfth of the OT-based method of SecureML. As a result, when a narrow bandwidth was used, the
end-to-end running time of SMP was much faster than the OT-based method, i.e., about 35− 110 times faster. Even
under the 1 Gbps bandwidth, SMP was still 5− 8 times faster. Moreover, the network delay in our experimental
environment was very short. For the case of a daily network, the performance gap between the OT-based method and
SMP might be larger because SMP is a single-round protocol which is less sensitive to the network delay 3.

SMP was about 18− 118 times faster than, and consumed only one-fourth network traffic of the FHE-based
method from MiniONN. Although the number of homomorphic multiplications performed by our method was almost
the same with that of MiniONN, the overhead due to unpacking π−1

crt in their method was very huge. When m = 4096
and ℓ = 4096, a single π−1

crt would take about 220 ms in our computing environment. Given that fact that, about

3We argue that the running time of the OT-based method might be faster than SMP if a 10 Gbps network was used, but however we were not
able not prepare such a fast bandwidth in our computing environment.
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Table 5: Micro-benchmarks of SMP. The time were measured in milliseconds. The performance numbers were
averaged from 50 runs. The stand deviations were less than 2.5%. The percentages inside the parenthesis are ratios
between the computing time and the end-to-end running time.

(m, ℓ,κ) n1×n3
→
πw ENC EVA DEC π−1

w

End-to-End Time (milliseconds) Commu. (MB)

10 Mbps 100 Mbps P0 sent P1 sent

(4
09

6,
12

8,
80

) 1282 23.9 14.8 177 206 28.2 7.69e3 (5.84%) 2.21e3 (20.2%) 0.25 8

2562 45.0 23.7 683 776 96.0 2.75e4 (5.91%) 5.44e3 (29.8%) 0.5 32

3842 67.2 32.3 1.51e3 1.64e3 186 6.01e4 (5.72%) 1.06e4 (32.4%) 0.75 64

5122 86.2 40.2 2.66e3 2.80e3 304 1.06e5 (5.58%) 1.80e4 (32.3%) 1.0 128

(8
19

2,
25

6,
16

0) 2562 56.5 26.4 677 793 223 3.25e4 (5.46%) 8.09e3 (21.9%) 0.5 32

5122 114 44.0 2.68e3 2.84e3 726 1.18e5 (5.45%) 2.08e4 (30.8%) 1.0 128

7682 152 56.8 5.99e3 6.22e3 1.59e3 2.59e5 (5.41%) 4.20e4 (33.4%) 1.5 288

10242 186 31.4 1.07e4 1.054e4 2.83e3 4.57e5 (5.31%) 7.11e4 (34.1%) 2.0 512

500− 8000 unpackings were performed by MiniONN in our experiments. Thereby, the end-to-end running time of
this method was dominated by the overhead of π−1

crt .
It is noteworthy that the running time of SMP were almost the same under the 100 Mbps and 1 Gbps bandwidth.

That is because only a relatively small amount of data were transferred by SMP. In the following experiments, we
thus only present performance numbers of SMP for the 10 Mbps and 100 Mbps bandwidth.

6.3 Micro-benchmarks of SMP

The micro-benchmarks of SMP is given in Table 5. Notice that, we present the benchmark numbers in milliseconds
because many of them were less than one second. Additionally, we used a higher security level κ = 160 in this
experiment to demonstrate its performance growth with respect to κ . Typically, we designate the summation from
the 3-rd column to the 7-th column as the computing time of SMP. Even our method is built from homomorphic
encryption, the results show that SMP is not computation critical because the computing time was only a small share
(less than 35%) of the end-to-end running time. As discussed in § 3 that a MPT can be generated by one or two
instances of SMP. Thereby, the performance of using SMP to generate a MPT can be inferred from Table 5.

6.4 Performances of the Faster Unpacking
The unpacking π−1

w can be instantiated from π−1
crt , i.e., the unpacking of the CRT-packing, but it might be slow. In § 4.4,

we presented a faster version of π−1
w (i.e., Equation 5) by using ℓ2 pre-computed values {(−βk)

2, . . . ,(−βk)
ℓ−1}k∈[ℓ].

We now show the speedup of this new unpacking in Table 6, with respect to various numbers of plaintext slots. The
second column of Table 6 shows the cost of pre-computing the values {(−βk)

2, . . . ,(−βk)
ℓ−1}k∈[ℓ]. It is apparent

that the faster unpacking did play an important role of reducing the end-to-end running time of SMP. If without
this optimization, the unpacking time would become about 240 times longer (i.e., the 4-th row of Table 6), and the
end-to-end running time of SMP in Table 5 might be doubled.

7 Applications to Machine Learning

In this section, we demonstrate how the existing privacy-preserving protocols of machine learning can benefit from
SMP when only a narrow bandwidth is available. Experiment results show that SMP can reduce 95%− 97% of the
running time of the pre-computation stage of SecureML (§ 7.1), and 74%−95% of that of MiniONN (§ 7.2).

7.1 Application to Private Machine Learning Model Training
SecureML is a two-stage secure computation framework that is originally designed for training machine learning
models from a dataset that is already shared additively between two collusion-free servers. The model training is
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Table 6: Speedup of the unpacking π−1
w because of the pre-computation from Equation 5. The FHE parameters m and

q follow Table 3.

ℓ pre-comp From Eq. 5 From π−1
crt Speedup

16 0.013 ms 0.002 ms 29.3 ms 1.22e4x
32 0.046 ms 0.009 ms 30.8 ms 3.59e3x
64 0.213 ms 0.036 ms 32.5 ms 893x

128 0.937 ms 0.136 ms 32.8 ms 241x
256 4.05 ms 0.438 ms 35.8 ms 81.6x
512 18.0 ms 1.68 ms 41.6 ms 24.8x

Table 7: Using SMP to improve the pre-computation stage of SecureML. The mini-batch size B was fixed as 128 as
SecureML. The performance numbers of the methods of SecureML are taken from their paper [40].

N,D, t Method Bandwidth Time (sec) Communication

10
4 ,

10
0,

15
6

LHE 72 Mbps 252.9
20 MB

LHE 8 Gbps 248.4
OT 72 Mbps 420.2

1.9 GB
OT 8 Gbps 7.9

Ours 10 Mbps 148
159 MB

Ours 100 Mbps 29.3

10
5 ,

10
0,

15
63

LHE 72 Mbps 2478.1
200 MB

LHE 8 Gbps 2437.1
OT 72 Mbps 4125.1

19 GB
OT 8 Gbps 88.0

Ours 10 Mbps 708
785 MB

Ours 100 Mbps 117

performed between the two servers using pre-computed MPTs and other cryptographic tools such as Yao’s garbled
circuit [54, 52].

Specifically, SecureML uses the mini-batch stochastic gradient descent (SGD) of a batch size B > 0 to train their
models from a dataset X ∈ ZN×D within t steps. Here, N indicates the number of data points in the dataset and D
indicates the number of features. As suggested by SecureML, when using SGD for some classes of machine learning
algorithms, e.g., linear regression and logistic regression, the SGD computation involves a matrix product UV, where
the size of U is B×D and the size of V is D×t. The value of B is usually a few hundreds, e.g., B= 128 as in SecureML,
and the value of t is usually set such that Bt > N. SecureML proposed a LHE-based method and an OT-based method
to generate corresponding MPTs during the pre-computation stage. It is noteworthy that MPTs in SecureML belong
to Figure 2 since X are shared additively between the two servers in advance. Thus, we need two runs of SMP to
generate such a MPT.

We now empirically show that SMP can be a better alternative for generating MPTs in SecureML, especially when
only a narrow bandwidth is available. Specifically, we used SMP to generate same size of MPTs as SecureML has
done, and compared the computation time and communication cost with the performance numbers presented in theirs
paper [40]. Notice that, 64-bit inputs were used in SecureML while the plaintext precision of our encryption scheme
was log2 q ≈ 16. To have a fair comparison, we multiply the empirical results of our method by four times. It is
justified because we can use the techniques [36, 21] to achieve the same level of precision by repeating our method
for four times using four co-prime q. The comparison details are given in Table 7. It is apparent that our method is
more efficient for generating MPTs, especially when large-scale matrices are considered or only a narrow bandwidth
is available. Specifically, our method was about 3−21 times faster than the LHE-based method when the matrix size
was 100×1563, and it was 5−35 faster than the OT-based method when the network speed was relatively slow. Under
the fast bandwidth, our method was only 1.3 times slower, not to mention that the communication cost of our method
was just about 4.0%−5.3% of the OT-based method.
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Table 8: Using SMP to improve the pre-computation stage of MiniONN. The performance numbers of the method of
MiniONN are taken from their paper [35].

(a) The matrix products involved in NN-CIFAR.

Layer 1 3 6 8
A 1024×27 1024×576 256×576 256×576
B 27×64 576×64 576×64 576×64

Layer 11 13 15 17
A 64×576 64×64 64×64 1×1024
B 576×64 64×64 64×16 1024×10

(b) SMP can improve the pre-computation stage of MiniONN.

Bandwidth Time (sec) Communication
MiniONN 1 Gbps a 472 3046 MB

Ours 10 Mbps 119
137 MB

Ours 100 Mbps 19.2
Reduction – 74.8%−95.9% 95.5%

aAccording to an offline contact with the authors of MiniONN.

7.2 Application to Private Deep Neural Networks Evaluation
MiniONN is a two-stage secure computation framework allows evaluating a trained neural network privately. The
evaluation of a neural network usually requires to compute products of large-scale matrices (see Appendix B). During
the pre-computation stage, MiniONN uses an FHE scheme and the CRT-packing for generating the necessary MPTs
that are used for multiplying additively shared matrices. Notice that, MPTs used by MiniONN belong to Figure 3
because the neural network model is held by the service operator privately. Thus, only a single SMP is needed to
generate one MPT.

We experimentally show that SMP is a more practical option for MiniONN to generate MPTs. Specifically, we take
the 17-layer neural network from MiniONN as an example. This network was originally designed for classifying the
CIFAR-10 dataset [32], and thus we designate it as NN-CIFAR. In Table 8a, we list up all the matrix products involved
in NN-CIFAR where the matrix A is the private input from the client and B is the private input from the service
operator. We used SMP to generate the necessary MPTs and compared the computation time and communication
cost with that of MiniONN. The comparison details are shown in Table 8b. It is apparent that SMP considerably
reduced the computation time and the communication cost of the pre-computation stage of MiniONN for evaluating
NN-CIFAR, i.e., saving more than 95% of the computation time and communication cost. Moreover, SMP can work
under a narrow bandwidth which is very important for a realistic online application setting.

8 Conclusion

In this paper, we presented an efficient protocol SMP for multiplying two matrices privately from homomorphic
encryption. We presented algorithmic and implement optimizations to improve its performance. According to our
experimental results, SMP outperformed the exsiting methods when only a narrow bandwidth is available. By using
SMP, we can efficiently generate a Beaver-like multiplication triplet which is specialized for the product of two
additively shared matrices. As the concrete example, we applied SMP to two frameworks of privacy-preserving
machine learning, i.e., SecureML and MiniONN. The experimental results showed that our method can reduce the
network traffic consumption and computing time of the pre-computation stage of these frameworks considerably,
especially when only a narrow bandwidth is available. In concluding, we consider that SMP can help forwarding the
deployment of more practical and usable secure two-party computation to machine learning-based online applications.
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Figure 5: Left: Convolution with stride s = 1. Right: Unrolling the convolution to matrix product form.

[55] YASUDA, M., SHIMOYAMA, T., KOGURE, J., YOKOYAMA, K., AND KOSHIBA, T. Secure pattern matching using somewhat homomorphic
encryption. In Proceedings of the 2013 ACM Cloud Computing Security Workshop, Co-located with CCS 2013 (Berlin, Germany, November
4, 2013), pp. 65–76.

[56] ZAHUR, S., ROSULEK, M., AND EVANS, D. Two halves make a whole - reducing data transfer in garbled circuits using half gates. In
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria (April 26-30, 2015), pp. 220–250.

A Proof of Theorem 5

We now prove Theorem 5, that is, SMP privately implements the matrix product functionality FMP described in
Figure 1 under the semi-honest assumption.

Proof. Security Against a Semi-Honest P1. We first prove security against a semi-honest P1. Given the fact that,
P1’s view during the protocol execution consists only of ciphertexts, and thus the security against a semi-honest P1

can be reduced to the semantic security of the underlying encryption scheme. We write A 1 to denote the adversarial
P1, and construct an ideal-world simulator S 0 as follows:

1. The simulator S 0 receives the matrix A from the environment E and sends A to TTP for the result ⟨AB⟩0.

2. The simulator S 0 starts running A 1 on input A. Then, S 0 generates a key-pair (sk′,evk′) for the underlying
encryption scheme used in the protocol. Next, S 0 sends a fresh encryption

ˆctx= Enc(
→
πw(0, . . . ,0);sk′)

of zero vectors to A 1, along with evk′.

3. After A 1 replies with the result ciphertexts, S 0 outputs ⟨AB⟩0.

The view of P1 during the real execution is V 1 = {ctx} while its view in the ideal world is V̂ 1 = { ˆctx}. By semantic
security of the underlying encryption scheme, V 1 is computationally indistinguishable from V̂ 1.
Security Against a Semi-Honest P0. Next, we prove security against a semi-honest P0. Similarly, we write A 0 to
denote the adversarial P0 and construct an ideal-world simulator S 1 that works as follow:

1. The simulator S 1 receives the matrix B from the environment E , and sends B to TTP for the result ⟨AB⟩1.

2. The simulator S 1 starts running A 0 on input B, and receives ctx along with the evaluation key evk.

3. For each j ∈ [ℓ], S 1 computes a ciphertext ˆctx′j = ctx⊕ R̂ j where polynomial R̂ j
$← Zq[X ]/(Xm +1).

4. The simulator S 1 sends the ciphertexts { ˆctx′j} j∈[ℓ] to A 0, and then outputs ⟨AB⟩1.

The view of P0 during the real execution consists of ℓ independent degree-m polynomials with coefficients distributed
uniformly over Zq. That is exactly how S 1 creates P0’s view in the ideal-world. Thus, P0’s view in the real execution
and its view in the ideal-world are identically distributed.
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B Linear Transformations in Neural Networks

In most neural networks such as [33, 47, 26], two kinds of linear transformations are used. One is the multiplication
between an input vector a and a weight matrix B, i.e., y = a⊤B, where y will be fed to the next layer. This can be seen
as a product of matrices by viewing a⊤ as a single row matrix.

Convolution is the another important linear transformation used by many network architectures. Specifically, a
convolution operation takes as input a 3D matrices T ∈Rn×n×c, a set of matrices {Kw}w∈[c′] where Kw ∈Rh×h×c, and
a stride s > 0, and outputs a matrix Y of n′×n′× c′ entries where n′ = ⌊(n−h)/s⌋+1. Briefly, Y is computed from
weight-sums of sub-regions of T.

Y[i′, j′,w] =
c−1

∑
k=0

h−1

∑
i=0

h−1

∑
j=0

Kw[i, j,k] ·T[si′+ i,s j′+ j,k]

for i′, j′ ∈ [n′] and w ∈ [c′] (6)

In the literature of neural networks, the matrix Y and Kw is called feature map and kernel, respectively. Also, the third
dimension of these matrices is usually called channel. Figure 5 (left-hand-side) depicts a convolution on a 3× 3× 1
matrix with two 2×2×1 kernels.

In practices, T and {Kw}w∈[c′] are usually unrolled to a matrix product format. Specifically, each sub-region of T
is arranged as a row vector, and thus T is expanded to 2D matrix A with (n′)2×ch2 entries. Each kernel Kw is unrolled
to a column of a 2D matrix B, and thus B has ch2× c′ entries. Then, the convolution of Equation 6 is reduced to the
matrix product Y = AB. The right-hand-side of Figure 5 gives an example where c′ = 2.

In the client/server application scenario, the matrix A (or the vector a) is the private input from the client, while B
is the private input from the server. The matrix product AB can be privately evaluated using one SMP (i.e., FsingleMPT)
since B is known by the server during the pre-computation stage.
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