
Fast Near Collision Attack on the Grain v1
Stream Cipher

Bin Zhang1,2,3,4, Chao Xu1,2, and Willi Meier5

1 TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences
{zhangbin,xuchao}@tca.iscas.ac.cn

2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing, 100878, China
3 University of Chinese Academy of Sciences, Beijing, 100049, China

4 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences

5 FHNW, Switzerland, willi.meier@fhnw.ch

Abstract. Modern stream ciphers often adopt a large internal state to
resist various attacks, where the cryptanalysts have to deal with a large
number of variables when mounting state recovery attacks. In this pa-
per, we propose a general new cryptanalytic method on stream ciphers,
called fast near collision attack, to address this situation. It combines a
near collision property with the divide-and-conquer strategy so that only
subsets of the internal state, associated with different keystream vectors,
are recovered first and merged carefully later to retrieve the full large
internal state. A self-contained method is introduced and improved to
derive the target subset of the internal state from the partial state differ-
ence efficiently. As an application, we propose a new key recovery attack
on Grain v1, one of the 7 finalists selected by the eSTREAM project, in
the single-key setting. Both the pre-computation and the online phases
are tailored according to its internal structure, to provide an attack for
any fixed IV in 275.7 cipher ticks after the pre-computation of 28.1 cipher
ticks, given 228-bit memory and about 219 keystream bits. Practical ex-
periments on Grain v1 itself whenever possible and on a 80-bit reduced
version confirmed our results.

Keywords. Cryptanalysis, Stream ciphers, Grain, Near collision

1 Introduction

As a rule of thumb, the internal state size of modern stream ciphers is at least
twice as large as the key size, e.g., all the eSTREAM finalists follow this princi-
ple, which considerably complicates cryptanalysis. As a typical case, Grain v1,
designed by Martin Hell, Thomas Johansson and Willi Meier [10], has an inter-
nal state size of 160 bits with a 80-bit key. Grain v1 has successfully withstood
huge cryptanalytic efforts thus far in the single key model [2, 5, 15, 18].

In this paper, we propose a general new cryptanalytic framework on stream
ciphers, called fast near collision attack (FNCA). Given a keystream prefix,
finding a corresponding internal state of the stream cipher that generates it is

equivalent to determining a preimage of the output of a specific function F . For
our purpose, it is assumed that each component function of F can be rewrit-
ten in a way that depends on only few variables or combinations of the original
variables, which is indeed the case for many stream ciphers. The new strategy is
based on a combination of the birthday paradox with respect to near collisions
and local differential properties of the component functions. To deal with the
situation that F has a large number of variables, the near collision property is
combined with a divide-and-conquer strategy so that only subsets of the internal
state, associated with different keystream vectors, are restored first and merged
carefully later to retrieve the full large internal state. The subset of the internal
state associated with a specified keystream vector is called the restricted internal
state of the corresponding keystream vector. It is observed that the keystream
segment difference (KSD) of a given keystream vector only depends on the in-
ternal state difference (ISD) and the value of the restricted internal state, i.e.,
only the differences and the values in the restricted internal state can affect the
KSD of a specified keystream vector, whatever the difference distribution and
state values in the other parts of the full internal state. Thus, we could apply
the near collision idea to this restricted internal state, rather than to the whole
internal state. Then a self-contained method [16] is introduced and improved to
derive the target subset of the internal state from the partial state difference ef-
ficiently. The observation here is that instead of collecting two keystream vector
sets to find a near collision state pair, we only collect one set and virtualize the
other by directly computing it. An efficient distilling technique is suggested to
properly maintain the size of the candidates subset so that the correct candidate
is contained in this subset with a higher probability than in a purely random
situation. The attack consists of two phases. In the pre-computation phase, we
prepare a list of differential look-up tables which are often quite small because
of the local differential properties of F . Thus the preprocessing complexity is
significantly reduced due to the relatively small number of involved variables.
These small tables are carefully exploited in the online phase to determine a
series of local candidate sets, which are merged carefully to cover a larger partial
state. From this partial state, we aim to recover the full internal state according
to the concrete structure of the primitive.

As our main application, we mount a fast near collision attack against Grain
v1, one of the 3 finalists selected by the eSTREAM project for restricted hard-
ware environments. In addition to the above general strategies, we further reduce
the number of variables associated with a specified keystream vector by rewrit-
ing variables according to the internal structure of Grain v1 and making some
state variables linearly dependent on the others, similar to the linear enumera-
tion procedure in the BSW sampling in [4]. We first focus on the state recovery
of the LFSR together with some partial information on the NFSR. Then a new
property in the keystream generation of Grain v1 is exploited in the proposed
Z-technique: given the keystream and the LFSR, it is possible to construct a
number of keystream chains to efficiently find out some linear equations on the
original NFSR variables, which further reduce the number of unknown variables

2

in the NFSR initial state. Given the LFSR part, Grain v1 degrades into a dy-
namically linearly filtered NFSR in forward direction and a pure linearly filtered
NFSR in backward direction. In both cases, all the NFSR internal state variables
can be formally expressed as a linear combination of the initial state variables
and of some keystream bits [3]. Taking into account that the best linear approx-
imation of the NFSR feedback function in Grain v1 has a bias of 41

512 , we could
construct a system of parity-checks of weight 2 on an even smaller number of the
initial NFSR variables with a low complexity. These parity-checks need not to be
solved, but can be used as a distinguisher via the Fast Walsh Transform (FWT),
called the Walsh distinguisher. The correct LFSR candidate could be identified
directly from a glance at the distribution of the Walsh spectrum. Thus, we deter-
mine the LFSR part in Grain v1 independent of the NFSR state, which releases
the complexity issue if the whole internal state is treated together. Finally, the
left NFSR state could be restored easily by an algebraic attack with a complexity
much lower than the above dominated step and the list of remaining candidates
could be tested with the consistency of the available keystream to yield the cor-
rect one. As a result, both the pre-computation and the online attack phases are
tailored to provide a state/key recovery attack6 on Grain v1 in the single-key
setting with an arbitrary known IV in 275.7 cipher ticks after a pre-computation
of 28.1 cipher ticks, given 228-bit memory and around 219 keystream bits, which
is the best key recovery attack against Grain v1 so far and manages to remove
the two unresolved assumptions in complexity manipulation in the previous n-
ear collision attack at FSE 2013. This attack is about 211.7 times faster than
the exhaustive search7. Our results have been verified both on Grain v1 itself
whenever possible and on a reduced version of Grain v1 with a 40-bit LFSR and
a 40-bit NFSR in experiments. A comparison of our attack with the exhaustive
search is depicted in Table 1. In summary, though the whole structure of Grain
v1 is sound, here we list some properties that facilitate our attack.

- The state size is exactly 160 bits with respect to the 80-bit security.
- The whole system will degrade into a linearly filtered NFSR after knowing
the LFSR.

- There is a good linear approximation of the updating function of the NFSR.
- The 2-bit keystream vector depends on a relatively small number of variables
after rewriting variables.

Outline. A brief description of the Grain v1 stream cipher is presented in Section
2. Then, some preliminaries relevant to our work are presented in Section 3
together with a brief review of the previous near collision attack in [18]. The
framework of FNCA is established with the theoretical analysis in Section 4

6 Due to the invertible state updating, a state recovery attack on Grain v1 could be
converted into a key recovery attack directly.

7 The brute force attack with an expected complexity of 287.4 cipher ticks is shown in
[18]. Besides, NCA-2.0 [18] requires a huge pre-computation and memory complex-
ities; while NCA-3.0 [18] is based on two assumptions which remains to be verified
on Grain v1 itself.

3

Table 1. Comparison with the best previous attack on the full Grain v1

Attack
Complexities

Pre-comp Data Memory Time

brute force - 27.4 27.4 287.4

NCA-2.0 [18] 283.4 262 265.9 276.1

This paper 28.1 219 228 275.7

1 The time complexity unit here is 1 cipher tick as in [18] and the da-
ta/memory complexity unit is 1 bit.

and then applied to Grain v1 in Section 5, respectively. In Section 6, practical
simulations both on Grain v1 itself and on the reduced version are provided.
Finally, some conclusions are drawn and future work is pointed out in Section 7.

2 Description of Grain v1

Grain v1 is a bit-oriented stream cipher, which consists of a pair of linked 80-
bit shift registers, one is a linear feedback shift register (LFSR) and anoth-
er is a non-linear feedback shift register (NFSR), whose states are denoted by
(li, li+1, ..., li+79) and (ni, ni+1, ..., ni+79) respectively. The updating function of
the LFSR is li+80 = li+62 ⊕ li+51 ⊕ li+38 ⊕ li+23 ⊕ li+13 ⊕ li and the updating
function of the NFSR is

ni+80 = li ⊕ ni+62 ⊕ ni+60 ⊕ ni+52 ⊕ ni+45 ⊕ ni+37 ⊕ ni+33 ⊕ ni+28 ⊕ ni+21

⊕ ni+14 ⊕ ni+9 ⊕ ni ⊕ ni+63ni+60 ⊕ ni+37ni+33 ⊕ ni+15ni+9

⊕ ni+60ni+52ni+45 ⊕ ni+33ni+28ni+21 ⊕ ni+63ni+45ni+28ni+9

⊕ ni+60ni+52ni+37ni+33 ⊕ ni+63ni+60ni+21ni+15

⊕ ni+63ni+60ni+52ni+45ni+37 ⊕ ni+33ni+28ni+21ni+15ni+9

⊕ ni+52ni+45ni+37ni+33ni+28ni+21.

The keystream generation phase, shown in Fig.1, works as follows. The com-

NFSRNFSR LFSRLFSRÅÅÅ

()h x

ÅÅÅ

Fig. 1. Keystream generation of Grain v1

bined NFSR-LFSR internal state is filtered by a non-linear boolean function

4

h(x) = x1⊕x4⊕x0x3⊕x2x3⊕x3x4⊕x0x1x2⊕x0x2x3⊕x0x2x4⊕x1x2x4⊕x2x3x4,
which is chosen to be balanced and correlation immune of the first order with
the variables x0, x1, x2, x3 and x4 corresponding to the tap positions li+3, li+25,
li+46, li+64 and ni+63 respectively. The output zi is taken as zi =

⊕
k∈A ni+k ⊕

h(li+3, li+25, li+46, li+64, ni+63), where A = {1, 2, 4, 10, 31, 43, 56}. The details of
the initialization phase are omitted here, the only property relevant to our work
is that the initialization phase is invertible.

3 Preliminaries

In this section, some basic definitions and lemmas are presented with a brief
review of the previous near collision attack on Grain v1 in [18]. The following
notations are used hereafter.

- wH(·) : the Hamming weight of the input argument.
- d : the Hamming weight of the internal state difference (ISD).
- l : the bit length of the keystream vector.
- n : the bit length of the internal state, whether restricted or not.
- ∆x : the value of the ISD, whether restricted or not.
- V (n, d) : the total number of the ISDs with wH(∆x) ≤ d.
- Ω : the number of CPU-cycles to generate 1 bit keystream in Grain v1 in
software.

3.1 Basic Conceptions and Lemmas

Let Bd = {∆x ∈ Fn
2 |wH(∆x) ≤ d} = {∆x1,∆x2, ...,∆xV (n,d)} and |Bd| =

V (n, d) =
∑d

i=0

(
n
i

)
, where | · | denotes the cardinality of a set. Two n-bit strings

s, s′ are said to be d-near-collision, if wH(s⊕s′) ≤ d holds. Similar to the birthday
paradox, which states that two random subsets of a space with 2n elements are
expected to intersect when the product of their sizes exceeds 2n, we present the
following generalized lemma, which includes the d-near-collision Lemma in [18]
as a special case.

Lemma 1 Given two random sets A and B consisting of n-bit elements and a
condition set D, then there exists a pair (a, b) ∈ A × B satisfying one of the
conditions in D if

|A| · |B| ≥ c · 2n

|D|
(1)

holds, where c is a constant that determines the existence probability of one good
pair (a, b).

Proof. We regard each ai ∈ A and bj ∈ B as an uniformly distributed random
variable with the realization values in Fn

2 . Let A = {a1, a2, ..., a|A|} and B =
{b1, b2, ..., b|B|}, we represent the event that a pair (ai, bj) ∈ A×B satisfies one

5

of the conditions in D briefly as (ai, bj) ∈ D. Let ϕ be the characteristic function
of the event ϕ((ai, bj) ∈ D), i.e.,

ϕ((ai, bj) ∈ D) =

{
1 if (ai, bj) ∈ D
0 otherwise.

For 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|, the number NA,B(D) of good pairs (ai, bj)

satisfying (ai, bj) ∈ D is NA,B(D) =
∑|A|

i=1

∑|B|
j=1 ϕ((ai, bj) ∈ D). Thus, the

expected value of NA,B(D) of the pairwise independent random variables can be

computed as E(NA,B(D)) = |A| · |B| · |D|
2n . Therefore, if we choose the sizes of A

and B satisfying Eq. (1), the expected number of good pairs is at least c. ⊓⊔

While when D = Bd, Lemma 1 reduces to the d-near-collision Lemma in [18],
Lemma 1 itself is much more general in the sense that D could be an arbi-
trary condition set chosen by the adversary, which provides a lot of freedom for
cryptanalysis. Another issue is the choice of c. In [16], the relation between the
choice of the constant c and the existence probability of a d-near-collision pair
is illustrated as follows for random samples:

Pr(d-near-collision) =

0.606 if c = 1
0.946 if c = 3
0.992 if c = 5.

As stated in [16], these relations are obtained from the random experiments with
a modest size, i.e., for each c value, 100 strings of length 40 to 49 for d-values
from 10 to 15 are generated, not in a real cipher setting.

Remarks. In a concrete primitive scenario, it is found that the constant c some-
times needs to be even larger to assure a high existence probability of near colli-
sion good pairs. In our experiments, we find that the above relation does not hold
for Grain v1 and its reduced versions. In these cases, we have to set c = 8 or even
c = 10 to have an existence probability as high as desirable for the subsequent
attack procedures. We believe that for each cipher, the choice of the constant c
and its correspondence to the existence probability of a near collision pair is a
fundamental measure related to the security of the primitive. The following fact
is used in our new attack.

Corollary 1. For a specified cipher and a chosen constant c, let A and B be
the internal state subsets associated with the observable keystream vectors, where
each element of A and B is of n-bit length. If we choose |A| = 1 and |B| ≥ c· 2n

|D| ,

then there exists an element bi ∈ B such that the pair (a, bi) with the only element
a ∈ A forms a d-near collision pair with a probability dependent on c.

Note that in the near collision setting, the bits in the restricted internal state
may be nonadjacent. These bit positions are determined by the tap positions of
the composition mapping of the output function if only a short prefix is chosen
by the adversary and also dependent on the state updating function, whether
linear or non-linear, if some inconsecutive, or even far away, keystream bits are
chosen to be considered together.

6

In [18], the two sets A and B are chosen to be of equal size, i.e., |A| = |B| to
minimize the data complexity, in which case the adversary has to deal with all
the candidate state positions one-by-one. Instead, Corollary 1 is used in our new
attack on Grain v1 via the self-contained method introduced later in Section
4.3, to restore the restricted internal state defined below, at a specified chosen
position along the keystream segment under consideration.

Definition 1. For a specified cipher, the subset x = (xi0 , xi1 , . . . , xin−1) of the
full internal state associated with a given keystream vector z = (zj0 , zj1 , . . .
, zjl−1

) is called the restricted internal state associated with z.

We choose the following definition of the restricted BSW sampling resistance in
stream ciphers.

Definition 2. Let z = (zj0 , zj1 , . . . , zjl−1
) be the known keystream vector se-

lected by the adversary, if l internal state bits in the restricted internal state x
associated with z could be represented explicitly by z and the other bits in x, l is
called the restricted BSW sampling resistance corresponding to (x, z).

It is well known that Grain v1 has a sampling resistance of at least 18 [18],
thus from Definition 2, we have l ≤ 18. Actually, we prefer to consider small
values of l in our analysis to reduce the memory complexity and to facilitate the
verification of theoretical predictions. Note that here the indices j0, j1, . . . , jl−1,
either consecutive or inconsecutive, could be chosen arbitrarily by the adver-
sary. The restricted BSW sampling inherits the linear enumeration nature of the
classical BSW sampling in [4], but unlike the classical BSW sampling, the new
sampling does not try to push this enumeration procedure as far as possible, it
just enumerates a suitable number of steps and then terminates.

3.2 The Previous Near Collision Attack

At FSE 2013, a near collision attack on Grain v1 was proposed in [18], trying
to identify a near collision in the whole internal state at different time instants
and to restore the two involved states accordingly. For such an inner state pair,
the keystream prefixes they generate will be similar to each other and the dis-
tribution of the KSDs are non-uniform.

The adversary first intends to store the mapping from the specific KSDs to
the possible ISDs of the full inner state with the sorted occurring probabilities
in the pre-computed tables. Then in the online phase, he/she tries to recover
the correct ISD by utilizing the pre-computed tables, then the two internal s-
tates from the determined ISD. The crucial problem here is to examine a large
number of possible pairs whether they are truly near collision or not. In this
process, strong wrong-candidate filter with a low complexity is needed, while in
its form in [18], the reducing effect is not so satisfactory. In order to overcome
this problem, the BSW sampling property and the special table techniques are
briefly outlined based on two assumptions, which are essential for the complexi-
ty manipulation from the 64-bit reduced version experiments to the full version

7

theoretical attack. In [18], the examination of the candidate state pairs is exe-
cuted by first recovering the two internal states from the specified ISD. For the
LFSR part, this is of no problem since the LFSR updates independently; but for
the NFSR part, it is really a problem in [18]. Though the adversary knows the
two specified keystream vectors and their corresponding ISD, it is still difficult
to restore the full 80-bit NFSR state in such an efficient way that this routine
could be invoked a large number of times. Besides, the special table technique
assumes that about 50% of all the possible ISDs could be covered on average,
which is very hard to verify for the full Grain v1, thus the successful probability
of this attack cannot be guaranteed.

In the following, we will show that the adversary need not to recover the full
internal state at once when making the examination, actually specified subsets
of the internal state could be restored more efficiently than previously thought to
be possible, thus the time/memory complexities of the new attack can be consid-
erably reduced with an assured success probability and without any assumption
in the complexity manipulation.

4 Fast Near Collision Attacks

In this section, we will describe the new framework for fast near collision attacks,
including both the pre-computation phase and the online attack phase, with the
theoretical justifications.

4.1 General Description of Fast Near Collision Attacks

The new framework is based on the notion of the restricted internal state corre-
sponding to a fixed keystream vector, which is presented in Definition 1 above.
Given z = (zj0 , zj1 , . . . , zjl−1

) with zji (0 ≤ i ≤ l − 1) not necessarily being con-
secutive in the real keystream, the corresponding restricted internal state x for z
is determined by the output function f together with its tap positions, and the
state updating function g of the cipher, i.e., induced by the intrinsic structure
of the cipher. Besides, from the keystream vector z, it is natural to look at the
augmented function for z.

Definition 3. For a specified cipher with the output function f and the state
updating function g, which outputs one keystream bit in one tick, the lth-order

augmented function Af : F|x|
2 → Fl

2 for a given (x, z) pair is defined as Af(x) =
(f(x), f(gi1(x)), . . . , f(gil−1(x))).

Note that the definition of the augmented function here is different from the
previous ones in [1, 11]. In Definition 3, the augmented function is defined on a
subset of the whole internal state; while in [1, 11], similar functions are usually
defined on the full internal state. As can be seen later, this difference will make
sense in launching a near collision attack, i.e., we need not target the full internal
state, which is usually quite large, at once any more, now we just look for near
collision in the sub-states chosen by the attacker. A high-level description of fast
near collision attack is depicted in Algorithm 1.

8

Algorithm 1 FNCA

Parameters: index: the concrete value of a KSD
prefix: the concrete value of a keystream vector

Offline: for each combination of (index, prefix) do
Construct the table T[index, prefix], projecting from the KSD
index to all the possible ISDs sorted by the occurring rates

end for
Input: A keystream segment ztotal = (zj0 , zj1 , . . . , zjl−1 , zjl , . . . , zjl+γ)
Online: Recover the full internal state xfull matching with ztotal
1: Divide ztotal into α overlapping parts zi (1 ≤ i ≤ α) and a suffix zµ
2: for i = 1 to α do
3: get the candidates list Li of the restricted internal state xi for zi
4: end for
5: Merge Lis to get a candidate list for the possible partial state xmerge
6: for each candidate of xmerge do
7: restore xfull and test the consistency with the suffix zµ

The following proposition provides new insights on what influence the whole
internal state size has on the feasibility of a near collision attack.

Proposition 1. For a specified cipher and two keystream vectors z and z′, the
KSD ∆z = z ⊕ z′ only depends on the ISD ∆x = x ⊕ x′ and the values of x
and x′, whatever the difference and the values in x̄, the other parts of the whole
internal state.

Proof. It suffices to see the algebraic expressions of the keystream bits under
consideration. By taking a look at the input variables, we have the claim. ⊓⊔

Offline. Proposition 1 makes the pre-computation phase in FNCA quite differ-
ent from and much more efficient than that in the previous NCA in [18]. Now
we need not to exhaustively search through all the possible ISDs over the full
internal state, which is usually quite large, instead we just search through all the
possible ISDs over a specified restricted internal state corresponding to a given
keystream vector, which is usually much shorter compared to the full internal
state. In Algorithm 1, we use two parameters index and prefix to characterise
this difference with index being the KSD and prefix being the value of one of
the two specified keystream vectors. For each possible combination of (index,
prefix), we construct an individual table for the pair. Thus, many relatively
small tables are built instead of one large pre-computed table, which greatly re-
duces the time/memory complexities of the offline phase, improves the accuracy
of the pre-computed information, and finally assures a high success rate of the
new attack.

Online. With the differential tables prepared in the offline phase, the adversary
first tries to get some candidates of the target restricted internal state x1 and
to filter out as much as possible wrong candidates of x1 in a reasonable time
complexity. Then he/she moves to another restricted internal state x2, possibly
overlapped with x1, but not coincident with x1, and get some candidates of
x2. This process is repeated until enough internal state bits are recovered in an

9

acceptable time/memory complexities and merge the candidate lists Li together
to get a candidate list of possible partial state xmerge. Finally, from xmerge,
he/she tries to retrieve the full internal state and check the candidates by using
the consistency with the keystream segment.

There are three essential problems that have to be solved in this process.
The first one is how to efficiently get the candidates for each restricted internal
state and further to filter out those wrong values as much as possible in each
case? The second is how to efficiently merge these partial states together without
the overflowing of the number of possible internal state candidates, i.e., we need
to carefully control the increasing speed of the possible candidates during the
merging phase. At last, we need to find some very efficient method to restore
the other parts of the full internal state given xmerge, which lies at the core
of the routine. We will provide our solutions to these problems in the following
sections.

4.2 Offline Phase: Parameterizing the Differential Tables

Now we explain how to pre-compute the differential tables T[index, prefix],
conditioned on the event that the value of one of the two keystream vectors is
prefix when the KSD is index. Let x = (xi0 , xi1 , . . . , xin−1) be the restricted
internal state associated with z = (zj0 , zj1 , . . . , zjl−1

), for such a chosen (x, z)
pair, Algorithm 2 fulfills this task. Algorithm 2 is the inner routine of the pre-
computation phase of FNCA in the general case, where N1 and N2 are the
two random sampling sizes when determining whether a given ISD ∆x of the
restricted internal state x could generate the KSD index and what the occurring
probability is. Algorithm 2 is interesting in its own right, though not adopted in
the state recovery attack on Grain v1 in Section 5. It can be applied in the most
general case with the theoretical justification when dedicated pre-computation
is impossible.

Algorithm 2 Constructing the differential table T[index, prefix]

1: for each ISD ∆x s.t. wH(∆x) ≤ d do
2: for i = 1 to N1 do
3: determine whether ∆x could generate the specified KSD index

4: if yes then
5: for j = 1 to N2 do
6: generate random x s.t. Af(x) = prefix and form the pair (x,x⊕∆x)
7: compute z = Af(x) and z′ = Af(x⊕∆x)
8: count the number of times counter that ∆z = z⊕ z′ = index

9: store the ratio counter/N2 with ∆x in T[index, prefix]
10: Sort the ISDs according to the occurring rates

From V (n, d) =
∑d

i=0

(
n
i

)
, the time complexity of Algorithm 2 is P = 2 ·

V (n, d) · (N1 + N2 · (jl−1 + 1)) cipher ticks and the memory requirement is at
most V (n, d) · (⌈log2n⌉ · d+(7+7)) bits, where a 14 = 7+7-bit string is used to
store the percentage number, e.g., for 76.025%, we use 7 bits to store the integer
part 76 < 128 and another 7 bits to save the fractional part 0.025 as 0.0000011.

10

In Table 2, the global information of the 16 T tables for Grain v1 with the 23
original variables when l = 2 is shown, where Prdivs is defined as follows.

Table 2. The summary of the pre-computation phase of Grain v1 for 2-bit keystream
vector with the 23 original variables

(index, prefix) |T| Prdivs (index, prefix) |T| Prdivs

(0x0, 0x0) 16126 0.314426 (0x2, 0x0) 16106 0.319008
(0x0, 0x1) 16126 0.314434 (0x2, 0x1) 16106 0.318892
(0x0, 0x2) 16126 0.314504 (0x2, 0x2) 16106 0.318934
(0x0, 0x3) 16126 0.314504 (0x2, 0x3) 16106 0.318955
(0x1, 0x0) 16106 0.318958 (0x3, 0x0) 16044 0.311827
(0x1, 0x1) 16106 0.319050 (0x3, 0x1) 16044 0.311839
(0x1, 0x2) 16106 0.318896 (0x3, 0x2) 16044 0.311979
(0x1, 0x3) 16106 0.318928 (0x3, 0x3) 16044 0.311833

Definition 4. For each T[index, prefix], let |T| be the number of ISDs in the

table, the diversified probability of this table is defined as Prdivs =
∑

∆x∈T Pr∆x

|T | ,

where ∆x ranges over all the possible ISDs in the table.

The diversified probability of a T[index, prefix] table measures the average
reducing effect of this table that for a random restricted internal state x such
that Af(x) = prefix, flip the bits in x according to a ∆x ∈ T and get x′, then
with probability Prdivs, Af(x⊕∆x) = prefix⊕ index. From Definition 4, the
success rate of the new FNCA is quite high, for we have taken each possible ISD
into consideration in the attack.

Corollary 2. From Table 2, if the index is fixed, then the 4 Prdivss correspond-
ing to different prefixes are approximately the same, i.e., the 4 T tables have
almost the same reducing effect for filtering out wrong candidates.

Corollary 2 is the basis of the merging operation in the online attack phase, which
assures that with the restricted BSW sampling resistance of Grain v1 and the
self-contained method introduced later, the partial state recovery procedure will
not be affected when the keytream vector under consideration has changed its
value along the actual keystream. If the keystream vector under consideration has
the value prefix, the adversary uses the value prefix⊕index in the computing
stage of the self-contained method to have the KSD remaining the same.

4.3 Online Phase: Restoring and Distilling the Candidates

Now we come to the online phase of FNCA. The aim is to restore the overlapping
restricted internal states one-by-one, merge them together, and finally from the
already covered state xmerge to retrieve the correct full internal state. For a
chosen (x, z) pair, the refined self-contained method is depicted in Algorithm 3.

11

Algorithm 3 The refined self-contained method

1: Initialize i = 0

2: while i ≤ c · 2n

|D| do

3: load x with a new random value so that it generates z⊕ index

4: for each possible ISD ∆x in T[index, z⊕ index] do
5: compute x′ = x⊕∆x
6: if x′ generates z then
7: put x′ into the candidates list L
8: end if
9: end for
10: i = i+ 1
11: end while

The original self-contained method was proposed in [16], whose idea is to make
a tradeoff between the data and the online time complexity in such a way that
the second set B of keystream vectors in Lemma 1 is generated by the adversary
himself, thus he also knows the actual value of the corresponding internal state
that generates the keystream vector. Therefore, given the ISD from the pre-
computed tables, the adversary could just xor the ISD with the internal state
matching with the keystream vector in B to get the candidate internal state for
the keystream vectors in A. In Algorithm 3, it is quite possible that although
obtained from a different new starting value for the restricted internal state x,
some candidates x′ will collide with the already existing element in the list, thus
the final number of hitting values in the list is not so much as the number of
invoking times c · 2n

|D| . The following theorem gives the expected value of the

actual hitting numbers.

Theorem 1. Let b be the number of all the values that can be hit and a =
c · 2n

|D| · |T | · Pdivs, then after one invoking of Algorithm 3, the mathematical

expectation of the final number r of hitting values in the list is

E[r] =
a∑

r=1

(
b
r

)
· r! ·

{
a
r

}
· r

ba
, (1)

where
{
a
r

}
is the Stirling number of the second kind,

(
b
r

)
is the binomial coefficient

and r! is the factorial.

Proof. Note that the Stirling number of the second kind [17]
{
a
r

}
counts the

number of ways to partition a set of a objects into r non-empty subsets, i.e.,
each way is a partition of the a subjects, which coincides with our circumstance.
Thus we can model the process of Algorithm 3 as follows.

We throw a balls into b different boxes, and we want to know the probabil-
ity that there are exactly r boxes having some number of balls in. From this
converted model, we can see that the size of the total sample space is ba, while
the number of samples in our expected event can be calculated in the following
steps.

12

1. Choose r boxes to hold the thrown balls, there are
(
b
r

)
ways to fulfill this

step.
2. permute these r boxes, there are r! ways to fulfill this step.
3. partition the a balls into r non-empty sets, this is just the Stirling number

of the second kind
{
a
r

}
.

Following the multiplication principle in combinatorics, the size of our expected
event is just the product of the above three. This completes the proof. ⊓⊔

We have made extensive experiments to verify Theorem 1 and the simulation
results match the theoretical predictions quite well. Back to the self-contained
method setting, a is just the number of valid candidates satisfying the conditions
that the KSD is index and one of the keystream prefix is prefix, of which some
may be identical due to the flipping according to the ISDs in T.

In general, the opponent can build a table for the function f , mapping the
partial sub-states to the keystream vector z, to get a full list of inputs that map to
a given z. In order to reduce the candidate list size in a search, he may somehow
choose a smaller list of inputs that map to z, and hope that the correct partial
state is still in the list with some probability p, depending on the size of the
list. The aim of the distilling phase is to exploit the birthday paradox regarding
d-near collisions, local differential properties of f , and the self-contained method
to derive smaller lists of input sub-states so that the probability that the correct
state is in the list is at least p. From Lemma 1, with a properly chosen constant
c, the correct internal state x will be in the list L with a high probability, e.g.,
0.8 or 0.95. For a chosen (x, z) pair, the candidates reduction process is depicted
in Algorithm 4.

Algorithm 4 Distilling the candidates

Parameter: a well chosen constant β
1: for i = 1 to β do
2: run Algorithm 3 to get the candidates list Li

3: end for
4: Initialize a list U and let U = L1

5: for i = 2 to β do
6: intersect U with Li, i.e., U ← U ∩ Li

The next theorem characterizes the number of candidates passing through the
distilling process in Algorithm 4.

Theorem 2. The expected number of candidates in the list U in Algorithm 4

after β − 1 steps of intersection is |U1| · (E[r]
b)β−1, where |U1| = |L1| is the

number of candidates present in the first list L1 and E[r] is the expected number
of hitting values in one single invoking of Algorithm 3.

Proof. For simplicity, let |Ui| = fi denote the cardinality of the candidates list
after i − 1 steps of intersection for 1 ≤ i ≤ β − 1. Note that in the intersection
process, if there are fi candidates in the current list U , then at the next inter-

section operation, an element in U has the probability E[r]
b to remain, and the

probability 1− E[r]
b to be filtered out.

13

Let fi → fi+1 denote the event that there are fi+1 elements left after one
intersection operation on the fi elements in the current U . The expected value

of fi+1 is E[fi+1] =
∑fi

j=0

(
fi
j

)
· (E[r]

b)j · (1− E[r]
b)fi−j · j = fi · E[r]

b . Thus we have
the following recursion

fβ−1 = fβ−t−1 ·
t∏

i=1

(
E[r]

b
) = |U1| · (

E[r]

b
) · (E[r]

b
) · · · · · (E[r]

b
)︸ ︷︷ ︸

β−1

= |U1| · (
E[r]

b
)β−1,

which completes the proof. ⊓⊔

Algorithm 5 Improving the existence probability of the correct x

Parameter: a well chosen constant γ
1: for i = 1 to γ do
2: run Algorithm 4 to get the candidates list Ui

3: end for
4: Initialize a list V and let V = U1

5: for i = 2 to γ do
6: union V with Ui, i.e., V ← V ∪ Ui

Theorem 2 partially characterizes the distilling process in theory. Now the crucial
problem is what the reduction effect of this process is, which is determined by the
choice of the constant c intrinsic to each primitive and the number of variables
involved in the current augmented function. From the cryptanalyst’s point of
view, the larger β is, the lower the probability that the correct x is involved in
each generated list, thus it is better for the adversary to make some tradeoff
between β and this existence probability. Algorithm 5 provides a way to exploit
this tradeoff to get some higher existence probability of the correct restricted
internal state x.

In Algorithm 5, several candidate lists are first generated by Algorithm 4
with a number of intersection operations for each list, then these lists are unified
together to form a larger list so that the existence probability of the correct x
becomes higher compared to that of each component list.

Theorem 3. Let the expected number of candidates in list V in Algorithm 5
after i (1 ≤ i ≤ γ) steps of union be Fi, then the following relation holds

Fi+1 = Fi + |Ui+1| −
|Ui+1|∑
j=0

(
Fi

j

)
·
(Fi+1−Fi

|Ui+1|−j

)(Fi+1

|Ui+1|
) · j , 1 ≤ i ≤ γ − 1 (2)

where |F1| = |U1|.

Proof. Note that when a new Ui+1 is unified into V , we have Fi+1 = Fi+|Ui+1|−
|Fi∩Ui+1|. It suffices to note that Eq.(2) can be derived from the hypergeometric
distribution for the |Fi ∩ Ui+1| part, which completes the proof. ⊓⊔

14

Theorem 3 provides a theoretical estimate of |V |, which is quite close to the
experimental results. After getting V for x1, we move to the next restricted in-
ternal state x2, as depicted in Algorithm 1 until we recovered all the α restricted
internal states. Then we merge the restored partial states xi for 1 ≤ i ≤ α to
cover a larger part of the full internal state. We have to recover the full internal
state conditioned on xmerge. The next theorem describes the reduction effect
when merging the candidate lists of two restricted internal states.

Theorem 4. Let the candidates list for xi be Vi, then when merging the can-
didates list Vi for xi and Vi+1 for xi+1 to cover an union state xi ∪ xi+1, the
expected number of candidates for the union state xi ∪ xi+1 is

E[|Vxi∪xi+1 |] =
|Vi| · |Vi+1|
|Vi ∩ Vi+1|

,

where Vxi∪xi+1 is the candidates list for the union state xi ∪ xi+1.

Proof. Denote the bits in xi ∩ xi+1 by I = I0, I1, · · · , I|xi∩xi+1|−1 when merging
the two adjacent restricted internal states xi and xi+1, then we can group Vi

and Vi+1 according to the |xi ∩ xi+1| concrete values of I. For the same value
pattern of the common bits in I, we can just merge the two states xi and xi+1

by concatenating the corresponding candidate states together directly. Thus, the
expected number of candidates for the union state is

E[|Vxi∪xi+1 |] =
|Vi|

|Vi ∩ Vi+1|
· |Vi+1|
|Vi ∩ Vi+1|

· |Vi ∩ Vi+1| =
|Vi| · |Vi+1|
|Vi ∩ Vi+1|

,

which completes the proof. ⊓⊔

Corollary 3. In the merging process of Algorithm 1, let MA and MB be two
partial internal states, each merged from possibly several restricted internal states
respectively, then when merging MA and MB together, the expected number of

candidates for the union state MA ∪MB is E[|MA ∪MB |] = |MA|·|MB |
|MA∩MB | .

Proof. It suffices to note the statistical independence of each invoking of Algo-
rithm 5 and Theorem 4. ⊓⊔

Finally, we present the theorem on the success probability of Algorithm 5.

Theorem 5. Let the probability that the correct value of the restricted internal
state x will exist in V be Prx, then we have Prx = 1− (1− (Pc)

β)γ , where Pc is
the probability that the correct value of the restricted internal state x exist in U
for one single invoking of Algorithm 3.

Proof. From Algorithm 4 and 5, the probability that for all the γ Uis, the correct
value of x does not exist in the list is (1− (Pc)

β)γ , thus the opposite event has
the probability given above. This completes the proof. ⊓⊔

Based on the above theoretical framework of FNCA, we will develop a state
recovery attack against Grain v1 in the next section, taking into account the
dedicated internal structure of the primitive.

15

5 State Recovery Attack on Grain v1

Now we demonstrate a state recovery attack on the full Grain v1. The new attack
is based on the FNCA framework described in Section 4 with some techniques
to control the attack complexities.

5.1 Rewriting Variables and Parameter Configuration

From the keystream generation of Grain v1, we have zi =
⊕

k∈A ni+k ⊕ h(li+3,
li+25, li+46, li+64, ni+63), where A = {1, 2, 4, 10, 31, 43, 56}, i.e., one keystream
bit zi is dependent on 12 binary variables, of which 7 bits from the NFSR form
the linear masking bit

⊕
k∈A ni+k, 4 bits from the LFSR and ni+63 from the

NFSR are involved in the filter function h.
For a straightforward FNCA on Grain v1, even considering two consecutive

keystream bits, we have to deal with 23 binary variables simultaneously at the
beginning of the attack. Thus the number of involved variables will grow rapidly
with the running of the attack, and probably overflow at some intermediate
point. To overcome this difficulty, we introduce the following two techniques to
reduce the number of free variables involved in the keystream vectors.

Let xi = ni+1 ⊕ ni+2 ⊕ ni+4 ⊕ ni+10 ⊕ ni+31 ⊕ ni+43 ⊕ ni+56, then we have

zi = xi ⊕ h(li+3, li+25, li+46, li+64, ni+63). (3)

There are only 6 binary variables xi, li+3, li+25, li+46, li+64, ni+63 involved in
Eq.(3) and if we consider a keystream vector z = (zi, zi+1), there are only 12
variables now, almost reduced by half compared to the previous number 23.
Note that the rewriting technique is known to be useful in [9] before in algebraic
attacks on stream ciphers.

Besides, we can still use the linear enumeration procedure as in the BSW
sampling case to reduce the variables further. Precisely, from Eq.(3), we have
xi = zi ⊕ h(li+3, li+25, li+46, li+64, ni+63), thus for the above keystream vector
z = (zi, zi+1), we could actually deal with 10 binary variables only, making xi

and xi+1 dependent on the other 10 variables and (zi, zi+1).

Algorithm 6 The pre-computation after rewriting variables

Parameter: matrix P1 of size 2l × V (n, d) with P1[i][j] ̸= 0 if the ISD
j could generate the KSD i and 0 otherwise

1: Initialize the table T[index, prefix]
2: for each possible value of x do
3: for each ISD ∆x s.t. wH(∆x) ≤ d do
4: determine whether fsr(x) = prefix and fsr(x⊕∆x) = prefix⊕ index

5: if yes then P1[index][∆x] = P1[index][∆x] + 1
6: for each ISD ∆x s.t. wH(∆x) ≤ d do
7: set P1[index][∆x]/|x| as the occurring rate of ∆x
8: Sort the ISDs according to the occurring rates

There is an extra advantage of the above strategy. That is we could now exhaus-
tively search the full input variable space when preparing the differential tables

16

T[index, prefix] for the chosen attack parameters shown in Algorithm 6, which
results in the accurately computed occurring probabilities compared to Algo-
rithm 2 in Section 4.2, where fsr(·) is the evaluation of the underlying stream
cipher. The complete pre-computation table of Grain v1 is listed in Table 3 for

Table 3. The full Pre-computation information of Grain v1 after rewriting variables
when d = 3

(index, prefix) (0x0, ∗) (0x1, ∗) (0x2, ∗) (0x3, ∗)
prob. 1 1

2
1
4

1
8

1
16

3
4

1
2

3
8

1
4

3
16

1
8

9
16

3
8

1
4

number 1 44 69 54 8 3 22 27 63 8 27 8 54 63

d = 3, where ∗ indicates that the prefix could take any value from 0x0 to 0x3

due to the same distribution for different prefix values and number denotes the
number of ISDs having the corresponding occurring probability.

From Table 3 and Definition 4, we have the following corollary on the diver-
sified probabilities of different pre-computed tables.

Corollary 4. For the pre-computation table of Grain v1 after rewriting vari-
ables, we have

Prdivs =

0.269886, if index=0x0
0.293333, if index=0x1
0.293333, if index=0x2
0.324000, if index=0x3.

Proof. From Definition 4, we have Prdivs =
∑

∆x∈T Pr∆x

|T | , it suffices to substitute

the variables with the values from Table 3 to get the results. ⊓⊔

From Corollary 4, we choose the KSD to be 0x0 in our attack, for in this case the
reduction effect is maximized with the minimum Prdivs. Under this condition, we
have run extensive experiments to determine the constant c for Grain v1, which is
shown in the following table, where Pc is the probability that the correct value of
the restricted internal state exists in the resultant list after one single invoking of
Algorithm 3. Based on Table 4, we have run a number of numerical experiments

Table 4. The correspondence between the constant c and the existence probability for
index = 0x0

c 5 6 7 8 9 10
Pc 0.757137 0.816551 0.860638 0.89502 0.92114 0.94644

c 11 12 13 14 15 16
Pc 0.95423 0.96573 0.97567 0.98021 0.985524 0.989411

to determine the appropriate configuration of attack parameters and found that
c = 10 provides a balanced tradeoff between various complexities.

Precisely, under the condition that c = 10 and the l = 2-bit keystream
vector with 12 variables (either consecutive or non-consecutive to construct the

17

augmented function Af), we find that if β = 21 and γ = 6, then we get Prxi =
1 − (1 − 0.9464421)6 = 0.896456 from Theorem 5. We have tested this fact in
experiments for 106 times, and found that the average value of the success rate
well matches to the theoretical prediction. Besides, we have also found that
under this parameter configuration, the number of candidates in the list V for
the current restricted internal state x is 848 ≈ 29.73, which is also quite close to
the theoretical value 29.732 got from Theorem 3.

Corollary 5. For Grain v1 when c = 10 and l = 2, the configuration that the
resultant candidate list V is of size 848 with the average probability of 0.896456
for the correct restricted internal state being in V is non-random.

Proof. Note that in the pure random case, the list V should have a size of
210 · 0.896456 = 917.971 with the probability 0.896456; now in Grain v1, we get
a list V of size 848 with the same probability. In the pure random case, we have

E[|V |] = µ = 210 · 0.896456 = 917.971, σ =

√
210 · 1

4
· 3
4
= 13.8564.

Further, µ−848
σ = 917.971−848

13.8564 = 5.0497; from Chebyshev’s inequality, the config-
uration (848, 0.896456) is far from random with the probability around 0.99. ⊓⊔
Now we are ready to describe the attack in details based on the above attack
parameter configuration.

5.2 Concrete Attack: Strategy and Profile

First note that if we just run Algorithm 1 along a randomly known keystream
segment to retrieve the overlapping restricted internal states one-by-one without
considering the concrete internal structure of Grain v1, then we will probably
meet the complexity overflow problem in the process when the restored internal
state xmerge does not cover a large enough internal state, and at the same time,
the number of candidates and the complexity needed to check these candidates
will exceed the security bound already. Instead, we proceed as follows to have
a more efficient attack. First observe that if we target the keystream vector
z = (zi, zi+1) through rewriting variables in Table 5 and restore the variables
therein by our method, then for such a 2-bit keystream vector, we can obtain 8
LFSR variables involved in the h function and 2 NFSR bits ni+63, ni+64, together
with 2 linear equations xi =

⊕
k∈A ni+k and xi+1 =

⊕
k∈A ni+k+1 on the NFSR

variables. If we repeat this procedure for the time instants from 0 to 19, then from
zi = xi ⊕ h(li+3, li+25, li+46, li+64, ni+63), we will have li+3+j , li+25+j , li+46+j ,
li+64+j and ni+63+j for 0 ≤ j ≤ 19 involved in Table 5.

Let x∗ be the restricted internal state consisting of the input variables in-
volved in Table 5, the details of how to restore the restricted internal state x∗

is presented in the following Tables 6 and 7. We first use FNCA to restore x∗,
then we know nearly 80 bits of the LFSR internal state with the corresponding
positions, from which we can easily recover the initial internal state of the LFSR
with a quite low complexity. Algorithm 7 presents the sketch of our online attack
against Grain v1.

18

Table 5. The target keystream equations first exploited in our attack

output output

1 : x0 ⊕ h(l3, l25, l46, l64, n63) = z0 2 : x1 ⊕ h(l4, l26, l47, l65, n64) = z1
3 : x2 ⊕ h(l5, l27, l48, l66, n65) = z2 4 : x3 ⊕ h(l6, l28, l49, l67, n66) = z3
5 : x4 ⊕ h(l7, l29, l50, l68, n67) = z4 6 : x5 ⊕ h(l8, l30, l51, l69, n68) = z5
7 : x6 ⊕ h(l9, l31, l52, l70, n69) = z6 8 : x7 ⊕ h(l10, l32, l53, l71, n70) = z7

eqns. 9 : x8 ⊕ h(l11, l33, l54, l72, n71) = z8 10 : x9 ⊕ h(l12, l34, l55, l73, n72) = z9
11 : x10 ⊕ h(l13, l35, l56, l74, n73) = z10 12 : x11 ⊕ h(l14, l36, l57, l75, n74) = z11
13 : x12 ⊕ h(l15, l37, l58, l76, n75) = z12 14 : x13 ⊕ h(l16, l38, l59, l77, n76) = z13
15 : x14 ⊕ h(l17, l39, l60, l78, n77) = z14 16 : x15 ⊕ h(l18, l40, l61, l79, n78) = z15
17 : x16 ⊕ h(l19, l41, l62, l80, n79) = z16 18 : x17 ⊕ h(l20, l42, l63, l81, n80) = z17
19 : x18 ⊕ h(l21, l43, l64, l82, n81) = z18 20 : x19 ⊕ h(l22, l44, l65, l83, n82) = z19

Algorithm 7 The online attack on the full Grain v1

1: Apply FNCA to x∗ to restore the input variables
2: for each candidate of x∗ do
3: use the statistical test in Section 5.4 to check the candidate
4: for the passed ones do
5: recover the remaining NFSR state, shown in Section 5.4
6: for each candidate of xfull do
7: check the consistency with the available keystream

After knowing the LFSR part and more than half of the NFSR, we could first
identify the correct LFSR state by the Walsh distinguisher, then the remaining
NFSR state could easily be retrieved with an algebraic attack, both shown in the
following Section 5.4. Note that in Table 6 and 7, the list size for each merging
operation is listed in the middle column, based on Theorem 4 and Corollary
3. For example, let us look at the 1st step. The reason that 25 is used instead
of 26 in denominator is that the xi variables are not freely generated random
variables, for we have made them linearly dependent on the 5 variables in h
function and the corresponding keystream bits to fulfill our criterion on the
pre-computed tables. 214.4558 is the list size when merging the two restricted
internal states corresponding to (z0, z1) and (z1, z2), respectively. After merg-
ing (z0, z1) and (z1, z2), we get a list for the restricted internal state of the 3-bit
keystream vector (z0, z1, z2). Now we further invoke the self-contained method for
the keystream vector (z0, z2), which consists of only z0 and the non-consecutive
z2. Since there are now 10 free common variables between the restricted inter-
nal state of (z0, z1, z2) and that of (z0, z2), thus the denominator becomes 210.
During this merging procedure, we use 3 keystream vectors (z0, z1), (z1, z2) and
(z0, z2), and 3 times of the union result to form 3 independent candidate lists
of size 848 with the probability 0.896456 that the corresponding correct partial
state is indeed therein. Thus we have the probability 0.8964563. The subsequent
procedures in Table 6 and 7 are deduced in a similar way as the above. The
key point here is to the count the number of freely chosen variables between

19

Table 6. The attack process for recovering x∗ (1)

z List merging Probability

1. (z0, z1)
848·848

25
= 214.4558

(z1, z2) 0.8964563 = 2−0.473086

(z0, z2)
848·214.4558

210
= 214.1837

2. (z1, z2)
214.1837·214.1837

210
= 218.3674

(z2, z3) 0.8964562·3+1 = 2−1.10387

(z1, z3)
218.3674·848

210
= 218.0953

3. (z0, · · · , z3) 218.0953·218.0953
215

= 221.1906

(z1, · · · , z4) 0.8964562·7+1 = 2−2.36543

(z0, z4)
221.1906·848

210
= 220.9185

4. (z0, · · · , z4) 220.9185·220.9185
220

= 221.837

(z1, · · · , z5) 0.8964562·15+1 = 2−4.88855

(z0, z5)
221.837·848

210
= 221.5649

5. (z0, · · · , z5) 221.5649·221.5649
225

= 218.1298

(z1, · · · , z6) 0.8964562·31+1 = 2−9.93481

(z0, z6)
218.1298·848

210
= 217.8577

6. (z0, · · · , z6) 217.8577·217.8577
230

= 25.7154

(z1, · · · , z7) 0.8964562·63+1 = 2−20.0273

(z0, z7)
25.7154·848

210
= 25.44332

7. (z0, · · · , z7) 25.44332·221.5649
225

= 22.00822

(z3, · · · , z8) 0.896456127+31+1 = 2−25.0736

(z0, z8)
22.00822·848

210
= 21.73614

8. (z0, · · · , z8) 21.73614·221.5649
225

= 2−1.69896

(z4, · · · , z9) 0.896456159+31+1 = 2−30.1198

(z0, z9)
2−1.69896·848

210
= 2−1.97104

9. (z0, · · · , z9) 2−1.97104·221.5649
225

= 2−5.40614

(z5, · · · , z10) 0.896456191+31+1 = 2−35.1661

(z0, z10)
2−5.40614·848

210
= 2−5.67822

20

Table 7. The attack process for recovering x∗ (2)

z List merging Probability

10. (z0, · · · , z10) 2−5.67262·221.5649
225

= 2−9.11332

(z6, · · · , z11) 0.896456223+31+1 = 2−40.2123

(z0, z11)
2−9.11332·848

210
= 2−9.3854

11. (z0, · · · , z11) 2−9.3854·220.9185
220

= 2−8.4669

(z8, · · · , z12) 0.896456255+15+1 = 2−42.7354

(z0, z12)
2−8.4669·848

210
= 2−8.73898

12. (z0, · · · , z12) 2−8.73898·220.9185
220

= 2−7.82048

(z9, · · · , z13) 0.896456271+15+1 = 2−45.2586

(z0, z2)
2−7.82048·848

210
= 2−8.09256

13. (z0, · · · , z13) 2−8.09256·220.9185
220

= 2−7.17406

(z10, · · · , z14) 0.896456287+15+1 = 2−47.7817

(z0, z14)
2−7.17406·848

210
= 2−7.44614

14. (z0, · · · , z14) 2−7.44614·218.0953
215

= 2−4.35084

(z12, · · · , z15) 0.896456303+7+1 = 2−49.0432

(z0, z15)
2−4.35084·848

210
= 2−4.62292

15. (z0, · · · , z15) 2−4.62292·218.0953
215

= 2−1.52762

(z13, · · · , z16) 0.896456311+7+1 = 2−50.3048

(z0, z16)
2−1.52762·848

210
= 2−1.7997

16. (z0, · · · , z16) 2−1.7997·218.0953
215

= 21.2956

(z14, · · · , z17) 0.896456319+7+1 = 2−51.5664

(z0, z17)
21.2956·848

210
= 21.02352

17. (z0, · · · , z17) 21.02352·218.0953
215

= 24.11882

(z15, · · · , z18) 0.896456327+7+1 = 2−52.8279

(z0, z18)
24.11882·848

210
= 23.84674

18. (z0, · · · , z18) 23.84674·218.0953
215

= 26.94204

(z16, · · · , z19) 0.896456335+7+1 = 2−54.0895

(z0, z19)
26.94204·848

210
= 26.66996

21

the corresponding internal state subsets, not including the linearly dependent
variables. This process is repeated until merging the 20th equation in Table 5.

5.3 Restoring the Internal State of the LFSR

From Table 5, x∗ involves 78 LFSR bits in total, it seems that we need to guess
2 more LFSR bits to have a linear system covering the 80 initial LFSR variables.
To have an efficient attack, first note that both l64 and l65 are used 2 times in
these equations, thus the candidate values should be consistent on l64 and l65,
which will provide a reduction factor of 1

22 = 1
4 on the total number of candidates.

Further, from l83 = l65⊕l54⊕l41⊕l26⊕l16⊕l3, we have a third linear consistency
check on the candidates. Hence, the number of candidates after going through
Table 6 and 7 is 1

2−54.0895 · 26.66996 · 2−3 = 257.7595. By guessing 2 more bits l0, l1,
we can get l23, l24 from the recursion l80+j = l62+j⊕l51+j⊕l38+j⊕l23+j⊕l13+j⊕lj
for j = 0, 1. In addition, we can derive l2 from l82 = l64⊕ l53⊕ l40⊕ l25⊕ l15⊕ l2.

Note that the LFSR updates independently in the keystream generation
phase and we also know the positions of the restored LFSR bits either from
FNCA or from guessing, thus we could make a pre-computation to store the

inverse of the corresponding linear systems with an off-line complexity of 802.8

Ω

cipher ticks and a online complexity of 802

Ω to find the corresponding unique solu-
tion, where 2.8 is the exponent for Gauss reduction. This complexity is negligible
compared to those of the other procedures. The total number of candidates for
the LFSR part and the accompanying partial NFSR state, 22 ·257.7595 = 259.7595,
will dominate the complexity.

Remarks. Note that the gain in our attack mainly comes from the following
two aspects. First, we exploit the first 20-bit keystream information in this pro-
cedure in a probabilistic way, not in a deterministic way, which is depicted later
in Theorem 7. Now we target 78+ 20+ 20 = 118 variables, not 160 variables, in
a tradeoff-like manner. Here only 98 variables can be freely chosen. This cannot
be interpreted in a straightforward information-theoretical way, which is usually
evaluated in a deterministic way. Second, we use the pre-computed tables which
also contain quite some information on the internal structure of Grain v1 in an
implicit way in the attack.

5.4 Restoring the Internal State of the NFSR

After obtaining the candidate list for the LFSR part, the adversary could run
the LFSR individually forwards and backwards to get all the necessary values
and thus peel off the non-linearity of the h function. Now there are 2 choices
in front of us, one is to efficiently restore the 80 NFSR variables with a low
complexity that allows to be invoked many times, for there are probably many
candidates of the restricted internal state x∗ to be checked; the other is to check
the correctness of the LFSR candidate first, then the NFSR could be restored
afterwards independently. Fortunately, we find the latter way feasible in this
scenario, which is shown below.

22

From the above step, the FNCA method has provided the adversary with the
NFSR bits n63+i and xi = ni+1 ⊕ ni+2 ⊕ ni+4 ⊕ ni+10 ⊕ ni+31 ⊕ ni+43 ⊕ ni+56

for 0 ≤ i ≤ 19, i.e., now there are 20 + 20 = 40-bit information available on the
NFSR initial state. We proceed as follows to get more information.

Collecting More Linear Equations on NFSR. First note that if we go back
1 step, we get x−1 = n0⊕n1⊕n3⊕n9⊕n30⊕n42⊕n55, i.e., we get 1 more linear
equation for free. If we go back further, we could get a series of variables that can
be expressed as the linear combination of the known values and the target initial
NFSR state variables. On the other side, if we go forwards and take a look at the
coefficient polynomial of x4 in the h function, i.e., 1⊕ x3 ⊕ x0x2 ⊕ x1x2 ⊕ x2x3,
we find it is a balanced Boolean function. Thus, the n82+i variables have a
probability of 0.5 to vanish in the resultant keystream bit and the adversary
could directly collect a linear equation through the corresponding x20+i variable
at the beginning time instants from 20.

To get more linear equations on the NFSR initial state, we can use the
following Z-technique, which is based on the index difference of the involving
variables in the keystream bit. Precisely, if n82+i appears at the z19+i position,
let us look at the end of the keystream equation z26+i to see whether n82+i exists
there or not. If it is not there, then this will probably give us one more linear
equation on the NFSR initial variables due to the index difference 56 − 43 =
13 > 7; if it is there, we could just xor the two keystream equations to cancel
out the n82+i variable to get a linear equation on the NFSR initial variables.
Then increase i by 1 and repeat the above process for the new i. Since the trace of
the equations looks like the capital letter ’Z’, we call this technique Z-technique.
An illustrative example is provided in Appendix A.

It can be proved by induction that the Z-technique can also be used to express
the newly generated NFSR variables as linear combinations of the keystream bits
and of the initial state variables in forward direction. In backward direction, it
is trivial to do the same task. We have run extensive experiments to see the
average number of linear equations that the adversary could collect using the
Z-technique, it turns out that the average number is 8, i.e., we could reduce the
number of unknown variables in the initial NFSR state to around 80− 40− (8−
3) = 35, which facilitates the following linear distinguisher.

The Walsh Distinguisher. First note that the NFSR updating function in
Grain v1 has a linear approximation with bias 41

512 , shown below.

n80+i = n62+i ⊕ n60+i ⊕ n52+i ⊕ n45+i ⊕ n37+i ⊕ n28+i ⊕ n21+i ⊕ n14+i ⊕ ni ⊕ e,

where e is the binary noise variable satisfying Pr(e = 0) = 1
2 + 41

512 . Since
now there are only around 35 unknown variables left, we could collect a system
of probabilistic linear equations on the left 35 NFSR variables by iteratively
expressing the NFSR variables with indices larger than 80 by the corresponding
linear combinations of keystream bits and the known information from the LFSR
part and the partial NFSR state. If there are δ NFSR variables represented in
this process, the complexity is just 35 · δ. As a result, we have a system of the

23

following form
c00ni0 ⊕ c01ni1 ⊕ · · · ⊕ c034ni34 = kz0 ⊕ e0
c10ni0 ⊕ c11ni1 ⊕ · · · ⊕ c134ni34 = kz1 ⊕ e1

...
...

...

cδ−1
0 ni0 ⊕ cδ−1

1 ni1 ⊕ · · · ⊕ cδ−1
34 ni34 = kzδ−1 ⊕ eδ−1,

(3)

where cij ∈ F2 for 0 ≤ i ≤ δ−1 and 0 ≤ j ≤ 34 is the coefficient of the remaining
NFSR variable nij (0 ≤ j ≤ 34), kzi (0 ≤ i ≤ δ − 1) is the accumulated linear
combination of the keystream bits and the known information from the LFSR
part and the partial NFSR state derived before and ei (0 ≤ i ≤ δ − 1) is the
binary noise variable with the distribution Pr(ei = 0) = 1

2 + 41
512 .

To further reduce the number of unknown NFSR variables, we construct the
parity checks of weight 2 from the above system as follows. First note that the
bias of the parity checks is 2 ·(41

512)
2 = 2−6.2849 from the Piling-up lemma in [14].

Second, this problem is equivalent to the LF2 reduction in LPN solving problems
[12], which can be solved in a sort-and-merge manner with a complexity of at
most δ using pre-computed small tables. We have tuned the attack parameters

in this procedure and found that if δ = 219 and y = 15, we could collect
(
219−15

2

)
·

215 = 221.9069 parity-checks on 35− y = 20 NFSR variables of the bias 2−6.2849.
Note that we could further cancel out 4 more NFSR variables in these parity-
checks by only selecting those equations that the corresponding coefficient of the

assigned variable is 0, in this way we could easily get 221.9069

24 = 217.9069 parity-
checks on 20 − 4 = 16 NFSR variables. On the other side, from the unique
solution distance in correlation attacks [6, 13], we have

8 · 16 · ln2
1− h(p)

= 217.5121 < 217.9069,

where p = 1
2 + 2−6.2849 and h(p) = −p · logp − (1 − p) · log(1 − p) is the binary

entropy function. Thus, we can have the success probability very close to 1 given
217.9069 parity-checks to identify the correct value of the 16 NFSR variables
under consideration. That is, we reach the following theorem.

Theorem 6. If both the LFSR candidate and the partial NFSR state are correct,
we can distinguish the correct value of the remaining 16 NFSR variables from
the wrong ones with a success probability very close to 1.

Proof. It suffices to note that if either the LFSR or the partial NFSR state
is wrong, there exists no bias in the system (3), thus following the classical
reasoning from correlation attacks in [6, 13], we have the claim. ⊓⊔

Precisely, for each parity-check of weight 2 for the system (3), we have

(cj10 ⊕ cj20)ni0 ⊕ (cj11 ⊕ cj21)ni1 ⊕· · ·⊕ (cj134−y ⊕ cj234−y)ni0 =
2⊕

t=1

kzjt ⊕
2⊕

t=1

ejt . (4)

24

Let (n′
i0
, n′

i1
, · · · , n′

i34−y
) be the guessed value of (ni0 , ni1 , · · · , ni34−y), we rewrite

Eq.(4) as follows.

2⊕
t=1

kzjt ⊕
34−y⊕
t=1

(cj1t ⊕ cj2t)n′
it =

34−y⊕
t=1

(cj1t ⊕ cj2t)(n′
it ⊕ nit)⊕

2⊕
t=1

ejt . (5)

From (5), let ∆(j1, j2) =
⊕34−y

t=1 (cj1t ⊕ cj2t)(n′
it
⊕ nit) ⊕

⊕2
t=1 ejt , it is obvi-

ous if (n′
i0
, n′

i1
, · · · , n′

i34−y
) coincides with the correct value, we get ∆(j1, j2) =⊕2

t=1 ejt ; otherwise, we have ∆(j1, j2) =
⊕

t:n′
it
⊕nit=1(c

j1
t ⊕ cj2t) ⊕

⊕2
t=1 ejt .

Since cj1t ⊕ cj2t is the xor of 2 independent uniformly distributed variables, we
have Pr(cj1t ⊕cj2t = 0) = 1

2 . Hence, when (n′
i0
, n′

i1
, · · · , n′

i34−y
) is wrongly guessed,

∆(j1, j2) has the distribution Pr(∆(j1, j2) = 0) = 1
2 , which is quite different from

the correct case, i.e., Pr(∆(j1, j2) = 0) = 1
2 + 2−6.2849. For 217.9069 such parity-

checks of the system (3),
∑217.9069

t=1 (∆(j1, j2) ⊕ 1) should follow the binomial
distribution (217.9069, 1

2 + 2−6.2849) if (n′
i0
, n′

i1
, · · · , n′

i34−y
) is correctly guessed;

otherwise this sum should have the binomial distribution (217.9069, 1
2). Now the

situation is the same as that in binary correlation attacks. Thus, we can use
the FWT technique to speed up the whole process as follows. Denote the set
of the constructed parity-checks by Pt. First regroup the 217.9069 parity-checks
according to the pattern of x = (cj10 ⊕cj20 , cj11 ⊕cj21 , · · · , cj134−y⊕cj234−y) and define

fNFSR(x) =
∑

(c
j1
0 ⊕c

j2
0 ,c

j1
1 ⊕c

j2
1 ,··· ,cj134−y⊕c

j2
34−y)

(−1)kzj1⊕kzj2 for all the values of the

coefficient vector appearing in the 217.9069 parity-checks; if some value of (cj10 ⊕
cj20 , cj11 ⊕ cj21 , · · · , cj134−y ⊕ cj234−y) is not hit in these equations, just let fNFSR = 0
at that point. For this well-defined function fNFSR, consider the Walsh transfor-

m F (ω) =
∑

x∈F35−y
2

fNFSR(x) · (−1)ω·x =
∑

Pt
(−1)kzj1⊕kzj2⊕

⊕34−y
t=0 ωt(c

j1
t ⊕c

j2
t) =

F0 − F1, where ω = (ω0, ω1, · · · , ω34−y) ∈ F35−y
2 , F0 and F1 are the number

of 0s and 1s, respectively. It is easy to see that if ω = (ni0 , ni1 , · · · , ni34−y),

we have
∑217.9069

t=1 (∆(j1, j2) ⊕ 1) = F (ω)+F1

2 . If we set a threshold value T and

accept only those guesses of x satisfying F (ω)+F1

2 ≥ T , then the probability that

the correct value of (cj10 ⊕ cj20 , cj11 ⊕ cj21 , · · · , cj134−y ⊕ cj234−y) will pass the test is

P1 =
∑217.9069

t=T

(
217.9069

t

)
(12 +2−6.2849)t(12 − 2−6.2849)2

17.9069−t and the probability

that a wrong guess will be accepted is P2 =
∑217.9069

t=T

(
217.9069

t

)
(12)

217.9069 . Set
T = 216.9306, we find that P1 = 0.999996 and P2 ≈ 2−53, i.e., the correct LFSR
candidate and the correct partial NFSR state will pass almost certainly; while
about 259.7595 · 2−53 = 26.7595 wrong cases will survive in the above statistical
test.

Hence, the time complexity of this Walsh distinguisher for one invoking is
219·35+219+217.9069+216·16

Ω = 224.2656

Ω cipher ticks. Hence, by observing the Walsh
spectrum of the function, the adversary could identify the correct LFSR and the
correct partial NFSR states if they survived through the first step.

Restoring the Remaining NFSR State. After the Walsh distinguisher step,

25

we could use an algebraic attack as that in [3] to restore the remaining NFSR
state, which has a complexity much lower than the previous step. Precisely, the
adversary could exploit the non-linear feedback function, say g, of the NFSR in
Grain v1 to establish algebraic equations. Note that the algebraic degree of g
in Grain v1 is 6 and the multiple (n28 ⊕ 1)(n60 ⊕ 1) · g has the algebraic degree
4, thus if the linearization method is adopted for solving the algebraic system,
there are now

∑4
i=0

(
35
i

)
≈ 215.8615 monomials in the system. If we take the

same complexity metric as that in [7] in complexity estimate and taking into
account that we have to repeat the solving routine for restoring the remaining
NFSR state for each candidate survived through the above statistical test, the

time complexity of this step is Tsolving =
26.7595· 7·(2

15.8615)log27

64

Ω

.
= 248.0957

Ω cipher
ticks. Finally, the overall time complexity of all the procedures in Section 5.4 is

259.7595 · 224.2656

Ω + 248.0957

Ω cipher ticks.

5.5 Final Complexity Analysis

Now we analyze the final complexity of the above attack against Grain v1. First
note that quite some complexity analysis have already been involved in the
above sections, here we just focus on the total complexity, which is stated in the
following theorem.

Theorem 7. Let TAlg5 and λAlg5 be the time complexity and the number of
invoking times of Algorithm 5, then the time complexity of our attack is

TAlg6+ξ ·(1

PrλAlg5
x

·(TAlg5 ·λAlg5+
18∑
i=1

T i
merg)+

|L18|
PrλAlg5

x

·Twalsh+Tsolving+Tcst)

cipher ticks, where TAlg6 is the pre-computation complexity of Algorithm 6, T i
merg

(1 ≤ i ≤ 18) is the list merging complexity at step i in Table 6 and 7, Twalsh is the
complexity for the Z-technique and Walsh distinguisher in Section 5.4, Tsolving

is the complexity for restoring the remaining NFSR state in Section 5.4, Tcst

is the complexity of the final consistency examination and we repeat the online
attack ξ times to ensure a high success probability. The memory complexity of
our attack is at most 22l · V (n, d) · (⌈log2n⌉ · d+14)+max1≤i≤18|Li| bits, where
Li (1 ≤ i ≤ 18) are the lists generated during the process in Table 6 and 7, and
the data complexity is 219 + 20 + 160 = 219.0005 keystream bits.

Proof. Note that in our attack, to assure the existence of each correct restricted
internal state in the corresponding candidate list, we have to assure its existence
in the generated list when invoking Algorithm 5. This contributes to the factor

1

PrλAlg5
x

since our attack is a dynamically growing process with the assumption

that the probability Prx is stable. TAlg5 ·λAlg5 stands for the complexity of invok-

ing Algorithm 5 during the evolution process in Table 6 and 7 and
∑18

i=1 T
i
merg

comes from the sorting and merging complexities when merging the candidate
lists for the steps from 1 to 18 in Table 6 and 7. When the adversary goes out

26

of all the steps in Table 6 and 7, there exists only a resultant list L18 for each
time, all the other lists generated in the intermediate process have been erased
and overwritten. Thus, the total number of candidates for the LFSR part and

partial NFSR state is |L18|
PrλAlg5

x

, and we have to use the Z-technique and Walsh

distinguisher in Section 5.4 to check the correctness of these candidates. Since
we could identify the correct LFSR candidate and the partial NFSR state with
high probability independent of the remaining unknown NFSR state, the fac-
tor Tsolving is added in, not multiplied by. Finally, we have to find out the real
correct internal state by the consistency test with the available keystream.

For the memory complexity, we invoke Algorithm 6 in the pre-processing
phase with the l-bit KSD/keystream prefix, thus the factor 22l comes. That is,
the adversary constructed 22l relatively small pre-computed tables, each of which
consists of at most V (n, d) items. Among all these tables, the adversary chooses
one to be used in the online phase. It is worth noting that we could pre-compute
the most inner routine of the self-contained method by storing all the possible
xors between all the ISDs and each value of the restricted internal state. Taking
into account on the concrete storage data structure in Section 4.2 of each item,
we have the first item in the expression. During the process illustrated in Table
6 and 7, we only have to allocate a memory space that fits the largest memory
consumption among all the intermediate lists Li for 1 ≤ i ≤ 18. By checking the
list sizes in Table 6/7 and the corresponding number of variables in Table 5, we
have 2 · 221.5649 · 42 < 228. For different iterations, the same memory is reused.

For the data complexity, only the first 20 keystream bits are exploited when
recovering the LFSR and the partial NFSR state. Note that 215.8615 < 219 and
219 keystream bits are used by the Walsh distinguisher in Section 5.4. The last
160 bits are needed in consistency test for the surviving candidates. ⊓⊔

Since our attack is dynamically executed, the above formula can also depict
the time consuming in the intermediate process. Here the dominated factors are
the complexity cost by the invoking of Algorithm 5 and that of checking the
surviving candidates. When l = 2, n = 10, c = 10 and d = 3 with the chosen
pre-computed Table of size |T[0x0, prefix]| = 176, the time complexity can be
computed as

(343 · 2
20.3436

Ω
· 254.0895 + 259.7595 · 2

24.2656

Ω
+

248.0957

Ω

+ 254.0895 ·
∑18

i=1 T
i
merg

Ω
+ Tcst) · 22 ≈ 275.7

cipher ticks, where 21·6·60·176
Ω = 220.3436

Ω is the complexity for one invoking of

Algorithm 5 and
∑18

i=1 T i
merg

Ω is the sorting and merging complexity in Table 6
and 7. If we adopt the same Ω = 210.4 as that in [18] and let ξ = 22 to sta-
bilize a success rate higher than 0.9, we have the above result. The memory
complexity is around 2 · 221.5649 · 42 ≈ 228 bits. The pre-computation complexity

is 210·176·2+24·176·2
Ω = 218.4818

Ω = 28.1 cipher ticks.

27

Remarks. First note that the time complexity actually depends on the param-
eter Ω, which may be different for different implementations. Second, in the
existence of a faster hardware implementation of Grain v1 that could generate
16 keystream bits in one cipher tick, our attack still holds, for such a hardware
will also speed up the attack 16 times.

6 Experimental Results

6.1 The Experiments on Grain v1

Note that a large proportion of practical experiments are already presented in
the previous sections, here we just provide the remaining simulations. We have
run extensive experiments on Grain v1 to check the correctness of our attack.
Since the total complexity is too large to be implemented on a single PC, we
have verified the beginning steps of Table 6 and 7 practically. Note that the
remaining steps in the evolution process are just the repetition process of the
first ones, we have enough confidence that the whole process for recovering the
inner state of the LFSR part is correct.

The profile of our experiments is as follows. We first generate the inner states
of the LFSR and NFSR in Grain v1 randomly. Here the RC4 stream cipher is
adopted by discarding the first 8192 output bytes as the main random source.
Then we run the cipher forwards from this random state and generate the cor-
responding keystream. After that, we apply the FNCA to generate the possible
states following the steps in Table 6 and 7. At each step, we use the concrete
data from simulations to verify the complexity and probability predictions in
the Tables. We have done a large number of experiments to recover the re-
stricted internal state corresponding to the keystream segment (z0, z1, · · · , z6),
and almost all the experimental results conform to our theoretical prediction-
s in Table 6. For example, if the states of the LFSR and NFSR in Grain v1
are 0xB038f07C133370269B6C and 0xC7F5B36FF85C13249603, respectively, then
the first 20-bit keystream are (z0, z1, · · · , z19) = 11100000111000000100. Set
l = 2, d ≤ 3 and c = 10, let β = 21 and γ = 6, run Algorithm 5 to generate the
union list of size 848. In 106 repetitions, the average probability of the correct
restricted internal state being in the final list is quite close to the theoretical
value 0.896456, which confirmed the correctness of the theoretical prediction.
We also verified the list merging procedure of FNCA in experiments in the be-
ginning steps 1 to 5 of Table 6, though the complexity of this procedure does not
dominate. In general, the list sizes got in simulations match well with the theo-
retical estimates when represented in terms of the power of 2. Further, we have
implemented the Walsh distinguisher to check its validity and got the confirmed
results as well.

6.2 Simulations on the Reduced Version

For the reduced version of Grain v1 in Appendix B, we rewrite the keystream
bit as z′i = xi⊕h(l′i+1, l

′
i+21, n

′
i+23), where xi = n′

i+1⊕n′
i+7⊕n′

i+15. We have es-
tablished a similar evolution process for restoring the restricted internal state of

28

(z0, z1, · · · , z19), which consists of 40 LFSR state bits, 20 NFSR variables ni+23

and 20 xi variables for (0 ≤ i ≤ 19). In simulations, we first randomly loaded the
internal states of the LFSR and NFSR as 0x9b97284782 and 0xb20027ea7d, re-
spectively. Then we got the first 20-bit keystream, 00010010010000 001100. Let
l = 2, d ≤ 2 and c = 8, the probability that the correct inner state is in the can-
didate list is 0.923 after one call of Algorithm 3. Now we adopt a group of attack
parameters similar to the case of Grain v1 in the distilling phase. We invoked
the Alg.3 10 times to generate the corresponding 10 lists, and then intersect
these lists to have a smaller list. Repeat this process 4 times to acquire 4 similar
intersection lists. At last, combine these 4 lists to form the union list and the ex-
istence probability of the correct state in the list is around 0.91. For (z0, z1), we
can recover an 8-bit restricted internal state, i.e., (n22, l1, l21, n23, l2, l22, x0, x1).
Note that there are 6 free variables in this case and 64 possibilities in total. After
distilling, the candidate number of this partial inner state is reduced to 50, while
the value of expectation in theory is 53. Next, for (z1, z2), we got 51 candidates.
Since the inner states of (z0, z1) and (z1, z2) have 3 common free variables, the
expected number of inner states of (z0, z1, z2) is 50 · 51/23 ≈ 319. In the exper-
iments, the practical number is 308. The same method can also be applied to
(z1, z2, z3) to recover the candidates list of size 312. There are 6 common free vari-
ables between the inner state of (z0, z1, z2) and that of (z1, z2, z3). We can reduce
the number of inner states associated with (z0, z1, z2, z3) to 308 · 319/26 ≈ 210.9,
and the number got in experiments is 1921 ≈ 210.9. We continue this process to
z19 until we have recovered the target inner state. In the experiments, we repeat
the above whole process for 224.26 times until the correct inner state is indeed
in the candidate list of size 212.01. In theory, we need about 223.94 repetitions of
the whole process and get a list with 211.64 candidates. Therefore, on average
we could restore the internal state with a complexity of about 237.58 reduced
version cipher ticks, and currently, it took several hours for our non-optimized C
implementation to have the candidate list with the correct candidate in, which
verified the theoretical analysis of FNCA. For the reduced version, there is no
need to use the Z-technique and Walsh distinguisher to deal with the LFSR
independently. The codes for the reduced version experiments are available via
https://github.com/martinzhangbin/nca_reducedversion.

7 Conclusions

In this paper, we have tried to develop a new cryptanalytic method, called fast
near collision attack, on modern stream ciphers with a large internal state. The
new attack utilizes the basic, yet often ignored fact in the primitives that each
keystream vector actually depends on only a subset of the internal state bits, not
on the full internal state. Thus it is natural to combine the near collision proper-
ty with the divide-and-conquer strategy to mount the new kind of state recovery
attacks. In the process, a self-contained method is introduced and improved to
derive the partial internal state from the partial state difference efficiently. After
the recovery of certain subsets of the whole internal state, a careful merging

29

and further retrieval step is conducted to restore the full large internal state.
As an application of the new methodology, we demonstrated a key recovery at-
tack against Grain v1, one of the 7 finalists in the European eSTREAM project.
Combined with the rewriting variables technique, it is shown that the internal
state of Grain v1, thus the secret key, can be reliably restored in 275.7 cipher
ticks after the pre-computation of 28.1 cipher ticks, given 228-bit memory and
around 219 keystream bits in the single key model, which is the best key recovery
attack against Grain v1 so far. It is suggested to strengthen Grain v1 with a new
NFSR that eliminates the existence of good linear approximations for the feed-
back function. It is our future work to study fast near collision attacks against
other NFSR-based primitives.

Acknowledgements. We would like to thank the anonymous reviewers for very
helpful comments. This work is supported by the National Key R&D Research
programm (Grant No. 2017YFB0802504), the program of the National Natural
Science Foundation of China (Grant No. 61572482), National Cryptography De-
velopment Fund (Grant No. MMJJ20170107) and National Grand Fundamental
Research 973 Programs of China (Grant No. 2013CB338002).

References

1. Anderson, R.J.: Searching for the Optimum Correlation Attack. In: Preneel, B.
(ed.) Fast Software Encryption–FSE’1994. LNCS, vol. 1008, Springer, Heidelberg
(1995).

2. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: M.J.B. Robshaw
(Ed.): Fast Software Encryption–FSE’2006, LNCS vol 4047, pp. 15-29. (2006).

3. Berbain, C., Gilbert, H. and Joux, A.: Algebraic and correlation attacks against
linearly filtered non linear feedback shift registers, in R. Avanzi, L. Keliher and F.
Sica, eds, Selected Areas in Cryptography–SAC 2008, LNCS Vol. 5381, Springer-
Verlag, pp. 184-198.

4. Biryukov, A. and Shamir, A.: Cryptanalytic time/memory/data tradeoffs for
stream ciphers, in T. Okamoto, ed., Advances in Cryptology–ASIACRYPT 2000,
LNCS Vol. 1976, Springer-Verlag, pp. 1-13. (2008)

5. De Cannière, C., Kucuk, O, and Preneel, B. Analysis of Grain’s initialization algo-
rithm, in S. Vaudenay, ed., Progress in Cryptology–AFRICACRYPT 2008, LNCS
Vol. 5023, Springer-Verlag, pp. 276-289. (2008)

6. Chepyzhov, V., Johansson. T., Smeets, B.,: A Simple Algorithm for Fast Corre-
lation Attacks on Stream Ciphers, In B. Schneier ed., Fast Software Encryption–
FSE’2000, LNCS vol.1978, Springer-Verlag, pp. 181–195, 2000

7. Courtois. N.T., Weier. W.: Algebraic Attacks on Stream Ciphers with Linear
Feedback, In E. Biham ed., Advances in Cryptology–EUROCRYPT’2003, LNCS
vol.2656, Springer-Verlag, pp. 345–359, 2003.

8. http://www.ecrypt.eu.org/stream/e2-grain.html

9. Hawkes, P. and Rose, Gr.: Rewriting variables: the compleixty of fast alge-
braic attacks on stream ciphers, in M. Franklin ed., Advances in Cryptology–
CRYPTO’2004, LNCS vol. 3152, Springer-Verlag, pp. 390–406, (2004).

30

10. Hell, M., Johansson, T., Meier, W.,: Grain: a stream cipher for constrained en-
vironments. International Journal of Wireless and Mobile Computing (IJWMC),
vol. 2, No. 1, 2007. pp. 86-93. (2007)

11. Fischer, S. and Meier, W.: Algebraic Immunity of S-Boxes and Augmented Func-
tions, in A. Biryukov, ed., Fast Software Encryption–FSE’2007, LNCS vol. 4593,
Springer-Verlag, pp. 366-381, (2007).

12. Guo, Q., Johansson, T., and Löndahl, C. : Solving LPN using Covering Codes, in
P. Sarkar and T. Iwata eds., Advances in Cryptology–ASIACRYPT’2014, part 1,
LNCS vol. 8873, Springer-Verlag, pp. 1–20, (2014).

13. Lu, Y. and Serge, V.: Faster correlation attack on Bluetooth keystream generator
E0, in M. Franklin ed., Advances in Cryptology–CRYPTO’2004, LNCS vol. 3152,
Springer-Verlag, pp. 407–425, (2004).

14. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. Advances in
Cryptology–EUROCRYPT’93, LNCS vol. 765, Springer-Verlag, pp 386–397, 1994.

15. Knellwolf, S., Meier, W., Naya-Plasencia, M: Conditional Differential Cryptanal-
ysis of NLFSR-Based Cryptosystems, in M. Abe Ed,Advances in Cryptology–
ASIACRYPT 2010, LNCS Vol. 6477, Springer-Verlag, pp. 130–145. (2010).

16. Koch, P. C.,: Cryptanalysis of Stream Ciphers-Analysis and application of the
Near Collision Attack for stream ciphers, Technical University of Denmark, Master
Thesis–Supervisor: Christian Rechberger, November 2013.

17. http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
18. Zhang, B., Li, Z., Feng, D., Lin D.,: Near Collision Attack on the Grain v1 Stream

Cipher. In: S. Moriai (Ed.): Fast Software Encryption-FSE’2013, LNCS vol 8424,
pp. 518-538, 2014.

A An Example to Illustrate the Z-technique

Example 1. Assume the adversary collects the following linear equations of z20+i

for i ≥ 0. Now he could use the Z-technique as follows to derive more linear
equations on the initial NFSR state.

1 : z20 = n21 ⊕ n22 ⊕ n24 ⊕ n30 ⊕ n51 ⊕ n63 ⊕ n76 ⊕ n83

2 : z21 = n22 ⊕ n23 ⊕ n25 ⊕ n31 ⊕ n52 ⊕ n64 ⊕ n77 ⊕ n84

3 : z22 = n23 ⊕ n24 ⊕ n26 ⊕ n32 ⊕ n53 ⊕ n65 ⊕ n78

4 : z23 = n24 ⊕ n25 ⊕ n27 ⊕ n33 ⊕ n54 ⊕ n66 ⊕ n79

5 : z24 = n25 ⊕ n26 ⊕ n28 ⊕ n34 ⊕ n55 ⊕ n67 ⊕ n80 ⊕ n87

6 : z25 = n26 ⊕ n27 ⊕ n29 ⊕ n35 ⊕ n56 ⊕ n68 ⊕ n81

7 : z26 = n27 ⊕ n28 ⊕ n30 ⊕ n36 ⊕ n57 ⊕ n69 ⊕ n82

8 : z27 = n28 ⊕ n29 ⊕ n31 ⊕ n37 ⊕ n58 ⊕ n70 ⊕ n83

9 : z28 = n29 ⊕ n30 ⊕ n32 ⊕ n38 ⊕ n59 ⊕ n71 ⊕ n84 ⊕ n91

10 : z29 = n30 ⊕ n31 ⊕ n33 ⊕ n39 ⊕ n60 ⊕ n72 ⊕ n85 ⊕ n92

11 : z30 = n31 ⊕ n32 ⊕ n34 ⊕ n40 ⊕ n61 ⊕ n73 ⊕ n86 ⊕ n93

12 : z31 = n32 ⊕ n33 ⊕ n35 ⊕ n41 ⊕ n62 ⊕ n74 ⊕ n87 ⊕ n94

13 : z32 = n33 ⊕ n34 ⊕ n36 ⊕ n42 ⊕ n63 ⊕ n75 ⊕ n88 ⊕ n95

14 : z33 = n34 ⊕ n35 ⊕ n37 ⊕ n43 ⊕ n64 ⊕ n76 ⊕ n89

31

15 : z34 = n35 ⊕ n36 ⊕ n38 ⊕ n44 ⊕ n65 ⊕ n77 ⊕ n90

16 : z35 = n36 ⊕ n37 ⊕ n39 ⊕ n45 ⊕ n66 ⊕ n78 ⊕ n91

17 : z36 = n37 ⊕ n38 ⊕ n40 ⊕ n46 ⊕ n67 ⊕ n79 ⊕ n92

18 : z37 = n38 ⊕ n39 ⊕ n41 ⊕ n47 ⊕ n68 ⊕ n80 ⊕ n93 ⊕ n100

19 : z38 = n39 ⊕ n40 ⊕ n42 ⊕ n48 ⊕ n69 ⊕ n81 ⊕ n94 ⊕ n101

20 : z39 = n40 ⊕ n41 ⊕ n43 ⊕ n49 ⊕ n70 ⊕ n82 ⊕ n95 ⊕ n102

21 : z40 = n41 ⊕ n42 ⊕ n44 ⊕ n50 ⊕ n71 ⊕ n83 ⊕ n96

22 : z41 = n42 ⊕ n43 ⊕ n45 ⊕ n51 ⊕ n72 ⊕ n84 ⊕ n97 ⊕ n104

23 : z42 = n43 ⊕ n44 ⊕ n46 ⊕ n52 ⊕ n73 ⊕ n85 ⊕ n98

24 : z43 = n44 ⊕ n45 ⊕ n47 ⊕ n53 ⊕ n74 ⊕ n86 ⊕ n99

25 : z44 = n45 ⊕ n46 ⊕ n48 ⊕ n54 ⊕ n75 ⊕ n87 ⊕ n100

26 : z45 = n46 ⊕ n47 ⊕ n49 ⊕ n55 ⊕ n76 ⊕ n88 ⊕ n101

27 : z46 = n47 ⊕ n48 ⊕ n50 ⊕ n56 ⊕ n77 ⊕ n89 ⊕ n102

From Eqs.1 ⇀ 8, z20 ⊕ z27 is a linear equation on the initial NFSR state. From
Eqs.2 ⇀ 9 ⇀ 16, z21 ⊕ z28 ⊕ z35 is also a linear equation on the initial NFSR
state. Eqs.3 and 4 provide 2 more such equations directly. From Eqs.5 ⇀ 12 ⇀
19 ⇀ 26 ⇀ 13 ⇀ 20 ⇀ 27 ⇀ 14, another linear equation on the initial NFSR
state is established. Finally, as n80, n81 and n82 are known from the previous
step, Eqs.6 and 7 are also linear equations on the initial NFSR state. Thus,
the adversary could collect 7 linear equations in forwards direction and 1 linear
equation in backwards direction. In total, he could collect 8 linear equations on
the initial NFSR state with a negligible complexity. ⊓⊔

B The Reduced Version of Grain v1

This reduced cipher generates the keystream from a 40-bit key and a 32-bit
IV. Precisely, let f ′(x) = 1 + x7 + x22 + x31 + x40 be the primitive polynomial
of degree 40, then the updating function of the LFSR is defined as l′i+40 =
l′i+33 + l′i+18 + l′i+9 + l′i for i ≥ 0. Similar to the original Grain v1, the updating
function of the NFSR is

n′
i+40 = l′i ⊕ n′

i+33 ⊕ n′
i+29 ⊕ n′

i+23 ⊕ n′
i+17 ⊕ n′

i+11 ⊕ n′
i+9 ⊕ n′

i+33n
′
i+29

⊕ n′
i+23n

′
i+17 ⊕ n′

i+33n
′
i+9 ⊕ n′

i+33n
′
i+29n

′
i+23 ⊕ n′

i+29n
′
i+23n

′
i+17

⊕ n′
i+33n

′
i+29n

′
i+23n

′
i+17 ⊕ n′

i+29n
′
i+23n

′
i+17n

′
i+11n

′
i+9.

The filter function h′(x) is defined as h′(x) = x1 ⊕ x0x2 ⊕ x1x2 ⊕ x0x1x2 with
the different tap positions, which are provided below. The output function is
z′i =

∑
k∈A′ n′

i+k⊕h′(l′i+1, l
′
i+21, n

′
i+22), where A′ = {1, 7, 15}. Its key/IV initial-

ization is similar to that of Grain v1 with 80 initialization rounds. The actual
complexity of the brute force attack for a fixed IV on the reduced version is
(240 − 1) · (80 +

∑40
i=1 i ·

1
2i−1) ≈ 246 cipher ticks.

32

