
Bootstrapping for Approximate
Homomorphic Encryption

Jung Hee Cheon1, Kyoohyung Han1, Andrey Kim1,
Miran Kim2, and Yongsoo Song1,2

1 Seoul National University, Seoul, Republic of Korea
{jhcheon, satanigh, kimandrik, lucius05}@snu.ac.kr

2 University of California, San Diego, United States
{mrkim, yongsoosong}@ucsd.edu

Abstract. This paper extends the leveled homomorphic encryption scheme for an approximate
arithmetic of Cheon et al. (ASIACRYPT 2017) to a fully homomorphic encryption, i.e., we
propose a new technique to refresh low-level ciphertexts based on Gentry’s bootstrapping pro-
cedure.
The modular reduction operation is the main bottleneck in the homomorphic evaluation of
the decryption circuit. We exploit a scaled sine function as an approximation of the modular
reduction operation and present an efficient evaluation strategy. Our method requires only one
homomorphic multiplication for each of iterations and so the total computation cost grows
linearly with the depth of the decryption circuit.
We also show how to recrypt packed ciphertexts on the RLWE construction with an open-
source implementation. For example, it takes 139.8 seconds to refresh a ciphertext that encrypts
128 numbers with 12 bits of precision, yielding an amortized rate of 1.1 seconds per slot.
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1 Introduction

Homomorphic encryption (HE) is a cryptographic scheme that allows us to evaluate an
arbitrary arithmetic circuit on encrypted data without decryption. There have been a number
of studies [22, 8, 9, 6, 7, 25, 30, 11, 5, 31, 19, 16] to improve the efficiency of HE cryptosystem
after Gentry’s blueprint [26]. This cryptographic primitive has a number of prospective real-
world applications based on the secure outsourcing of computation in public clouds. For
example, HE can be a solution to performing the computation of various algorithms on
financial, medical, or genomic data without any information leakage [39, 38, 15, 41, 36].

Unfortunately, most of existing HE schemes support the exact arithmetic operations
over some discrete spaces (e.g. finite field), so that they are not suitable for many real-
world applications which require a floating point operation or real number arithmetic. To be
specific, bitwise encryption schemes [24, 17] can evaluate a boolean gate with bootstrapping
in much shorter time, but it is necessary to evaluate a deep circuit with a number of gates to
perform a single arithmetic operation (e.g. addition or multiplication) between high-precision
numbers. Moreover, a huge expansion rate of ciphertexts is another issue that stands in
the way of the practical use of bitwise encryptions. On the other hand, word encryption
schemes [7, 30, 6, 25] can encrypt multiple high-precision numbers in a single ciphertext but
the rounding operation is difficult to be evaluated since it is not expressed as a small-degree
polynomial. Therefore, they require either a plaintext space with an exponentially large bit
size on the depth of a circuit, or an expensive computation such as rounding operation and
extraction of the most significant bits.

Recently, Cheon et al. [14] proposed a HE scheme for an Arithmetic of Approximate
Numbers (called HEAAN in what follows) based on the ring learning with errors (RLWE)
problem. The main idea is to consider an encryption error as part of a computational error
that occurs during approximate computations. For an encryption ct of a message m with



a secret key sk, the decryption algorithm [〈ct, sk〉]q outputs an approximate value m + e of
the original message with a small error e. The main advantage of HEAAN comes from the
rescaling procedure for managing the magnitude of plaintexts. It truncates a ciphertext into
a smaller modulus, which leads to an approximate rounding of the encrypted plaintext. As
a result, it achieved the first linear growth of the ciphertext modulus on the depth of the
circuit being evaluated, against the exponential growth in previous word encryption schemes.
In addition, the RLWE-based HEAAN scheme has its own packing strategy to encrypt multiple
complex numbers in a single ciphertext and perform a parallel computation. However, HEAAN
is a leveled HE scheme which can only evaluate a circuit of fixed depth. As homomorphic
operations progresses, the ciphertext modulus decreases and finally becomes too small to
carry out more computations.

In previous literature, Gentry’s bootstrapping is the only known method to construct a
fully homomorphic encryption (FHE) scheme which allows us to evaluate an arbitrary circuit.
Technically, the bootstrapping method can be understood as a homomorphic evaluation of
the decryption circuit to refresh a ciphertext for more computations. The HEAAN scheme does
not support the modular arithmetic, however, its decryption circuit [〈ct, sk〉]q requires the
modular reduction operation, which makes its bootstrapping much harder. Therefore, the
bootstrapping of HEAAN can be reduced to a problem that represents the modular reduction
function F (t) = [t]q as a polynomial over the integers (or, complex numbers). One may
use the polynomial interpolation of this function over the domain of t = 〈ct, sk〉, but it
is a limiting factor for practical implementation due to a huge computational cost of an
evaluation.

Our contributions. We present a methodology to refresh ciphertexts of HEAAN and make it
bootstrappable for the evaluation of an arbitrary circuit. We take advantage of its intrinsic
characteristic - approximate computation on encrypted data. Our bootstrapping procedure
aims to evaluate the decryption formula approximately and obtain an encryption of the
original message in a large ciphertext modulus. Hence, we find an approximation of the
modular reduction function that can be evaluated efficiently using arithmetic operations of
HEAAN. The approximation error should be small enough to maintain the precision of an
input plaintext.

We first note that the modular reduction function F (t) = [t]q is the identity nearby zero
and periodic with period q. If t = 〈ct, sk〉 is close to a multiple of the ciphertext modulus
q (or equivalently, if the encrypted plaintext m = [t]q is small compared to q), then a
trigonometric function can be a good approximation to the modular reduction. Namely, the
decryption formula of HEAAN can be represented using the following scaled sine function as

[〈ct, sk〉]q =
q

2π
· sin

(
2π

q
· 〈ct, sk〉

)
+O(ε3 · q),

when |[〈ct, sk〉]q| ≤ ε · q. Hence we may use this analytic function instead of the modular
reduction in the decryption formula.

Now our goal is to homomorphically evaluate the trigonometric function q
2π · sin

(
2π
q · t

)
with an input t = 〈ct, sk〉, which is bounded by Kq for some constant K = O(λ) with λ
the security parameter. We can consider the Taylor polynomial as an approximation to the
trigonometric function, but its degree should be at least O(Kq) to make an error term small
enough on the interval (−Kq,Kq). The evaluation of polynomial can be done in O(

√
Kq)

homomorphic multiplications with Paterson-Stockmeyer method [40], but this complexity of
recryption grows exponentially with the depth L = O(log q) of the decryption circuit - which
is still quite substantial.
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Fig. 1. Modular reduction and scaled sine functions

We suggest an evaluation strategy of the trigonometric function to reduce its computation
cost by exploiting the following double-angle formulas:{

cos(2θ) = cos2 θ − sin2 θ,

sin(2θ) = 2 cos θ · sin θ,

which means that we can obtain some approximate values of cos(2θ) and sin(2θ) from
approximate values of cos θ and sin θ. In our bootstrapping process, we first compute the

Taylor expansions of cos
(
2π
q ·

t
2r

)
and sin

(
2π
q ·

t
2r

)
of a small degree d0 = O(1) for some

r = O(log(Kq)). Then we use the doubling-angle formulas r times recursively to get an ap-

proximate value of sin
(
2π
q · t

)
. In the case of the RLWE-based construction, this evaluation

can be even more simplified by encrypting the complex exponentiation exp(iθ) = cos θ+i·sin θ
and adapting the identity exp(i · 2θ) = (exp(i · θ))2.

Results. Our bootstrapping technique for HEAAN is a new cryptographic primitive for FHE
mechanisms, which yields the first word encryption scheme for approximate arithmetic. For a
ciphertext ct with a modulus q, our bootstrapping procedure generates a ciphertext ct′ with
a larger ciphertext modulus Q� q, satisfying the condition [〈ct′, sk〉]Q ≈ [〈ct, sk〉]q while an
error is kept small enough not to destroy the significant digits of a plaintext. The output
ciphertext will have a sufficiently large modulus compared to a plaintext, thereby enabling
further computation on the ciphertext. In addition, our approximation to a trigonometric
function and efficient evaluation strategy reduce the complexity of the evaluation down to
O(L) homomorphic multiplications for the depth L = O(log q) of the decryption circuit.

We also give an open-source implementation [12] to demonstrate the performance of
our bootstrapping method. It contains some optimization techniques including the linear
transformation method of [33] for the recryption over the packed ciphertexts. When we want
to preserve 12 bits of precision, our bootstrapping on a single-slot ciphertext takes about
26.6 seconds. We also optimize the linear transforms for sparsely packed ciphertexts and it
takes about 139.8 seconds to recrypt a ciphertext that encrypts 128 complex numbers in
plaintext slots, yielding an amortized rate of 1.1 seconds per slot.

Implications of our bootstrapping method. The main feature of approximate arithmetic
is that every number contains an error of which could increase during computation. The
precision of a number is reduced by approximately one bit after multiplication and finally we
may not extract any meaningful information from the computation result if the depth of a
circuit is larger than the bit precision of the input data. On the other hand, our bootstrapping
procedure is to refresh ciphertexts and then perform further computation on encrypted data.
This concept of an unlimited computation may seem a contradiction to the property of finite
precision in the approximate arithmetic.

However, it turns out to be better for real-world applications that have a property of
negative feedback or stability. For example, a cyber-physical system (CPS) is a compromised
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mechanism of physical and computational components. A computational element commutes
with the sensors and every signal contains a small error. One can guarantee the correctness
of CPS only when it is stable because an error is reduced by negative feedback to the input.
Another example is the gradient descent method, which is the most widely used algorithm
to perform optimization. It has a number of applications in machine learning such as logistic
regression and neural networks. It computes the gradient of a point and moves it closer to
an optimal point, which reduces the effects of perturbations in the output.

As in the examples above, we do not have to worry about the precision of numbers when
the overall system is stable. In fact, there are some proof-of-concept implementations about
the secure control of CPS [35] and secure logistic regression using biomedical data [37]. We
expect that our bootstrapping process can be applied to these real-world applications.

Related works. There have been several attempts to carry out an approximate arithmetic
using HE. Downlin et al. [23] (see also [21, 4]) described a method to transform a real number
into a polynomial with small and sparse coefficients to reduce the required size of a plaintext
modulus. Costache et al. [20] suggested a similar encoding method with [14] to evaluate the
discrete Fourier transformation efficiently, but a ciphertext could encrypt only one value.
Chen et al. [10] uses a technique of [34] to encrypt a single high-precision number. However,
they still have some problems: (1) the coefficients and the degree of encoded polynomial grow
exponentially with the depth of a circuit and (2) there is no known result to achieve an FHE
scheme because a polynomial should be re-encoded to be represented with a smaller degree
and coefficients for more computations and the bootstrapping method of [33] is not enough
for this functionality.

The original Gentry’s bootstrapping technique was implemented by Gentry and Halevi [27],
which took a half hour to recrypt a single bit ciphertext. Gentry et al. [28] represented the
decryption circuit of RLWE-based HE with a lower depth circuit using a special modulus
space. The Halevi-Shoup FHE implementation [33] reported a recryption time of approx-
imately six minutes per slot. Meanwhile, Ducas and Micciancio [24] proposed the FHEW
scheme that bootstraps a single-bit encryption in less than a second based on the frame-
work of [2]. Chillotti et al. [17] obtained a speed up to less than 0.1 seconds. The following
works [18, 3] improved the performance by using the evaluation of a look-up table before
bootstrapping. However, the size of an input plaintext of bootstrapping is very limited since
it is related to the ring dimension of an intermediate Ring GSW scheme. In addition, a huge
expansion rate of ciphertexts is still an open problem in bitwise encryption schemes.

The previous FHE schemes evaluate the exact decryption circuit using the structure of
a finite field or a polynomial ring in bootstrapping algorithm. The evaluation of an arbi-
trary polynomial of degree d requires O(

√
d) homomorphic multiplications, but Halevi and

Shoup [33] used a polynomial with the lifting property to reduce the computational cost
of bootstrapping. They used a recursive algorithm to extract some digits in an encrypted
state, so the number of homomorphic multiplications for bootstrapping was reduced down
to O(log2 d). Contrary to the work of Halevi and Shoup, we find an approximate decryption
circuit using a trigonometric function and suggest an even simpler recursive algorithm. As a
result, our algorithm only requires O(log d) number of homomorphic multiplications, which
results in an enhanced performance.

Road-map. Section 2 briefly introduces notations and some preliminaries about algebra.
We also review the HEAAN scheme of Cheon et al. [14]. Section 3 explains our simplified
decryption formula by using a trigonometric function. In Section 4, we recall the ciphertext
packing method of HEAAN and describe a linear transformation on packed ciphertexts. In
Section 5, we present our bootstrapping technique with a precise noise estimation. In Section
6, we implement the recryption procedure based on the proposed method and discuss the
performance results.
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2 Preliminaries

The binary logarithm will be simply denoted by log(·). We denote vectors in bold, e.g. a,
and every vector in this paper is a column vector. For a n1 ×m matrix A1 and a n2 ×m
matrix A2, (A1;A2) denotes the (n1 + n2) ×m matrix obtained by concatenating matrices
A1 and A2 in a vertical direction.

We denote by 〈·, ·〉 the usual dot product of two vectors. For a real number r, bre denotes
the nearest integer to r, rounding upwards in case of a tie. For an integer q, we identify
Z∩ (−q/2, q/2] as a representative of Zq and use [z]q to denote the reduction of the integer z
modulo q into that interval. We use x← D to denote the sampling x according to distribu-
tion D. The uniform distribution over a finite set S is denoted by U(S). We let λ denote the
security parameter throughout the paper: all known valid attacks against the cryptographic
scheme under scope should take Ω(2λ) bit operations.

2.1 Cyclotomic Ring

For a positive integerM , let ΦM (X) be theM -th cyclotomic polynomial of degree N = φ(M).
Let R = Z[X]/(ΦM (X)) be the ring of integers of a number field Q[X]/(ΦM (X)). We write
Rq = R/qR for the residue ring of R modulo an integer q. An arbitrary element of the

set P = R[X]/(ΦM (X)) will be represented as a polynomial a(X) =
∑N−1

j=0 ajX
j of degree

strictly less than N and identified with its coefficients vector a = (a0, . . . , aN−1) ∈ RN . We
define ‖a‖∞ and ‖a‖1 by the relevant norms on the coefficients vector a.

Write Z∗M = {x ∈ ZM : gcd(x,M) = 1} for the multiplicative group of units in ZM .
Recall that the canonical embedding of a(X) ∈ Q[X]/(ΦM (X)) into CN is the vector of
evaluations of a(X) at the M -th primitive roots of unity. We use its natural extension σ to
P, defined by σ(a) = (a(ζj))j∈Z∗M for ζ = exp (2πi/M). Its `∞-norm is called the canonical
embedding norm, denoted by ‖a‖can∞ = ‖σ(a)‖∞.

2.2 Homomorphic Encryption for Arithmetic of Approximate Numbers

HE is one of the prospective cryptographic primitives for secure outsourcing computation
without information leakage. However, an inefficiency of real number computation is one of
the main obstacles to apply HE schemes in real-world applications. Recently Cheon et al. [14]
proposed a method to construct the HE scheme for approximate arithmetic, called HEAAN.
Their scheme supports an efficient rounding operation of encrypted plaintext as well as basic
arithmetic operations. This subsection gives a concrete description of the RLWE-based HEAAN

scheme.

For a real σ > 0, DG(σ2) denotes a distribution over ZN which samples its components
independently from the discrete Gaussian distribution of variance σ2. For an positive integer
h, HWT (h) denotes a uniform distribution over the set of signed binary vectors in {±1}N
whose Hamming weight is exactly h. For a real 0 ≤ ρ ≤ 1, the distribution ZO(ρ) draws each
entry in the vector from {0,±1}, with probability ρ/2 for each of −1 and +1, and probability
being zero 1− ρ.

• KeyGen(1λ).

- For a base p and an integer L, let q` = p` for ` = 1, . . . , L. Given the security parameter
λ, choose a power-of-two M , an integer h, an integer P , and a real number σ > 0 for
an RLWE problem that achieves λ-bit of security level.

- Sample s← HWT (h), a← U(RqL) and e← DG(σ2). Set the secret key as sk← (1, s)
and the public key as pk← (b, a) ∈ R2

qL
where b← −as+ e (mod qL).
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• KSGensk(s
′). For s′ ∈ R, sample a′ ← U(RP ·qL) and e′ ← DG(σ2). Output the switching

key as swk← (b′, a′) ∈ R2
P ·qL where b′ ← −a′s+ e′ + Ps′ (mod P · qL).

- Set the evaluation key as evk← KSGensk(s
2).

• Encpk(m). For m ∈ R, sample v ← ZO(0.5) and e0, e1 ← DG(σ2). Output v · pk + (m+

e0, e1) (mod qL).
• Decsk(ct). For ct = (c0, c1) ∈ R2

q`
, output m = c0 + c1 · s (mod q`).

• Add(ct1, ct2). For ct1, ct2 ∈ R2
q`

, output ctadd ← ct1 + ct2 (mod q`).

• Multevk(ct1, ct2). For ct1 = (b1, a1), ct2 = (b2, a2) ∈ R2
q`

, let (d0, d1, d2) = (b1b2, a1b2 +

a2b1, a1a2) (mod q`). Output ctmult ← (d0, d1) + bP−1 · d2 · evke (mod q`).
• RS`→`′(ct). For a ciphertext ct ∈ R2

q`
at level `, output ct′ ← bp`′−` · cte (mod q`′). We

will omit the subscript (`→ `′) when `′ = `− 1.

The native plaintext space of HEAAN can be understood as the set of polynomials m(X)
in Z[X]/(ΦM (X)) such that ‖m‖can∞ < q/2. For convenience, we allow an arbitrary element
of P = R[X]/(ΦM (X)) as a plaintext polynomial, so that a ciphertext ct = (c0, c1) ∈ R2

q`
at level ` will be called an encryption of m(X) ∈ P with an error bound B if it satisfies
〈ct, sk〉 = m + e (mod q`) for some polynomial e(X) ∈ P satisfying ‖e‖can∞ ≤ B. The set
P = R[X]/(ΦM (X)) can be identified with the complex coordinate space CN/2 using a ring
isomorphism. This decoding map allows us to encrypt at most (N/2) numbers in a single
ciphertext and carry out parallel operations in a Single Instruction Multiple Data (SIMD)
manner. A simple description of the packing method will be described in Section 4.1.

We will make the use of the following lemmas from [14] for noise estimation. We adapt
some notations from [14], defining the constants Bks and Brs.

Lemma 1 ([14, Lem. 1]). Let ct← Encpk(m) be an encryption of m ∈ R. Then 〈ct, sk〉 =
m + e (mod qL) for some e ∈ R satisfying ‖e‖can∞ ≤ Bclean for Bclean = 8

√
2σN + 6σ

√
N +

16σ
√
hN .

Lemma 2 ([14, Lem. 2]). Let ct′ ← RS`→`′(ct) for a ciphertext ct ∈ R2
q`

. Then 〈ct′, sk〉 =
q`′
q`
〈ct, sk〉+ e (mod q`′) for some e ∈ P satisfying ‖e‖can∞ ≤ Brs for Brs =

√
N/3 · (3 + 8

√
h).

Lemma 3 ([14, Lem. 3]). Let ctmult ← Multevk(ct1, ct2) for two ciphertexts ct1, ct2 ∈ R2
q`

.
Then 〈ctmult, sk〉 = 〈ct1, sk〉 · 〈ct2, sk〉+ emult (mod q`) for some e ∈ R satisfying ‖emult‖can∞ ≤
Bmult(`) for Bks = 8σN/

√
3 and Bmult(`) = P−1 · q` ·Bks +Brs.

A rescaling (rounding) error is the smallest error type of homomorphic operations. The
least digits of a plaintext is destroyed by some error after multiplication or rescaling, so
its significand should be placed in higher digits not to lose the precision of the resulting
plaintext.

3 Decryption Formula over the Integers

The goal of bootstrapping is to refresh a ciphertext and keep computing on encrypted data.
Recall that HEAAN supports arithmetic operations on a characteristic zero plaintext space such
as C However, its decryption formula consists of two steps: the inner product t = 〈ct, sk〉
over the integers and the modular reduction m = [t]q. We therefore have to express this
decryption formula efficiently using homomorphic operations provided in the HEAAN scheme.

The main difficulty comes from the fact that the reduction modular q function F (t) = [t]q
is not represented as a small-degree polynomial. A naive approach such as the polynomial
interpolation causes a huge degree, resulting in a large parameter size and an expensive
computational cost for bootstrapping process. Instead, we reduce the required circuit depth
and the evaluation complexity by exploiting a polynomial approximation of the decryption
formula and taking advantage of approximate arithmetic.
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3.1 Approximation of the Modular Reduction Function

Let ct be a ciphertext relative to a secret key sk and a modulus q. Since sk is sampled from
a small distribution, the size of its decryption structure t = 〈ct, sk〉 is bounded by Kq for
some fixed constant K. So we can say that the decryption formula of HEAAN is defined on
the set Z∩ (−Kq,Kq) and it maps an arbitrary integer t ∈ Z∩ (−Kq,Kq) to the reduction
modular q.

It is infeasible to find a good approximation of the modular reduction function since it is
not continuous. We first assume that a message m of an input ciphertext is still much smaller
than a ciphertext modulus q, so that t = 〈ct, sk〉 can be expressed as qI +m for some I and
m such that |I| < K and |m| � q. This assumption is reasonable because one can start the
bootstrapping procedure on a ciphertext before its modulus becomes too small. Then the
modular reduction F (t) = [t]q on a restricted domain becomes a piecewise linear function
(see Fig. 1). We point out that this function is the identity near zero and periodic, so it looks
like a part of the scaled sine

S(t) =
q

2π
sin

(
2πt

q

)
.

Note that it gives a good approximation to the piecewise linear function when an input value
t = qI+m is close to a multiple of q. Specifically, an error between F (t) and S(t) is bounded
by

|F (t)− S(t)| = q

2π

∣∣∣∣2πmq − sin

(
2πm

q

)∣∣∣∣ ≤ q

2π
· 1

3!

(
2π|m|
q

)3

= O

(
q · |m|

3

q3

)
,

which is equivalently O(1) when m = O(q2/3).

3.2 Homomorphic Evaluation of the Complex Exponential Function

As discussed before, the scaled sine function S(t) is a good approximation of the reduction
modulo q. However, this function cannot be evaluated directly using HE since it is not a
polynomial function. The goal of this subsection is to explain how to approximately and
efficiently evaluate this trigonometric function based on HEAAN.

We may consider the Taylor polynomial q
2π

∑d−1
j=0

(−1)j
(2j+1)!

(
2πt
q

)2j+1
of S(t). The size of

error converges to zero very rapidly as the degree grows, i.e., an error between S(t) and its
Taylor polynomial of degree 2d is bounded by q

2π ·
1

(2d+1)! (2πK)2d+1 when |t| < Kq, and it

becomes small enough when the degree of the Taylor polynomial is O(Kq). However, despite
its high precision, this naive method has an ineffective problem in practice. The complexity
grows exponentially with the depth of a circuit, e.g. O(

√
d) using the Paterson-Stockmeyer

algorithm [40] for an evaluation of a degree-d polynomial.
Instead, we can reduce the computational cost by exploiting the following double-angle

formulas: cos(2θ) = cos2 θ − sin2 θ and sin(2θ) = 2 cos θ · sin θ. From approximate values of
trigonometric functions in a small domain, we extend to find good approximations of the
sign function on a wider (doubled) range. In particular, the RLWE-based HEAAN scheme can
encrypt the complex numbers, so that the evaluation algorithm can be more simplified using
the complex exponential function. Specifically, we use the identities{

exp(iθ) = cos θ + i · sin θ,
exp(2iθ) = (exp(iθ))2,

and the error growth from squaring can be bounded by about one bit since (exp(iθ)± ε)2 ≈
exp(2iθ)± 2ε.
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We take the Taylor polynomial of a small degree d0 ≥ 1 as a high-precision approximation
of the complex exponential function within a small range. Then we perform the squaring
operation repeatedly to get an approximation of the complex exponential function over the
desirable domain. Note that we multiply a scale factor of ∆ to prevent the precision loss and
divide the intermediate ciphertexts by a constant ∆ using the rescaling procedure of HEAAN.

The use of the complex exponential function has another advantage in error analysis.
When we consider the RLWE-based HEAAN scheme, small complex errors are added to plain-
text slots during encryption, evaluation, rescaling and slot permutation. Therefore, we have
only one constraint such that a decryption formula should be tolerant of small complex er-
rors. Another advantage of our method comes from the fact that the complex exponential
function is analytic with a bounded derivative over the whole complex plane, and therefore
an error does not blow up by the decryption formula. The whole procedure is explicitly
described as follows.

A value t ∈ (−Kq,Kq) is given as an input of the decryption formula.

1. Consider the complex exponential function of exp
(
2πit
2r·q

)
and compute its (scaled)

Taylor expansion as

P0(t) = ∆ ·
d0∑
k=0

1

k!

(
2πit

2r · q

)k
of degree d0 ≥ 1.

2. For j = 0, 1, . . . , r − 1, repeat the squaring Pj+1(t)← ∆−1 · (Pj(t))2.
3. Return Pr(t).

The degree d0 of the initial Taylor polynomial, the scaling factor of ∆, and the number r
of the iterations (squaring) are determined by the following noise analysis. Since the size of
the initial input (2πt)/(2r · q) of the complex exponential function has a small upper bound
(2πK/2r), even the Taylor polynomial of a small degree d0 can be a good approximation to

the complex exponential function exp
(
2πit
2r·q

)
. From the above observation, the output Pr(t)

is a polynomial of degree dr = d0 · 2r and it is an approximation of E(t) := ∆ · exp
(
2πit
q

)
on a wide interval t ∈ (−Kq,Kq). After the evaluation of the complex exponential function,
we can extract the imaginary (sine) part by conjugation operation (i.e., 2 sin θ = exp(iθ) −
exp(−iθ)), which will be described in the next section.

For the estimation of noise, we start from an initial error between P0(t) and ∆·exp
(
2πit
2r·q

)
,

which is bounded by ∆
(d0+1)!

∣∣2πK
2r

∣∣d0+1
from the Taylor remainder theorem. As described

above, the error bound is almost doubled after each squaring. Therefore, we get a bound
from an approximation as follows:

|Pr(t)− E(t)| ≤ ∆ · 2r

(d0 + 1)!

(
2πK

2r

)d0+1

≤ ∆ · 2r√
2π(d0 + 1)

(
eπK

2r−1(d0 + 1)

)d0+1

from Stirling’s formula. Asymptotically the choice of parameters d0 = O(1) and r = O(log(Kq))
gives us a sufficiently small error bound. Note that the complexity of the algorithm is
r = O(log(Kq)) homomorphic multiplications and it grows linearly with the depth of the
decryption circuit.
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4 Linear Transformation on Packed Ciphertexts

In this section, we explain how to homomorphically evaluate the linear transformations over
the vector of plaintext slots. We first present a simple description of the packing method of
HEAAN. We then explain how to compute the rotation and the complex conjugation over the
plaintext slots using the key-switching technique. These functionalities can be applied to the
evaluation of a linear transformation over plaintext slots.

4.1 Packing Method

The packing technique of HE schemes allows us to encrypt multiple messages in a single
ciphertext and enables a parallel computation in a SIMD manner. Cheon et al. [14] proposed
a method to identify a cyclotomic polynomial with real coefficients to a vector of complex
numbers. We clarify this encoding method and give a simpler description using the structure
of a cyclotomic ring with a power-of-two dimension.

Recall that for a power-of-two integer M > 4, we have N = M/2 and ΦM (X) = XN + 1.
The integer 5 has the order of (N/2) modulo M and spans Z∗M with the integer “−1”. Hence

{ζj , ζj : 0 ≤ j < N/2} forms the set of the primitive M -th roots of unity for ζj := ζ5
j

and 0 ≤ j < N/2. We use the notation τ : P = R[X]/(XN + 1) → CN/2 to denote a
variant of the complex canonical embedding map defined by τ : m(X) 7→ z = (zj)0≤j<N/2
such that zj = m(ζj). Note that τ is an isometric ring homomorphism between metric
spaces (P, ‖·‖can∞ ) and (CN/2, ‖·‖∞). We use this isomorphism τ as the decoding function
for packing of (N/2) complex numbers in a single polynomial. By identifying a polynomial
m(X) =

∑N−1
i=0 miX

i ∈ P with the vector of its coefficients m = (m0, . . . ,mN−1), the
decoding algorithm τ can be understood as a linear transformation from RN to CN/2. Its
matrix representation is given by

U =


1 ζ0 ζ20 . . . ζN−10

1 ζ1 ζ21 . . . ζN−11
...

...
...

. . .
...

1 ζN
2
−1 ζ

2
N
2
−1 . . . ζ

N−1
N
2
−1


which is the (N/2)×N Vandermonde matrix generated by {ζj : 0 ≤ j < N/2}.

In order to compute the encoding function, which is the inverse of τ , we first note that
the relation z = U ·m is obtained from z = U ·m by taking the conjugation. If we write
CRT = (U ;U) as the CRT matrix generated by the set {ζj , ζj : 0 ≤ j < N/2} of M -th

primitive roots of unity, we have the identities (z; z) = CRT ·m and CRT−1 = 1
NCRT

T
. This

implies that the inverse of τ can be computed by

m =
1

N
(U

T · z + UT · z).

Throughout this paper, we will identify two spaces P and CN/2 via the map τ , and hence a ci-
phertext will be called an encryption of z ∈ CN/2 if it encrypts the corresponding polynomial
m(X) = τ−1(z).

4.2 Rotation and Conjugation

The purpose of the key-switching operation is to convert a ciphertext under a secret s′ into a
ciphertext of the same message with respect to another secret key sk = (1, s). The switching
key swk can be generated by the procedure of KSGensk(s

′). Given a ciphertext ct = (c0, c1)
at level `, the procedure KSswk(ct) proceeds as follows.

9



• KSswk(ct). Output the ciphertext ct′ ← (c0, 0) + bP−1 · c1 · swke (mod q`).

The following lemma shows the correctness of key-switching procedure and estimates a noise
bound. It has a similar noise bound P−1 · q ·Bks +Brs ≈ Brs with the rescaling process.

Lemma 4 (Key-switching). Let ct = (c0, c1) ∈ R2
q be a ciphertext with respect to a secret

key sk′ = (1, s′) and let swk ← KSGensk(s
′). Then ct′ ← KSswk(ct) satisfies 〈ct′, sk〉 =

〈ct, sk′〉+ eks (mod q) for some eks ∈ R with ‖eks‖can∞ ≤ P−1 · q ·Bks +Brs.

Proof. Let e′ = 〈swk, sk〉−P · s′ (mod P · qL) be the inserted error of the switching key swk.
It was shown in [14, Lem. 3] that the ciphertext ct′ contains an additional error e′′ = c1 · e′
in the modulus P · q from the key-switching operation. The key-switching error is the sum
of P−1 · e′′ and a rounding error ers of P−1 · c1 · swk, so its size is bounded by

‖eks‖can∞ ≤ P−1 · ‖e′′‖can∞ + ‖ers‖can∞ ≤ P−1 · q ·Bks +Brs,

as desired. ut

For an integer k co-prime with M , let κk : m(X) 7→ m(Xk) (mod ΦM (X)) be a mapping
defined on the set P. As noted in [29], this transformation can be used to provide more
functionalities on plaintext slots. In some more details, given a ciphertext ct of a message
m with sk = (1, s), we denote κk(ct) the ciphertext which is obtained by applying κk to
each entry of ct. Then κk(ct) is a valid encryption of κk(m) with the secret key κk(s). The
key-switching technique can be applied to the ciphertext κk(ct) to get an encryption of the
same message κk(m) with respect to the original secret key sk.

Rotation. Suppose that ct is an encryption of a message m(X) with the corresponding
plaintext vector z = (zj)0≤j<N

2
∈ CN/2. For any 0 ≤ i, j < N/2, there is a mapping κk which

sends an element in the slot of index i to an element in the slot of index j. Let us define
k = 5i−j (mod M) and m̃ = κk(m). Denoting z̃ = (z̃j)0≤j<N

2
as the corresponding plaintext

vector of m̃, we have

z̃j = m̃(ζj) = m(ζ5
i−j

j ) = m(ζi) = zi,

so the j-th slot of τ(m̃) and the i-th entry of τ(m) have the same value. In general, we
may get a ciphertext κ5r(ct) encrypting ρ(z; r) := (zr, . . . , zN

2
−1, z0, . . . , zr−1), which is the

vector obtained from z by rotation. Below, we describe the rotation procedure including the
key-switching operation.

• Generate the rotation key rkr ← KSGensk(κ5r(s)).

• Rot(ct; r). Output the ciphertext KSrkr(κ5r(ct)).

Conjugation. We see that κ−1(ct) is a valid encryption of the plaintext vector z = (zj)0≤j<N/2
with the secret key κ−1(s). It follows from that fact that

zj = m(ζj) = m(ζj) = m(ζ−1j ).

Then the homomorphic evaluation of the conjugation operation over plaintext slots consists
of two procedures:

• Generate the conjugation key ck← KSGensk(κ−1(s)).

• Conj(ct). Output the ciphertext KSck(κ−1(ct)).

10



4.3 Linear Transformations

In general, an arbitrary linear transformation over the vector of plaintext slots in CN/2 can
be represented as z 7→ A ·z+B ·z for some complex matrices A,B ∈ CN/2×N/2. As discussed
in [32], it can be efficiently done by handling the matrix in a diagonal order and making use of
SIMD computation. Specifically, let uj = (A0,j , A1,j+1, . . . , AN

2
−j−1,N

2
−1, AN

2
−j,0, . . . , AN

2
−1,j−1) ∈

CN/2 denote the shifted diagonal vector of A for 0 ≤ j < N/2. Then we have

A · z =
∑

0≤j<N/2

(uj � ρ(z; j)) (1)

where � denotes the Hadamard (component-wise) multiplication between vectors. Therefore,
if the matrix A is given in plaintext and ct is given as an encryption of the vector z, the
matrix-vector multiplication A · z is expressed as combination of rotations and scalar multi-
plications. The vector rotation ρ(z; j) can be homomorphically computed by Rot(ct; j) and
the Hadamard (component wise) scalar multiplication is done by multiplying the polynomial
τ−1(uj). See Algorithm 1 for an explicit description of the homomorphic matrix multipli-
cation. Similarly, the second term B · z can be obtained by multiplying the matrix B after
applying the slot-wise conjugation on z.

Algorithm 1 Homomorphic evaluation of matrix multiplication

1: procedure MatMult(ct ∈ R2
q , A ∈ CN/2×N/2)

2: ct′ ← bτ−1(u0)e · ct (mod q)
3: for j = 1 to N/2− 1 do
4: ctj ← bτ−1(uj)e · Rot(ct; j) (mod q)
5: ct′ ← Add(ct′, ctj) (mod q)
6: end for
7: return ct′

8: end procedure

Algorithm 1 requires (N/2− 1) rotations and N multiplications with scalar polynomials
but the complexity can be reduced down using the idea of Baby-Step Giant-Step algorithm.
Let N1 = O(

√
N) be a divisor of N/2 and denote N2 = N/2N1. It follows from [33] that

Equation (1) can be expressed as

A · z =
∑

0≤j<N2

∑
0≤i<N1

(uN1·j+i � ρ(z;N1 · j + i))

=
∑

0≤j<N2

ρ

 ∑
0≤i<N1

ρ(uN1·j+i;−N1 · j)� ρ(z; i);N1 · j

 .

For the homomorphic evaluation of the arithmetic circuit, we first compute the ciphertexts
of ρ(z; k) for i = 1, . . . , N1 − 1. For each index j, we perform N1 scalar multiplications and
aggregate the resulting ciphertexts. In total, the matrix multiplication can be homomorphi-
cally evaluated with (N1 − 1) + (N2 − 1) = O(

√
N) rotations and N1 · N2 = O(N) scalar

multiplications.
We provide a trade-off between the precision of a plaintext and the size of a ciphertext

modulus. The output plaintext contains errors from the rounding operation of scalar polyno-
mial and the homomorphic rotation. We can reduce the relative size of the rounding error by
multiplying a scaling factor of ∆ ≥ 1 to the scalar polynomials, and the relative size of the

11



rotation error can be controlled by placing the significand of an input ciphertext in higher
digits. Therefore, the modulus of an output ciphertext is reduced after the evaluation of a
linear transformation if we use a scaling factor to get a better precision of plaintexts.

4.4 Sparsely Packed Ciphertext

The packing method described in Section 4.1 allows us to encrypt (N/2) complex numbers
in a single ciphertext. However, it is sufficient to deal with a small number of slots in some
applications of HE. In this section, we explain how to encode a sparse plaintext vector and
describe the relation with the ordinary packing method. This idea will be applied to our
bootstrapping method and provide a trade-off between the latency time and the amortized
time of bootstrapping procedure.

Let n ≥ 2 be a divisor of N and let Y = XN/n. The native plaintext space of HEAAN is the
set of small polynomials in Z[X]/(XN + 1), and it has a subring Z[Y ]/(Y n + 1). Note that
Z[Y ]/(Y n + 1) can be identified with the complex coordinate space Cn/2 by adapting the
idea of ordinary packing method in Section 4.1. Specifically, a polynomial m(Y ) is mapped
to the vector w = (wj)0≤j<n/2 where wj = m(ξj), ξ = exp(−2πi/n) = ζN/n, and ξj = ξ5

j
for

0 ≤ j < n/2. If we consider a plaintext polynomial m(Y ) ∈ Z[Y ]/(Y n + 1) as a polynomial
m̃(X) = m(XN/n) in X, then the image of m̃ through the ordinary decoding function τ is
obtained by τ(m̃) = (zj)0≤j<N/2 where

zj = m̃(ζ
N/n
j ) = m(ξ5

j
) = wj (mod n/2)

for 0 ≤ j < N/2. Hence z = (zj)0≤j<N/2 can be understood as the vector obtained from w
by concatenating itself (N/n) times.

An encryption of a plaintext polynomial m(Y ) ∈ Z[Y ]/(Y n + 1) with respect to a secret
key sk = (1, s) will be pairs as ct ∈ R2

q satisfying 〈ct, sk〉 = m(Y ) + e(X) (mod q) for some
small polynomial e(X) ∈ R. We may employ key-switching technique to get the functional-
ities of rotation, conjugation, and linear transformation on sparsely packed slots. The main
advantage of this method is that it reduces the complexity of an arbitrary linear transfor-
mation: the total complexity on (n/2)-sparsely packed ciphertexts is bounded by O(

√
n)

rotations and O(n) scalar multiplications.

5 Bootstrapping for HEAAN

5.1 Overview of the Recryption Procedure

This section gives a high level structure of the bootstrapping process for the HEAAN scheme.
We employ the ciphertext packing method and combine it with our efficient evaluation strat-
egy to achieve a better performance in terms of memory and computation cost. Below we
describe all the parts of the recryption procedure in more details. We denote the following five
steps by ModRaise, CoeffToSlot, EvalExp, ImgExt and SlotToCoeff, respectively.
See Fig. 2 for an illustration.

Modulus raising. Let ct be an input ciphertext of the bootstrapping procedure with a
ciphertext modulus q satisfying m(X) = [〈ct, sk〉]q. We start with the point that its inner
product t(X) = 〈ct, sk〉 (mod XN + 1) is of the form t = qI + m for some small I(X) ∈
R with a bound ‖I‖∞ < K. Thus ct itself can be viewed as an encryption of t(X) =
t0 + t1X + · · · + tN−1X

N−1 in a large modulus Q0 � q due to [〈ct, sk〉]Q0 = t(X). Our
bootstrapping procedure aims to homomorphically and approximately evaluate the reduction
mod q F (t) = [t]q using arithmetic operations over the integers, and hence we can generate
an encryption of the original message m = [t]q with a ciphertext modulus larger than q.

12



ct = Enc(m(X)) (mod q)

ModRaise

ct = Enc(t(X)) (mod Q0)

Enc(t0, . . . , tN/2−1)
Enc(tN/2, . . . , tN−1)

CoeffToSlot

Enc
(
q
2π exp

(
2πim0
q

)
, . . . , q

2π exp
(
2πimN/2−1

q

))
Enc

(
q
2π exp

(
2πimN/2

q

)
, . . . , q

2π exp
(
2πimN−1

q

))
EvalExp

Enc
(
m0, . . . ,mN/2−1

)
Enc

(
mN/2, . . . ,mN−1

)
ImgExt

ct′ = Enc(m(X)) (mod Q1)

SlotToCoeff

Fig. 2. Pipeline of our bootstrapping process

Putting polynomial coefficients in plaintext slots. Given the input ciphertext ct ∈ R2
Q0

with a decryption structure t(X) = 〈ct, sk〉, this step aims to put the coefficients t0, . . . , tN−1
in plaintext slots in order to evaluate the modular reduction function F (t) coefficient-wisely.
Let z′ = τ(t) ∈ CN/2 be the corresponding vector of plaintext slots of the ciphertext ct. Since
each ciphertext can store at most N/2 plaintext values, we will generate two ciphertexts
encrypting the vectors z′0 = (t0, . . . , tN

2
−1) and z′1 = (tN

2
, . . . , tN−1), respectively.

As mentioned in Section 4.1, recall the linear relation between the coefficient vector of
a polynomial and its corresponding vector of plaintext slots. If we divide the matrix U into
two square matrices

U0 =


1 ζ0 . . . ζ

N
2
−1

0

1 ζ1 . . . ζ
N
2
−1

1
...

...
. . .

...

1 ζN
2
−1 . . . ζ

N
2
−1

N
2
−1

 and U1 =


ζ

N
2
0 ζ

N
2
+1

0 . . . ζN−10

ζ
N
2
1 ζ

N
2
+1

1 . . . ζN−11
...

...
. . .

...

ζ
N
2
N
2
−1 ζ

N
2
+1

N
2
−1 . . . ζ

N−1
N
2
−1

 ,

then we get an identity z′k = 1
N (Uk

T · z′ + UTk · z′) for k = 0, 1. Therefore, we can generate
encryptions of z′0 and z′1 using the linear transformations on the plaintext vector z′. One
can apply our general method in Section 4.3 to this step.

Evaluation of the complex exponential function. This step takes the results of the
previous step and homomorphically computes the reduction mod q function F (t) = [t]q ho-

momorphically. We use the trigonometric function S(t) := q
2π sin

(
2πt
q

)
as an approximation
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of F (t) and adapt the optimized evaluation strategy for the complex exponential function

E(t) := q
2π exp

(
2πit
q

)
.

Since the plaintext slots of the input ciphertexts contain the coefficients tj = qIj + mj

for 0 ≤ j < N , the output ciphertexts will encrypt q
2π exp

(
2πitj
q

)
= q

2π exp
(
2πimj

q

)
in the

corresponding plaintext slots.

Extraction of the imaginary part. We take two input ciphertexts encrypting the values
q
2π exp

(
2πimj

q

)
in their plaintext slots for 0 ≤ j < N . We extract their imaginary parts as

q
2π sin

(
2πmj

q

)
≈ mj by using the relation

sin

(
2πmj

q

)
=

1

2

(
exp

(
2πimj

q

)
− exp

(
−2πimj

q

))
and applying the evaluation method of slot-wise conjugation described in Section 4.2.

Switching back to the coefficient representation. The final step is to pack all the
coefficients mj in the plaintext slots of two ciphertexts back in a single ciphertext. This
procedure is exactly the inverse of the CoeffToSlot transformation. That is, when given
two ciphertexts that encrypt the vectors z0 = (m0, . . . ,mN

2
−1) and z1 = (mN

2
, . . . ,mN−1),

we aim to generate an encryption of m(X). Since the plaintext vector z = τ(m) of m(X)
satisfies the identity z = U ·m = U0 · z0 +U1 · z1, this transformation is also represented as
a linear transformation over the plaintext vectors.

Our bootstrapping process returns an encryption of m(X) with a ciphertext modulus
Q1 < Q0, which is much larger enough than the initial modulus q to allow us to perform
further homomorphic operations on the ciphertext.

We can perform the final two steps together by pre-computing the composition of linear
transformations. The (inverse) linear transformation step consumes only one level for scalar
multiplications but requires a number of slot rotations. On the other hand, EvalExp per-
forms homomorphic evaluation of the polynomial Pr(·), which is the most levels consuming
part of the recryption but requires relatively small computational cost from our recursive
evaluation strategy: linear with the depth.

5.2 Recryption with Sparsely Packed Ciphertexts

As mentioned in Section 4.4, the use of sparsely packed ciphertexts has an advantage in
some applications, in that it reduces the complexity of linear transformation steps. How-
ever, the recryption of sparsely packed ciphertexts requires an additional step before the
CoeffToSlot step.

Let n ≥ 2 be a divisor of N and let Y = XN/n as in Section 4.4. Assume that we are
given an encryption ct of m(Y ) ∈ Z[Y ]/(Y n+1) such that 〈ct, sk〉 ≈ q ·I(X)+m(Y ) for some
I(X) = I0 + I1 ·X+ · · ·+ IN−1 ·XN−1 ∈ R. Then the ModRaise step returns an encryption
of q · I(X) + m(Y ) which is not a polynomial of Y . We aim to generate an encryption of
q · Ĩ(Y ) + m(Y ) for some Ĩ(Y ) ∈ Z[Y ]/(Y n + 1) before the next CoeffToSlot step. It
proceeds as described in Algorithm 2.

Note that the monomial Xk vanishes by the homomorphism X 7→ X −Xn+1 +X2n+1 −
· · ·−XN−n+1 if k is not divisible by (N/n); otherwise, it is multiplied by the constant (N/n).
Hence q · I(X) +m(Y ) is mapped to (N/n) · (q · Ĩ(Y ) +m(Y )) by this homomorphism where
Ĩ(Y ) = I0+IN/n ·Y +· · ·+IN−(N/n) ·Y n−1. For an efficient evaluation of this homomorphism,
Algorithm 2 uses the rotation operation repeatedly to fill the same value in the plaintext
slots of index j (mod n/2) for each j = 0, . . . , n/2− 1.

14



Algorithm 2 Homomorphic evaluation of the partial-sum procedure

1: procedure PartialSum(ct ∈ R2
q , n|N,n ≥ 2)

2: ct′ ← ct (mod q)
3: for j = 0 to log(N/n)− 1 do
4: ctj ← Rot(ct′; 2j · (n/2)) (mod q)
5: ct′ ← Add(ct′, ctj) (mod q)
6: end for
7: return ct′

8: end procedure

As mentioned before, the main advantage of sparsely packed ciphertexts is that the
CoeffToSlot step can be represented as relatively small matrices multiplications with only
a single encryption of the coefficients vector of t(Y ) = q · Ĩ(Y )+m(Y ) while fully-packed slots
need two ciphertexts for the CoeffToSlot step. In some more details, for the plaintext

vector w ∈ Cn/2 of t(Y ), the desired ciphertext can be computed by 1
n(U ′

T ·w + U ′T ·w)
where

U ′ =


1 ξ0 ξ20 . . . ξn−10

1 ξ1 ξ21 . . . ξn−11
...

...
...

. . .
...

1 ξn
2
−1 ξ

2
n
2
−1 . . . ξ

n−1
n
2
−1

 ,
as in Section 4.1. We can either generate two ciphertexts encrypting two plaintext vectors
(w0, . . . , wn/2−1) and (wn/2, . . . , wn−1) by separating U ′ into two square matrices, or compute
a single encryption of (w0, . . . , wn−1) with n plaintext slots when n < N . In the latter case,
EvalExp and ImgExt perform the same operations as in the fulled-packed ciphertexts, but
the memory and the computational cost are reduced by half since we can work on a single
ciphertext. The final SlotToCoeff step is also expressed as a linear transformation over
n-dimensional vector.

5.3 Noise Estimation of Recryption

In this section, we describe each step of recryption procedure with a noise analysis. We start
with an upper bound K of ‖I‖∞. Since each coefficient of a ciphertext ct = (c0, c1) is an
element of Zq and the signed binary secret key s has exactly h nonzero coefficients, each
coefficient of 〈ct, sk〉 = c0 + c1s can be considered to be the sum of (h + 1) elements in Zq,
which is bounded by q

2(h + 1). Hence all the coefficient of I(X) = b1q 〈ct, sk〉e is bounded

by 1
2(h + 1) ≈ 1

2‖s‖1. In practice, the coefficients of ci look like a random variable over
the interval Zq and a coefficient of 1

q 〈ct, sk〉 behaves as the sum of (h + 1)-numbers of i.i.d.

uniform random variables over the interval (−1
2 ,

1
2). This heuristic assumption gives us a

smaller bound as K = O(
√
h) for ‖I‖∞.

We now consider the error growth during homomorphic evaluation of a linear transfor-
mation. As noted in Section 4.3, it induces two types of errors such as from the rounding of
a scalar polynomial and the key-switching operation. We multiply a sufficiently large scaling
factor of ∆ = O(q) to scalar polynomials, so that the precision of rounded polynomials be-
comes larger than that of an input plaintext. Then we do not need to consider the rounding
errors because they have no effect on the precision of the resulting plaintext. The second
type of error is added to a plaintext when we apply the key-switching technique for some
functionalities such as rotation or conjugation. From Lemma 4, the key-switching error is
bounded by P−1 · q ·Bks +Brs ≈ Brs since we set a ciphertext modulus q much smaller than
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P . During matrix multiplication, key-switching errors are multiplied with diagonal vectors of
matrix. Since infinite norms of diagonal vectors of 1

NU0 and 1
NU1 are exactly one, the total

error of second type is bounded by O(Brs).

In the EvalExp step, we take two ciphertexts to be homomorphically evaluated by the
approximate polynomial Pr(·) of the complex exponential polynomial. Each component of the
corresponding plaintext slots contains tj +ej for some small error ej such that |ej | ≤ O(Brs).
Hence, the error between the desired value E(tj) and the resulting plaintext of EvalExp
can be measured by

|E(tj)− Pr(tj + ej)| ≤ |E(tj)− E(tj + ej)|+ |E(tj + ej)− Pr(tj + ej)|

≤ ∆ · 2π
q
|ej |+

∆ · 2r√
2π(d0 + 1)

(
eπK

2r−1(d0 + 1)

)d0+1

,

since E(·) is analytic and |E′(·)| ≤ ∆ · 2π/q. The second term can be bounded by O(1)
and so it is negligible when d0 = O(1) and r = O(log(qK)) as described in Section 3.2. By
combining the error bound as |ej | ≤ O(Brs) of the previous step, we deduce that the output

ciphertexts of EvalExp encrypt E(tj) = ∆ · exp
(
2πitj
q

)
in their plaintext slots with errors

bounded by O(Brs).

The imaginary part of E(t) is ∆·2π
q S(t) = ∆ · sin

(
2πt
q

)
, which is an approximation

of ∆·2π
q m with an error bounded by O

(
q · |m|

3

q3

)
for m = [t]q. We set a small bound on

an input plaintext (e.g. |m| ≤ q2/3) so that an approximation error does not destroy the
significant digits of the plaintext. Hence the ImgExt step does not change the magnitude of
bootstrapping error.

Finally, in the SlotToCoeff step, the plaintext vectors are multiplied with the ma-
trices U0 and U1, and their diagonal vectors have the size of one. The size of error in the
resulting plaintext is bounded by O(N ·Brs) since it is the sum of N errors of size O(Brs). In
practice, under the heuristic assumption that these errors behaves as independent Gaussian
distributions, we get a reduced error bound as O(

√
N ·Brs).

In summary, for an input ciphertext ct ∈ R2
q satisfying 〈ct, sk〉 = m (mod q), our boot-

strapping process returns a ciphertext ct′ such that 〈ct′, sk〉 = m+e (mod Q1) for a modulus
Q1 � q and some error e with ‖e‖can∞ ≤ O(

√
N · Brs). It consists of the initial/final linear

transformations and the evaluation of the complex exponential function, so the total depth
(number of levels consumed) for bootstrapping is O(log(Kq)) = O(log λ). The linear trans-
formations require and O(

√
N) rotations, while the evaluation of the exponential function

needs r = O(log(Kq)) = O(log λ) homomorphic multiplications, which is linear with the
depth of the decryption formula. As described above, the total complexity can be signif-
icantly reduced when we handle a sparsely packed ciphertext with (n/2) slots: the linear
transformations require O(

√
n) rotations and the evaluation complexity of the exponential

function is reduced by half.

6 Implementation

In this section, we suggest some parameter sets for our bootstrapping procedure with exper-
imental results. Our implementation is based on the HEAAN library [13] implementing the HE
scheme of Cheon et al. [14]. The source code is publicly available at github [12].
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6.1 Parameter Selection

We adapt the estimator of Albrecht at el. [1] to guarantee the concrete security of the
proposed parameters. All the parameter sets achieve at least 80-bit security level against the
known attacks of the LWE problem.

The key-switching keys have the largest modulus in the HEAAN scheme and the modulus
Q0 (after ModRaise) has half the bit size of the modulus. We use the discrete Gaussian
distribution of standard deviation σ = 3.2 to sample error polynomials and set the Ham-
ming weight h = 64 of the secret key s(X). The parameters d0 = O(1) and r = O(log q)
were chosen asymptotically in the above sections, but in practice, we set the parameter ex-
perimentally based on the bootstrapping error. We take the degree 7 Taylor expansion as an
initial approximation of the exponential function and choose a sufficiently large number of
iterations r to maintain the precision of output plaintexts.

The parameter log p is the bit size of plaintexts and the plaintext precision denotes the
number of significant bits of plaintexts after bootstrapping. The before and after levels L0, L1

are obtained by dividing logQ0 and logQ1 by log p, respectively. The whole parameter sets
are described in Table 1.

Parameter logN log p log q r logQ0 L0 logQ1 L1
Plaintext

precision

Set-I
15

23 29 6
620

26 202 8 8 bits

Set-II 27 37 7 22 64 2 12 bits

Set-III
16

31 41 7
1240

40 631 20 16 bits

Set-IV 39 54 9 31 344 8 24 bits

Table 1. Parameter sets

We present some specific examples of input and output plaintexts. For simplicity, we
show the real parts of the plaintext values in four slots. All the values are divided by a factor
of p for a clear interpretation.

Before bootstrapping : [0.777898 0.541580 0.603675 0.822638]

After bootstrapping : [0.777435 0.541021 0.603023 0.822321]

It shows that the error vectors is bounded by 2−11 · p, i.e., the bootstrapping procedure with
the parameter set I outputs a ciphertext of 10 bits of precision.

Before bootstrapping : [0.516015 0.772621 0.939175 0.345987]

After bootstrapping : [0.516027 0.772614 0.939172 0.346001]

Similarly, the second example shows that the bootstrapping error with the parameter set II
is bounded by 2−16 · p and the output plaintext has 15 bits of precision.

6.2 Experimental Results

We show the performance of our bootstrapping procedure based on the proposed parame-
ter sets. All the experimentations were performed as a single hyperthread on a 2.10 GHz
Intel Xeon E5-2620. The experimental results are summarized in Table 2. The linear trans-
formation includes the three steps - PartialSum, CoeffToSlot, and SlotToCoeff.
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Parameter
Number Linear

EvalExp
Total Amortized

of slots trans. time time

Set-I

1 12.3 s

12.3 s

24.6 s 24.6 s

32 48.6 s 60.9 s 1.9 s

64 82.8 s 95.1 s 1.5 s

128 139.2 s 151.5 s 1.2 s

Set-II

1 14.1 s

12.5 s

26.6 s 26.6 s

32 46.0 s 58.5 s 1.8 s

64 77.1 s 89.6 s 1.4 s

128 127.3 s 139.8 s 1.1 s

Set-III

1 64 s

63 s

127 s 127 s

32 218 s 281 s 8.8 s

64 343 s 406 s 6.3 s

128 528 s 591 s 4.6 s

Set-IV

1 58 s

68 s

126 s 126 s

32 200 s 268 s 8.4 s

64 307 s 375 s 5.9 s

128 456 s 524 s 4.1 s

Table 2. Bootstrapping timings with parameter sets I to IV

The amortized time is obtained by dividing the total bootstrapping time by the number of
plaintext slots.

The linear transformations take a longer time as the number of plaintext slots grows
while the complexity of the EvalExp step remains stable. Therefore, we can make a trade-
off between the latency time and the amortized time by changing the number of slots. Fig. 3
illustrates the trend of evaluation timings for each of the bootstrapping phases (parameter
set I).
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Fig. 3. Tendency of real (left) and amortized (right) bootstrapping timings
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7 Conclusion

In this paper, we suggested a method to recrypt a ciphertext of the HEAAN scheme. The per-
formance of our bootstrapping procedure was significantly improved by adapting a trigono-
metric approximation of the modular reduction function. The linear transformation turns
out to be the most time-consuming part, but we used almost the same method as in [28, 33].
It would be an interesting open problem to find an efficient algorithm to evaluate the linear
transformations approximately.
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