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Abstract. Since the advent of Differential Power Analysis (DPA) in the
late 1990s protecting embedded devices against Side-Channel Analysis
(SCA) attacks has been a major research effort. Even though many
different first-order secure masking schemes are available today, when
applied to the AES S-box they all require fresh random bits in every
evaluation. As the quality criteria for generating random numbers on an
embedded device are not well understood, an integrated Random Number
Generator (RNG) can be the weak spot of any protected implementation
and may invalidate an otherwise secure implementation. We present a
new construction based on Threshold Implementations and Changing
of the Guards to realize a first-order secure AES with zero per-round
randomness. Hence, our design does not need a built-in RNG, thereby
enhancing security and reducing the overhead.

1 Introduction

In 1999 Kocher et al. introduced the extraction of key information from the
power consumption of a hardware device during cryptographic computations [22].
To break a symmetric cipher, key hypotheses are formed that categories power
traces into groups and a statistical test is performed to estimate the likelihood of
a correct guess. This process is known as Differential Power Analysis (DPA).
To prevent side-channel analysis (SCA) attacks extensive research in counter-
measures has been undertaken [16, 18,20, 28, 30]. A notable protection method is
Threshold Implementation (TI) [25], as it grants provable security against first-
order SCA attacks and can potentially be realized without additional randomness.
TI demands three properties to ensure the security of an implementation: correct-
ness, non-completeness and uniformity. While correctness simply preserves the
validity of the computation, non-completeness ensures that every intermediate
value is independent of secret values even in the presence of glitches. Unifor-
mity implies that when the input is shared by the masks drawn from a uniform
distribution, the output should be also represented by masks drawn from a
uniform distribution. So far, all first-order protected AES implementations inject
randomness in every round to achieve a uniform masking. Hence, they require to
employ a random number generator on the embedded device in addition to the
creation of the shared plaintext, which is considered to be done externally before
being provided to the cryptographic core.



Related Works.

S-box Structure. In 2005 Canright suggested a tower field approach to realize the
GF(28) inversion in the AES S-box by inversions and multiplications in smaller
finite fields [8]. Due to its reduced size compared to a naive implementation most
of the recent first-order secure AES implementations are based on this S-box
design.

Threshold Implementation. Bilgin et al. suggested to mask all multipliers, squarers
and inverters in Canright’s construction separately by applying TI with two
to four shares. This approach requires 16 random bits per S-box evaluation to
recombine the different components in a uniform way and occupies an area of
2224 GE in the UMC 180 nm library [4].

Domain-Oriented Masking (DOM). Based on Canright’s construction Groß
et al. presented masked version of all multiplications in GF(22) with a DOM
independent multiplier to achieve first-order security. The construction consumes
2600 GE in UMC 0.18µm and requires 18 bits of randomness per S-box call [17].

Masking with d+1 Shares. In [10] Cnudde et al. suggested to apply masking with
d+ 1 shares [28] to operations in GF(22) to realize the AES S-box in 1872 GE
in the NanGate 45 nm Open Cell Library with 54 bits of randomness per S-box
call. In contrast, Ueno et al. kept the inversion in GF(24) as a single primitive
and applied the same masking scheme, which requires 64 bits of randomness per
S-box call and can be realized in only 1389 GE in TSMC 65nm standard cells
library [31].

Changing of the Guards. Recently, Daemen [11] showed that uniformity for a
bijective S-box can be easily achieved on the entire S-box layer by injecting some
additional randomness, called guards, into the first S-box. In order to satisfy the
uniformity of the subsequent S-boxes, he introduced a mechanism to make use
of the shares of the former S-box. More precisely, the uniformity is achieved by
remasking, but instead of fresh randomness part of the shared cipher state is
used.

Zero per-Round Randomness. One of the several designs presented by Ghoshal
and De Cnudde in [14] is a four-share AES S-box with zero fresh randomness.
They considered the S-box construction of Boyar and Peralta [6] and replaced
the non-linear gates with their TI variants.

Our Contribution. Obviously, our target in this paper is the same as that
of the four-share design of [14], i.e., no extra randomness per S-box. First, we
demonstrate a first-order leakage of that construction both in theory and with a
practical evaluation. Second, we present an alternative and novel design for the
AES S-box which enables us to reuse the hardware modules hence shrinking the
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area. Our approach, which is also a four-share TI design, is based on a bijective
decomposition of the AES S-box allowing us to apply the Changing of the Guards
method to achieve the uniformity. We would like to highlight that the application
of this method is only possible in bijective constructions, and our design is the first
in which the AES S-box is decomposed to bijective functions. Third, we present
a trick in order to employ our four-share S-box in a two-share AES encryption
design without additional randomness. In consequence, our practically-evaluated
first-order secure AES implementation eliminates the necessity of generating any
random bits in hardware as it only requires the externally shared plaintext and
guards, but no fresh randomness. Further, our design has a comparable size to
recent first-order secure implementations.

2 Preliminaries

In this section we introduce relevant definitions and our notation for the rest of
the paper.

Adversary Model. To appropriately model the influence of glitches in a hard-
ware circuit Ishai et al. suggested a d-probing model where the attacker may
probe up to d wires corresponding to the intermediate values of the cipher [20]. As
we focus on first-order security the attacker may probe only one wire. According
to Duc et al. [12], it is commonly known that this corresponds to an attacker
who only estimates the means (and no higher-order moments) on the recorded
side-channel measurements.

Masking. As this paper exclusively deals with four-share implementations, we
restrict our definitions to four shares for better readability. For a secret value
x ∈ Fn

2 we denote its Boolean sharing into four shares as X = (a, b, c, d) with the
property:

x = a⊕ b⊕ c⊕ d.

We write ∫(x) for the set of all possible Boolean sharings X of x.

Threshold Implementation. In 2006 Nikova et al. introduced TI as a provably
secure masking scheme for hardware platforms [25]. Below, we give an introduction
following our own notation.
Let f : Fn

2 → Fm
2 be a Boolean function. We write that

F : F4n
2 → F4m

2 , F(X) =
(
FA (X) ,FB (X) ,FC (X) ,FD (X)

)
,

with F(.) being a first-order TI of f(.) if it fulfills two properties. First, it is
correct, i.e., the summation of all output shares reveals the unshared result of
the computation f(.) on x:

FA (X)⊕ FB (X)⊕ FC (X)⊕ FD (X) = f (x) .
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Second, it must be non-complete, i.e., each component function FA/B/C/D(.)
computing one output share does not depend on all input shares. As an example,

FA (X) = FA (b, c, d) , FB (X) = FB (a, c, d) ,
FC (X) = FC (a, b, d) , FD (X) = FD (a, b, c) .

The latter property ensures the security in the 1-probing model even in the
presence of glitches as probing one output share yields at most three input shares.
In the following, we are going to use a capital letter F to denote the TI of a
function f. If it is clear which shared function we are referring to, we abbreviate
a, b, c, d for its input shares and A,B,C,D for its output shares.

The central theorem underlying TI guarantees that given a sharing of x drawn
equiprobably from all sharings ∫(x), the evaluation of the TI function F(.) does
not cause first-order leakage. As f(.) is not the only non-linear function used in a
cipher, and its output derives other non-linear TI functions (e.g., at next cipher
rounds), we are interested in achieving the equiprobability of output sharings
as well. This can either be achieved by injecting randomness or maintaining the
equiprobability by a clever design of the TI functions F(.). This leads to a third
property: a TI function F(.) is said to be uniform, if – given a uniform input –
all sharings of the output occur with equal probability:

∀x ∈ Fn
2 , ∃cx, ∀X ∈ ∫(x), ∀Y ∈ ∫ (f (x)) ; Pr (F (X) = Y ) = cx.

Unfortunately, no uniform TI of the AES S-box is known. If uniformity is violated,
the security proof of TI no longer holds.

Higher-Order Masking. In 2015 De Cnudde et al. extended the TI to higher-order
of protection for AES [9] after Reparaz showed that introducing fresh randomness
is always necessary to achieve multivariate higher-order security [27]. However,
as our focus is zero fresh randomness we limit ourselves to first-order security.

Changing of the Guards. In [11], Daemen questioned the assumption that
uniformity must be achieved in every S-box separately, and instead suggested a
scheme to generate uniformity of the entire S-box layer at once. We illustrate
his scheme for four shares. Let (SA,SB ,SC ,SD) be a non-uniform TI of the
bijective S-box s(.). Furthermore, let the entire non-linear layer consist of parallel
executions of t times the same S-box where we denote the inputs to the i-th
shared S-box as (ai, bi, ci, di), i ∈ {1, . . . , t}. Then Changing of the Guards with
four shares is defined as

Ai = SA(bi, ci, di)⊕ ci−1 ⊕ di−1, i > 0
Bi = SB(ci, di, ai)⊕ di−1, i > 0, B0 = ct

Ci = SC(di, ai, bi)⊕ bi−1, i > 0, C0 = dt

Di = SD(ai, bi, ci)⊕ bi−1 ⊕ ci−1, i > 0, D0 = bt
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As the only source for extra randomness, b0, c0, and d0 need to be provided
beforehand. All further guards are computed from the input of each previous
S-box in the layer as illustrated in Figure 1, and B0, C0, and D0 provide the
guards for the next S-box layer. More precisely, the relabeling of b2, c2 and d2 as
D0, B0 and C0 is only done to fulfill the formal non-completeness requirement
that ouput share B does not depend on input share b and so forth. This sharing
of the S-box layer inherits correctness and non-completeness from the TI of s(.)
and in addition achieves uniformity due to the additional guards. A formal proof
of uniformity for an arbitrary number of shares can be found in the original
paper [11].

d0c0b0 a1 b1 c1 d1

SA SB SC SD

A1 B1 C1 D1

a2 b2 c2 d2

SA SB SC SD

A2 B2 C2 D2 D0 B0 C0

Figure 1: Illustration of Changing of the Guards with four shares and two S-boxes.

3 Insecurity of a Construction of [14]

We describe the theoretical background of a flaw in the “TI design with 4 shares
and no randomness” presented in [14] and demonstrate significant leakage in a
practical setting.

Construction. Based on the smallest known unprotected AES S-box represen-
tation by Boyar and Peralta [6], Ghoshal and De Cnudde suggested an allegedly
first-order secure implementation by representing the circuit by only 2-bit XOR
and AND gates, and dividing the circuit into four stages, each of which with
algebraic degree of 2, i.e., quadratic (cp. Figure 2). They made use of a previously-
known uniform four-share TI of the 2-input AND gate [25], and concluded that
the uniformity of each separate gate is sufficient to achieve the uniformity of each
quadratic stage, and consequently of the entire S-box.

We remind that it is not possible for any function f : Fn
2 → Fm

2 , m > n to
be shared uniformly without introducing fresh randomness. More specifically,
a sharing of f(.) with d input and output shares has the form F : Fn·d

2 → Fm·d
2 .

Since m · d > n · d, this function is not surjective and therefore output shares
cannot be equiprobable. Hence, stages st1 and st3 cannot be shared uniformly
as seen in Figure 2a. An investigation of the separate building blocks shows
that the violation of uniformity does not stem from a lack of joint uniformity
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of all components in a stage, but even the components Q1 and Q3 in Figure 2b
cannot individually be shared uniformly, because of their higher output dimension.
Furthermore, we verified computationally that the entire shared S-box (with 4
shares) is not a bijection over 4× 8 bits, therefore it is not uniform. Hence, the
requirement of equiprobable input sharing of TI is violated from stage two (st2)
on.

st1 st2 st3 st4
8 31 31 25 25 26 26 8

(a) High-level Structure

Q1

Lb

La

Q2 Q3 Q4

8

9 9 7 7 8 8 8

4

18

4

18 18 18

(b) Low-level Structure

Figure 2: Illustration of the high-level and low-level structure of the S-box used by
Ghoshal and De Cnudde [14]. La and Lb denote linear building blocks, while Q1, Q2,
Q3 and Q4 indicate quadratic functions.

SCA Evaluation. The above-given justification makes indeed the practical
results shown in [14] questionable. This may be due to the parallel use of many
S-boxes which have increased the noise level and led to no detectable leakage. We
re-evaluated the first-order leakage of this construction with only one instance of
the S-box and observed leakage in stages two, three and four in accordance with
our theoretical observations.

For all practical analyses we report in this work, we made use of the SAKURA-
G board [1] (with Spartan-6 FPGA), and collected the power traces at a sampling
rate of 625MS/s using a digital oscilloscope with 350MHz bandwidth by mea-
suring the output of the AC amplifier embedded on the SAKURA-G. The target
FPGA, on which the design is being run and measured, was operating at the
clock frequency of 6MHz. As the evaluation metric, we applied the common
fixed-versus-random t-test [15] to examine the existence of detectable leakage.
We further followed the procedure suggested in [29] and examined the uniformity
of the random values used to initially mask the input. The result of such an
evaluation on the aforementioned four-share S-box of [14] is shown in Figure 3.

We would like to highlight that in several related works, where the Welch’s
t-test is applied, the probability (to reject the null hypothesis) is not calculated.
Instead, by ignoring the “degree of freedom” the threshold of 4.5 based on
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the relation p = 2F (−4.5, v > 1000) < 10−5 is taken, where F (.) stands for the
cumulative student’s t distribution function and v the degree of freedom (see [29]).
Since v can be different at various sample points, we estimated the probability
(so-called p-value) by p = 2F (−|t|, v), and similarly set the threshold to 10−5.

Vo
lta

ge

st1 st2 st3 st4

0.2 0.4 0.6 0.8
time [μs]

-5

0
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(a) t-statistics
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(b) p-value

Figure 3: Evaluation of the four-share S-box (with no extra randomness) of [14] using
10 million traces.

4 Technique

In the following we illustrate how to decompose the AES S-box into two
independently-shared stages and how to reuse the same hardware for several
operations without introducing leakage or requiring fresh randomness.

Decomposition. The AES S-box consists of an inversion in GF(28) and a
subsequent affine mapping Aff(.). As (GF(28), ·) forms a cyclic group with order
255, we can alternatively represent inversion as x−1 = x254. Following the idea
presented in [24], we show the below observation.

Observation 1 Let f : GF(28)→ GF(28) be a monomial f(x) = xk. Then

– the algebraic degree of f(.) is defined by w(k), and
– f(.) is not a bijection for w(k) = 2,

where w(k) stands for the number of ’1’s in the binary representation of k, i.e.,
Hamming weight.

As the inversion is a bijection, it cannot be decomposed into quadratic
monomials. In other words,

@ k1, . . . , kn;∀i, w(ki) = 2, x254 =
(((

xk1
).).)kn

.
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Hence, we focus on decomposition into cubic monomials

f(x) = xp, g(x) = xq, w(p) = w(q) = 3,
x254 = (xp)q = (xq)p = g ◦ f(x) = f ◦ g(x).

Such a search can be reduced to

∀(p, q), w(p) = w(q) = 3; p · q = 254 mod 255.

By brute force it follows that all such (p, q) tuples are given as1

(13, 98), (26, 49), (52, 152), (104, 76), (208, 38), (161, 19), (67, 137), (134, 196).

Each tuple yields a decomposition of the AES S-box into two stages

(f (.) , Aff ◦ g (.)) .

As the size of a direct sharing [26] grows with the number of non-linear terms in
the Algebraic Normal Form (ANF) of a function, we compared all monomials in
the ANF of all above tuples. We determined that the ANFs for all tuples contain
all monomials up to third order. Hence, the choice of the specific tuple is not
crucial for area minimization.

As we use the UMC 180 nm standard library for all our ASIC syntheses, we
verified (p, q) = (26, 49) as the smallest choice by synthesizing the corresponding
TI circuit of all above tuples (made by direct sharing).

4.1 S-box Construction

We construct a first-order TI of the AES S-box by separately applying direct
sharing to the cubic components

f(x) = x26, g(x) = Aff(x49).

A naive construction that realizes the entire S-box in two cycles, would exhibit
a prohibitively large area of more than 20 k GE. Hence, we follow two serialization
methods, originally suggested in [23] for the PRESENT [5] S-box, to achieve an
area reduction. We will refer to these methods as serializing shares and serializing
stages and demonstrate the applicability to the AES S-box.

Serializing Shares. By applying direct sharing, all component functions become
identical as long as we rotate the input shares in the following manner:

FA(X) = F∗(b, c, d), FB(X) = F∗(c, d, a),
FC(X) = F∗(d, a, b), FD(X) = F∗(a, b, c).

This allows us to compute all output shares with the same circuit, denoted as F∗,
one after each other in a sequential manner (see Figure 4a).

1Obviously, for each (p, q) tuple, (q, p) is also a valid tuple.

8



Non-completeness. Special care must be taken in such a serialized architecture
to not violate the non-completeness property. From a high-level point of view
the multiplexer is a combinatorial circuit and should only depend on at most
d− 1 shares, which makes any such a serial design impossible. We overcome this
challenge by

– making sure that each select signal is directly derived from a register,
– suggesting a special design that uses Gray Code for the select signals, and
– placing a register right after each multiplexer.

The choice of the Gray Code implies that only one select signal changes at
each state transition. This guarantees the joint leakage of at most two shares
at each clock cycle. As an example, considering Figure 4b, suppose that the
select signals (s1, s0) = 10 (i.e., the b input is selected). At the next state, the
select signals change to (s1, s0) = 11 leading to selecting the c input. In this
state transition – due to supplying the select signals directly by registers – the
combinatorial logic relevant to selecting the a and d inputs stay inactive. It
holds for the other transitions a→ b, c→ d, and d→ a. Hence, with respect to
Figure 4c, the input tuples (b, c, d), (c, d, a), (d, a, b), and (a, b, c) are sequentially
selected.

Since the shared function F∗(.) non-linearly combines three input shares,
without having a register at its input, the circuit would potentially exhibit
first-order leakage between the input transitions. By means of such a register,
we reset the input of the shared function F∗(.) to ZERO between each input
transition. In other words, when the exemplary input tuple (b, c, d) is selected
and the corresponding shared output is calculated, at the next clock cycle the
input tuple (c, d, a) is selected and at the same time the input registers of F∗(.)
are reset. At the next clock cycle, the selected tuple is not changed and is stored
by the input registers thereby evaluating the corresponding output share. This
implies 8 clock cycles for the entire computation of the 4 output shares.

In contrast, both original work [23] and the recent suggestion by Gupta et
al. [19], which applies serializing shares to GIFT by using the initial naive design
seen in Figure 4a, violate the non-completeness.

Serializing Stages. As stated, both stages f(.) and g(.) are cubic functions.
Considering their ANF, we can create a function m(.) that realizes all linear,
quadratic and cubic terms of both f(.) and g(.). Afterwards, by means of two
linear layers which combine (i.e., XOR) the corresponding terms, the specific
functions x→ x26 and x→ Aff(x49) can be realized.

More specifically, let c1(.), c2(.) be two arbitrary cubic functions over the
same number of bits. Each of them can be decomposed into a common non-linear
layer m(.), followed by an individual linear layer l1(.) (resp. l2(.)) as

c1(x) = l1 ◦m(x), c2(x) = l2 ◦m(x).

A serialization of stages can be achieved by connecting the output of m(.) to
both l1(.) and l2(.) and attaching either a multiplexer or registers with different
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(a) naive evaluation

a
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d

s1 s0

(b) non-complete MUX
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a
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d
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10
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11
10

00
01
11
10

F∗

(c) non-complete share-serial
evaluation

Figure 4: (a) A naive serialization of shares violates non-completeness. The select
signals are not taken from registers and might glitch. The transition from input share
b → c and d → a require both select signals to change. No register stage prevents the
function F∗(.) to combine all shares, (b) Illustration of a multiplexer based on Gray
Code with select signals are being directly supplied by registers, (c) Illustration of the
entire non-complete share-serial evaluation of function F∗(.).

enable signals to their outputs. In our case, l1(.) is the linear layer belonging to
x→ x26 and l2(.) to x→ Aff(x49). Note that we represent the four-share version
of these functions by M(.), L1(.), and L2(.).

Putting it Together. Following both serialization methods, we can now de-
scribe the S-box construction in detail (cp. Figure 5). At the start of the S-box
evaluation the non-completeness register ncR has already been set to ZERO and
the first multiplexer stage selects the lower inputs, i.e., (a, b, c, d). In the first
cycle the non-completeness multiplexers ncM choose the shares (b, c, d) from the
four-byte inputs (a, b, c, d) and the same values are written to the register gds
for later use as guards. In cycle two, L1 ◦M which corresponds to x → x26 is
evaluated, while only the register A1 is enabled to store the result, i.e., one output
share of the application of x → x26 before being XORed with the guards gdd.
Subsequently, at the next clock cycle the ncR register is reset, and at the same
time (c, d, a) is selected by the ncM multiplexers. Analogously, it takes two cycles
to write the results for shares B, C, and D of x→ x26 to registers B1, C1, and
D1. After eight cycles, the secure evaluation of x → x26 is complete and the
left-most multiplexer stage selects the upper input. Following the same procedure
by resetting the ncR register and evaluating L2 ◦M the registers A2, . . . , D2 are
subsequently set to the value of the shares x→ Aff(x49) after achieving unifor-
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mity by XORing with the guards stored in gds from the previous evaluation of
x → x26. In total, after sixteen cycles the secure evaluation of a shared AES
S-box can be read from A2, . . . , D2 while a reordering of the values in registers
C1, D1, B1 provides the guards for the next S-box evaluation (this corresponds to
the definition given in [11]). We should highlight that all select signals controlling
the multiplexers are derived by dedicated registers.

a

b

c

d

gdb

gdc

gdd

ncM
ncR

M

L1

L2

A1

B1

C1

D1

A2

B2

C2

D2

A

B

C

D

gdB

gdC

gdD

gds

Figure 5: Fully-Serial Design of the AES S-box. In one clock cycle three of the four
input shares a, . . . , d are selected by multiplexers to be fed into registers leading to
M(., ., .) which realizes all cubic, quadratic and linear terms. In the first eight cycles the
output of M(., ., .) is processed by L1(.) to realize the first shared function and write the
results to the upper registers A1, . . . , D1. The registers feeding M(., ., .) are reset after
computation of each output share. In the successive eight cycles the same instance of
M(., ., .) is reused and its output is fed into L2(.) to realize the second shared function.
In sum, after sixteen clock cycles a uniform sharing of the AES Sbox is written to the
output registers.

4.2 Full AES
Based on the 8-bit version of the encryption-only design [21], we constructed
a two-share AES implementation (cp. Figure 6) with one S-box instance, a
byte-wise shift register to hold the state and an unprotected key schedule.
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Number of Shares. As our first-order S-box operates on four-shares, it would
be natural to construct a four-share version of AES. However, sharing the entire
AES state with four shares leads to a prohibitive area requirement. This motivated
us to develop a heuristic that re-masks the state with itself to generate four
shares from two shares. Our scheme is based on a trivial method to extend two
shares (a0, b0) to four shares (a, b, c, d) by the introduction of two additional
random bytes (r1, r2) via re-masking:

a = r1, b = r1 ⊕ a0, c = r2, d = r2 ⊕ b0.

Extension. As we want to achieve zero per-round randomness, we chose a share
of locally-independent state bytes as (r1, r2). To determine the independence of
bytes, we remind that MixColumns is the only part of the AES round function
that intermingles multiple bytes. Hence, it is the only cause of dependence
between state bytes. Further, due to the diffusion properties of the AES, the
combination of ShiftRows and MixColumns causes any difference to any single
byte to propagate to all other bytes within only two rounds. In consequence, we
can only aim at finding a heuristic to judge local independence of state bytes. We
chose to look one round into the past and one round into the future to pick the
state bytes that did not originate from the same MixColumns operation and are
not used jointly in the next MixColumns operation. In consequence, we found
that the output of the shift register (given to the S-box) can be masked with
the byte at offset 2 and the byte at offset 9 (cp. Figure 6) counted against the
direction of the shift register starting from zero. This can easily be verified by
iterating through all 16 states of the shift register, e.g., in the default position,
byte a0 is masked with a8 and b0 is masked with b6 corresponding to columns
zero, two and one in the previous round and columns zero, two and three in
the next round. We have chosen two different positions in the two shares of the
state to avoid undesired unmasking of any byte in the state. Needless to say that
the purely heuristic nature of remasking bytes with locally-independent bytes
demands for an in-depth practical evaluation (cp. Section 5).

Reduction. We need to securely reduce the four-share S-box output (A,B,C,D)
to two shares to write it back to the state register. As the S-box already contains
a final register stage for each share A2, . . . , D2 (cp. Figure 5) we can directly
reduce the four shares to two shares by XORing them without the need of an
additional register stage:

a15 ⇐ A⊕B, b15 ⇐ C ⊕D.

After power-up of the circuit, only for the first AES call a 24-bit random
value should be provided for the guards, and it is the only randomness required
for the circuit. During the operation of the S-box, the guard register is updated,
and no extra randomness will be required. The next AES calls will make use of
the last value stored in the guard register corresponding to the last AES call.
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Figure 6: Two-share state of AES operates with a four-share S-box. The guards are
initially provided. The linear layer is omitted for brevity.

5 Practical Analysis

For the practical analyses we used the same setup of the analysis presented in
Section 3. We first investigated a single S-box of our design in a similar way that
we analyzed the Ghoshal and De Cnudde construction, with a difference that
we provided fresh randomness for the guards at the start of each computation
of the S-box. The corresponding results – using 100 million traces – are shown
in Figure 7, indicating no first-order detectable leakage (p-value < 10−5) and
strong higher-order leakages.

As the next step, we implemented our two-share AES encryption design with
no fresh randomness, and followed the same evaluation procedure. Since the
traces are long compared to the previous experiment, we examined this design in
two parts: 10 million traces covering the first encryption round, and 10 million
traces for the last round. Figure 8 presents the results, where no first-order
leakage is detectable.

6 Discussion

Comparison. We synthesized our design by the UMC 180 nm Standard cell
library. Our S-box exhibits a two-fold to three-fold area increase compared to
state-of-the-art first-order secure S-boxes. This in turn leads to an AES that
occupies only several hundred to 1300 GE more than the status-quo (cp. Table
1) and does not need any fresh randomness. This comes at the cost of a greatly
increased latency (eleven-fold) compared to the state-of-the-art implementations.
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Figure 7: Evaluation of our four-share S-box, using 100 million traces.
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Figure 8: Evaluation of our two-share AES encryption design with no fresh randomness,
using 10 million traces.
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Table 1: Comparison of state-of-the-art first-order secure AES encryption designs with
our contribution regarding latency, S-box size, total size and randomness per S-box call.

Design Latency S-box Size AES Size Rand./S-box
(cycles) (kGE) (kGE) (bits)

Bilgin et al. [4] 246 2.2 7.2 16
Gross et al. [18] 246 2.6 6.0 18
Cnudde et al. [10] 276 1.9 6.3 54
Ueno et al. [32] 219 1.4 6.3 64
This work 2804 4.2 7.6 0

Nevertheless, we believe the increase in area and latency to be an acceptable
trade-off to be able to omit the internal generation of random bits completely.
Note that all other implementations need to use either a true- or a pseudo
random number generator (or a combination of them) internally, about whose
area requirements we do not yet have a clear picture. In short, it is not possible
to map the number of required random bits onto a meaningful area requirement
of a corresponding RNG module. Hence, the reduction of required random bits
is of paramount importance for any masking scheme. For example, there are
several works in the area of masking (e.g., [2, 16,18,28]) which tried to reduce
the required randomness.

Fixing the Construction of [14]. As Changing of the Guards is only applicable
to bijections, we do not see any possibilities to apply it to the design of [14]
or any other design based on the Boyar-Peralta implementation [6] of the AES
S-box. Hence, the only suitable countermeasure to achieve uniformity in the
construction of [14] appears to be the introduction of fresh randomness in each
round.

Distinction from Recent Work. Recently, Gupta et al. [19] independently
introduced a TI of the light-weight block cipher GIFT [3]. They used a masking
method called combined 3-shares to decompose the cubic 4-bit S-box of GIFT
into two quadratic bijections and apply direct-sharing individually. In contrast
to our work, Gupta et al. do not discuss the importance of a special multiplexer
design that prevents the combination of all three shares at a time. Furthermore,
they do not incorporate a register stage after the multiplexers, which again
violates non-completeness. Unfortunately, they do not detect this flaw as their
leakage evaluation consists of failed attacks on a certain power model instead
of a more elaborate leakage detection, e.g., Welsh’s t-test. Further, Božilov et
al. [7] decomposed the PRINCE S-box into two quadratic functions of the same
equivalence class and demonstrated a three-share TI design with serialized stages.
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7 Conclusion

We introduced the first zero per-round randomness construction of a first-order
secure AES S-box which mitigates the fact that generation of randomness on
embedded systems remains difficult. Further, we introduced a method to extend
two shares to four shares for the evaluation of an S-box using uncorrelated state
bytes and without introducing any fresh randomness. We should emphasize that
we cannot yet provide any proof for the security of such a combination, which
led to competitive size without any requirements on fresh or internal randomness.
Instead, we could just practically confirm its first-order security using an FPGA
prototype while we showed elementary flaws in an earlier design that claimed to
achieve the same property.

Our S-box masking methodology is universally applicable to bijective S-boxes
and is the first work that achieves non-completeness in a share-serially architecture
of AES, which enables a new area vs. latency trade-off.
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