
Scalable Key Rank Estimation (and Key
Enumeration) Algorithm for Large Keys

Vincent Grosso

Radboud University Nijmegen, Digital Security Group, The Netherlands.

Abstract. Evaluation of security margins after a side-channel attack is an important
step of side-channel resistance evaluation. The security margin indicates the brute
force effort needed to recover the key given the leakages. In the recent years, several
solutions for key rank estimation algorithms have been proposed. All these solutions
give an interesting trade-off between the tightness of the result and the time complexity
for symmetric key. Unfortunately, none of them has a linear complexity in the number
of subkeys, hence these solutions are slow for large (asymmetric) keys. In this paper,
we present a solution to obtain a key rank estimation algorithm with a reasonable
trade-off between the efficiency and the tightness that is suitable for large keys.
Moreover, by applying backtracking we obtain a parallel key enumeration algorithm.
Keywords: Side-channel analysis · Evaluation · Security assessment

1 Introduction
Side-channel attacks are powerful attacks against cryptographic implementations. To
perform a side-channel attack, an attacker needs to be able to measure some physical
properties (e.g. power consumption, electromagnetic radiation) of the device while it
computes some key dependent operations. With this additional information, some attacks
can be performed against cryptographic implementations. This kind of attacks has been
used to mount some practical attacks against real devices [LYS+15]. Hence, cryptographic
algorithms required secure implementations.

To defeat side-channel attacks, cryptographic implementations should embedded ap-
propriate countermeasures. The security margins that the countermeasures offer should be
tested. For this reason, evaluation labs generally launch some popular attacks to evaluate
if an adversary can break an implementation by performing, for example, a key recovery
attack. This approach is adapted since the leakage of an implementation dependents on
the device. Thus, the security obtained by an implementation is highly dependent on the
underlying device.

Most of state of the art side-channel attacks follow a divide-and-conquer strategy,
where the master key is split into several pieces, called subkeys. The attacker/evaluator
mounts an independent attack for each of these subkeys. He then needs to combine
the different results of the attacks. A security evaluation only based on a success or
failure of a key recovery attack is limited by the computational power of the evaluator.
To get rid of this limitation a solution is to compute the rank of the key instead of
performing a key recovery attack. The rank corresponds to the number of keys needed
to be tested before recovering the actual key. Recently, several papers studied how to
evaluate the security by evaluating the computational power required after a side-channel
attack [BLvV15, GGP+15, MOOS15, VGS13]. These papers compute an estimation of
the rank of the key after a side-channel attack, without being limited by the evaluator
computational power. All these papers focus on symmetric key size. In [GGP+15] the

2 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

authors managed to evaluate ranks for 1024-bit keys, but for larger keys, this solution
could have some limitations.

Our contributions. We study the cost of the solution of Glowacz et al. for large keys.
Next, we present a variation of this key rank estimation algorithm. This variation allows
us to obtain a linear complexity of the algorithm in the number of subkeys.

We then derive some tighter bound for our construction. These tight bounds allow us
to have an efficient and tight solution for key rank estimation for large keys (size greater
than 1024 bits). Remark that our method offers a trade-off between efficiency and tightness
of the result. That is a new feature for large key evaluation as the only efficient solution of
Choudary and Popescu [CP17] can not tighten the bounds provided.

Finally, by applying a similar idea as Poussier et al. [PSG16], we transform our key
rank algorithm to a key enumeration algorithm. This key enumeration algorithm could be
useful when the CHES 2016 enumeration algorithm requires too much memory.

2 Background
2.1 Side-channel attacks
For the rank estimation/key enumeration problems, the details on the divide-and-conquer
attack are not necessary. We just need to specify the output of the attack. Let us assume
that the attacker targets a η-bit master key. An adversary using a divide-and-conquer
strategy will split this key into ν subkeys of (for simplicity equally sized) κ bits. For each
subkey ki the attacker will obtain a list of probability for each possible value of the key
Li = {Pr[ki = 0|SCI], . . . ,Pr[ki = 2κ − 1|SCI]}, where SCI stands for the side-channel
information the adversary obtained. Divide-and-conquer strategy is useful as ν × 2κ is
smaller than 2η. Note that if the adversary does not obtain probabilities, but scores it
could either use a Bayesian extension [VGRS12] or use direct results [CPS16].

2.2 Key enumeration algorithms
From the result of an attack, either all the correct subkeys have the highest probability of
the list of the candidate subkeys or the attacker need to test the most likely keys. Some
solution exists to recombine this information in a smart way [BKM+15, DW17, MMOS17,
MOOS15, PSG16, VGRS12]. All these algorithms have been tested in a symmetric key
setting and provide efficient solution.

The algorithms proposed in [BKM+15, MOOS15, PSG16] can be separate in two
phases: a construction phase (that is similar to key rank estimation) and a backtracking
part that enumerates the keys. For symmetric keys setting, the first part (construction) is
negligible in comparison to the second (backtracking).

2.3 Rank estimation algorithms
A rank estimation algorithm is a tool that allows an evaluator to estimate the brute force
an attacker need to perform a successful side-channel attack, i.e. how many keys the
attacker needs to test in the recombination phase before she recovers the actual key. As
we want to evaluate security against a smart adversary we should assume that she can
enumerate the keys from the most probable one to the least probable one (but still in its
computational power limits).

Definition 1 (Rank of the key). The rank of the key k after a side-channel attack is
defined as the number of keys that have a higher probability than k.

rank(k) = #{k∗|Pr[k∗|SCI] ≥ Pr[k|SCI]}.

Vincent Grosso 3

Where # stands for the cardinality of the set.

In the rest of this paper, the probability of a key is equal to the product of the proba-
bilities of its subkeys. Hence, we suppose that the subkeys probabilities are independent,
and so the different attacks.

The main advantage of using a key rank estimation algorithm is that an evaluator does
not need to perform the brute force search to estimate the costs of such a search. In the past
few years, several solutions have been proposed to solve this problem [BLvV15, GGP+15,
MOOS15, VGS13]. Among these solutions only [VGS13] uses the probabilities and thus
can compute the actual rank, if enough time and memory are given to the program. Remark
this time could be (too) long and memory requirement could be (too) large. For that reason,
several rank estimation algorithms have been proposed [BLvV15, GGP+15, MOOS15]. All
these proposals share the same step that introduces error: they map the probabilities to
integers (see [PGS15] for a discussion on the errors introduced by algorithms that calculate
security margins). Using this simplification they can estimate the rank of the key quite
efficiently, with bounded error due to some truncation that appears during the conversion
from real (float) to integer. Hence, these algorithms cannot compute the rank, but an
upper bound (rank_upper_bound) and a lower bound (rank_lower_bound) of the rank.

Definition 2 (Tightness). We define the tightness of an estimation as the logarithm of

the ratio between the upper and lower bound for the rank log2

(
rank_upper_bound
rank_lower_bound

)
.

When we manage to compute the exact rank of the key the tightness is 0. The tightness
of an estimation gives an intuition on the accuracy of security margins.

These rank estimation algorithms are based on samples, they try one attack and
calculate bounds on the rank. To obtain some indication of the security level of the device
several experiments attacks are launched and results could be displayed in a security graph
as proposed in [VGS13].

Some other solutions exist to evaluate the security of a device that can be faster and
adaptable for large keys [DFS15, YEM14]. These solutions are based on metrics. However,
the solutions based on metric could misestimate the actual computational power to recover
a key, as pointed out in [PGS15].

Another recent approach to evaluate the security for large keys has been presented
in [CP17]. The authors propose instead of using the rank of the key to use the expected
value of the key rank. They manage to compute quite efficient bound on the expected value
of the key rank. Unfortunately, this result seems disconnected to the rank/enumeration
problem. In [MMOS16] the authors show the limitations to only use the expected value of
the key rank. Moreover, the gap between the upper and lower bound can not be reduced.
As the gap is between 5 and 10 bits it can be seen as too large for some cases.

In [CP17] a list of pros and cons for some method to evaluate security margins are give.
We list in Table 1 some pros and cons for key ranking algorithms.

The tightness of rank estimation depends on the precision parameters for algorithms
that have such parameter ([BLvV15, GGP+15, MOOS15]). But also from the rank of the
key and the distribution of probabilities. Thus giving formulas to compare time efficiency
of different solutions in function of their tightness is difficult.

2.4 The histogram solution
Since our solution is based on the Glowacz et al. solution [GGP+15], we give some more
highlight on this solution. In the rest of the paper, we refer to this solution as FSE’15.
The different steps of this algorithm can be summarized as follow:

1. from multiplicative relation to additive relation: since the subkeys are independent
we have Pr[k1, k2|SCI] = Pr[k1|SCI]× Pr[k2|SCI]. To use the FSE’15 solution we

4 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

Table 1: Comparison of key rank estimation algorithm

Method Pros Cons
Eurocrypt’13 [VGS13] First solution, can compute

the exact rank (in theory)
Quite slow, quite loose
bounds (in practice)

Pro [BLvV15] Efficient and tight solution
for small keys

Quite slow for large keys
and reasonable tightness

FSE’15 [GGP+15] Efficient and tight solution
for small keys

Quite slow for large keys
and reasonable tightness

Asiacrypt’ 15 [MOOS15] Efficient and tight solution
for small keys

Quite slow for large keys
and reasonable tightness

CT-RSA’17 [DW17] Efficient solution Loose bound
CHES’17 [CP17] Really fast even for large

key
Expected value of the rank,
not rank estimation

need an additive relation. For that reason, we use the logarithm of probabilities.
Hence, we have log(Pr[k1, k2|SCI]) = log(Pr[k1|SCI]) + log(Pr[k2|SCI]).

2. from reals to integers: in the FSE’15 solution, this step is done by casting the results
of the side-channel attacks into histograms. For each subkey a histogram is built,
the histograms should have the same bin size. the bin height corresponds to the
number of candidate subkeys that have a log probability included between the limits
of the bin. From now the log probability is assimilated to the center of the bin. The
distance between the log probability and the center of the bin is half of the bin width.

3. convolution of histograms: the convolution of histograms gives us the distribution of
the combination of the probabilities of different combination of subkeys. In order
to have some meaningful probability at the end the histograms should have bins of
equal size. Remark the height of i-th bin of H3 that is the result of the convolution
of H1 and h2 is H3(i) =

∑
j H1(j) × H2(i − j). This is the number of couples of

subkey candidates that have the sum of the estimated sum of log probabilities that
correspond to the center of the bin i.

4. calculate bound: This is done by summing the bins that represent a higher log
probability than the bin of the key’s log probability (± the error bounds). Hence,
having tight error bounds allow obtaining tighter results.

In listing 1 we give a simplified version of the code of the two last steps.

Listing 1: Matlab implementation of FSE’15 solution.
1f unc t i on [mini , maxi] = rank (hi , b)
2% Inputs :
3%hi : the l i s t o f histogram sco r e f o r each subkey (h i (subkey , :))
4%b : the bin index o f the log p r obab i l i t y o f the ac tua l key
5%Outputs
6%Mini the minimum rank o f the key
7%Maxi the maximum rank o f the key
8[dim ,~]= s i z e (h i) ;
9H=conv (h i (1 , :) , h i (2 , :)) ;
10f o r i =3:dim
11H=conv (H, h i (i , :)) ;
12end

Vincent Grosso 5

13mini=sum(H(b+(dim/2)+1: l ength (H))) ;
14maxi=sum(H(b−dim/2 : l ength (H))) ;
15end

Since the histograms put every log probabilities in the bin center some error could
appear. In [GGP+15] the authors show that the maximum distance in numbers of bin
between a bin of a sum of log probabilities and the bin where the FSE algorithm could
put it is ν2 . That is why the minimum and maximum are shifted by such a value.

Example 1. Let us assume we have two subkeys k1, k2 of 3 bits. With the probabilities
given in Table 2. As our histograms will use the logarithm of the probabilities (to have an
additive relation), we also provide the logarithm values and also the key candidates’ bin.

Table 2: Probabilities of the different subkeys candidates and their logarithm and bin
values.

k1 k2
Candidate Pr log bin Pr log bin

0 0.6643 -0.5901 1 0.0012 -9.7027 3
1 0.2588 -1.9501 1 0.0011 -9.8283 3
2 0.0313 -4.9977 2 0.3588 -1.4787 1
3 0.0412 -4.6012 2 0.0713 -3.8100 1
4 0.0001 -13.2877 4 0.5643 -0.8255 1
5 0.0020 -8.9658 3 0.0012 -9.7027 3
6 0.0013 -9.5873 3 0.00005 -14.2877 4
7 0.0010 -9.9658 3 0.00205 -8.9302 3

We construct the histograms as follows. The bin 1 corresponds to the number of keys
with logarithm probabilities between -16 and -12, the bin 2 corresponds to the number
of keys with logarithm probabilities between -12 and -8, the bin 3 corresponds to the
number of keys with logarithm probabilities between -8 and -4 and the bin 4 corresponds
to the number of key with logarithm probabilities between -4 and 0. The histograms are
displayed in Figure 1.

1 2 3 4
0

1

2

3

4

bin number

#
k
ey
s

h1

1 2 3 4
0

1

2

3

4

bin number

#
k
ey
s

h2

Figure 1: The histograms for the two subkeys.

6 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

h1 is the histogram for the subkey candidates of k1. The sum of the bins gives us 8 that
is the number of subkey candidates. h2 is the histogram for the subkey candidates of k2.

Then by performing the convolution we have the distribution of all possible couple
for the subkeys (k1, k2). In the histogram of Figure 2, the bin 1 should correspond to the

1 2 3 4 5 6 7
0

5

10

15

20

bin number

#
k
ey
s

conv(h1, h2)

Figure 2: The convolution result.

number of couples of candidate keys with logarithm probabilities between -30 and -26,
since we only look at the center of the bin some error could appear here.

The most expensive part of such an algorithm is the part 3, or loop for of line 10 in
listing 1. We need to perform nb_subkeys− 1 convolution, each convolution having a cost
in nlog(n) when FFT is used. Remark this n is the size of the outputted histogram (and
thus on the number of convolutions already performed), that means the cost of convolution
became more and more expensive as the size of the histogram H grows. It comes out that
the cost of the rank estimation of Glowacz et al. grows not linearly with the number of
subkeys. This observation is validated by experiments in Section 4.

During the computation, we need to use large numbers (a bin can contain a number
between 0 and 2η). Hence, to avoid precision error due to large number we need to use
large integer library and/or the Chinese remainder theorem as proposed in Appendix B
of [GGP+15].

Another limitation for large keys is the size of the histogram that will grow linearly in
the number of subkeys. After the convolution i-th the size of the histogram H is of size
(i− 1)× dim, the value stored in that table could go up to 2η. This could be expensive for
large key and high precision. The FSE’15 solution needs to store the last histogram.

Example 2. That means for histograms with 216 bins and for a key of 256 subkeys, we
need to store a table of ' 224 values. These values are integers of at most 2048 bits (if
subkeys are bytes). That means around 4GB.

If the size of the key doubles the memory required double. Remark for the enumeration
all intermediate histograms need to be stored to apply the backtracking solution this could
require some large amount of memory.

3 Scalable rank estimation algorithm
The main idea of our solution is to keep histogram with a constant number of bins. This
is achieved by batching two by two the bins of the convolution’s result histograms (line 20

Vincent Grosso 7

in listing 2).

Listing 2: Matlab implementation of our solution.

1f unc t i on [mini , maxi] = rank (h i)
2% Inputs :
3%hi : the l i s t o f histogram sco r e f o r each subkey (h i (subkey , :))
4%b : the bin index o f the log p r obab i l i t y o f the ac tua l key
5%Outputs
6%Mini the minimum rank o f the key
7%Maxi the maximum rank o f the key
8[dim ,~]= s i z e (h i) ;
9H2=c e l l (l og2 (dim) ,dim/2) ;
10f o r i =2:2 : dim
11H=conv (h i (i −1 , :) , h i (i , :)) ;
12H2{1 , i /2}=[H(2 : 2 : l ength (H)) ,0]+H(1 : 2 : l ength (H)) ;
13end
14dim=dim/2 ;
15j =1;
16whi le dim>1
17j=j +1;
18f o r i =2:2 : dim
19H=conv (H2{ j −1, i −1},H2{ j −1, i }) ;
20H2{ j , i /2}=[H(2 : 2 : l ength (H)) ,0]+H(1 : 2 : l ength (H)) ;
21end
22dim=dim/2 ;
23end
24mini=sum(H2{ j , 1 } (b+e r r o r (dim)+1: l ength (H2{ j , 1 }))) ;
25maxi=sum(H2{ j , 1 } (b+e r r o r (dim) : l ength (H2{ j , 1 }))) ;
26end

Where the error function is a function that gives the approximation error due to
our casting and batching. This function and the values outputted are discussed in
Subsection 3.3.

As for the FSE’15 solution we perform convolution on histograms and obtain the
histogram H, but after this step we batch bins in pairs and obtain the histogram H2.
The i-th bin of H2 is equal to the sum of the 2i-th and the 2i+ 1-th bins of H, H2(i) =
H(2i) +H(2i+ 1). Doing so H2 has the same number of bins as the initial histogram. But
then the bin size of the histogram after the batching is twice as large as the bin size of the
loop input histograms.

For rank estimation, we need to perform convolution between histogram with equally
sized bins. By performing the batching we increase the width of the bins. To solve the
problem we use a recursive approach, we do convolutions of histograms two by two, batch
and start a new level of convolutions. Hence we perform convolution in a tree like structure,
see the right part of Figure 4.

Example 3. In our example 1, the batching step outputs the histogram in figure 3. The
batching step merge bin 2 by 2. That means the first bin in the new histogram corresponds
to the sum of the bins 1 and 2 from the result of the convolution histogram of figure 2.

8 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

1 2 3 4
0

10

20

30

bin number

#
k
ey
s

batching(conv(h1, h2))

Figure 3: The batched result.

3.1 On the time complexity

Our algorithm performs the same number of convolutions as FSE’15. But in our solution,
the size (i.e. the number of bins) of the histogram stays the same, the bin size increase.

h1

h2

convolution convolution convolution

H1

h3

H2

h4

H3

H2

H

H2

H

h4h3

conv.

b
atch

in
g

H2

H

h2h1

conv.

b
atch

in
g

convolution

b
atch

in
g

Figure 4: Representation of the FSE’15 solution (left) and ours (right).

While for the FSE’15 solution the size of Hi histograms grows, size(Hi) = ((i+ 1)×
nb_bin_init)− i, the size of the H2 histograms in our solution stay the same as the initial
histograms, i.e. size(H2) = nb_bin_init. That means that convolution in level 1 of the
tree (right part of figure 4) should require similar computation as the convolution in the
last level. Thus, we expect for our solution to have a time that grows linearly with the
number of subkeys. This is verified by experiments in Subsection 4.1.

Vincent Grosso 9

3.2 On memory complexity
As we can see on the figure 4 our method is a tree exploration. That means we can explore
it in breadth first or in depth first search.

In the case of a breadth first search, the most expensive step we have to store is the
batched histograms after the first step of convolutions, in that case, we need to store ν2
tables of nb_bin_init values. If the size of the key doubles the memory required double.

Example 4. For the same values as example 2, 216 bins and 256 subkeys, we need to
store 223 values. That is around 2 GB.

In the case of depth first search, we need to store at most one batched histogram per
level (log2 ν). If the size of the key doubles the memory required increase by one histogram.

Example 5. For the same values as example 2, we need to store 219 values. That is
around 128 MB.

For simplicity we describe in listing 2 the breadth first search.

3.3 Bounded error
The tight bounds we obtain for our method lead to efficient tight results. The error is
introduced when we cast real numbers into integers as for FSE’15. Our solution also
introduces error when the batching step is performed.

For the rounding error that appears when we goes from real numbers to integers. For
every log probability of a subkey candidate k = i and for histogram of bin width 2ε there
exist a bin bi of center ci such that ci − ε ≤ log(Pr[k = i]) ≤ ci + ε.

If we look at the combined candidate (k1 = i, k2 = j) we know that for the initial
histogram we have:

ci − ε ≤ log(Pr[k1 = i]) ≤ ci + ε

cj − ε ≤ log(Pr[k2 = j]) ≤ cj + ε.

By summing the inequalities we obtain:

ci + cj − 2ε ≤ log(Pr[k1 = i]) + log(Pr[k2 = j]) ≤ ci + cj + 2ε.

The convolution will consider that the couple (k1 = i, k2 = j) has log probability ci+cj .
Hence the distance between the real log probability and the log probability considered by
the convolution is 2ε. If we add ν of such inequalities the distance between the real log
probability and its bin is bounded by νε. That is the bound of the FSE’15 method.

In our case we have also to consider the batching step. Remark when we batch the
bins of width w center ci, ci+1 (resp. ci−1, ci), the new center is ci + ci+1

2 = ci + w

2 (resp.
ci−1 + ci

2 = ci −+w

2). That means we have the inequality:

ci −
w

2 ≤ batch(ci) ≤ ci −
w

2 .

Putting the two errors for each level in our tree we double the error of the histograms
inputs and add an error of half bin width of histogram inputs. For the first level, we will
have:

batch(ci+cj)−3ε ≤ ci+cj−2ε ≤ log(Pr[k1 = i])+log(Pr[k2 = j]) ≤ ci+cj+2ε ≤ batch(ci+cj)+3ε.

By iterating the error propagation we obtain error for our method. Some values of
errors for different numbers of subkeys are displayed in Table 3. Remark the error can

10 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

be calculated by the following formula if the input histograms at the first level have bin
width 2ε:

error = νε+ dlog2(ν)eν2 ε.

Remark that the final histogram has bin width of 2ν+1ε

Table 3: Error evolution for our method, we assume that initial histogram have bin width
of 2ε.

ν bin width final histogram error
1 2ε ε
2 4ε 3ε
4 8ε 8ε
8 16ε 20ε
16 32ε 48ε
32 64ε 112ε
64 128ε 256ε

We do not give error bounds as a number of bins as for FSE as the size of our bins are
large calculate the lower and upper bins from the log probability of the key ± error give a
better result than starting from the bin center of the log probability ± number of margin
bins.

Remark that such approach to calculate the error bound could be applied to the case
of non equally sized histograms. In such a case we can have more bins close to the actual
bin of the key. This may lead to tighter bounds on the rank.

3.4 Non power of 2 cases
If the number of subkeys is not a power of two our first convolution step (line 10 in listing 2)
should be adapted as described in listing 3.

Listing 3: Matlab implementation for non power of 2.
1f unc t i on [mini , maxi] = rank3 (hi , b)
2% Inputs :
3%hi : the matrix o f histogram sco r e f o r each subkey (h i (subkey , :)

)
4[dim , sh i]= s i z e (h i) ;
5tmp=f l o o r (log2 (dim))
6H2=c e l l (c e i l (l og2 (dim)) , dim/2) ;
7f o r i =2:2 :dim−tmp
8H=conv (h i (i −1 , :) , h i (i , :)) ;
9H2{1 , i /2}=[H(2 : 2 : l ength (H)) ,0]+H(1 : 2 : l ength (H)) ;
10end
11f o r i=dim−tmp+1:dim
12H2{1 , i /2}=hi (i , 2 : 2 : s h i)+hi (i , 1 : 2 : s h i) ;
13end

During the first step of convolutions, we perform a reduced number of convolutions
such that at the end of this step the number of histograms is a power of 2. To keep the
histograms with the same bin size we need to perform batching on all histograms, even
the ones that do not go to the first convolution loop.

Vincent Grosso 11

4 Experiments
We compare the efficiency of different approaches of key ranking based on histograms (i.e.
FSE’15 and our method) in terms of time efficiency and precision.

In all our experiment we consider simulations. We target the memory loading of the
key (or subkeys). The memory load target seems to fit the assumption of independence of
subkeys for large keys. Note that such attacks have been used, for example against Mifare
DESFire [OP11].

We assume that the attacker was able to perfectly recovered the leakage function.
For our experiments, we have a set of parameters that we modify that we detailed

hereafter.

• The number of subkeys. The number of subkeys is the principal parameters we want
to compare. In particular, we want to verify the good performance of our method
when the number of subkeys increases.

• The precision. The precision is an important point of comparison for rank estimation
algorithms. In our case, we compare histogram based solution the precision is the
number of bins. Note that the precision and the tightness are different notions. The
precision is a parameter of the solution, while the tightness is obtained from the
output of the algorithm and the tightness depends on several parameters (e.g. rank,
leakage function, precision . . .).

• The leakage function. As we target the memory load of a subkey we can observe
only one output of the leakage function L. The only observation we get is L(k) +N ,
where k is the subkey and N is some noise. If we perform several measurements for
the same subkey we will observe the same deterministic part of the leakage. Hence,
if L(k1) = L(k2), we will obtain the same probability for k1 and k2. Such a property
will impact the tightness result of any key rank algorithm that targets such values.

• The noise. We consider white Gaussian noise with different variance noise. As we
can observe only one deterministic value per subkey, the number of trace and noise
are directly linked, as more measurement will allow dividing the noise.

• The size of the subkeys. For our experiments, we target 8-bit subkeys. The size of
subkeys has an impact mostly on the creation of histogram as we need to enumerate
all subkeys. But this could be done as a side-channel attack is possible on the
subkeys.

All these parameters and the values used are summarized in Table 4.

Table 4: Parameters of our simulation and their principal values

Parameter Values
number of subkeys 16,32,64,128,256,512,1024
precision 28, 212, 216

leakage function Identity, Hamming weight
noise variance 23, 22, 21, 20, 2−1, 2−2, 2−3, 2−4, . . . , 2−8

size of subkeys 8-bit

4.1 Same precision
First, we compare our method with the FSE’15 method for the same number of bins. In a
first time, we just check that our method gives loose bounds. Indeed for the results, we

12 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

get the max rank of our method is higher than the max rank of FSE and the min of our
method is lower than the min of FSE’15. This is a sanity check for our method. Result
are display in Tables 5 and 6.

Table 5: Result for our method versus FSE’15 for 16 subkeys, 212 bins, identity leakage.

σ 8 4 2 1 0.5 0.25

FSE log2(max) 127.231 126.966 119.386 108.297 105 88.2963
log2(min) 127.224 126.956 119.332 108.159 104.778 87.6903

Ours log2(max) 127.234 126.968 119.426 108.341 105.16 88.4205
log2(min) 127.211 126.929 119.222 107.815 104.31 85.9786

σ 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625

FSE log2(max) 69.405 58.2386 38.3047 25.8204 5.2854 0
log2(min) 68.6052 57.6567 37.4963 25.2285 4.58496 0

Ours log2(max) 69.6631 58.7153 38.8743 26.1853 5.39232 0
log2(min) 66.3938 56.4592 35.6711 23.8557 1 0

Table 6: Result for our method versus FSE’15 for 16 subkeys, 212 bins, hamming weight
leakage.

σ 8 4 2 1 0.5 0.25

FSE log2(max) 125.679 124.641 120.576 113.205 95.0947 83.7449
log2(min) 125.652 124.607 120.484 113.016 94.3633 83.2428

Ours log2(max) 125.698 124.658 120.66 113.3 95.5892 83.7449
log2(min) 125.596 124.526 120.308 112.577 92.6648 82.7093

σ 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625

FSE log2(max) 78.1395 86.2688 87.72 92.8492 78.5248 86.0761
log2(min) 0 0 0 0 0 0

Ours log2(max) 78.1395 86.2688 87.72 92.8492 78.5248 86.0761
log2(min) 0 0 0 0 0 0

For the hamming weight leakage (the results are display in Table 6), we can see that
the methods do not provide tight bounds. This comes from the leakage function and the
fact we can observe only one value per subkey. That means if there exist k and k′ such
that the leakage function gives the same output, we cannot differentiate the two subkeys.
Thus the two subkeys will have the same probability. Typically if the 16 subkeys have a
Hamming weight of 4 we have

(8
4
)16 ' 296 keys that we cannot differentiate. In [MOOS15]

they said that in such case the key should be considered as the first one tested. It makes
some senses if we want to asset security, but it seems to reduce highly the security margins
in the example of memory Hamming weight leakage. In order to avoid such problem we
next just use the identity leakage. While the Hamming weight is a good approximation in
general of the leakage behavior more precise model could increase the success of an attack.

Next, we compare in term of efficiency our method versus the FSE method. In this
experiment we look at the tightness and time of our method with 216 bins per histogram

at the beginning, FSE’15 with the same amount of bins and FSE’15 with less bins
(

216

ν

)
such that the final histogram have a similar amount of bins as our method. The choice
of 216 bins per histogram at the beginning is motivated by the fact this gives quite tight
bound in an efficient manner for FSE’15.

Vincent Grosso 13

0 20 40 60 80 100 120 140
0

5

10

subkeys

ex
ec
u
ti
on

ti
m
e
(s
ec
o
n
d
)

FSE’15 (216 bins)

FSE’15 (2
16

ν bins)

Our solution (216 bins)

0 20 40 60 80 100 120 140
0

2

4

6

subkeys

ti
g
h
tn
es
s

FSE’15 (216 bins)

FSE’15 (2
16

ν bins)

Our solution (216 bins)

Figure 5: Execution time (left) and tightness of the bound (right) of Matlab implementa-
tions of the FSE’15 solution and ours for different sizes of keys (16 bits of precision) and
an SNR of 8.

On the graph, we can see that the FSE’15 solution with a constant number of bins
(216) have an execution time that grows faster than linearly, but it is the solution that
offers the tightest bound. However, if we use FSE’15 with the same number of bins for the
final histogram the solution is quite efficient but the tightness explodes for large keys. Our
method seems to have a linear time complexity and a linear increase of the tightness in
the size of the key.

4.2 Similar tightness
We compare our method to the FSE’15 method to obtain similar tightness. We look at
two levels of tightness 1 bit and 0.3 bit. To obtain similar tightness when the size of the
key increase we need to increase the number of bins of the initial histograms. The results
are plotted in Figure 6.

0 20 40 60 80 100 120 140
0

2

4

6

subkeys

ex
ec
u
ti
on

ti
m
e
(s
ec
on

d
)

FSE’15 (1 bit)

FSE’15 (0.3 bit)

Our solution (1 bit)

Our solution (0.3 bit)

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

subkeys

ti
gh

tn
es
s FSE’15 (1 bit)

FSE’15 (0.3 bit)

Our solution (1 bit)

Our solution (0.3 bit)

Figure 6: Execution time (left) and tightness of the bound (right) of Matlab implementa-
tions of the FSE’15 solution and ours for similar tightness.

The first observation we can make is that the tighter we want the rank estimation, the
smallest is the ratio between the time gap between our method and FSE’15. Secondly,
since we need to increase the number of bins of the initial histograms the time complexity

14 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

grows faster than linearly even for our method. However, for a large number of subkeys
our solution more efficient than the FSE’15 solution.

4.3 NTL implementation
Matlab implementation of the solution has some limitations mainly due to the fact that
large integers are stored in doubles. That means that bins cannot be higher than 21024.
Thus for large keys (>1024-bit), the implementation could lead to an incorrect result. To
solve this problem Glowacz et al. [GGP+15] suggest to use Chinese remainder theorem.
Another issue of using doubles instead of integers is that above 253 not all integers are
represented and thus some error could appear. In the same time, the CRT requires to
compute several times the convolutions and thus impact the efficiency of the solutions.

To override these issues we implement our solution using a big integer library: the
NTL library.1 We look at histograms starting with 212 and perform the convolution of :
16, 32, 64, 128, 256, 512 and 1024 histograms. For the classical FSE’15 method for the
128 convolutions and an initial number of bins 212 we get an error message saying that
histograms where too large (the number of bins) to perform the convolution. The results
are reported in the figure 7.

0 200 400 600 800 1,000
0

10

20

30

40

subkeys

ex
ec
u
ti
o
n
ti
m
e
(s
ec
on

d
)

FSE’15
Our solution

0 200 400 600 800 1,000
0

50

100

150

200

subkeys

ti
gh

tn
es
s

FSE’15
Our solution

Figure 7: Execution time (left) and tightness of the bound (right) of NTL convolutions for
histogram using FSE’15 method and ours, starting with histograms of 212 bins and SNR 8.

We can see that for the NTL implementation our method is more efficient even for
small key size. The efficiency gap is probably due to the fact that the NTL implements
several techniques for the convolution by using large coefficients and a small number of bins
the NTL select to use the Schoenhage and Strassen [SS71] rather than the CRT technique
because it is more efficient in that case. Another remark is that for the FSE method the
NTL seems less efficient than the Matlab implementation here also this is probably due to
the underlying method to perform convolutions.

Finally, we can see that our method offer an efficient manner to calculate rank even for
the case when the key is divided into 1024 subkeys.

4.4 Comparison with CHES 2017
At CHES 2017 Choudary and Popescu present an “impressively fast, scalable and tight
security evaluation tools” [CP17]. Note that their tool does not calculate the rank of the
key but the expected value of the rank. As pointed out in [MMOS16] it is not clear how

1. http://www.shoup.net/ntl/

. http://www.shoup.net/ntl/

Vincent Grosso 15

to evaluate the power computation required to recover the key from the expected value of
the rank.

However, we want to compare our method, the FSE’15 method and the CHES 2017
method in terms of efficiency/tightness. As the CHES 2017 do not offer parameters to
tighten the bounds we play with the number of bins for FSE and our method to have
similar tightness. The results are plotted in Figure 8.

0 20 40 60 80 100 120 140
0

2

4

6

8

·10−2

subkeys

ex
ec
u
ti
on

ti
m
e
(s
ec
o
n
d
)

FSE’15
Our solution
CHES’17

0 20 40 60 80 100 120 140
0

2

4

6

8

subkeys

ti
g
h
tn
es
s

FSE’15
Our solution
CHES’17

Figure 8: Execution time (left) and tightness of the bound (right) of Matlab implementa-
tions of the FSE’15 solution and ours for similar tightness as CHES’17.

We can see that indeed the CHES’17 solution is quite efficient. In the same time, for
such a tightness all solutions run in less than 100ms for 128 subkeys. For such bounds, it
seems that the rank computation’s time is not the bottleneck of an evaluation.

In CHES’17 Choudary et al. leave some figures as references for large key evaluation.
For that, we use our C implementation describe in Subsection 4.3. To obtain tighter
bounds. We choose to merge list of the 1024 lists of 8-bit probability. Thus we have 512
lists of 16-bit key candidates. We then use our technique with 213 bins. In such setting,
we manage to obtain bound of tightness 30 bits in 48 seconds for average rank 25500. Our
method is less efficient/precise but we calculate different things.

5 Key enumeration

We can apply similar idea as the backtracking used in [PSG16]. The idea of this paper is
to first perform a construction step that is the three first steps of rank estimation. Then a
backtracking of the solution is performed to recover the key candidates of each bin. Our
technique speed up the construction phase of a solution like [PSG16]. In general, this step
is negligible in such solution. So our solution seems to do not brings any major speed up
of enumeration algorithms.

In Algorithm 1 we describe our solution the adaptation of “decompose bin" of [PSG16].
We need to adapt the algorithm to the shape of our tree versus the tree they used (see
Figure 4). The modifications are the different conditions the if and the elseif (lines 1 and
4). The second adaptation came from the fact we have batching to take into account. The
modifications for this part are in the else condition (lines 6).

16 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

Algorithm 1 Decompose bin
Require: H: the structure containing all the histograms output by the construction step

ch (current hist): the index of the current histogram of H we target
xbin: The bin index of Hch we want to decompose.

Ensure: kf : A data structure containing the candidate keys.
1: if ch = 0 then
2: kf ← get(H0, xbin)
3: process(kf)
4: else if ch < ν then
5: kf ← get(Hch, xbin)
6: else
7: x← sizeof(right_son_of(Hch))
8: while (x ≥ 0)and (x+ sizeof(left_son_of(Hch)) ≥ 2× xbin) do
9: if right_son_of(Hch)(x) > 0)and

(left_son_of(Hch)(2× xbin − x) > 0or
left_son_of(Hch)(2× xbin − x+ 1) >)0 then

10: Decomposebin(right_son_of(Hch), x,H, kf)
11: if left_son_of(Hch)(2× xbin − x) > 0 then
12: Decomposebin(left_son_of(Hch), 2× xbin − x,H, kf)
13: end if
14: if left_son_of(Hch)(2× xbin − x+ 1) > 0 then
15: Decomposebin(left_son_of(Hch), 2× xbin − x+ 1, H, kf)
16: end if
17: end if
18: x← x− 1
19: end while
20: end if
21: return

Our enumeration algorithm has an advantage over the previous Poussier et al. when
memory needed to store histograms is too large.

6 Conclusion

This paper presents a simple trick to reduce the cost of rank estimation for a large number
of subkeys based on the rank estimation of [GGP+15]. It can be applied to evaluate
security against side-channel of cryptographic implementation that uses large keys. Our
solution has the advantage to have a linear complexity in the number of subkeys. Another
advantage of keeping the number of bin “small” with large coefficient is that the method
for convolution used could vary and for example some techniques as the Schoenhage and
Strassen [SS71] could be more efficient than the CRT method for such a case. Our method
allows to estimate efficiently rank of the key thanks to the tight bounds we manage to
evaluate. Finally, our algorithm could be used as a construction phase for an enumeration
algorithm. This algorithm could be useful when the number of subkeys if large and thus
classical enumeration algorithm required a large amount of memory. Finally, our error
bound estimation could be applied to other cases, in particular we can look at not equally
sized histograms.

Vincent Grosso 17

References
[BKM+15] Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and

Marc Witteman. Fast and memory-efficient key recovery in side-channel attacks.
In Orr Dunkelman and Liam Keliher, editors, Selected Areas in Cryptography -
SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August 12-
14, 2015, Revised Selected Papers, volume 9566 of Lecture Notes in Computer
Science, pages 310–327. Springer, 2015.

[BLvV15] Daniel J. Bernstein, Tanja Lange, and Christine van Vredendaal. Tighter,
faster, simpler side-channel security evaluations beyond computing power.
IACR Cryptology ePrint Archive, 2015:221, 2015.

[CP17] Marios O. Choudary and P. G. Popescu. Back to massey: Impressively fast,
scalable and tight security evaluation tools. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 367–386.
Springer, 2017.

[CPS16] Marios O. Choudary, Romain Poussier, and François-Xavier Standaert. Score-
based vs. probability-based enumeration - A cautionary note. In Orr Dunkelman
and Somitra Kumar Sanadhya, editors, Progress in Cryptology - INDOCRYPT
2016 - 17th International Conference on Cryptology in India, Kolkata, India,
December 11-14, 2016, Proceedings, volume 10095 of Lecture Notes in Computer
Science, pages 137–152, 2016.

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
masking security proofs concrete - or how to evaluate the security of any
leaking device. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 401–429. Springer, 2015.

[DW17] Liron David and Avishai Wool. A bounded-space near-optimal key enumeration
algorithm for multi-subkey side-channel attacks. In Helena Handschuh, editor,
Topics in Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA
Conference 2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings,
volume 10159 of Lecture Notes in Computer Science, pages 311–327. Springer,
2017.

[GGP+15] Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schüth, and
François-Xavier Standaert. Simpler and more efficient rank estimation for
side-channel security assessment. In Gregor Leander, editor, Fast Software
Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March
8-11, 2015, Revised Selected Papers, volume 9054 of Lecture Notes in Computer
Science, pages 117–129. Springer, 2015.

[LYS+15] Junrong Liu, Yu Yu, François-Xavier Standaert, Zheng Guo, Dawu Gu, Wei
Sun, Yijie Ge, and Xinjun Xie. Small tweaks do not help: Differential power
analysis of MILENAGE implementations in 3G/4G USIM cards. In Günther
Pernul, Peter Y. A. Ryan, and Edgar R. Weippl, editors, Computer Security -
ESORICS 2015 - 20th European Symposium on Research in Computer Security,
Vienna, Austria, September 21-25, 2015, Proceedings, Part I, volume 9326 of
Lecture Notes in Computer Science, pages 468–480. Springer, 2015.

18 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

[MMOS16] Daniel P. Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam. Char-
acterisation and estimation of the key rank distribution in the context of
side channel evaluations. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture
Notes in Computer Science, pages 548–572, 2016.

[MMOS17] Daniel P. Martin, Ashley Montanaro, Elisabeth Oswald, and Dan J. Shepherd.
Quantum key search with side channel advice. IACR Cryptology ePrint Archive,
2017:171, 2017.

[MOOS15] Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn
Stam. Counting keys in parallel after a side channel attack. In Tetsu Iwata
and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015
- 21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer Science,
pages 313–337. Springer, 2015.

[OP11] David Oswald and Christof Paar. Breaking mifare DESFire MF3ICD40: power
analysis and templates in the real world. In Bart Preneel and Tsuyoshi
Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, volume 6917 of Lecture Notes in Computer Science, pages 207–222.
Springer, 2011.

[PGS15] Romain Poussier, Vincent Grosso, and François-Xavier Standaert. Comparing
approaches to rank estimation for side-channel security evaluations. In Naofumi
Homma and Marcel Medwed, editors, Smart Card Research and Advanced Ap-
plications - 14th International Conference, CARDIS 2015, Bochum, Germany,
November 4-6, 2015. Revised Selected Papers, volume 9514 of Lecture Notes in
Computer Science, pages 125–142. Springer, 2015.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple key
enumeration (and rank estimation) using histograms: An integrated approach.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 61–81. Springer, 2016.

[SS71] Arnold Schönhage and Volker Strassen. Schnelle multiplikation großer zahlen.
Computing, 7(3-4):281–292, 1971.

[VGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its application
to side-channel attacks. In Lars R. Knudsen and Huapeng Wu, editors, Selected
Areas in Cryptography, 19th International Conference, SAC 2012, Windsor,
ON, Canada, August 15-16, 2012, Revised Selected Papers, volume 7707 of
Lecture Notes in Computer Science, pages 390–406. Springer, 2012.

[VGS13] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Security evaluations beyond computing power. In Thomas Johansson and
Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of

Vincent Grosso 19

Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 126–141. Springer,
2013.

[YEM14] Xin Ye, Thomas Eisenbarth, and William Martin. Bounded, yet sufficient? how
to determine whether limited side channel information enables key recovery.
In Marc Joye and Amir Moradi, editors, Smart Card Research and Advanced
Applications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in
Computer Science, pages 215–232. Springer, 2014.

	Introduction
	Background
	Side-channel attacks
	Key enumeration algorithms
	Rank estimation algorithms
	The histogram solution

	Scalable rank estimation algorithm
	On the time complexity
	On memory complexity
	Bounded error
	Non power of 2 cases

	Experiments
	Same precision
	Similar tightness
	NTL implementation
	Comparison with CHES 2017

	Key enumeration
	Conclusion

