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Abstract. In the last couple of years, a new wave of results appeared,
proposing and exploiting new properties of round-reduced AES. In this
paper we survey and combine some of these results (namely, the multiple-
of-n property and the mixture differential cryptanalysis) in a systematic
way in order to answer more general questions regarding the probability
distribution of encrypted diagonal sets. This allows to analyze this special
set of inputs, and report on new properties regarding the probability
distribution of the number of different pairs of corresponding ciphertexts
are equal in certain anti-diagonal(s) after 5 rounds.
An immediate corollary of the multiple-of-8 property is that the vari-
ance of such a distribution can be shown to be higher than for a random
permutation. Surprisingly, also the mean of the distribution is signifi-
cantly different from random, something which cannot be explained by
the multiple-of-8 property. We propose a theoretical explanation of this,
by assuming an APN-like assumption on the S-Box which closely resem-
bles the AES-Sbox. By combining the multiple-of-8 property, the mixture
differential approach, and the results just mentioned about the mean and
the variance, we are finally able to formulate the probability distribution
of the diagonal set after 5-round AES as a sum of independent binomial
distributions.
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1 Introduction

AES (Advanced Encryption Standard) [16] is probably the most used and stud-
ied block cipher. Since the development of cryptanalysis of AES and AES-like
constructions in the late 1990s, the set of input which differ only in one diagonal
has special importance. Indeed, it appears in several attacks and distinguishers,
including various (truncated) differential [24, 23], integral [14], and impossible
differential attacks [6], among others. In particular, given a diagonal set of plain-
texts and the corresponding ciphertexts after 4 rounds, it is well known that the
XOR-sum of the ciphertexts is equal to zero [14], or that each pair of ciphertexts



Table 1. Expected properties of a diagonal set after 5-round encryption. Given a set of
232 chosen plaintexts all equal in three diagonals (that is, a diagonal set), we consider
the distribution of the number of different pairs of ciphertexts that are equal in one
anti-diagonal (equivalently, that lie in a particular subspace IDI for I ⊆ {0, 1, 2, 3}
fixed with |I| = 3). Expected values for mean and variance of these distributions are
given in this table for 5-round AES and for a random permutation. Practical results
on AES are close and are discussed in Sect. 7.2.

Random Permutation 5-round AES

Mean? (Theorem 4) 2 147 483 647.5 ≈ 231 2 147 484 685.6 ≈ 231 + 210

Variance (Theorem 4) 2 147 483 647 ≈ 231 76 842 293 834.905 ≈ 236.161

Multiple-of-8 [21] 3

·? ≡ assuming an “APN-like” S-Box (for the 5-round AES case)

cannot be equal in any of the four anti-diagonals, as shown by Biham and Keller
in [7].

While a lot is known about the encryption of a diagonal set of plaintexts –
that is, a set of plaintexts with one (or more) active diagonal(s) – for up to 4-
round AES, an analysis for 5 or more rounds AES is still missing. At Eurocrypt
2017, a new property which is independent of the secret key has been found
for 5-round AES [21]. By appropriate choices of a number of input pairs, it
is possible to make sure that the number of times that the difference of the
resulting output pairs lie in a particular subspace ID is always a multiple of 8.
Such a distinguisher has then been exploited in, e.g., [4, 19] for setting up new
competitive distinguishers and key-recovery attacks on round-reduced AES.

At the same time, some open questions arise from the result provided in [21]:
does this property influence the average number of output pairs that lie in such a
particular subspace (i.e., the mean)? Are other parameters (including the vari-
ance and the skewness) affected by the multiple-of-8 property?

In this paper, given a diagonal set of plaintexts, we consider the probability
distribution of the corresponding number of pairs of ciphertexts that are equal
in one fixed anti-diagonal after 5-round AES (without the final MixColumns
operation) – equivalently, that belong to the same coset of a particular subspace
ID – denoted in the following as the “(average) number of collisions”.

1.1 Contributions

As the main contribution, we perform for the first time a differential analysis of
such distribution after 5-round AES, and find significant deviations from ran-
dom, supported by practical implementations and verification. For a theoretical
explanation we have to resort to an APN-like assumption on the S-Box, which
closely resembles the AES-Sbox. A numerical summary is given in Table 1. All
the results presented in this paper are independent of the secret-key.

Mean of 5-round AES. Firstly, by an appropriate choice of 232 plaintexts in
a diagonal space D, we prove for the first time that the average number of times
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that the resulting output pairs are equal in one fixed anti-diagonal (equivalently,
the average number of times that the difference of the resulting output pairs
lie in a particular subspace ID) is (a little) bigger for 5-round AES than for a
random permutation, independently of the secret key. A complete proof of this
result – under an “APN-like” assumption on the S-Box which closely resembles
the AES S-Box – can be found in Sect. 6.

Variance of 5-round AES. Secondly, we theoretically compute the variance
of the probability distribution just defined, and we show that it is higher (by a
factor of approximately 36) for 5-round AES than for a random permutation. As
we are going to show, this result is mainly due to the “multiple-of-8” result [21]
proposed at Eurocrypt 2017. For this reason, with respect to the mean value,
the variance is independent of the details of the S-Box.

Practical Verification & Influence of the S-Box Details on the Mean.
We practically verified the mean on small-scale 5-round AES (namely, AES de-
fined over F4×4

24 as proposed in [13]), and the variance both for small-scale and
real 5-round AES. As discussed in Sect. 7, practical results are close to the theo-
retical ones in both cases. Before going on, we mention that the theoretical and
the practical results regarding the mean (almost) match if the the S-Box satis-
fies an “APN-like” assumption on the S-Box which closely resembles the AES
S-Box, namely, if the solutions of the equality S-Box(·⊕∆I)⊕S-Box(·) = ∆O are
uniformly distributed for each non-zero input/output differences ∆I , ∆O 6= 0. In
the case in which this assumption – also used in other related works as [3, 5] –
is not satisfied, then a gap between the theoretical and the practical results can
occur, as showed and discussed in details in App. C.

Probability Distribution of 5-round AES. By combining the multiple-of-8
property presented in [21], the mixture differential cryptanalysis [19, 20] and the
results just mentioned about the mean and the variance, in Sect. 3 we show
the following: given a diagonal space of 232 plaintexts with one active diago-
nal, the probability distribution of the number of different pairs of ciphertexts
which are equal in one fixed anti-diagonal after 5-round AES (without the final
MixColumns operation) with respect to (1st) all possible secret keys and (2nd)
all possible initial diagonal spaces is well described by a sum of independent
binomial distributions B(n, p), that is

23 ×B(n3, p3) + 210 ×B(n10, p10) + 217 ×B(n17, p17)

where the values of n3, n10, n17 and p3, p10, p17 are provided in the following.

1.2 Follow-Up Works: Truncated Differentials for 5-/6-round AES

Before going on, we recall the other results concerning truncated differentials for
5- or 6-round AES present in the literature.

In [3], Bao, Guo and List presented “extended expectation cryptanalysis”
(or “extended truncated differential”) on round-reduced AES. By making use
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of expectation-based distinguishers, they are able to show how to extend the
well-known 3-round integral distinguisher to truncated differential secret-key
distinguishers over 4, 5 and even 6 rounds. The technique exploited to derive
such a result is based on results by Patarin [27], who observed that the expected
(average) number of collisions differs slightly for a sum of permutations from
the ideal. At the same time, authors showed that their results (namely, the
expectation distinguishers over 4-, 5- and 6-round AES proposed in the main
part of [3]) can be derived exploiting the same technique/strategy that we are
going to propose in this paper in Sect. 6, as showed in details in [3, App. C].

Later on, in [5] Bardeh and Rønjom developed another technique in order
to set an equivalent truncated differential distinguishers for up to 6-round AES.
Such technique – called the “exchange equivalence attack” – resembles the yoyo
technique [28] and the mixture differential cryptanalaysis [19], and it allows to
give a precise estimation of the average number of pairs of ciphertexts that are
equal in fixed anti-diagonal(s), given a particular set of chosen plaintexts. The
corresponding secret-key distinguisher on 6-round AES has complexity of about
288.2 computations and chosen texts.

Remark. Before going on, we remark that all these results are valid only under
the “APN” assumption of the S-Box previously mentioned. Namely, both our
and the theoretical results proposed in [3, 5] regarding the average number of
collisions after 5 or more rounds of AES hold only in the case in which the
solutions of the equality S-Box(·⊕∆I)⊕S-Box(·) = ∆O are uniformly distributed
for each non-zero input/output differences ∆I , ∆O 6= 0, an assumption that is
(almost) satisfied by the AES S-Box. More details about this are provided in the
following.

2 Preliminary

2.1 Advanced Encryption Standard (AES)

AES [16] is a Substitution-Permutation network based on the “Wide Trail De-
sign” strategy [17], that supports key size of 128, 192 and 256 bits. The 128-bit
plaintext initializes the internal state as a 4× 4 matrix of bytes as values in the
finite field F28 . Depending on the version of AES, Nr rounds are applied to the
state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256.
An AES round applies four operations to the state matrix:

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (provides non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row to the left;
– MixColumns (MC) - multiplication of each column by a constant 4 × 4

invertible matrix (MC and SR provide diffusion in the cipher);
– AddRoundKey (ARK) - XORing the state with a 128-bit subkey k.

One round of AES can be described as R(x) = k ⊕MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted.
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Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an interme-
diate state or a key. Then, xi,j with i, j ∈ {0, . . . , 3} denotes the byte in the row
i and in the column j. We denote by R one round of AES (and Rf if the Mix-
Columns operation is omitted), while we denote r rounds of AES by Rr (where
we use the notation Rrf in the case in which the last MixColumns operation is
omitted). We also define the diagonal and the anti-diagonal of a text as follows.
The i-th diagonal of a 4× 4 matrix A is defined as the elements that lie on row
r and column c such that r− c ≡4 i. The i-th anti-diagonal of a 4× 4 matrix A
is defined as the elements that lie on row r and column c such that r + c ≡4 i.

2.2 Properties of an S-Box

Given a bijective S-Box function on F2n , let ∆I , ∆O ∈ F2n . Let N∆I ,∆O denotes
the number of solutions of the equation

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O (1)

for each ∆I 6= 0 and ∆O 6= 0.Obviously, (i) x is a solution if and only if x⊕∆I

is a solution, and (ii) if ∆O = 0, then any x ∈ F2n is a solution if and only if
∆I = 0 (the S-Box is bijective).

Let’s analyze the probability distribution related to N∆I ,∆O .

Mean Value. Independently of the details of the S-Box, the mean value (or
the average value) of N∆I ,∆O is equal to E[N∆I ,∆O ] = 2n

2n−1 . Indeed, observe that
for each x and for each ∆I 6= 0 there exists ∆O 6= 0 (since S-Box is bijective)

that satisfies Eq. (1). Thus, the average number of solutions is 2n·(2n−1)
(2n−1)2 = 2n

(2n−1)
independently of the details of the (bijective) S-Box.

Variance. The variance Var(N∆I ,∆O ) depends on the details of the S-Box.
For the AES S-Box case, for each ∆I 6= 0 there are 128 values of ∆O 6= 0 for
which Eq. (1) has no solution, 126 values of ∆O 6= 0 for which Eq. (1) has 2
solutions (x̂ is a solution if and only if x̂⊕∆I is a solution) and finally 1 value
of ∆O 6= 0 for which Eq. (1) has 4 solutions. The variance for the AES S-Box is

so equal to VarAES(N∆I ,∆O ) = 22 · 126255 + 42 · 1
255 −

(
256
255

)2
= 67 064

65 025 .

Maximum Differential Probability. The Maximum Differential Proba-
bility DPmax of an S-Box is defined as

DPmax = 2−n · max
∆I 6=0,∆O

N∆I ,∆O . (2)

Since max∆I 6=0,∆O N∆I ,∆O ≥ 2, DPmax is always bigger than or equal to 2−n+1.
Permutations with DPmax = 2−n+1 are called Almost Perfect Nonlinear (APN).

“Homogeneous” S-Box. Finally, given ∆I 6= 0 (respectively, ∆O 6= 0),
consider the probability distribution of N∆I ,∆O with respect to ∆O 6= 0 (respec-
tively, ∆I 6= 0): we say that the S-Box is (differential) “homogeneous” if such
distribution is independent of ∆I (respectively, ∆O). Some examples include:
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– the AES S-Box, which is differential “homogeneous”, since for each ∆I 6= 0
(fixed), Pr(N∆I ,∆O = 2) = 126

255 and Pr(N∆I ,∆O = 4) = 1
255 ;

– the PRINCE S-Box, which is not differential “homogeneous”, since e.g. the
probability Pr(N∆I ,∆O = 4) depends on the value of ∆I 6= 0.1

3 Probability Distribution for 5-round AES

In this section, we first recall some results already published in the literature
about round-reduced AES. Then, given a diagonal space of 232 plaintexts with
one active diagonal, we present the probability distribution of the number of
different pairs of ciphertexts which are equal in one fixed anti-diagonal after
5-round AES (without the final MixColumns operation).

3.1 Truncated Differentials for 2-round AES

Here we recall the truncated differential for 2-round AES using the subspace
trail notation introduced in [22]– see also App. A for more details. In the fol-
lowing, we only work with vectors and vector spaces over F4×4

2n , and we denote
by {e0,0, . . . , e3,3} the unit vectors of F4×4

2n (e.g., ei,j has a single 1 in row i and
column j).

Definition 1. For each i ∈ {0, 1, 2, 3}:

– The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.
– The diagonal spaces Di are defined as Di = SR−1(Ci). Similarly, the inverse-

diagonal spaces IDi are defined as IDi = SR(Ci).
– The i-th mixed spaces Mi are defined as Mi = MC(IDi).

Definition 2. For each I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI be defined as

CI =
⊕
i∈I
Ci , DI =

⊕
i∈I
Di , IDI =

⊕
i∈I
IDi , MI =

⊕
i∈I
Mi .

Definition 3. Let t ∈ F4×4
2n be a text in a coset of a space X ⊆ F4×4

2n such
that X = 〈x0, x1, . . . , xd−1〉 where dim(X ) = d, namely t ∈ X ⊕ γ. Given γ,
(t0, t1, . . . , td−1) ∈ Fd2n are the generating variables of t if the following holds:

t ≡ (t0, t1, . . . , td−1) if and only if t = γ ⊕
d−1⊕
j=0

tj · xj .

As shown in detail in [22], for any coset DI ⊕ α there exists β ∈ F4×4
28 such

that R(DI ⊕ α) = CI ⊕ β. In a similar way, for any coset CI ⊕ β there exists
γ ∈ F4×4

28 such that R(CI ⊕ β) =MI ⊕ γ.

1 In more details, Pr(N∆I ,∆O = 4 |∆I = 0xF ) = 0 (i.e., N0xF,∆O 6= 4 for all ∆O)
while Pr(N∆I ,∆O = 4 |∆I = 0xA) = 2

15
(two values of ∆O satisfy N0xA,∆O = 4).

We refer to App. C for more details.

6



Theorem 1 ([22]). For each I ⊆ {0, 1, 2, 3} and for each α ∈ F4×4
28 , there exists

β ∈ F4×4
28 such that R2(DI ⊕ α) =MI ⊕ β. Equivalently:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1 . (3)

3.2 Multiple-of-8 Property and Mixture Differential Cryptanalysis

As already recalled in the introduction, the first known property independent of
the secret-key for 5-round AES – called “multiple-of-8” property [21] – has been
presented at Eurocrypt 2017.

Theorem 2 ([21]). Let {pi}i∈{0,1,...,232·d−1} be 232·d plaintexts with 1 ≤ d ≤ 3
active diagonals, or equivalently in the same coset of a diagonal subspace DI for
a certain I ⊆ {0, 1, 2, 3} with |I| = d. Consider the corresponding ciphertexts
after 5 rounds (without the final MixColumns operation), that is, (pi, ci) for
i ∈ {0, . . . , 232·|I| − 1} where ci = R5

f (pi). The number of different pairs2 of

ciphertexts (ci, cj) that are equal in 1 ≤ a ≤ 3 anti-diagonals (i.e., that belong to
the same coset of a subspace IDJ for a certain J ⊆ {0, 1, 2, 3} with |J | = 4− a)
is always a multiple of 8, independently of the secret key, of the details of the
S-Box and of the MixColumns matrix.

We refer to [21, 19, 12] for details. Such a result is strictly related to the mixture
differential cryptanalysis [19] proposed at FSE/ToSC’19.

Theorem 3 ([19]). Let t1, t2 be two texts in Ci⊕γ for a certain i ∈ {0, 1, 2, 3},
namely two plaintexts that differ in the i-th column only. Let t1 ≡ (x10, x

1
1, x

1
2, x

1
3)

and t2 ≡ (x20, x
2
1, x

2
2, x

2
3) be their generating variables. Let s1, s2 ∈ Ci⊕γ be defined

as following:

– if x1i 6= x2i for a certain i ∈ {0, 1, 2, 3}: the i-th generating variable s1i of s1

is either x1i or x2i , and the i-th generating variable of s2 is {x1i , x2i } \ s1i ;
– if x1i = x2i for a certain i ∈ {0, 1, 2, 3}: the i-th generating variable s1i of s1

is equal to the i-th generating variable of s2 (no condition on the value).

The following holds:

1. R2(t1)⊕R2(t2) = R2(s1)⊕R2(s2);
2. for each J ⊆ {0, 1, 2, 3}:

R4(t1)⊕R4(t2) ∈MJ if and only if R4(s1)⊕R4(s2) ∈MJ .

3.3 Main Result: Probability Distribution for 5-round AES

Given a set of 232·d plaintexts with 1 ≤ d ≤ 3 active diagonal(s), consider the
probability distribution of the number of pairs of ciphertexts which are equal in
1 ≤ a ≤ 3 fixed anti-diagonal(s) (without the final MixColumns operation):

2 Two pairs (s, t) and (t, s) are considered to be equivalent (i.e., they count per 1).
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– what can we say about the mean, the variance and the skewness of this
distribution?

– does the multiple-of-8 property influence the average number of output pairs
that lie in a particular subspace (i.e., the mean)? Are other parameters (as
the variance and the skewness) affected by the multiple-of-8 property?

Here we answer these questions.

Theorem 4. Given an AES-like cipher that works with texts in F4×4
28 , assume

that (1st) the MixColumns matrix is an MDS matrix and that (2nd) the solutions
of the equation S-Box(x ⊕ ∆I) ⊕ S-Box(x) = ∆O are uniformly distributed for
each non-zero input/output difference ∆I 6= 0 and ∆O 6= 0.

Given 232 plaintexts {pi}i∈{0,1,...,232−1} with one active diagonal (i.e., in a
coset of a diagonal subspace Di for i ∈ {0, 1, 2, 3}), consider the number of
different pairs of ciphertexts (ch, cj) for h 6= j that belong into the same coset
of IDJ for any fixed J ⊆ {0, 1, 2, 3} with |J | = 3. The corresponding probability
distribution – denoted in the following by D5-AES – with respect to

– all possible initial coset of the diagonal space Di, and
– all possible secret keys

is given by

D5-AES = 23 ×B(n3, p3) + 210 ×B(n10, p10) + 217 ×B(n17, p17), (4)

where Bi ∼ B(ni, pi) for i ∈ {3, 10, 17} are binomial distributions, and where ni
and pi for i ∈ {3, 10, 17} are equal to

n3 = 228 · (28 − 1)4 , p3 = 2−32 + 2−53.983 ;

n10 = 223 · (28 − 1)3 , p10 = 2−32 − 2−45.989 ;

n17 = 3 · 215 · (28 − 1)2 , p17 = 2−32 + 2−37.986 .

Such distribution has mean value µ = 2 147 484 685.6, and standard deviation
σ = 277 204.426.

In order to prove Theorem 4, we first derive the values ni for i = 3, 10, 17 and
prove the result given in Eq. (4). In the next sections, we formally compute the
probabilities pi for i ∈ {3, 10, 17}, the value of the mean and the variance.

An immediate corollary of the previous result is the following.

Corollary 1. Given an AES-like cipher that works with texts in F4×4
28 , assume

that (1st) the MixColumns matrix is an MDS matrix and that (2nd) the solutions
of the equation S-Box(x ⊕ ∆I) ⊕ S-Box(x) = ∆O are uniformly distributed for
each non-zero input/output difference ∆I 6= 0 and ∆O 6= 0.

Given 232 plaintexts {pi}i∈{0,1,...,232−1} with one active diagonal (i.e., in a
coset of a diagonal subspace Di for i ∈ {0, 1, 2, 3}), the probability that n ∈ N
different pairs of ciphertexts (ch, cj) for h 6= j are equal in one fixed anti-diagonal
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(equivalently, that belong to the same coset of IDJ for J ⊆ {0, 1, 2, 3} fixed with
|J | = 3) is given by:

Prob(n) =

{
0 if n mod 8 6= 0∑

(x3,x10,x17)∈Xn

(∏
i∈{3,10,17}

(
ni
xi

)
· (pi)xi · (1− pi)ni−xi

)
otherwise

,

(5)

where

Xn =
{

(x3, x10, x17) ∈ N×N×N
∣∣ 0 ≤ xi ≤ ni and 23·x3+210·x10+217·x17 = n

}
and where ni and pi for i ∈ {3, 10, 17} are as in Theorem 4.

Note that Prob
(
n > (23 · n3 + 210 · n10 + 217 · n17)

)
= 0, since Xn = ∅ for n >

(23 · n3 + 210 · n10 + 217 · n17).

4 Initial Considerations

About the S-Box: “Uniform Distribution of the Solutions of S-Box(·⊕
∆I) ⊕ S-Box(·) = ∆O”. Before going further, we discuss the assumptions of
Theorem 4, focusing on the one related to the properties/details of the S-Box.
The fact that “the solutions of Eq. (1) are uniformly distributed for each ∆I 6= 0
and ∆O 6= 0” basically corresponds to an S-Box that satisfies the following
properties:

1. it is “homogeneous” (defined in Sect. 2.2);
2. its variance Var(N∆I ,∆O ) is as “lower” as possible.3

This is close to being true if the S-Box is APN, or if the S-Box is “close” to be
APN. Although much is known for (bijective) APN permutations in odd dimen-
sion, it is known that there is no APN permutation of dimension 4 [25], there
is at least one APN permutation, up to equivalence, of dimension 6 (that is,
the Dillon’s permutation), while the question of finding an APN bijective (n, n)-
function for even n ≥ 8 is still open. As a result, in the case of dimensions equal
to a power of 2 (e.g., F24 or F28), the only (known) S-Box that (approximately)
matches the assumptions of the Theorem in dimensions 4 or 8 is the one gener-
ated by the multiplicative-inverse permutation4, as for example the AES S-Box,
which is not APN but differentially 4-uniform [26] (e.g., note that the variance
of the AES S-Box is 67 064/65 025 vs 64 004/65 025 of an APN S-Box). As we are
going to show, our practical results on small-scale AES (for which the S-Box has
the same property as the full-size AES one) are very close to the one predicted
by the previous Theorem.

3 Note that even if the variance Var(N∆I ,∆O ) is related to DPmax, S-Boxes with equal
DPmax can have very different variance. Moreover, the variance of an S-Box S1 can be
bigger than the corresponding variance of an S-Box S2 even if DPmax of S1 is lower
than DPmax of S2 (see Table 3 in App. C for concrete examples).

4 Variance, homogeneous differential property and DPmax of an S-Box S remain un-
changed if affine transformations are applied in the domain or co-domain of S.
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We remark that even if the assumptions on the S-Box of Theorem 4 are
restrictive, they match criteria used to design an S-Box which is strong against
differential and linear cryptanalysis. As a result, many ciphers in the literature
are built using S-Boxes which (are close to) satisfy the assumptions of Theorem 4.

Influence of the S-Box. If the S-Box does not satisfy the required properties
related to the assumption of the Theorem, then the average number of colli-
sions can be different from the one previously given. To be more concrete, in
App. C we provide several practical examples of the dependency of the average
number of collisions for small-scale AES-like ciphers with respect to the prop-
erties of the S-Box. We also mention that, in the case in which the assumption
about the S-Box is not fulfilled, it turned out (by practical tests) that also the
details of the MixColumns matrix can influence the average number of collisions.

Probability Distribution of a Random Permutation. Here we briefly com-
pare the probability distribution for 5-round AES and the one of a random
permutation. This fact can be used to set up new truncated differential distin-
guishers for 5-round AES, as we are going to show concretely in Sect. 8.

Proposition 1. Consider 232 plaintexts {pi}i∈{0,1,...,232−1} with one active di-
agonal (equivalently, a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), and
the corresponding (cipher)texts generated by a random permutation Π, that is
ci = Π(pi). The probability distribution of the number of different pairs of cipher-
texts (ch, cj) that belong to the same coset of IDJ for any fixed J ⊆ {0, 1, 2, 3}
with |J | = 3 is given by a binomial distribution B(n, p), where n =

(
232

2

)
=

231 · (232 − 1) and p = 296−1
2128−1 ≈ 2−32. The average number of collisions of such

distribution is equal to 231 − 0.5 = 2 147 483 647.5, while its variance is equal to
2 147 483 647 ' 231.

It follows that:

– independently of the secret key, the average number of pairs of ciphertexts
which are equal in one fixed anti-diagonal is (a little) bigger for 5-round AES
than for a random permutation (approximately 1 038.1 more collisions);

– independently of the secret key, the variance of the probability distribution
of the number of collisions is much bigger for 5-round AES than for a random
permutation (approximately of a factor 36).

To highlight this difference, Fig. 1 proposes a comparison between the probability
distribution of the number of collisions for the AES case (approximated here for
simplicity by a normal distribution) in red and of the random case in blue.

5 Proof of Theorem 4: Sum of Binomial Distributions

Consider a set of 232 plaintexts with one active diagonal and the corresponding
ciphertexts after 5-round AES (without the final MixColumns operation). As

10



Fig. 1. Comparison between the theoretical probability distribution of the number of
collisions between 5-round AES (approximated – only here – by a normal distribution)
and a random permutation. Remark: since the AES probability distribution – in red –
satisfies the multiple-of-8 property, then the probability in the case in which the number
of collision n is not a multiple of 8 is equal to zero, namely Prob(n 6= 8 · n′) = 0.

shown by the multiple-of-8 property [21] and by the mixture differential crypt-
analysis [19], the corresponding pairs of ciphertexts of such set of plaintexts are
not independent/unrelated. In particular, these pairs of texts can be divided in
n3 + n10 + n17 + n24 sets defined as in [19] (recalled in Theorem 3) such that

1. for each i ∈ {3, 10, 17, 24}, exactly ni sets have cardinality 2i;
2. each one of these sets contains pairs of texts for which i out of the four gen-

erating variables are equal (and 4− i are different) after 1-round encryption;
3. given each one of such sets, it is not possible that some pairs of ciphertexts

are equal in 1 ≤ a ≤ 3 anti-diagonals (i.e., that belong to the same coset of
IDJ) after 5-round, while other pairs of ciphertexts in the same set are not
equal in those a anti-diagonals;

4. pairs of texts of different sets are independent (in the sense that pairs of
texts of different sets do not satisfy the property just given for the case of
pairs of texts that belong to the same set).

The values of n3, n10, n17, n24 are computed in details in the next paragraph.
Due to the impossible differential trail on 4-round AES [7, 22], if three out

of the four generating variables of the input plaintexts are equal after 1-round
encryption, then the corresponding ciphertexts cannot be equal in any anti-
diagonal. In other words, the probability p24 is equal to zero. For this reason,
we will only focus on n3, n10, n17 in the following.

About the Values of n3, n10, n17. Given a set of 232 chosen texts with one
active column5, the number of pairs of texts with 0 ≤ v ≤ 3 equal generating
variables (and 4− v different generating variables) after one round is given by(

4

v

)
· 231 · (28 − 1)4−v . (6)

5 One active diagonal is mapped to one active column after 1-round AES encryption.

11



Indeed, note that if v variables are equal for the two texts of the given pair, then
these variables can take (28)v different values. For each one of the remaining
4 − v variables, the variables must be different for the two texts. Thus, these

4− v variables can take exactly
[
28 · (28 − 1)

]4−v
/2 different values. The result

follows from the fact that there are
(
4
v

)
different combinations of v variables.

Due to Eq. (6), the number nv of the sets of pairs of texts with “no equal
generating variables” (namely, v = 0), the set of of pairs of texts with “one equal
and three different generating variable(s)” (namely, v = 1) and finally the set of
of pairs of texts with “two equal and two different generating variable” (namely,
v = 2) are given by:

∀v ∈ {0, 1, 2} : n7·v+3 =

(
4

v

)
· 231 · (28 − 1)4−v

27·v+3
. (7)

About Binomial Distributions Bi ∼ B(ni, pi) for i ∈ {3, 10, 17}. Due
to the previous facts, it follows that the probability of the event “n = 8 · n′
pairs of ciphertexts equal in one fixed anti-diagonal” for n′ ∈ N – equivalently,
“n = 8 · n′ collisions” in a coset of IDJ for J ⊆ {0, 1, 2, 3} with |J | = 3 –
corresponds to the sum of the probabilities to have “23 · k3 collisions in the first
set and 210 · k10 collisions in the second set and 217 · k17 collisions in the third
set” for each k3, k10, k17 such that 23 · k3 + 210 · k10 + 217 · k17 = n.

Each one of these (independent) events is well characterized by a binomial
distribution. By definition, a binomial distribution with parameters n and p is
the discrete probability distribution of the number of successes in a sequence of
n independent yes/no experiments, each of which yields success with probability
p. In our case, given n pairs of texts, each one of them satisfies or not the above
property/requirement with the same probability p.

Probability Distribution. Due to all these initial considerations (based on the
multiple-of-8 property and on the mixture differential cryptanalysis), it follows
that the distribution 5-AES of the number of collisions for the AES case is well
described by

D5-AES = 23 ×B3 + 210 ×B10 + 217 ×B17 ,

where Bi ∼ B(ni, pi) for i = 3, 10, 17 are independent binomial distributions. In
the following, we formally compute the values of ni and of pi.

Based on this fact, we can also compute the probability that n ∈ N different
pairs of ciphertexts (ch, cj) for h 6= j are equal in one fixed anti-diagonal, as given
in (5). Given n ∈ N, we can immediately conclude that Prob(D5-AES = n) = 0 if
n 6= 8 · n′, that is, if n is not a multiple of 8 (due to the multiple-of-8 property).
Otherwise, if n = 8 · n′ for n′ ∈ N, then:

Prob (D5-AES = n) = Prob
(
23 ·B3 + 210 ·B10 + 217 ·B17 = n

)
=

=
∑

m3,m10,m17∈N s.t.
m3+m10+m17=n

Prob(23 ·B3 = m3)× Prob(210 ·B10 = m10)

× Prob(217 ·B17 = m17) ,

12



where remember that the distributions B3,B10 and B17 are independent.
Since Prob(2i·Bi = mi) = 0 ifmi is not a multiple of 2i for each i ∈ {3, 10, 17}

(namely, if there is no xi ∈ N such that mi 6= 2i · xi), it follows that

Prob (D5-AES = n) = Prob
(
23 ·B3 + 210 ·B10 + 217 ·B17 = n

)
=

=
∑

m3,m10,m17∈N s.t.
m3+m10+m17=n

Prob(23 ·B3 = m3)× Prob(210 ·B10 = m10)

× Prob(217 ·B17 = m17)

=
∑

x3,x10,x17∈Xn

Prob(B3 = x3)× Prob(B10 = x10)× Prob(B17 = x17)

where

Xn =
{

(x3, x10, x17) ∈ N×N×N
∣∣ 0 ≤ xi ≤ ni and 23·x3+210·x10+217·x17 = n

}
.

The probability given in (5) finally follows from the fact that Bi are binomial
distributions, i.e.,

Prob(Bi = x) =

(
ni
x

)
· (pi)x · (1− pi)ni−x ,

where ni and pi for i ∈ {3, 10, 17} are given in Theorem 4.

Mean Value and Variance. Due to the results just presented, it follows that
the mean value µ of 5-AES is given by

µ =E[D5-AES] = E[23 ×B3 + 210 ×B10 + 217 ×B17]

=23 · E[B3] + 210 · E[B10] + 217 · E[B17]

=23 · n3 · p3 + 210 · n10 · p10 + 217 · n17 · p17 ,

where E[a ·X + b ·Y + c] = a ·E[X] + b ·E[Y ] + c for each a, b, c ∈ R and for each
random variable X and Y . Similarly, the variance σ2 is given by

σ2 = Var(D5-AES) = Var(23 ×B3 + 210 ×B10 + 217 ×B17)

= 26 · Var(B3) + 220 · Var(B10) + 234 · Var(B17)

= 26 · n3 · p3 · (1− p3) + 210 · n10 · p10 · (1− p10) + 217 · n17 · p17 · (1− p17),

where Var(a ·X + b ·Y + c) = a2 · Var(X) + b2 · Var(Y ) for each a, b, c ∈ R under
the assumption that X and Y are independent random variables (remember that
B3,B10,B17 are independent).

6 Proof of Theorem 4: About the Probabilities p3, p10, p17

6.1 Reduction to the Middle Round

In order to compute the probabilities p3, p10 and p17 given before for 5 rounds
AES, the idea is to work on an equivalent result on a single round. Due to the

13



2-round truncated differential with prob. 1 recalled in Sect. 3.1, we have that

Di ⊕ δ
R2(·)−−−−→
prob. 1

Mi ⊕ ω
R(·)−−→ DJ ⊕ δ′

R2
f (·)−−−−→

prob. 1
IDJ ⊕ ω′ . (8)

For this reason, it is sufficient to focus on the middle roundMi⊕ω
R(·)−−→ DJ⊕δ′

in order to compute the desired result.

Sketch & Organization of the Proof. W.l.o.g., we limit ourselves to consider
plaintexts in the same coset of M0 and to count the number of texts which are
equal in the first diagonal after one round (the other cases are analogous). By
definition of M0, if p1, p2 ∈ M0 ⊕ ω, then there exist xi, yi, zi, wi ∈ F28 for
i ∈ {1, 2} such that:

pi = ω ⊕


2 · xi yi zi 3 · wi
xi yi 3 · zi 2 · wi
xi 3 · yi 2 · zi wi

3 · xi 2 · yi zi wi

 ,
where 2 ≡ 0x02 and 3 ≡ 0x03. In the following, we say that p1 is “generated” by
the generating variables (x1, y1, z1, w1) and that p2 is “generated” by the gener-
ating variables (x2, y2, z2, w2). As before, we use the notation pi ≡ (xi, yi, zi, wi).
The proof is organized as follows:

1. first of all, we limit ourselves to consider a subset of 216 texts with only 2
active bytes. Since this case is much simpler to analyze than the generic one,
it allows us to highlight the crucial points of the proof;

2. we then present the complete proof for the case of 232 texts in the same coset
of M0. Roughly speaking, this case is split in various sub-cases: each one of
them is studied/analyzed independently of the others using the same strategy
proposed for the simplest case of 216 texts. The final result is obtained by
simply combining the results of each one of these sub-cases.

We emphasize that the following computations are not influenced by neither
the value of the secret key nor the value of the initial coset of the diagonal
subspace Di. That is, the following results are the average with respect to these
two values.

6.2 A “Simpler” Case: 216 Texts with Two Equal Generating
Variables

As a first case, we consider 216 texts for which two generating variables are equal,
e.g., z1 = z2 and w1 = w2. Given two texts p1 generated by (x1, y1, 0, 0) and p2

generated by (x2, y2, 0, 0), they are equal in the first diagonal after one round if
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and only if the following four equations are satisfied

(R(p1)⊕R(p2))0,0 =2 · (S-Box(2 · x1 ⊕ a0,0)⊕ S-Box(2 · x2 ⊕ a0,0))

⊕ 3 · (S-Box(y1 ⊕ a1,1)⊕ S-Box(y2 ⊕ a1,1)) = 0 ,

(R(p1)⊕R(p2))1,1 =S-Box(3 · x1 ⊕ a3,0)⊕ S-Box(3 · x2 ⊕ a3,0)

⊕ S-Box(y1 ⊕ a0,1)⊕ S-Box(y2 ⊕ a0,1) = 0 ,

(R(p1)⊕R(p2))2,2 =2 · (S-Box(x1 ⊕ a2,0)⊕ S-Box(x2 ⊕ a2,0))

⊕ 3 · (S-Box(2 · y1 ⊕ a3,1)⊕ S-Box(2 · y2 ⊕ a3,1)) = 0 ,

(R(p1)⊕R(p2))3,3 =S-Box(x1 ⊕ a1,0)⊕ S-Box(x2 ⊕ a1,0)

⊕ S-Box(3 · y1 ⊕ a2,1)⊕ S-Box(3 · y2 ⊕ a2,1) = 0 ,

where a·,· ∈ F28 depends on the initial key and on the constant ω ∈ F4×4
28 that

defines the coset. Equivalently, four equations of the form

A ·
(
S-Box(B · x1 ⊕ a)⊕ S-Box(B · x2 ⊕ a)

)
⊕C ·

(
S-Box(D · y1 ⊕ c)⊕ S-Box(D · y2 ⊕ c)

)
= 0

(9)

must be satisfied, where A,B,C,D ∈ F28 depend on the MixColumns matrix,
while a, c ∈ F28 depend on the secret key and on the initial constant ω.

Number of Solutions of Each Equation. Consider one of these four equations.
By simple observation, Eq. (9) is satisfied if and only if the following system of
equations is satisfied

S-Box(x̂⊕∆I)⊕ S-Box(x̂) = ∆O

S-Box(ŷ ⊕∆′I)⊕ S-Box(ŷ) = ∆′O

∆′O = C−1 ·A ·∆O

(10)

for each value of ∆O, where x̂ = B · x1 ⊕ a, ∆I = B · (x1 ⊕ x2), ŷ = D · y1 ⊕ c
and ∆′I = D · (y1 ⊕ y2). We emphasize that we exclude null solutions.

What is the number of different (not null) solutions {(x1, y1), (x2, y2)} of
Eq. (9)? Given ∆O 6= 0, each one of the first two equations of (10) admits 256
different solutions (x̂,∆I) (respectively, (ŷ, ∆′I)), since for each value of x̂ ∈ F28 ,
there exists ∆I 6= 0 that satisfies the first equation (similar for ŷ and ∆′I).
It follows that the number of different solutions {(x1, y1), (x2, y2)} of Eq. (9)
considering all the 255 possible values of ∆O is exactly equal to

1

2
· 255 · (256)2 = 255 · 215 ,

independent of the details of the S-Box. The factor 1/2 is due to the fact that
we consider only different solutions, that is, two solutions of the form (p1 ≡
(x1, y1), p2 ≡ (x2, y2)) and (p2 ≡ (x1, y1), p1 ≡ (x2, y2)) are equivalent. In other
words, a solution {(x1, y1), (x2, y2)} is valid if x2 6= x1 and y1 < y2.
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Probability of Common Solutions. Knowing the number of solutions of Eq. (9),
what is the number of common (different) solutions {(x1, y1), (x2, y2)} of four
equations of the form (9)? We have just seen that each equation of the form (9)
has exactly 255 · 215 different (not null) solutions {(x1, y1), (x2, y2)}. Assuming
the APN-like assumption on the S-Box and the fact that the MixColumns is
defined by an MDS matrix, the probability that two equations admit the same
solution (i.e., that {(x1, y1), (x2, y2)} – solution of one equation – is equal to
{(x̂1, ŷ1), (x̂2, ŷ2)} – solution of another equation) is

(256 · 255)−1 · (255 · 128)−1 = 255−2 · 2−15 . (11)

To explain this probability, the first term (256 · 255)−1 is due to the fact that
x1 = x̂1 with probability 256−1, while x2 = x̂2 with probability 255−1, since by
assumption x2 (respectively, x̂2) cannot be equal to x1 (respectively, x̂1). The
second term (128 · 255)−1 is due to the assumption on the second variable, that
is y1 < y2. To explain it, note that the possible number of pairs (y1, y2) with

y1 < y2 is
∑255
i=0 i = 255·(255+1)

2 = 255 · 128.6 It follows that y1 and y2 are equal
to ŷ1 and ŷ2 with probability (128 · 255)−1.

Total Number of (Different) Common Solutions. In conclusion, the average num-
ber of common (different) solutions {(x1, y1), (x2, y2)} of 4 equations of the form
(9) is given by

(255 · 215)4 · (255−2 · 2−15)3 =
215

2552
' 0.503929258 ' 2−1 + 2−7.992 .

For comparison, in the case in which the ciphertexts are generated by a random
permutation, the average number of pairs of ciphertexts that satisfy the previous
property is approximately given by(

216

2

)
· (2−8)4 =

216 − 1

217
' 0.499992371 ' 2−1 − 2−17 .

Remark: About the MDS Assumption. We highlight that the probability
(11) strongly depends on the assumptions that

– the solutions of Eq. (1) – hence, the numbers N∆I ,∆O – are uniformly dis-
tributed for each ∆I 6= 0 and ∆O 6= 0;

– there is “no (obvious/non-trivial) relation” between the solutions of the stud-
ied system of four equations of the form (9). This means that the four Equa-
tions (9) must be independent/unrelated, in the sense that the solution of
one equation is not a solution of another one with probability different than
the one given in (11).

6 E.g., if y1 = 0x0 then y2 can take 255 different values (all values except 0), if y1 = 0x1
then y2 can take 254 different values (all values except 0x0, 0x1) and so on. Given
y1 = d with 0 ≤ d ≤ 255, then y2 can take 255− d different values.
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Focusing here on this second requirement, a relation among solutions of different
equations can arise if some relations hold between the coefficients A,B,C,D
of different equations of the form (9). Since these are the coefficients of the
MixColumns matrix and since such matrix is MDS, no non-trivial linear relation
among the rows/columns of any submatrix exists.

6.3 Generic Case: 232 Texts

As next step, we adapt the strategy just presented in order to analyze the case
of 232 texts in the same coset ofM0. Two texts p1, p2 are equal in one diagonal
after one round if and only if four equations of the form

A ·
(
S-Box(B · x1 ⊕ b)⊕ S-Box(B · x2 ⊕ b)

)
⊕C ·

(
S-Box(D · y1 ⊕ d)⊕ S-Box(D · y2 ⊕ d)

)
⊕E ·

(
S-Box(F · z1 ⊕ f)⊕ S-Box(F · z2 ⊕ f)

)
⊕G ·

(
S-Box(H · w1 ⊕ h)⊕ S-Box(H · w2 ⊕ h)

)
= 0

(12)

are satisfied, where A,B,C,D,E, F,G,H ∈ F28 depend only on the MixColumns
matrix, while b, d, f, h ∈ F28 depend on the secret key and on the constant ω
that defined the initial coset, as before. Each one of these equations is equivalent
to a system of equations like (10), that is:

S-Box(x̂⊕∆I)⊕ S-Box(x̂) = ∆O S-Box(ŷ ⊕∆′I)⊕ S-Box(ŷ) = ∆′O

S-Box(ẑ ⊕∆
′′

I )⊕ S-Box(ẑ) = ∆
′′

O S-Box(ŵ ⊕∆
′′′

I )⊕ S-Box(ŵ) = ∆
′′′

O

together with one of the following conditions

1. ∆
′′′

O = ∆
′′

O = 0 and ∆′O = C−1 ·A ·∆O 6= 0, or analogous (six possibilities in
total);

2. ∆
′′′

O = 0 and ∆O, ∆
′

O, ∆
′′

O 6= 0 and ∆
′′

O = E−1 ·(A·∆O⊕C ·∆′O), or analogous
(four possibilities in total);

3. ∆O, ∆
′

O, ∆
′′

O, ∆
′′′

O 6= 0 and ∆
′′′

O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆
′′

O).

First Case. Since the first case (∆
′′′

O = ∆
′′

O = 0) is analogous to the case in
which two generating variables are equal, we can limit ourselves to re-use the
previous computation. In the case ∆

′′′

O = ∆
′′

O = 0 and ∆′O = C−1 · A ·∆O 6= 0,
the only possible solutions of the third and fourth equations are of the form
(ẑ, ∆

′′

I = 0) and (ŵ,∆
′′′

I = 0) for each possible value of ẑ, ŵ ∈ F28 . Using the
same computation as before, the average number of common solutions for this
case is (

4

2

)
· 2562 · 215

2552
=

232

21 675
' 198 153.047 . (13)
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About Probability p17. By definition of probability, the probability p17 – given
in Theorem 4 – that pairs of texts with two equal (and two different) generating
variables are equal in one diagonal after one round is given by:

p17 =
1

217 × n17
· 232

21 675
= 2−32 + 2−37.98588 , (14)

where 217 × n17 is the total number of pairs of texts with two equal (and two
different) generating variables.

Second Case. Consider now the case ∆
′′′

O = 0 and ∆O, ∆
′
O, ∆

′′

O 6= 0 (i.e.,

∆I , ∆
′
I , ∆

′′

I 6= 0). First of all, note that ∆O 6= 0 can take 255 different values,
while ∆′O 6= 0 can take only 254 different values (since it must be different from
0 and from C−1 ·A ·∆O).

Using the same argumentation given before, for each Eq. (12) the number
of different solutions {(x1, y1, z1, w1), (x2, y2, z2, w2)} – with z1 < z2 and where
w1 = w2 – is given by

(
4
1

)
· 256 ·

(
1
2 · 255 · 254 · (256)3

)
= 210 ·

(
32 385 · 224

)
,

where the initial factor
(
4
1

)
· 256 is due to the condition w1 = w2 and on the fact

that there are four analogous cases (namely, x1 = x2 or y1 = y2 or z1 = z2).
Similar to before, the probability that two equations of the form (12) – where
w1 = w2 – have a common solution is given by (256 · 255)−2 · (128 · 255)−1 =
2−23 · 255−3 under (1st) the assumption of uniform distribution of the solutions
n∆I ,∆O of Eq. (1) and (2nd) the assumption that there is “no (obvious/non-
trivial) relation” between the solutions of the studied system of four equations
of the form (12). It follows that the average number of common solutions for the
four equations of the form (12) is(

4

1

)
· 256 · (32 385 · 224)4 · (2−23 · 255−3)3 =

1274 · 237

2555
' 33 160 710.047 . (15)

About Probability p10. As before, the probability p10 – given in Theorem 4 –
that pairs of texts with one equal (and three different) generating variable(s) are
equal in one diagonal after one round is given by:

p10 =
1

210 × n10
· 1274 · 237

2555
= 2−32 − 2−45.98874 . (16)

Third Case. We finally consider the case ∆O, ∆
′
O, ∆

′′

O, ∆
′′′

O 6= 0. By simple

computation, the number of different values that satisfy ∆
′′′

O = G−1 · (A ·∆O ⊕
C ·∆′O ⊕ E ·∆

′′

O). is given by 2553 − (255 · 254) = 16 516 605. Indeed, the total

number of ∆O, ∆
′
O, ∆

′′

O 6= 0 is 2553, while 255 · 254 is the total number of values

∆O, ∆
′
O, ∆

′′

O 6= 0 for which ∆
′′′

O is equal to zero (which is not possible since

∆
′′′

O 6= 0 by assumption). In more detail, firstly observe that for each value of

∆O there is a value of ∆
′

O that satisfies A ·∆O = C ·∆′O. For this pair of values

(∆O, ∆
′
O = C−1 · A ·∆O), the previous equation ∆

′′′

O = G−1 · E ·∆′′O is always
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different from zero, since ∆
′′

O 6= 0. Secondly, for each one of the 255 · 254 values

of the pair (∆O, ∆
′
O 6= C−1 · A · ∆O), there is only one value of ∆

′′

O such that
the previous equation is equal to zero.

Hence, the total number of different solutions {(x1, y1, z1, w1), (x2, y2, z2, w2)}
with w1 < w2 of each equation corresponding to (12) is 1

2 · 16 516 605 · (256)4 =
16 516 605·231. Since the probability that two solutions {(x1, y1, z1, w1), (x2, y2, z2,
w2)} and {(x̂1, ŷ1, ẑ1, ŵ1), (x̂2, ŷ2, ẑ2, ŵ2)} are equal is (255 · 256)−3 · (255 ·
128)−1 = 255−4 · 2−31 under (1st) the assumption of uniform distribution of the
solutions of Eq. (1) and (2nd) the assumption that that there is “no (obvious/non-
trivial) relation” between the solutions of the studied system of four equations
of the form (12), the average number of common solutions (with no equal gen-
erating variables) is

(
16 516 605 · 231

)4·(255−4 · 2−31)3 =
64 7714 · 231

2558
' 2 114 125 822.5 . (17)

About Probability p3. As before, the probability p3 given in Theorem 4 that pairs
of texts with no equal generating variable are equal in one diagonal after one
round is given by:

p3 =
1

23 × n3
· 64 7714 · 231

2558
= 2−32 + 2−53.98306 . (18)

Total Number of (Different) Common Solutions. Based on the results just
proposed, given plaintexts in the same coset ofM0, the number of different pairs
of ciphertexts that are equal in one fixed diagonal after 1-round (equivalently,
the number of collisions in DJ for |J | = 3) is

2 114 125 822.5 + 33 160 710.047 + 198 153.047 ' 2 147 484 685.594 ' 231 + 210.02 .

Since the total number of pairs of texts is 231 · (232 − 1), the probability for the
AES case that a couple of ciphertexts (c1, c2) satisfies c1 ⊕ c2 ∈ DJ for |J | = 3
fixed is equal to

pAES '
2 147 484 685.594

231 · (232 − 1)
' 2−32 + 2−52.9803

versus ≈ 2−32 − 2−128 for the case of a random permutation.

7 Practical Results for 5-round AES

We have practically verified the mean and the variance for 5-round AES given
above (in Theorem 4) using a C/C++ implementation7. In particular, we have
verified the mean value on a small-scale AES as proposed in [13], and the variance
value both on full-size and on the small-scale AES.
7 The source codes of the distinguishers/attacks can be found at https://github.

com/Krypto-iaik/TruncatedDiff5roundAES.
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7.1 Probability Distribution of 5-round AES over (F2n)4×4

Firstly, we generalize Theorem 4 for the case of 5-round AES defined over F4×4
2n .

Proposition 2. Consider an AES-like cipher that works with texts in F4×4
2n ,

such that (1st) the MixColumns matrix is an MDS matrix and such that (2nd)
the solutions of Eq. (1) are uniformly distributed for each input/output difference
∆I 6= 0 and ∆O 6= 0. Given 24n plaintexts {pi}i∈{0,1,...,24n−1} with one active
diagonal (equivalently, in a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), con-
sider the corresponding ciphertexts after 5 rounds without the final MixColumns
operation, that is, ci = R5

f (pi). Independently of

– the initial coset of Di, and
– the value of the secret key,

the average number of different pairs of ciphertexts (ch, cj) for h 6= j that belong
to the same coset of IDJ for any fixed J ⊆ {0, 1, 2, 3} with |J | = 3 is equal to

24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 24n+5

(2n − 1)5
+ 3 · 24n

(2n − 1)2
, (19)

and the variance of such distribution is given by

24n+2 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 25n+7

(2n − 1)5
+

3 · 26n+1

(2n − 1)2
. (20)

The proof is analogous to the one just given for F4×4
28 , and it is provided in

App. B.

7.2 Practical Results for 5-round AES over F4×4
2n for n ∈ {4, 8}

Practical Results: Variance of 5-round AES over F4×4
28 . Our practical results

regarding the variance σ2 for full-size AES over 320 different initial cosets and
keys are

σ2
T = 76 842 293 834.905 ' 236.161 versus σ2

P = 73 288 132 411.36 ' 236.093 ,

where the subscript ·T denotes the theoretical value and the subscript ·P the
practical one.

Practical Results for 5-round AES over F4×4
24 . Our practical results for small-

scale AES regarding the mean µ over 125 000 ' 217 different initial cosets and
keys are

µTAES = 32 847.124 versus µPAES = 32 848.57 ;

µTrand = 32 767.5 versus µPrand = 32 768.2 .

Our practical results for small-scale AES regarding the standard deviation σ
over 100 different initial cosets and keys are

σTAES = 1036.58 versus σPAES = 1027.93 ;

σTrand = 181.02 versus σPrand = 182.42 .
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Fig. 2. Comparison between the probability distribution of the number of collisions
between theoretical small-scale 5-round AES (approximated by a normal distribution)
and the practical one. Remark: since the AES probability distribution satisfies the
multiple-of-8 property, then the probability in the case in which the number of collisions
n is not a multiple of 8 is equal to zero.

The probability distribution for 5-round AES is not Symmetric. Fig. 2
highlights the difference between the practical probability distribution of the
number of collisions for small-scale AES and for a random permutation.

By Fig. 2, it turns out that small-scale 5-round AES distribution has a pos-
itive skew, while the skew of the random distribution is approximately equal
to zero. The skewness is the parameter that measures the asymmetry of the
probability distribution of a real-valued random variable about its mean. We
practically derived the values of the skewness γ both for full-size AES and for
small-scale one using 29 initial cosets, and we got the following results:

γAES ' 0.43786 and γAESsmall-scale ' 0.4687 ,

where the skew of a random permutation is close to zero. We leave the open
problem to theoretically compute the skew for small/real-size AES (and to set
up a corresponding distinguisher if possible) as a future work.

8 Truncated Differential Distinguishers for 5-round AES

Differential attacks [8] exploit the fact that pairs of plaintexts with certain differ-
ences yield other differences in the corresponding ciphertexts with a non-uniform
probability distribution. A variant of this attack/distinguisher is the truncated
differential one [23], in which the attacker can predict only part of the difference
between pairs of texts. Using the subspace terminology [9], given pairs of plain-
texts that belong to the same coset of a subspace X , one considers the probability
that the corresponding ciphertexts belong to the same coset of a subspace Y.

The truncated differential distinguishers that we present in this section for
5-round AES are based on the same principle. For the first time in the literature,
we also present a truncated differential distinguisher based on the variance.
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Table 2. Secret-key distinguishers for 5-round AES. The complexity is measured in
minimum number of chosen plaintexts/ciphertexts (CP/CC) or/and adaptive chosen
plaintexts/ciphertexts (ACP/ACC) which are needed to distinguish 5-round AES from
a random permutation with probability bigger than 95%. Time complexity is measured
in equivalent encryptions (E) or memory accesses (M) or XOR operations (XOR) –
using the common approximation 20 M ≈ 1-round E. Our distinguishers are in bold.

Property Data (CP/CC) Cost Reference

Yoyo 212 CP + 225.8 ACC 224.8 XOR [28]

Multiple-of-8 232 CP 235.6 M ≈ 229 E [21]

Truncated Variance Differential 234 CP 237.6 M ≈ 231 E Sect. 8.1

Truncated Mean Differential 248.96 CP 252.6 M ≈ 246 E Sect. 8.3

Prob. Mixture Differential 252 271.5 M ≈ 264.9 E [20]

Fig. 3. Ratio between the variance for 5-round AES and for the case of a random
permutation given texts in F4×4

2n for n ≥ 3.

8.1 Truncated Differential Distinguisher based on the Variance

Since the variance of the AES case is different from the one of the random case
independently of the secret-key, we can exploit this fact in order to set up a new
secret-key distinguisher for 5-round AES.

We practically tested this distinguisher on a small-scale AES. By practical
tests (the following probability of success have been computed over 2 500 tests)
on small-scale AES:

– given a single initial coset of Di, it is possible to distinguish small-scale AES
from a random permutation with probability 98%;

– given two initial cosets of Di, it is possible to distinguish small-scale AES
from a random permutation with probability 99.9%.

Note that for each initial coset of Di, it is possible to compute the number of col-
lisions with respect to four different anti-diagonals, or equivalently four different
subspaces IDJ . We emphasize that the goal is not to compute the exact value of
the variance for the two cases, but just to distinguish the two permutations.

Since the ratio between the variances for full-size 5-round AES and for a
random permutation Π is similar to the same ratio for the case of small-scale
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Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, . . . , 232 − 1 with one
active diagonal (eq., in a coset of a diagonal subspace DI with |I| = 1).

Result: Number n of pairs of ciphertexts which are equal in the j-th
anti-diagonal (equivalently, that belong in the same coset of IDJ
where J ≡ {0, 1, 2, 3} \ j)

Let A[0, . . . , 232 − 1] an array initialized to zero;
for i from 0 to 232 − 1 do

x←
∑3
k=0 c

i
k,j−k · 256k; // cik,j−k denotes the byte of ci in row k

and column j − k mod 4
A[x]← A[x] + 1; // A[x] denotes the value stored in the x-th
address of the array A

end

n←
∑232−1
i=0 A[i] · (A[i]− 1)/2; // n ≡ Number of Collisions

return n.
Algorithm 1: Secret-Key Distinguisher for 5 Rounds of AES. It returns the
number of pairs of ciphertexts which are equal in the j-th anti-diagonal (eq.,
the number of collisions in the same coset of IDJ such that J ≡ {0, 1, 2, 3}\j).

AES (see Fig. 3), that is,

Var(AES8-bit)

Var(Π8-bit)
' 236.161

231
≈ 35.8 versus

Var(AES4-bit)

Var(Π4-bit)
' 220.035

215
≈ 32.8 ,

we conjecture that the results obtained for the small-scale AES are applicable
as well to full-size AES. That is, due to the relation between small-scale AES
and full-size AES, we conjecture that the same number of initial cosets (namely,
two) is sufficient to distinguish (full-size) AES from a random permutation (using
this distinguisher based on the variance). However, just to have more confidence,
we recommend 4 initial cosets in order to set up the distinguisher, for a data
cost of 4 · 232 = 234 chosen plaintexts distributed in 4 initial cosets of Di. The
computational cost is well approximated by the cost to compute the number of
collisions. Using Algorithm 1, the cost is well approximated by 4 (initial cosets)
×4 (anti-diagonals) ×3 · 232 (table look-ups) ≈ 237.6 table look-ups, that is,
approximately 231 five-round encryptions.

8.2 Useful Approximation of the Probability Distribution for
5-round AES

For some concrete use cases (e.g., for setting up a truncated differential distin-
guisher based on the mean), we propose an approximation of the probability
distribution for 5-round AES given in Theorem 4. In particular, we propose a
normal approximation that can turn out to be (very) useful in all applications
where the skewness does not play a crucial role (hence, that are (almost) inde-
pendent of the bias in the skew).

As given in Theorem 4, the probability distribution for 5-round AES is well
described by D5-AES = 23 ×B(n3, p3) + 210 ×B(n10, p10) + 217 ×B(n17, p17),
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where B(n, p) are binomial distributions. De Moivre-Laplace Theorem claims
that the normal distribution is a good approximation of the binomial one if the
skewness of the binomial distribution is close to zero. In our case, B3 ≡ B(n3, p3)
and B10 ≡ B(n10, p10) can be well approximated by a normal distribution, since
their skewnesses are close to zero (skew(B3) ≈ 2−14 and skew(B10) ≈ 2−7.5).
Unfortunately, this is not the case of B17 ≡ B(n17, p17), since skew(B17) ≈
0.813 ≈ 2−0.3. On the other hand, the number of pairs represented by X17 (that
is, the pairs of texts with two equal generating variables) is very small compared

to the number of all possible pairs of texts, precisely 3·215·(28−1)2
231·(232−1) ≈ 2−30.4 ≈

10−7.15 %. For this reason, and only in the case in which the skewness does not
play a crucial role, we can approximate such binomial distribution with a normal
one as well.

By exploiting the fact that the sum of normally distributed random variables
is also normally distributed, that is, if X ∼ N(µX , σ

2
X) and Y ∼ N(µY , σ

2
Y ), then

X + Y ∼ N(µX + µY , σ
2
X + σ2

Y ), we get the following approximation:

Lemma 1. Consider an AES-like cipher that works with texts in F4×4
28 and for

which the assumptions of Theorem 4 hold.

Consider 232 plaintexts {pi}i∈{0,1,...,232−1} with one active diagonal (equiva-
lently, a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), and the correspond-
ing ciphertexts after 5 rounds without the final MixColumns operation, that is,
ci = R5

f (pi). The probability distribution of the number of different pairs of ci-

phertexts (ch, cj) for h 6= j that are equal in one anti-diagonal (equivalently,
that belong to the same coset of IDJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3) is
approximated by a normal distribution N(µ, σ2), where the mean value is equal
to µ = 2 147 484 685.6 = 232 + 1 037.6 and the standard deviation is equal to
σ = 277 204.426.

In other words, given 232 plaintexts with one active diagonal, the probability
distribution of the number of collisions of the corresponding ciphertexts for 5-
round AES is well approximated by 8×X, where X is a normal distribution with
mean value and variance as given in Lemma 1. That is, the (discrete) probability
to have n ∈ N collisions is given by:

Prob(D5-AES = n | µ, σ2) ≈


0 if n mod 8 6= 0

8√
2 · π · σ2

· e−
(n−µ)2

2·σ2︸ ︷︷ ︸
∼8×N(µ,σ2)

otherwise .

About the factor 8 in the probability Prob(n | µ, σ2). Let Prob(n) be the
probability to have n collisions for 5-round AES. Since Prob(n 6= 8 · n′) = 0, the
factor 8 guarantees that the total probability is equal to 1:

∑
n

Prob(n) =
∑

n=8·n′

8√
2 · π · σ2

·e−
(n−µ)2

2·σ2 =
∑
n′

1√
2 · π · (σ/8)2

·e−
(n′−(µ/8))2

2·(σ/8)2 = 1.
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8.3 Truncated Differential Distinguisher based on the Mean

Using the previous results, we are now able to present and set up a new distin-
guisher based on the average mean of the presented truncated differential trails
for 5-round AES. As we have just seen, the number of collisions for 5-round
AES and for the random permutation can be described by normal distributions.
For deriving concrete numbers for our distinguisher, we can simply consider
the difference of the two distributions, which is again a normal distribution.
That is, given X ∼ N(µ1, σ

2
1) and Y ∼ N(µ2, σ

2
2), then X − Y ∼ N(µ, σ2) =

N(µ1−µ2, σ
2
1 +σ2

2). As a result, the mean µ and the variance σ2 of the difference
between the AES and the random distributions are

µ = |µAES − µrand| = n · |pAES − prand| ,
σ2 = σ2

rand + σ2
AES = n ·

(
prand · (1− prand) + 35.593 · pAES · (1− pAES)

)
,

where we make used of the approximation σ2
AES ≈ 35.593 · n · pAES · (1− pAES)

introduced in Sect. 8.1. Since the probability density of the normal distribution

is f(x | µ, σ2) = 1
σ
√
2π
e−

(x−µ)2

2σ2 , it follows that

prob =

0∫
−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx =
1

2

(
1 + erf

(
−µ
σ
√

2

))

where erf(x) is the error function, defined as the probability of a random variable
with normal distribution of mean 0 and variance 1/2 falling in the range [−x, x].
We emphasize that the integral is computed in the range (−∞, 0] since we are
interested only in the case in which the average number of pairs with the required
property in the random case is smaller than in the AES case.

In order to have a probability of success bigger than “prob”, n must satisfy

n ≥ 73.186 ·max(prand, pAES)

(prand − pAES)2
·
(

erfinv
(
2 · prob− 1

))2

. (21)

It follows that in order to have a probability of success bigger than 95%, the
number of pairs must satisfy n ≥ 278.374 and since prand ≈ pAES ≈ 2−30 and
|prand − pAES | ≈ 2−50.98. Given 232 chosen plaintexts with one active diagonal
(equivalently, a coset of a diagonal space Di), it is possible to construct approx-
imately 263 different pairs of texts, which means that the distinguisher requires
215.374 different cosets for a data cost of 247.374 chosen plaintexts.

Practical Results on small-scale AES. Since the previous result has been ob-
tained under the assumption that the distribution of AES is well approximated
by a normal distribution, we practically tested the probability of success of such
distinguisher on a small-scale AES. Using the same computation as before, it
turns out that for small-scale AES for which

µAES4-bit = n ·pAES4-bit and σ2
AES4-bit = 29.983 ·n ·pAES4-bit ·(1−pAES4-bit) ,
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one needs

n >
59.965 ·max(prand4-bit , pAES4-bit)

(prand4-bit − pAES4-bit)2
·
(

erfinv
(
2 · prob− 1

))2

.

different pairs of texts to set up the distinguisher with probability “prob”. For a
probability of success bigger than 95% and since prand4-bit ≈ pAES4-bit ≈ 2−14 and
|prand4-bit − pAES4-bit | ≈ 2−22.68485, the number of pairs must satisfy n ≥ 237.48.
Since each coset of Di contains 216 different texts and approximately 231 different
pairs, this means that the distinguisher requires 26.48 ' 90 cosets for a data cost
of 222.48 chosen plaintexts. By practical tests on small-scale AES:

– 90 initial cosets of Di allows to distinguish small-scale AES from a random
permutation with probability 92% (close to 95% used before);

– 180 initial cosets of Di allows to distinguish small-scale AES from a random
permutation with probability 98.5%;

– 270 initial cosets of Di allows to distinguish small-scale AES from a random
permutation with probability 99.9%;

where the previous probability of success have been computed over 2 500 tests.
The fact that the probability of success is a little smaller than expected is justified
by the use of the normal approximation for the AES probability distribution.

Based on these practical results, due to the similarity between small-scale
AES and AES (e.g., the value of the skewness is similar for these two cases –
see Sect. 7) and just to have more confidence, we recommend 3 · 215.375 = 216.96

initial cosets of Dj in order to set up the distinguisher for AES, for a data cost
of 216.96 · 232 = 248.96 chosen plaintexts.

Data and Computational Costs. As we have just seen, 248.96 chosen plaintexts
(that is, 216.96 cosets of a diagonal subspace Di for i ∈ {0, 1, 2, 3}) are sufficient
to distinguish a random permutation from 5 rounds of AES. Using Algorithm 1,
the total computational cost can be well approximated by 252.6 table look-ups,
or equivalently 246 five-round encryptions of AES (using the approximation –
largely used in the literature – 20 table look-ups ≈ 1 round of AES).
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A Subspace Trail for AES – Details

The concept of trails of subspaces has been introduced in [22] as a generalization
of invariant subspace trails.

Definition 4. Let F denote a round function in an iterative block cipher and
let (V1, V2, . . . , Vr+1) denote a set of r + 1 subspaces with dim(Vi) ≤ dim(Vi+1).
If for each i ∈ {1, . . . , r} and for each ai there exists ai+1 such that F (Vi⊕ai) ⊆
Vi+1 ⊕ ai+1, then (V1, V2, . . . , Vr+1) is subspace trail of length r for the function
F .

Here we briefly recall the subspace trails of AES presented in [22]. As already
recalled in Sect. 3.1, for each i ∈ {0, 1, 2, 3}:

– The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.
– The diagonal spaces Di are defined as Di = SR−1(Ci). Similarly, the inverse-

diagonal spaces IDi are defined as IDi = SR(Ci).
– The i-th mixed spaces Mi are defined as Mi = MC(IDi).

For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI be defined as

CI =
⊕
i∈I
Ci , DI =

⊕
i∈I
Di , IDI =

⊕
i∈I
IDi , MI =

⊕
i∈I
Mi .

Concrete examples are the following:
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• C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ;

• D0 and ID0 correspond to symbolic matrix

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0


for all x1, x2, x3, x4 ∈ F28 ;
• M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2


for all x1, x2, x3, x4 ∈ F28 .

As shown in detail in [22]:

• For any coset DI ⊕ a, there exists a unique b ∈ C⊥I such that R(DI ⊕ a) =
CI ⊕ b.

• For any coset CI ⊕ a, there exists a unique b ∈ M⊥I such that R(CI ⊕ a) =
MI ⊕ b.

It follows that for each I ⊆ {0, 1, 2, 3} and for each a ∈ D⊥I , there exists one and
only one b ∈M⊥I such that R2(DI ⊕ a) =MI ⊕ b.

Observe that if X is a subspace and if x and y are two elements of the same
coset X ⊕ a, then x⊕ y ∈ X. It follows that for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1 .

We also recall that for each I, J ⊆ {0, 1, 2, 3} then MI ∩ DJ = {0} if and only
if |I|+ |J | ≤ 4, as demonstrated in [22]. It follows that:

Theorem 5 ([22]). Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x, y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ , x 6= y) = 0 . (22)

Finally, we remark that all these results can be re-described using a more
“classical” truncated differential notation. For example, if two texts t1 and t2

are equal except for the bytes in the i-th diagonal for each i ∈ I, then they
belong to the same coset of DI . A coset of DI corresponds to a set of 232·|I| texts
with |I| active diagonals. Again, two texts t1 and t2 belong to the same coset
of IDI if the difference of the bytes that lie in the i-th anti-diagonal for each
i /∈ I is equal to zero. Similar considerations hold for the column space CI and
the mixed space MI .
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B Probability Distribution for 5-round AES over (F2n)4×4

Preliminary Considerations. First of all, given a coset of Ci of 24n chosen texts
with one active column, we compute the number of different pairs of texts with
v equal generating variables for 0 ≤ v ≤ 3. Note that given a coset of Ci of 24n

chosen plaintexts, one can construct 24n−1 · (24n − 1) ' 28n−1 different pairs.
Among them, the number of pairs of texts with 0 ≤ v ≤ 3 equal generating
variables (and 4− v different generating variables) after one round is given by(

4

v

)
· 24n−1 · (2n − 1)4−v .

For the follow-up:

n3 =

(
4

0

)
· 24n−1 · (2n − 1)4 ,

nn+2 =

(
4

1

)
· 24n−1 · (2n − 1)3 ,

n2n+1 =

(
4

2

)
· 24n−1 · (2n − 1)2 .

B.1 Average Number of Collisions

In this section we compute the average number of collisions for 5-round AES
defined over (F2n)4×4. Since the idea of the proof is the same of the one given in
Sect. 6, we limit ourselves to adapt it to the case of AES defined over (F2n)4×4.
Since

DI ⊕ a′
R2(·)−−−−→
prob. 1

MI ⊕ b′
R(·)−−→ DJ ⊕ a′′

R2
f (·)−−−−→

prob. 1
IDJ ⊕ b′′,

in the following we consider 24n plaintexts in the same coset of Mi for i ∈
{0, 1, 2, 3} and we compute the average number of collisions after one round in
the same coset of DJ for |J | = 3 fixed. For simplicity, we limit ourselves to
consider plaintexts in the same coset of M0 and the diagonal space D1,2,3 (the
other cases are analogous).

Case: 22·n Texts with Two Equal Generating Variables. As first case,
we consider the case of 22n plaintexts in the same coset of C0,1 ∩M0 (the other
cases are equivalent). This is equivalent to consider texts with 2 equal generating
variables, e.g., x1 6= x2, y1 6= y2, z1 = z2 and w1 = w2.

Thus, consider two plaintexts p1 generated by (x1, y1, 0, 0) and p2 generated
by (x2, y2, 0, 0) in (C0,1 ∩M0) ⊕ b′. By simple computation, R(p1) ⊕ R(p2) ∈
D1,2,3 if four equations of the form

A · (S-Box(B · x1 ⊕ a)⊕ S-Box(B · x2 ⊕ a))

⊕C · (S-Box(D · y1 ⊕ c)⊕ S-Box(D · y2 ⊕ c)) = 0
(23)
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are satisfied, whereA,B,C,D depend only on the MixColumns matrix definition,
while a, c depend on the secret key and on the initial constant that defines the
coset. Equivalently, four systems of two equations as follows must be satisfied

S-Box(x̂⊕∆I)⊕ S-Box(x̂) = ∆O

S-Box(ŷ ⊕∆′I)⊕ S-Box(ŷ) = ∆′O (24)

∆O = C−1 ·A·∆
′′

O .

Due to the same argumentation given in Sect. 6, the number of different (not
null) solutions {(x1, y1), (x2, y2)} of Eq. (24) is approximately given by

1

2
· (2n − 1) ·

(
2n

2n − 1
· (2n − 1)

)2

= (2n − 1) · 22n−1

independently of the details of the S-Box. Indeed, observe that given ∆O 6= 0,
each one of the two equations (24) for small-scale AES admit 2n

2n−1 · (2
n − 1) =

2n different solutions (x̂,∆I) – respectively, (ŷ, ∆′I) – where ∆I , ∆
′
I 6= 0 and

2n/(2n − 1) is the average number of solutions. Moreover, note that there are
(2n − 1) values of ∆O 6= 0 and that the condition y1 < y2 holds.

Due to the same argumentation given in Sect. 6, the probability that two
solutions of two different equations of the form (23) are equal is (2n · (2n − 1))

−1 ·(
(2n − 1) · 2n−1

)−1
= (2n − 1)−2 · 2−2n+1. As a result, the number of common

different (not null) solutions {(x1, y1), (x2, y2)} of four equations of the form (23)
is approximately given by(

(2n − 1) · 22n−1
)4 · ((2n − 1)−2 · 2−2n+1

)3
=

22n−1

(2n − 1)2
.

Generic Case: 24·n Texts. Next, we consider the case of 24n texts in a coset
ofM0. As before, given two plaintexts p1, p2 ∈M0⊕b′, they belong to the same
coset of D1,2,3 after one round if four equations of the form

A · (S-Box(B · x1 ⊕ b)⊕ S-Box(B · x2 ⊕ b))
⊕C · (S-Box(D · y1 ⊕ d)⊕ S-Box(D · y2 ⊕ d))

⊕E · (S-Box(F · z1 ⊕ f)⊕ S-Box(F · z2 ⊕ f))

⊕G · (S-Box(H · w1 ⊕ h)⊕ S-Box(H · w2 ⊕ h)) = 0

are satisfied, where A,B,C,D,E, F,G,H depend only on the MixColumns ma-
trix definition, while b, d, f, h depend on the secret key and on the constant that
defined the initial coset. Each one of these equations is equivalent to:

S-Box(x̂⊕∆I)⊕ S-Box(x̂) = ∆O

S-Box(ŷ ⊕∆′I)⊕ S-Box(ŷ) = ∆′O

S-Box(ẑ ⊕∆
′′

I )⊕ S-Box(ẑ) = ∆
′′

O

S-Box(ŵ ⊕∆
′′′

I )⊕ S-Box(ŵ) = ∆
′′′

O

together with one of the following conditions
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1. ∆
′′′

O = ∆
′′

O = 0 and ∆′O = C−1 ·A ·∆O 6= 0 or analogous (6 possibilities);

2. ∆
′′′

O = 0, ∆O, ∆
′

O, ∆
′′

O 6= 0 and ∆
′′

O = E−1 · (A ·∆O ⊕ C ·∆′O) or analogous
(4 possibilities);

3. ∆O, ∆
′

O, ∆
′′

O, ∆
′′′

O 6= 0 and ∆
′′′

O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆
′′

O).

First Condition. In the first case, ∆
′′

O = 0 implies ∆
′′

I = 0, and z can take each
possible value (similar for w). Using the same computations as before, it follows
that the average number n2n+1 of (not null) common solutions for this case is(

4

2

)
· (2n)2 · 22n−1

(2n − 1)2
= 3 · 24n

(2n − 1)2
,

and that the probability p2n+1 is given by

p2n+1 =
1

n2n+1
· 3 · 24n

(2n − 1)2
=

1

(2n − 1)4
.

Second Condition. In the second case, the number of different solutions {(x1, y1, z1,
w), (x2, y2, z2, w)} where z1 < z2 for each fixed w is given by (2n− 1) · (2n− 2) ·
1
2 · (2

n)
3

= 23n · (2n−1) · (2n−1−1). Moreover, the probability to have a common

solution for two equations of the previous form is given by (2n · (2n − 1))
−2 ·(

2n−1 · (2n − 1)
)−1

= (2n − 1)−3 · 2−3n+1 under the given assumptions of the
S-Box. It follows that the average number nn+2 of (not null) common solutions
for this case is(

4

1

)
· 2n · (2n−1 − 1)4 · 23n+3

(2n − 1)5
=

(2n−1 − 1)4 · 24n+5

(2n − 1)5
,

and that the probability pn+2 is given by

pn+2 =
1

nn+2
· (2n−1 − 1)4 · 24n+5

(2n − 1)5
=

(2n−1 − 1)4 · 24

(2n − 1)8
.

Third Condition. We finally consider the case ∆O, ∆
′

O, ∆
′′

O, ∆
′′′

O 6= 0. As ex-
plained in the main text, the idea is to consider the total number of values of
(∆O, ∆

′
O, ∆

′′

O) that satisfy the equation C ·∆′O ⊕A ·∆O ⊕E ·∆
′′

O 6= 0 and such

that ∆O 6= 0, ∆′O 6= 0, ∆
′′

O 6= 0. By simple computation, this number is equal to
(2n − 1)3 − (2n − 1) · (2n − 2) = (2n − 1) · (22n − 3 · 2n + 3), since (2n − 1)3 is
the total number of values and (2n − 1) · (2n − 2) is the number of values for
which the previous equation is equal to 0 (note that if C ·∆′O⊕A ·∆O = 0, then

the previous equation cannot be equal zero since ∆
′′

O 6= 0). As a result, the total
number of solutions for this case is

1

2
· (2n − 1) · (22n − 3 · 2n + 3) · (2n)

4
= 24n−1 · (2n − 1) · (22n − 3 · 2n + 3) .

Since the probability that {(x1, y1, z1, w1), (x2, y2, z2, w2)} and {(x̂1, ŷ1, ẑ1, ŵ1),

(x̂2, ŷ2, ẑ2, ŵ2)} is equal to ((2n − 1) · 2n)
−3 ·

(
(2n − 1) · 2n−1

)−1
= (2n − 1)−4 ·
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2−4n+1 , the average number n3 of (non null) common solutions with no equal
generating variables is(

24n−1 · (2n − 1) · (22n − 3 · 2n + 3)
)4 · ((2n − 1)−4 · 2−4n+1

)3
=

24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8
.

Similar to before, the probability p3 is given by

p3 =
1

n3
· 24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8
=

(22n − 3 · 2n + 3)4

(2n − 1)12
.

Total Number of Different (not null) Common Solutions – 24n Texts in a Coset
of M0. By simple computation, given plaintexts in the same coset of M0, the
number of different pairs of ciphertexts that belong to the same coset of D1,2,3

is approximately

24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 24n+5

(2n − 1)5
+ 3 · 24n

(2n − 1)2
.

B.2 Variance

As already proved, the probability distribution of 5-round AES in (F2n)4×4 is
well described by

D5−AES = 23 ·B3 + 2n+2 ·Bn+2 + 22n+1 ·B2n+1 ,

where Bi are binomial distributions. The pairs of texts with no equal generating
variables are represented by 23 ·B3, the pairs of texts with 1 equal generating
variable are represented by 2n+2 ·Bn+2 and finally the pairs of texts with 2 equal
generating variables are represented by 22n+1 ·B2n+1. We recall that given two
plaintexts with three equal generating variables, then they cannot belong to the
same coset of DJ for |J | ≤ 3 after one round.

Since all the previous cases (namely, B3, Bn+2 and B2n+1) are independent,
the total variance of the probability distribution for 5-round AES case is given
by

Var(D5−AES) = Var(23 ·B3) + Var(2n+2 ·Bn+2) + Var(22n+1 ·B2n+1)

= 26 · Var(B3) + 22n+4 · Var(Bn+2) + 24n+2 · Var(B2n+1) ,

where Var(α · X) = α2 · Var(X). Since Bi are binomial distribution, it follows
that

• Var(B3) is equal to

Var(B3) =
n3
23
· p3 · (1− p3) = 24n−4 · (2n − 1)4 · (22n − 3 · 2n + 3)4

(2n − 1)12
·

·
(

1− (22n − 3 · 2n + 3)4

(2n − 1)12

)
' 24n−4 · (22n − 3 · 2n + 3)4

(2n − 1)8
;
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• Var(Bn+2) is equal to

Var(Bn+2) =
nn+2

2n+2
· pn+2 · (1− pn+2) = 23n−1 · (2n − 1)3 · (2n−1 − 1)4 · 24

(2n − 1)8
·

·
(

1− (2n−1 − 1)4 · 24

(2n − 1)8

)
' (2n−1 − 1)4 · 23n+3

(2n − 1)5
;

• Var(B2n+1) is equal to

Var(B2n+1) =
n2n+1

22n+1
· p2n+1 · (1− p2n+1) = 3 · 22n−1 · (2n − 1)2 · 1

(2n − 1)4
·

·
(

1− 1

(2n − 1)4

)
' 3 · 22n−1

(2n − 1)2
.

By combining all the previous results, it follows that Var(D5−AES) is (ap-
proximately) equal to

26 · 24n−4 · (22n − 3 · 2n + 3)4

(2n − 1)8︸ ︷︷ ︸
'Var(B3)

+22n+4 · (2n−1 − 1)4 · 23n+3

(2n − 1)5︸ ︷︷ ︸
'Var(Bn+2)

+24n+2 · 3 · 22n−1

(2n − 1)2︸ ︷︷ ︸
'Var(B2n+1)

=

=
24n+2 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 25n+7

(2n − 1)5
+

3 · 26n+1

(2n − 1)2
.

C Influence of the Details of the S-Box and of the
MixColumns Matrix on the 5-round Truncated
Distinguisher based on the Mean

C.1 Influence of the Details of the S-Box

In this paper, we have presented a new truncated differential property for 5-round
AES-like ciphers in the case in which “the solutions of Eq. (1) are uniformly dis-
tributed for each input/output difference ∆I 6= 0 and ∆O 6= 0”, which is close
to being true if the S-Box is APN, or if the SBox is “close” to be APN. Even
if no S-Box can (completely) satisfy this assumption, the theoretically results
of Theorem 4 are matched by the practical results obtained for the AES S-Box,
which approximately satisfies the assumptions of such Proposition (as discussed
in Sect. 4). Thus, natural questions arise: What happens when the AES S-Box
is changed with an S-Box that does not satisfy (at all) the assumptions of The-
orem 4? Is it possible to naturally extend our results to any general case?

We have studied this problem working on small-scale AES, and by practi-
cal results the answer to the second question seems to be negative. In other
words, our theory does not extend naturally to generic S-Boxes, but it should be
modified depending on the particular properties/details of the S-Box function.

Here we limit ourselves to present our practical results that allow to better
understand which properties of the S-Box play a crucial role when computing
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Table 3. Given (4-bit) 5-round AES, we provide the results of our practical tests about
the number of different pairs of ciphertexts that belong to the same coset of MJ for
J fixed with |J | = 3 when the AES S-Box is replaced by the S-Box of other ciphers.
Together with the number of collisions, we give the variance Var of the probability
distribution that describes the number of solutions of S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

and the “Diff.” (= Difference) between the practical and the theoretical number (=
32 847.124) of collisions (under the assumptions of Theorem 4).

Cipher S-Box Numb. Collisions Diff. 24·DPmax Var Homogeneous

AES S-Box 32 848.6 +1.5 4 344/225 3

KLEIN S-Box 32 849.8 +2.7 4 344/225
MIDORI SB1 S-Box 32 843.0 −4.10 4 344/225

PRINCE S-Box 32 852.7 +5.5 4 344/225

Toy-6 S-Box 32 840.1 −7.1 6 392/225

RECTANGLE S-Box 32 861.2 +14.0 4 416/225
NOEKEON S-Box 32 878.7 +31.6 4 416/225

MIDORI SB0 S-Box 32 882.8 +35.7 4 416/225
PRESENT S-Box 32 886.3 +39.2 4 416/225

PRIDE S-Box 32 806.6 −40.5 4 416/225

Toy-8 S-Box 32 815.7 −31.5 8 464/225

Toy-10 S-Box 32 919.0 +71.9 10 864/225

Toy-12 S-Box 32 684.1 −163.0 12 896/225

the average number of collisions for 5-round AES. We leave the problem to the-
oretically explain such results open for future work.

In more details, we did several practical tests by counting the average number
of collisions in the case in which the AES S-Box is replaced with other S-Box
permutations present in the literature, including PRINCE [11], MIDORI [2],
KLEIN [18], PRESENT [10], RECTANGLE [29], NOEKEON [15], and PRIDE [1],
and with some “toy” S-Boxes (all details are given in Tables 4 – 5). For our tests,
given 216 plaintexts with one active diagonal (equivalently, in the same coset of
Di for i ∈ {0, 1, 2, 3}), we counted the average number of pairs of ciphertexts that
are equal in one fixed anti-diagonal (equivalently, that belong in the same coset of
IDJ for J fixed with |J | = 3), and we computed the mean. The obtained results
are listed in Table 3, where we also highlight the difference between the number
of collisions found by experiments and the theoretical number 32 847.124 under
the assumptions of Theorem 4 (while the average number of collisions for a ran-
dom permutation is 32 767.5). For each AES-like cipher, we used 125 000 ' 217

different initial cosets (given values are the average ones), where new (random)
keys are generated for each test.

We emphasize that, while all AES-like ciphers satisfy the multiple-of-8 prop-
erty, for some of them the average number of collisions is bigger than for the case
of a random permutation (e.g., AES S-Box), while for others it is smaller (e.g.,
Toy-12 S-Box): this seems to suggest the independence between the multiple-of-8
property and the value of the mean.
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Table 4. S-Box definitions. All the values in the table are in Hexadecimal.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

AES 6 B 5 4 2 E 7 A 9 D F C 3 1 0 8
PRINCE B F 3 2 A C 9 1 6 7 8 0 E 5 D 4
KLEIN 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

Midori SB0 C A D 3 E B F 7 8 9 1 5 0 2 4 6
Midori SB1 1 0 5 3 E 2 F 7 D A 9 B C 8 4 6
PRESENT C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

RECTANGLE 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2
NOEKEON 7 A 2 C 4 8 F 0 5 9 1 e 3 D B 6

PRIDE 0 4 8 F 1 5 E 9 2 7 A C B D 6 3
Toy-6 S-Box 1 3 6 4 2 5 9 A 0 F 7 E C B D 8
Toy-8 S-Box 1 3 6 4 2 5 A C 0 F 7 8 E B D 9
Toy-10 S-Box 6 4 C 5 0 7 2 E 1 F 3 D 8 A 9 B
Toy-12 S-Box 1 3 6 4 A F D 8 2 9 5 E 0 7 B C

Table 5. Differential Spectrum of the S-Boxes used in our experiments, that is prob-
ability that given an arbitrary ∆I 6= 0 and ∆O 6= 0, the equation “S-Box(x⊕∆IN )⊕
S-Box(x) = ∆OUT ” has n different solutions x (remember n is even).

S-Box 0 sol. 2 sol. 4 sol. 6 sol. 8 sol. 10 sol. 12 sol.

AES 8/15 6/15 1/15 0 0 0 0
PRINCE 8/15 6/15 1/15 0 0 0 0
KLEIN 8/15 6/15 1/15 0 0 0 0

MIDORI SB1 8/15 6/15 1/15 0 0 0 0

MIDORI SB0 43/75 24/75 8/75 0 0 0 0
PRESENT 43/75 24/75 8/75 0 0 0 0

RECTANGLE 43/75 24/75 8/75 0 0 0 0
NOEKEON 43/75 24/75 8/75 0 0 0 0

PRIDE 43/75 24/75 8/75 0 0 0 0

Toy-6 S-Box 125/225 81/225 18/225 1/225 0 0 0

Toy-8 S-Box 130/225 74/225 18/225 2/225 1/225 0 0

Toy-10 S-Box 140/225 60/225 17/225 7/225 0 1/225 0

Toy-12 S-Box 162/225 24/225 27/225 8/225 3/225 0 1/225

Observations and (initial) Considerations. As expected, the (absolute) dif-
ference between the found number of collisions and the theoretical one seems to
increase when the variance (of the S-Box) increases, while it seems to be inde-
pendent of the maximum differential probability DPmax. Moreover, the difference
between the theoretical number of collisions (given under the assumptions of
Theorem 4, i.e., that the number of solutions N∆I ,∆O of Eq. (1) are uniformly
distributed) and the practical one is minimum when the S-Box almost satisfies
the assumption of Theorem 4 (e.g., the AES S-Box).

To explain these results, we must refer to the proof of Theorem 4 given in
Sect. 6. The idea is to consider a system of 4 equations of the generic form
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(12), and to look for common solutions. In the case in which the solutions (in
particular, the number of solutions N∆I ,∆O ) of Eq. (1) are uniformly distributed,
the probability that a possible solution satisfies all the 4 equations of the system
is well approximated by (255−4 ·2−31)3, as explained in the proof of Sect. 6. This
allows to (theoretically) predict the average number of common solutions, and so
of collisions. Instead, in the case in which the solutions (in particular, the number
of solutions N∆I ,∆O ) of Eq. (1) are not uniform distributed (e.g. if the variance
of the S-Box is not “small”), the probability to have a common solution is in
general different from the one just given. As a result, the number of solutions of
a system of equations like (12) can be bigger or smaller with respect to the one
given in Theorem 4 (and the difference can be also non-negligible). It follows that
the number of collisions is influenced by the details of the S-Box (as expected).
As future work, an open problem is to theoretically prove this conjecture about
the link between the average number of collisions and the variance of the S-Box,
and to theoretically derive the numbers given in Table 3.

What about the distinguisher based on the variance (Sect. 8.1)? To compute
the value of the variance, we have exploited the “multiple-of-8” property [21],
the properties of the Variance (if X is a random variable and a a scalar, then
Var(α ·X) = α2 ·Var(X)) and the probability that – given a pair of plaintexts in
a coset of Di – two ciphertexts are equal in one fixed anti-diagonal (equivalently,
belong to the same coset of IDJ) after 5 rounds. Since such probability depends
on the details of the S-Box, it follows that also the value of the variance depends
on it. On the other hand, we found by practical tests that the value of the
variance changes much less than the corresponding value of the mean when the
S-Box changes. In general, the value of the variance is “almost” independent of
the details of the S-Box. Moreover, since the variance for an AES-like cipher is
much bigger than the one of a random permutation, the proposed distinguisher
works even if the value of the variance is (a little) different than the one given
in Theorem 4.

C.2 Influence of the Details of the MixColumns Matrix

Until now, we have focused only on the details of the S-Box. How does the average
number of collisions depend on the details of the MixColumns matrix?

MDS Matrix: “Good” vs “Bad” S-Box. We start by focusing on the case
in which the MixColumns matrix is MDS, and then we briefly discuss the other
cases. If the S-Box satisfies the assumptions of Theorem 4, then the average
number of collisions is (almost) independent of the MixColumns matrix details.
Instead, if the S-Box does not satisfy the previous requirement, this number de-
pends also on the details of the MixColumns matrix. In particular, in this last
case the solutions (and the corresponding number n∆I ,∆O ) of Eq. (1) are not
uniformly distributed with respect to ∆I 6= 0 and ∆O 6= 0, and so the number
of solutions of a system of 4 equations of the generic form (12) depends both
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on the details of the S-Box and of the linear layer. Indeed, remember that a
system of equations of the generic form (12) depends on the coefficients of the
MixColumns matrix, and so also the fact that a common solution exists.

To give a practical example, consider the circulant MixColumns matrix de-
fined asMC = circ(0x01, 0x03, 0x02, 0x02), that is, the AES MixColumns matrix
where 0x01 is replaced by 0x02 and vice-versa. We got that the number of col-
lisions in the case of AES S-Box is 32 850.32, while in the case of PRESENT
S-Box is 32 872.95. Thus, a difference in the MixColumns matrix implies almost
no difference for the AES S-Box case (on average, there are +1.75 collisions for
this new MDS matrix), while a higher difference occurs for the PRESENT S-Box
case (on average, there are −13.37 collisions for this new MDS matrix). Again,
this is due to the fact that the probability that a system of 4 equations of the
generic form (12) admits a common solution depends both on the details of the
S-Box and of the linear layer, in the case in which the S-Box is not “good” (with
respect to the assumptions of Theorem 4). Similar results can be obtained using
different MDS MixColumns matrices.

Non-MDS Matrix. Finally, if the AES MixColumns matrix is replaced by a
non-MDS matrix (which does not satisfy the assumptions of Theorem 4), then
the number of collisions can be different with respect to the one predicted by
Theorem 4 also in the case of “good” S-Box:

– in the case of the circulant Midori matrix MCMidori = circ(0x00, 0x01, 0x01,
0x01) – where some coefficients are equal to zero – and the AES S-Box, the
number of collisions after 5 rounds is on average 31 883.27 (instead of a
theoretical number of 32 847.124);

– using the circulant matrix circ(0x02, 0x01, 0x01, 0x01) – where all coefficients
are non-zero – and the AES S-Box, the number of collisions after 5 rounds
is on average 33 377.93 (instead of a theoretical number of 32 847.124).
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