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Abstract. We present function private public-key predicate encryption schemes
from standard cryptographic assumptions, that achieve new lower bounds on
the min-entropy of underlying predicate distributions. Existing function pri-
vate predicate encryption constructions in the public-key setting can be di-
vided into two broad categories. The first category of constructions are based
on standard assumptions, but impose highly stringent requirements on the
min-entropy of predicate distributions, thereby limiting their applicability
in the context of real-world predicates. For example, the statistically func-
tion private constructions of Boneh, Raghunathan and Segev (CRYPTO’13
and ASIACRYPT’13) are inherently restricted to predicate distributions with
min-entropy roughly proportional to the security parameter λ. The second
category of constructions mandate more relaxed min-entropy requirements,
but are either based on non-standard assumptions (such as indistinguisha-
bility obfuscation) or are secure in the generic group model. In this paper,
we affirmatively bridge the gap between these categories by presenting new
public-key constructions for identity-based encryption, hidden-vector encryp-
tion, and subspace-membership encryption (a generalization of inner-product
encryption) that are both data and function private under variants of the
well-known DBDH, DLIN and matrix DDH assumptions, while relaxing the
min-entropy requirement on the predicate distributions to ω(log λ). In sum-
mary, we establish that the minimum predicate entropy necessary for any
meaningful notion of function privacy in the public-key setting, is in fact,
sufficient, for a fairly rich class of predicates.
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tional Indistinguishability, Min-Entropy, Identity-Based Encryption, Hidden-
Vector Encryption, Inner-Product Encryption, Subspace-Membership Encryp-
tion

1 Introduction

Predicate encryption schemes [1–3] in the public-key setting allow a single public-
key to be associated with multiple secret-keys, where each secret-key corresponds
to a Boolean predicate f : Σ −→ {0, 1} over a pre-defined set of attributes Σ. A
plaintext message in a predicate encryption scheme is an attribute-payload message
pair (I,M) ∈ Σ ×M, with M being the payload message space. A secret-key skf



associated with a predicate f successfully decrypts a ciphertext C corresponding to
a plaintext (I,M) and recovers the payload message M if and only if f(I) = 1. On
the other hand, if f(I) = 0, attempting to decrypt C using skf returns ⊥.

The simplest sub-class of public-key predicate encryption is identity-based encryp-
tion (IBE) [4–6]. IBE supports a set of equality predicates fid : Σ −→ {0, 1} defined
as fid(x) = 1 if and only if x = id. The attribute space in this case is a set of identities
ID, and each identity id ∈ ID is associated with its own secret-key skid. A highly
expressive sub-class of predicate encryption is inner-product encryption (IPE) [2, 3,
7]. IPE supports a set of predicates fv : Σ −→ {0, 1} over a vector space of attributes
Σ = Fnq (q being a λ-bit prime), such that for v,x ∈ Fnq , we have fv (x) = 1 if and
only if 〈v,x〉 = 0, where 〈v,x〉 denotes the inner-product of the vectors v and x. IPE
is powerful enough to encompass IBE and many other predicate encryption systems
[3]. Subspace-membership encryption (SME) [8] is a generalization of IPE where a
predicate is defined with respect to a matrix W ∈ Fm×nq instead of a vector v ∈ Fnq ,
while an attribute is still a vector x ∈ Fnq . A special sub-class of IPE is hidden-
vector encryption (HVE) [1] that supports conjunctive equality predicates, defined
over predicate vectors with one or more occurrences of a special wildcard symbol ?.

Searchable Encryption from Predicate Encryption. Predicate encryption pro-
vides a generic framework for searchable encryption supporting a wide range of query
predicates including conjunctive, disjunctive, range and subset queries [9, 1–3]. For
instance, a predicate encryption system can be used to realize a mail gateway that
follows some special instructions to route encrypted mails based on their header in-
formation (e.g. if the mail is from the boss and needs to be treated as urgent). The
mail gateway is given the secret-key corresponding to the predicate is-urgent, the mail
header serves as the attribute, while the routing instructions can be used as the pay-
load message. Another application could be a payment gateway that flags encrypted
payments if they correspond to amounts beyond some pre-defined threshold X. The
payment gateway is given the secret-key corresponding to the predicate greater-than-
X, the payment amount itself serves as the attribute, while the flag signal is encoded
as the payload message.

Data and Function Privacy of Predicate Encryption. Suppose a probabilistic
polynomial-time adversary against a predicate encryption scheme receives a cipher-
text C corresponding to an attribute I and a payload message M . In addition, suppose
that the adversary also receives secret-keys sk1, · · · , skn corresponding to predicates
f1, · · · , fn, subject to the restriction that fj(I) = 0 for each j ∈ [1, n]. Informally, a
predicate encryption scheme is data private if it guarantees that the adversary learns
nothing beyond the absolute minimum about both the attribute I and the message
M from the ensemble

(
C, {skj}j∈[1,n]

)
. Additionally, the predicate encryption scheme

is function private if it also guarantees that the secret-keys sk1, · · · , skn reveal no in-
formation beyond the absolute minimum about the underlying predicates f1, · · · , fn.
Quite evidently, the notions of data and function privacy for a predicate encryption
scheme are independent in the sense that one does not necessarily imply the other.
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1.1 Function Private Predicate Encryption in the Public-Key Setting

As pointed out by Boneh, Raghunathan and Segev in [10, 8], formalizing a realistic
notion of function privacy in the context of public-key predicate encryption is, in
general, not straightforward. Consider, for example, an adversary against an IBE
scheme who is given a secret-key skid corresponding to an identity id and has access
to an encryption oracle. As long as the adversary has some apriori information that
the identity id belongs to a set S such that |S| is at most polynomial in the security
parameter λ, it can fully recover id from skid : it can simply resort to encrypting
a random message M under each identity in S, and decrypting using skid to check
for a correct recovery. Consequently, Boneh, Raghunathan and Segev [10, 8] consider
a framework for function privacy under the minimal assumption that any predicate
is sampled from a distribution with min-entropy at least super logarithmic in the
security parameter λ. This rules out trivial attacks and results in a meaningful notion
of function privacy in the public-key setting. However, their work leaves open the
following important issues, which we address in this paper:

• The predicate encryption schemes proposed in [10, 8] are inherently restricted
to satisfying a statistical notion of function privacy against computationally un-
bounded adversaries. For a vast majority of applications, a computational notion
of function privacy against probabilistic polynomial-time adversaries suffices. It
is currently an open problem to design public-key predicate encryption schemes
whose function privacy can be based on standard computational assumptions.

• Ideally, the function privacy guarantees of any public-key predicate encryption
scheme should hold under the minimal assumption that the predicates are sam-
pled from a distribution with min-entropy k = ω(log λ) (where λ is the security
parameter), so as to rule out trivial attacks. However, the statistically function
private constructions in [10, 8] assume predicate distributions with min-entropy
k ≥ λ. This rather stringent assumption stems from their use of the universal
hash lemma for arguing the statistical indistinguishability of secret-keys against
unbounded adversaries, and limits the applicability of their constructions in the
context of real-world predicates.

• It is also an open problem to construct function private hidden-vector encryption
schemes. Existing function private constructions for inner-product encryption and
subspace-membership encryption do not naturally subsume hidden-vector encryp-
tion due to the presence of a special wildcard character in the predicate vectors
for the latter. Function private HVE paves the way for realizing function private
searchable encryption schemes supporting conjunctive, subset and range queries
over encrypted data.

Agrawal et al. [11] have recently proposed a new universal composability-style defi-
nition of simulation-security for predicate encryption, capturing both data and func-
tion privacy. To the best of our knowledge, the only known public-key construction
satisfying this wishful notion of security is an IPE scheme proposed by Agrawal et
al. themselves in [11]. This construction does not impose stringent requirements on
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the min-entropy of the underlying predicate distributions. However, the security of
this construction cannot be based on any standard computational assumption to the
best of our knowledge (the security proof presented in [11] is in the generic group
model). Other existing approaches to achieving function privacy that also preclude
strict min-entropy requirements, such as that proposed by Iovino et al. in [12], are
based on non-standard assumptions such as indistinguishability obfuscation (IO). In
particular, the approach of Iovino et al. assumes the existence of a quasi-strong indis-
tinguishability obfuscation algorithm over the class of all NC1) circuits. To the best of
our knowledge, general-purpose IO is still unachievable from standard cryptographic
assumptions based on existing mathematical objects (such as bilinear maps on ellip-
tic curve groups), although the gap between such assumptions and the ones required
for IO has been narrowed considerably in recent years [13]. Other predicate encryp-
tion schemes for all poly-depth bounded circuits [14, 15, 7] from standard assumptions
such as LWE are trivially non-function private, since they inherently assume that the
secret-key contains the predicate circuit in the clear.

1.2 Our Contributions

In this paper, we address the following open problem arising out of the above discus-
sion:

Is it possible to design public-key predicate encryption schemes that are provably data
and function private under standard computational assumptions, while imposing the
bare-minimum min-entropy requirements on the underlying predicate distributions?

We answer these questions in the affirmative by presenting new public-key construc-
tions for identity-based encryption, subspace-membership encryption (a generaliza-
tion of inner-product encryption) and hidden vector encryption, that are both data
and function private under variants of the well-known DBDH, DLIN and matrix DDH
assumptions, while relaxing the min-entropy requirement on the predicate distribu-
tions to ω(log λ). Our results may be summarized in the form of the following informal
theorems:

Theorem (Informal). Under the DBDH and DLIN assumptions over bilinear groups,
there exists an adaptively data private and computationally function private identity-
based encryption scheme for identities sampled from distributions with min-entropy
k = ω (log λ).

Theorem (Informal). Under the matrix DDH assumption over bilinear groups,
there exists an adaptively data private and computationally function private subspace-
membership encryption scheme for predicate matrices sampled from distributions with
min-entropy k = ω (log λ).
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Theorem (Informal). Under the matrix DDH assumption over bilinear groups,
there exists an adaptively data private and computationally function private hidden-
vector encryption scheme for predicate vectors sampled from distributions with min-
entropy k = ω (log λ).

Our constructions concretely establish that the minimum predicate entropy necessary
for any meaningful notion of function privacy in the public-key setting, is in fact,
sufficient, for a fairly rich class of predicates.

1.3 Overview of Techniques

We briefly summarize our techniques below. A common technique implicit in the
function privacy arguments for all our constructions in this paper is the use of hash
proof systems [16, 17].

Function-Private IBE from DBDH and DLIN (Section 4). Our function pri-
vate IBE construction is inspired by the seminal IBE scheme of Boneh and Franklin [4].
It involves public parameters pp = (g, gs1 , gs2), where g generates a bilinear group G
of prime order q, and the master secret key is msk = (s1, s2) ∈ Zq × Zq. The scheme
uses two hash functions H1 and H2, that are modeled as random oracles in the se-
curity proofs. The secret-key skid corresponding to an identity id is randomized as(
H1 (id)

s1·z1 ·H2 (id)
s2·z2 , z1, z2

)
for z1, z2

R←− Zq, while a ciphertext C corresponding

to (id,M) is generated as (gr,M · e (gs1 , H1 (id))
r
, e (gs2 , H2 (id))

r
) for r

R←− Zq. The
decryption procedure is essentially similar to that in the Boneh-Franklin IBE scheme.
Note that both the secret-key and the ciphertext comprise of a constant number of
group elements. We establish the data privacy of this scheme from the DBDH assump-
tion via a sequence of two hybrid experiments, each of which manipulate the random
oracles in the same way as [4] to answer secret-key and challenge ciphertext queries.
Additionally, we establish the function privacy of this scheme using arguments akin
to those of Cramer and Shoup [16], where the reduction knows the master-secret-key
at all times (allowing it to answer any number of secret key-queries), and embeds a
random DLIN instance in the challenge secret-key provided to the function privacy
adversary. The proof suitably manipulates the random oracles, and also exploits the
min-entropy restrictions on the challenge identity-distributions to argue the negligi-
bility of abortion-probability during the reduction.

Function-Private SME from Matrix-DDH (Section 5). Our function private
subspace-membership encryption (SME) scheme is inspired by a matrix-DDH-based
variant of the recently proposed adaptively data private IPE of Agrawal, Libert and
Stehlé [7]. It involves public parameters of the form pp =

(
g, gA, gS·A

)
, where g

generates a bilinear group G of prime order q, A ∈ Zl1×l2q , S ∈ Zn×l1q , and the
master-secret-key is msk = S. The secret-key corresponding to a predicate matrix

W ∈ Zm×nq is generated as
(
gy

T·W, gy
T·W·S

)
for a randomly sampled y ∈ Zmq , while
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a ciphertext C corresponding to an attribute-message pair (x,M) ∈ Znq ×M is gen-

erated as
(
gA·r, gα·x+m+S·A·r) for r

R←− Zl2q , α
R←− Zq and m =

[
M 0 0 · · · 0

]T ∈ Znq .
The decryption procedure requires the computation of a discrete log over the tar-
get group GT of the bilinear map, which necessitates that M is a poly-sized subset
of Zq. The analysis of both data and function privacy for this scheme relies on the
implicit use of hash proof systems, exploiting the following fact: the restriction on
the number of secret-key queries Q ensures that the master-secret-key S has suffi-
cient entropy from an adversary’s point of view, even given the public parameter pp
and B’s responses to Q-many secret-key queries. This ensures that at some stage of
the data privacy experiment (respectively, the function privacy experiment), if the
challenge ciphertext (respectively, the challenge secret-key) is generated using the
master-secret-key instead of the public parameter, it will perfectly hide which chal-
lenge attribute-message pair (respectively, the challenge predicate distribution). As in
any security proof based on hash-proof systems, both the data and function privacy
reductions know the master-secret-key at all times, allowing them to answer secret-
key queries at any time. The function privacy proof additionally exploits the fact that
any predicate matrix sampled from distribution with super-logarithmic min-entropy
has full rank n with overwhelmingly large probability.

Function-Private HVE from Matrix-DDH (Section 6). Our function-private
hidden-vector encryption (HVE) scheme uses techniques similar to our function pri-
vate SME construction, with slight differences to account for the presence of the
wildcard character ?. The public parameters and master-secret-key of our HVE con-
struction are:

pp =
(
g, {gAj}j∈[1,n+1], {gS·Aj}j∈[1,n+1]

)
, msk = S

Given a predicate vector v = (v1, · · · , vn) ∈ (Zq ∪ {?} \ {0})n, the key-generation

algorithm creates a matrix W =
[
W1 |W1 · v′

]
∈ Zn×(n+1)

q , where W1
R←− Zn×nq

is a random invertible matrix, and v′ ∈ Znq is a vector created from v by substi-
tuting the wildcard characters with 0. It then outputs the secret-key for this matrix
using the key-generation algorithm of our SME scheme, along with a set S com-
prising of the location of the wildcard characters in v (this is treated as a trivial
function privacy leakage). The ciphertext C corresponding to an attribute-message
pair (x = (x1, · · · , xn) ,M) ∈ (Zq \ {0})n×M is generated via the following steps by
the encryption algorithm:

• It decomposes the attribute vector x into n vectors of the form:

x1 =
[
x1 0 · · · 0 0 0

]T ∈ Zn+1
q

x2 =
[
0 x2 · · · 0 0 0

]T ∈ Zn+1
q

...

xn =
[
0 0 · · · 0 xn 0

]T ∈ Zn+1
q

• It also sets xn+1 =
[
0 0 · · · 0 0 (−1)

]T ∈ Zn+1
q
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• The final ciphertext C comprises (n+ 1) SME ciphertexts - the first n corre-
sponding {(xj , 0)}j∈[1,n], and the last corresponding to the pair (xn+1,M). The
ciphertexts share the same random scalar α ∈ Zq, which is subsequently exploited
during decryption.

The decryption algorithm cleverly manipulates the aforementioned SME ciphertexts

to obtain a ciphertext C ′ corresponding to
(∑

j∈S∪{n+1} xj ,M
)

, where S comprises

of the location of the wildcard characters in the predicate vector v. It easy to see that
if vj = xj for each j ∈ [1, n] such that vj 6= ?, we must have∑

j∈S∪{n+1}

xj =

[
v′

(−1)

]
∈ Zn+1

q

and hence W ·
(∑

j∈S∪{n+1} xj

)
= 0 ∈ Znq . Hence, a procedure similar to the decryp-

tion algorithm of our SME scheme can now be used to recover the payload message
M . The data and function privacy arguments for the HVE scheme are again based
on the use of hash-proof systems, akin to those for the SME scheme.

1.4 Notations Used

This section summarizes the notations used throughout the rest of the paper.

General Notations. We write x
R←− χ to represent that an element x is sampled

uniformly at random from a set X . The output a of a deterministic algorithm A is
denoted by x ← A and the output a′ of a randomized algorithm A′ is denoted by

x′
R←− A′. We refer to λ ∈ N as the security parameter, and denote by exp(λ), poly(λ)

and negl(λ) any generic (unspecified) exponential function, polynomial function and
negligible function in λ respectively. Note that a function f : N → N is said to be
negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ) when λ is sufficiently
large. For a, b ∈ Z such that a ≤ b, we denote by [a, b] the set of integers lying between
a and b (both inclusive). For a finite field Fq (q being a λ-bit prime) and m,n ∈ N, we
denote by Fm×nq the space of all m× n matrices W with elements from Fq. Further,
we use the short-hand notation Fmq to represent the vector space Fm×1

q . Finally, given

a matrix W ∈ Fm×nq , its transpose in Fn×mq is denoted as WT.

Bilinear Group Notations. Let GroupGen(1λ) be a probabilistic polynomial-time
algorithm that takes as input a security parameter λ, and outputs a tuple of the form
(G,GT , q, g, e), where G and GT are groups of order q (q being a λ-bit prime), g is
a generator for G and e : G×G −→ GT is an efficiently computable non-degenerate
bilinear map. The group G is popularly referred to as a bilinear group [4]. Now, given
a matrix W = {wi,j}i∈[1,m],j∈[1,n] ∈ Zm×nq , we use the following notations:

• gW: Denotes the set of group elements {gwi,j}i∈[1,m],j∈[1,n] ∈ Gm×n
• e(g, g)W: Denotes the set of group elements {e(g, g)wi,j}i∈[1,m],j∈[1,n] ∈ Gm×nT
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The aforementioned notations lead to the following straightforward observations:

Observation 1.1 Let W1 ∈ Zm×nq and W2 ∈ Zm×nq be two matrices for m,n =

poly(λ). Then gW1+W2 is well-defined, and efficiently computable given
(
gW1 , gW2

)
.

Observation 1.2 Let W1 ∈ Zm×nq and W2 ∈ Zn×lq be two matrices for m,n, l =

poly(λ). Then gW1·W2 is well-defined, and may be efficiently computed given either(
gW1 ,W2

)
or
(
W1, g

W2
)
.

Observation 1.3 let W1 ∈ Zm×nq and W2 ∈ Zn×lq be two matrices for m,n, l =

poly(λ). Then e(g, g)W1·W2 is well-defined, and may be efficiently computed given(
gW1 , gW2

)
.

Min-Entropy of Random Variables. The min-entropy of a random variable Y
is called H∞(Y ) and is evaluated as − log (maxyPr[Y = y]); a random variable Y
is said to be a k-source if H∞(Y ) ≥ k. We additionally define an (m,n, k)-matrix-
source for m,n ∈ N to be a matrix of mutually independent random variables Y =(
{Yi,j}i∈[1,m],j∈[1,n]

)
, such that each individual Yi,j is uniformly distributed over some

finite field Fqk , where qk is a k-bit prime. It is easy to see that each such Yi,j represents
a k-source.

2 Background and Preliminaries

In this section, we recall certain standard computational assumptions in bilinear
groups, and also introduce certain min-entropy variants of these assumptions.

2.1 Standard Computational Assumptions in Bilinear Groups

The Decisional Bilinear Diffie-Hellman assumption (DBDH). Let GroupGen(1λ)
be a probabilistic polynomial-time algorithm that takes as input a security parameter
λ, and outputs a tuple of the form (G,GT , q, g, e), where G and GT are groups of
order q (q being a λ-bit prime), g is a generator for G and e : G × G −→ GT is
an efficiently computable non-degenerate bilinear map. The decisional bilinear Diffie-
Hellman assumption is that the distribution ensembles:

{(g, ga1 , ga2 , ga3 , e(g, g)a1·a2·a3)}
a1,a2,a3

R←−Zq
and {(g, ga1 , ga2 , ga3 , Z)}

a1,a2,a3
R←−Zq,Z

R←−GT

are computationally indistinguishable, where (G,GT , q, g, e)← GroupGen(1λ).

The Decisional Linear Assumption (DLIN). Let G be a group of prime order q
and let g1, g2, g3 be arbitrary generators for G. The decisional linear assumption [18]
is that the distribution ensembles:{(

g1, g2, g3, g
a1
1 , ga22 , ga1+a2

3

)}
a1,a2

R←−Zq
and {(g1, g2, g3, g

a1
1 , ga22 , ga33 )}

a1,a2,a3
R←−Zq

are computationally indistinguishable, where g1, g2, g3
R←− G. A generalized version of

this assumption, denoted as k-DLIN, is presented in Appendix B.
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The Matrix Decisional Diffie-Hellman Assumption (MDDH). Let G be a
group of prime order q and let g be an arbitrary generator for G. Also, let m,n ∈ N
with m > n, and let Dm,n denote a matrix distribution from which one can efficiently
sample with overwhelmingly large probability a matrix W ∈ Zm×nq , such that W has
full rank n. The Dm,n-matrix decisional Diffie-Hellman assumption [19] is that the
distribution ensembles:

{(
gW, gW·y

)}
W

R←−Dm,n , y R←−Znq
and

{(
gW, gu

)}
W

R←−Dm,n , u R←−Zmq

are computationally indistinguishable, where g
R←− Zq and m,n = poly(λ).

The Dm,n-MDDH assumption holds even if the group G is bilinear, albeit subject to
the additional restriction that n ≥ 2 [19]. This restriction may, however, be relaxed
if the corresponding bilinear map is asymmetric over two distinct source groups G1

and G2, and the MDDH assumption is assumed to hold in either one or both these
groups (analogous to the external Diffie-Hellman (XDH) and symmetric external
Diffie-Hellman assumptions (SXDH) [20], respectively).

2.2 Min-Entropy-based Sub-Families of the MDDH Assumption

In this section, we introduce two min-entropy-based sub-families of the MDDH as-
sumption. We first state the following claims:

Claim 2.1 Let V =
(
{Vi,j}i∈[1,m],j∈[1,n]

)
be an (m,n, k)-matrix-source over Zm×nq

for k = ω (log λ). Then, V represents a matrix distribution from which one can
efficiently sample with overwhelmingly large probability a matrix W ∈ Zm×nq , such
that W has full rank n.

Claim 2.2 Let V1 =
(
{Vi,j,1}i∈[1,n],j∈[1,n]

)
be an (n, n, k)-matrix-source over Zn×nq ,

such that k = ω (log λ), and let V2 =
(
{Vi,2}i∈[1,n]

)
be any non-zero distribution

over Znq . Then Ṽ =
[
V1 | V1 ·V2

]T ∈ Z(n+1)×n
q represents a matrix distribution

from which one can efficiently sample with overwhelmingly large probability a matrix

W ∈ Z(n+1)×n
q , such that W has full rank n.

The detailed proofs of these claims are presented in Appendix C. The aforementioned
claims allows us to define the following min-entropy-based sub-families of the MDDH
assumption.

Definition 2.1 (The (m,n, k)-Source-MDDH Assumption). Let G be a group of
prime order q and let g be an arbitrary generator for G. The (m,n, k)-source-MDDH
assumption, for m,n ∈ N such that m > n and k = ω (log λ), is that for any proba-
bilistic polynomial-time adversary A, the following holds:

AdvMDDH
m,n,k,A(λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
MDDH,m,n,k,A(λ) = 1

]
−Pr

[
Expt

(1)
MDDH,m,n,k,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and b ∈ {0, 1}, the experiment Expt
(b)
MDDH,m,n,kA(λ) is defined

as:
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1. (V∗, state)
R←− A

(
1λ,m, n, k

)
, where V∗ =

(
{V ∗i,j}i∈[1,m],j∈[1,n]

)
is an (m,n, k)-

matrix-source.
2. Sample W

R←− V∗.

3. If b = 1, sample y
R←− Znq , and set u = W·y. Else if b = 0, sample u

R←− Zmq .

4. b′
R←− A

((
gW, gu

)
, state

)
.

5. Output b′.

The (m,n, k)-Source-MDDH Assumption holds even if the group G is bilinear, subject
to the additional restriction that n ≥ 2.

Definition 2.2 (The (n, k)-Source-MDDH Assumption). Let G be a group of prime
order q and let g be an arbitrary generator for G. The (n, k)-source-MDDH assump-
tion, for n ∈ N and k = ω (log λ), is that for any probabilistic polynomial-time adver-
sary A, the following holds:

AdvMDDH
n,k,A (λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
MDDH,n,k,A(λ) = 1

]
−Pr

[
Expt

(1)
MDDH,n,k,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and b ∈ {0, 1}, the experiment Expt
(b)
MDDH,n,kA(λ) is defined as:

1. (V∗1,V
∗
2, state)

R←− A
(
1λ, n, k

)
, where V∗1 =

(
{V ∗i,j,1}i∈[1,n],j∈[1,n]

)
is an

(n, n, k)-matrix-source and V∗2 =
(
{V ∗i,2}i∈[1,n]

)
is a non-zero distribution

over Znq .

2. Let Ṽ∗ =
[
V∗1 | V∗1 ·V∗2

]T
. Sample W

R←− Ṽ∗.

3. If b = 1, sample y
R←− Znq , and set u = W·y. Else if b = 0, sample u

R←− Zmq .

4. b′
R←− A

((
gW, gu

)
, state

)
.

5. Output b′.

Once again, the (n, k)-Source-MDDH Assumption holds even if the group G is bilin-
ear, subject to the additional restriction that n ≥ 2.

3 Function Privacy of Public-Key Predicate Encryption

In this section, we formally define the indistinguishability-based framework for func-
tion privacy of predicate encryption in the public-key setting. We consider adversaries
that have access to the public parameters of the scheme, as well as a secret-key gen-
eration oracle. The adversary is additionally allowed to query a left-or-right function-
privacy oracle LoRFP. This oracle takes as input two adversarially-chosen distributions
over the class of predicates F , subject to certain min-entropy requirements, and out-
puts a secret-key for a predicate sampled from one of these distributions. At the end of
the interaction, the adversary should be able to distinguish between the left and right
modes of operation of LoRFP with only negligible probability. The formal definitions
for function privacy are presented separately for three specific sub-classes of predi-
cate encryption considered in this paper - namely, identity-based encryption (IBE),
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subspace-membership encryption (SME) and hidden-vector encryption (HVE). Note
that the corresponding data privacy notions for each of these predicate encryption
systems can be captured within a single indistinguishability-based framework (see
Definition A.1 in Appendix A).

3.1 Identity-Based Encryption and its Function Privacy

An identity-based encryption scheme ΠIBE over an identity space ID and a message
space M is a public-key predicate encryption scheme supporting the set of equality
predicates fid : ID −→ {0, 1} defined as fid(id

′) = 1 if and only if id′ = id. The
secret-key associated with an identity id ∈ ID is denoted as skid. We now define the
function privacy notions for an IBE scheme.

Definition 3.1 (Left-or-Right Function Privacy Oracle for IBE). A left-or-right func-
tion privacy oracle LoRFP

IBE takes as input a quadruplet (mode,msk, ID0, ID1), where
mode ∈ {left, right}, msk is the master-secret-key of the IBE scheme, and (ID0, ID1)
are circuits representing distributions over the identity space ID. If mode = left,

the oracle samples id
R←− ID0, while if mode = right, it samples id

R←− ID1. It then

responds with skid
R←− KeyGen (msk, id).

Definition 3.2 (Computationally Function Private IBE). An IBE scheme ΠIBE =
(Setup,KeyGen,Enc,Dec) is said to be computationally function private if for any
probabilistic polynomial-time adversary A, the following holds:

AdvFP
ΠIBE,A(λ)

def
=

∣∣∣∣Pr
[
ExptleftFP,ΠIBE,A(λ) = 1

]
−Pr

[
ExptrightFP,ΠIBE,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and mode ∈ {left, right}, the experiment Exptmode
FP,ΠIBE,A(λ) is

defined as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. b
R←− ALoRFP

IBE(mode,msk,·,·),KeyGen(msk,·) (1λ, pp).
3. Output b.

subject to the restriction that each query issued to LoRFP
IBE (mode,msk, ·, ·) is of the

form (ID∗0, ID
∗
1), where both ID∗0 and ID∗1 represent k-sources such that k = ω (log λ).

3.2 Subspace-Membership Encryption and its Function Privacy

A subspace-membership encryption scheme ΠSME over an attribute space Σ = Fnq
(q being a λ-bit prime) and a payload message space M is a public-key predicate
encryption scheme supporting the set of matrix predicates fW : Fnq −→ {0, 1}, such
that for W ∈ Fm×nq and x ∈ Fnq , we have fW (x) = 1 if and only if W · x = 0 ∈ Fmq .
The secret-key associated with a matrix W is denoted as skW. We now define the
function privacy notions for an SME scheme.
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Definition 3.3 (Left-or-Right Function Privacy Oracle for SME). A left-or-right
function privacy oracle LoRFP

SME takes as input a quadruplet (mode,msk,V0,V1),
where mode ∈ {left, right}, msk is the master-secret-key of the SME scheme, and
(V0,V1) are circuits representing joint distributions over Fm×nq . If mode = left, the

oracle samples W
R←− V0, while if mode = right, it samples W

R←− V1. It then

responds with skW
R←− KeyGen (msk,W).

Definition 3.4 (Computationally Function Private SME). An SME scheme ΠSME =
(Setup,KeyGen,Enc,Dec) is said to be computationally function private if for any
probabilistic polynomial-time adversary A, the following holds:

AdvFP
ΠSME,A(λ)

def
=

∣∣∣∣Pr
[
ExptleftFP,ΠSME,A(λ) = 1

]
−Pr

[
ExptrightFP,ΠSME,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and mode ∈ {left, right}, the experiment Exptmode
FP,ΠSME,A(λ) is

defined as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. b
R←− ALoRFP

SME(mode,msk,·,·),KeyGen(msk,·) (1λ, pp).
3. Output b.

subject to the restriction that each query issued to LoRFP
SME (mode,msk, ·, ·) is of the

form (V∗0,V
∗
1), where both V∗0 =

(
{V ∗i,j,0}i∈[1,m],j∈[1,n]

)
and V∗1 =

(
{V ∗i,j,1}i∈[1,m],j∈[1,n]

)
represent (m,n, k)-matrix-sources for k = ω (log λ).

Avoiding Arbitrary Correlations among the Elements of W. Note that Def-
inition 3.4 essentially requires that a secret-key skW reveals no unnecessary informa-
tion about the predicate matrix W as long as the elements of W are sampled from
mutually independent and sufficiently unpredictable distributions. This restriction is
imposed to rule out arbitrary correlations among the elements of W. Indeed, it is im-
possible to achieve any realistic notion of function privacy for subspace-membership
encryption that allows such arbitrary correlations among the elements of a predicate
matrix (see [8] for a more detailed explanation of this impossibility).

3.3 Hidden-Vector Encryption and its Function Privacy

A hidden-vector encryption scheme ΠHVE over an attribute space Σ, a special wildcard
symbol ?, and a payload message space M, is a public-key predicate encryption
scheme supporting predicates of the form fv : Σ −→ {0, 1}, such that for each
v = (v1, · · · , vn) ∈ (Σ ∪ {?})n, and each x = (x1, · · · , xn) ∈ Σn, we have fv (x) = 1 if
and only if for each j ∈ [1, n], either vj = xj or vj = ?. The secret-key associated with
a predicate vector v is denoted as skv. Although SME subsumes HVE, the presence
of the wildcard character in the predicate vector implies that the function privacy
definitions for SME do not naturally apply to HVE [3]. This necessitates separate
definitions for the function privacy of an HVE scheme.
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Definition 3.5 (Left-or-Right Function Privacy Oracle for HVE). A left-or-right
function privacy oracle LoRFP

HVE takes as input a quintuplet (mode,msk,V0,V1,S),
where mode ∈ {left, right}, msk is the master-secret-key of the HVE scheme, (V0,V1)
are circuits representing joint distributions over Σn, and S ⊆ [1, n]. If mode = left,

the oracle samples v
R←− V0, while if mode = right, it samples v

R←− V1. For such a
v = (v1, · · · , vn), the oracle constructs a second v′ = (v′1, · · · , v′n) such that v′j = vj

if j ∈ S, and v′j = ?, otherwise. It then responds with skv′
R←− KeyGen (msk,v′).

Definition 3.6 (Computationally Function Private HVE). An HVE scheme ΠHVE =
(Setup,KeyGen,Enc,Dec) is said to be computationally function private if for any
probabilistic polynomial-time adversary A, the following holds:

AdvFP
ΠHVE,A(λ)

def
=

∣∣∣∣Pr
[
ExptleftFP,ΠHVE,A(λ) = 1

]
−Pr

[
ExptrightFP,ΠHVE,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and mode ∈ {left, right}, the experiment Exptmode
FP,ΠHVE,A(λ) is

defined as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. b
R←− ALoRFP

HVE(mode,msk,·,·,·),KeyGen(msk,·) (1λ, pp).
3. Output b.

subject to the restriction that each query issued to LoRFP
HVE (mode,msk, ·, ·, ·) is of

the form (V∗0,V
∗
1,S∗), where both V∗0 =

(
{V ∗j,0}j∈[1,n]

)
and V∗1 =

(
{V ∗j,1}j∈[1,n]

)
represent (1, n, k)-matrix-sources for k = ω (log λ), and S∗ ⊆ [1, n].

Note that our definitions for function private HVE essentially require that a secret-key
skv reveals no more information about v than the location of the wildcard characters,
subject to the restriction that the remaining components of v are sampled from
sufficiently unpredictable distributions. This trivial leakage induced by the presence
of wildcard characters is not captured by our function privacy definitions for SME in
general, and necessitates separate function privacy definitions for HVE.

3.4 Multi-Shot vs. Single-Shot Function Privacy Adversaries

Note that Definitions 3.2 and 3.4 consider function privacy adversaries that query the
left-or-right function privacy oracle for any polynomial number of times. In fact, as
adversaries are also given access to the key-generation oracle, this multi-shot definition
is polynomially equivalent to its single-shot variant in which adversaries query the
function privacy oracle at most once. This equivalence may be proved by a hybrid
argument (originally proposed by Boneh, Raghunathan and Segev [10, 8]), where the
hybrids are constructed such that only one query is forwarded to the function privacy
oracle, and all other queries are answered using the key-generation oracle.
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4 Computationally Function Private Identity-Based
Encryption

In this section we present an IBE scheme based on the DBDH and DLIN assump-
tions in the random-oracle model. The scheme is inspired by the IBE of Boneh and
Franklin [4]. The scheme is described below, and its proofs of data privacy and func-
tion privacy are presented subsequently.

4.1 The Scheme

Let GroupGen(1λ) be a probabilistic polynomial-time algorithm that takes as input
a security parameter λ, and outputs the tuple (G,GT , q, g, e), where G and GT are
groups of of order q (q being a λ-bit prime), g is a generator for G and e : G×G −→ GT
is an efficiently computable non-degenerate bilinear map. The scheme ΠIBE

DBDH+DLIN

is parameterized by the security parameter λ ∈ N. For any such λ, we denote by IDλ
andMλ the identity space and the message space, respectively. The scheme uses two
hash functions H1 : IDλ −→ G and H2 : IDλ −→ G (modeled as random oracles).

• Setup: The setup algorithm samples (G,GT , q, g, e)
R←− GroupGen(1λ) on input

the security parameter 1λ. It also samples s1, s2
R←− Zq, and outputs the public

parameter pp and the master-secret-key msk as:

pp = (g, gs1 , gs2) , msk = (s1, s2)

• KeyGen: On input the public parameter pp, the master-secret-key msk and an

identity id ∈ IDλ, the key generation algorithm samples z1, z2
R←− Zq and outputs

the secret-key skid = (d1, d2, d3) where:

d1 = H1 (id)
s1·z1 ·H2 (id)

s2·z2 , d2 = z1 , d3 = z2

• Enc: On input the public parameter pp, an identity id ∈ IDλ and a message

M ∈ Mλ, the encryption algorithm samples r
R←− Zq and outputs the ciphertext

C = (c1, c2, c3) where:

c1 = gr , c2 = M · e (gs1 , H1 (id))
r

, c3 = e (gs2 , H2 (id))
r

• Dec: On input a ciphertext C = (c1, c2, c3) and a secret-key skid = (d1, d2, d3), the
decryption algorithm outputs:

M ′ =

(
cd22 · c

d3
3

e (d1, c1)

)1/d2
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Correctness. Consider a ciphertext C = (c1, c2, c3) corresponding to a message M
under an identity id, and a secret-key skid = (d1, d2, d3) corresponding to the same
identity id. Then, we have:

M ′ =

(
cd22 · c

d3
3

e (d1, c1)

)1/d2

=

(
Mz1 · e (gs1 , H1 (id))

r·z1 · e (gs2 , H2 (id))
r·z2

e
(
H1 (id)

s1·z1 ·H2 (id)
s2·z2 , gr

) )1/z1

= M ·
(
e (gs1 , H1 (id))

r·z1 · e (gs2 , H2 (id))
r·z2

e (gr, H1 (id))
s1·z1 · e (gr, H2 (id))

s2·z2

)1/z1

= M

Therefore as long as z1 6= 0 (mod q) (an event which occurs with probability 1− 1/q
over the randomness of KeyGen), the message is recovered correctly.

4.2 Security of the Scheme

Adaptive Data Privacy. We state the following theorem for the adaptive data
privacy of ΠIBE

DBDH+DLIN:

Theorem 4.1 Our IBE scheme ΠIBE
DBDH+DLIN is adaptively data private under the

DBDH assumption in the random oracle model.

Proof. The analysis of data privacy uses techniques very similar to those of Boneh and
Franklin [4]. We define a sequence of three experiments, the first of which is identical
to the standard data privacy experiment, the second experiment randomizes the sec-
ond component of the challenge ciphertext provided to the adversary, while the final
experiment randomizes both the second and third challenge ciphertext components.
The indistinguishability of the first and second experiments is argued via a simula-
tion where a simulator B embeds a DBDH instance in the second challenge ciphertext
component, such that the component is well-formed with respect to the public param-
eters and a challenge identity-message pair if and only if the DBDH instance is valid.
The indistinguishability of the second and third experiments follows from a similar
simulation-based argument. The analysis models both the hash functions H1 and H2

as random oracles, and argues that the probability that either simulation aborts due
to potential inconsistencies in either the secret-key-generation phase or the challenge
ciphertext generation phase is negligible in the security parameter λ.

Computational Function Privacy. We state the following theorem for the com-
putational function privacy of ΠIBE

DBDH+DLIN:

Theorem 4.2 Our IBE scheme ΠIBE
DBDH+DLIN is function private under the DLIN

assumption for identities sampled uniformly from k-sources with k = ω (log λ).

Proof. The proof follows directly from the following claim:
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Claim 4.1 For any probabilistic polynomial-time adversary A, the following holds:∣∣∣∣Pr
[
ExptleftFP,ΠIBE

DBDH+DLIN,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠIBE
DBDH+DLIN,A

(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time
adversary such that:∣∣∣∣Pr

[
ExptleftFP,ΠIBE

DBDH+DLIN,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠIBE
DBDH+DLIN,A

(λ) = 1
] ∣∣∣∣ = ε

where ε > negl(λ). We construct an algorithm B that solves an instance of the DLIN
problem with advantage ε′ negligibly close to ε. B receives as input a DLIN instance
(g1, g2, g3, g

a1
1 , ga22 , ga33 ) over a bilinear group G with prime order q and generator g,

and interacts with A as follows:

• Setup: B samples x1, x2, x3
R←− Zq and provides A with the public parameter pp

as:

pp = (g, gx1
1 · g

x3
3 , gx2

2 · g
x3
3 )

where g1,g2 and g3 are part of its input DLIN instance. Let αj = logggj for
j ∈ {1, 2, 3}. Then observe that B’s choice of public parameters formally fixes
the master secret key to be:

msk = (s1 = α1 · x1 + α3 · x3, s2 = α2 · x2 + α3 · x3)

• H1, H2 Query Phase-1 : A is allowed to issue H1 and H2 queries. B maintains
a list of three-tuples

(
idj , yj , y

′
j

)
∈ IDλ × Zq × Zq. Upon receiving a query for an

identity idi it first looks up the list for a matching (idi, yi, y
′
i) entry. If not found, it

samples yi, y
′
i
R←− Zq, and adds the tuple (idi, yi, y

′
i) to the list. Finally, it responds

with H1 (idi) = gyi and H2 (idi) = gy
′
i .

• Secret-Key Query Phase-1: When A issues a secret-key query for some identity
idi, B looks up H1 (idi) and H2 (idi), as described above. Let y1,i and y2,i be the

corresponding tuple entries. B samples z1,i, z2,i
R←− Zq, and responds with:

skidi =
(
(gx1

1 · g
x3
3 )

y1,i·z1,i · (gx2
2 · g

x3
3 )

y2,i·z2,i , z1,i, z2,i

)
It is easy to see that this simulation of the key-generation oracle by B is computa-
tionally indistinguishable from the real oracle the experiment Exptmode

FP,ΠIBE
DBDH+DLIN,A

(λ).

In particular, we have:

skidi =
(
(gx1

1 · g
x3
3 )

y1,i·z1,i · (gx2
2 · g

x3
3 )

y2,i·z2,i , z1,i, z2,i

)
=
(
(gy1,i)

s1·z1,i · (gy2,i)s2·z2,i , z1,i, z2,i

)
=
(
H1 (idi)

s1·z1,i ·H2 (idi)
s2·z2,i , z1,i, z2,i

)
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• Left-or-Right Query: Suppose A queries the left-or-right oracle with (ID∗0, ID
∗
1)

- a two-tuple of circuits representing k-sources over the identity space IDλ such

that k = ω (log λ). B uniformly samples mode
R←− {left, right}. If mode = left, it

samples id∗
R←− ID∗0; otherwise, it samples id∗

R←− ID∗1. If either H1 (id∗) or H2 (id∗)
have already been looked up, B outputs a random bit and aborts. Otherwise, it

samples z∗1 , z
∗
2

R←− Zq, and responds with:

skid∗ = (ga1·x1
1 · ga2·x2

2 · ga3·x3
3 , z∗1 , z

∗
2)

where (ga11 , ga22 , ga33 ) is part of its input DLIN instance. It also formally setsH1 (id∗) =
ga1/z

∗
1 and H2 (id∗) = ga2/z

∗
2 .

• H1, H2 Query Phase-2 : A continues to issue queries to the random oracles H1

and H2. B responds as in Phase-1, except if a query for id∗ arrives. In this case, B
outputs 1 and aborts.

• Secret-Key Query Phase-2: A continues to issue secret-key queries, and B con-
tinues to respond as in Phase-1, except if a query for id∗ arrives. In this case, B
outputs 1 and aborts.

• Output: Finally, A outputs a bit b ∈ {0, 1}. B outputs 1 if the challenge identity
id∗ was sampled from ID∗b , and 0 otherwise.

Note that we considered the single-shot variant of the function privacy adversary
making a single left-or-right oracle query. Such an adversary is polynomially equiva-
lent to its multi-shot variant (see Section 3.4). We now state and prove the following
claims:

Claim 4.2 When a3 = a1 + a2, the joint distribution of mode and the challenge
secret-key skid∗ in the simulation of the left-or-right oracle by B is computationally
indistinguishable from that in the experiment Exptmode

FP,ΠIBE
DBDH+DLIN,A

(λ).

Proof. Note that the sampling of id∗ from either ID∗1 or ID∗1 by B is consistent with
its random choice of mode. Additionally, when a3 = a1 +a2, the secret-key skid∗ takes
the form:

skid∗ =
(
ga1·x1

1 · ga2·x2
2 · g(a1+a2)·x3

3 , z∗1 , z
∗
2

)
= ((gx1

1 · g
x3
3 )

a1 · (gx2
2 · g

x3
3 )

a2 , z∗1 , z
∗
2)

=
(

(gx1
1 · g

x3
3 )

(a1/z
∗
1 )·z∗1 · (gx2

2 · g
x3
3 )

(a2/z
∗
2 )·z∗2 , z∗1 , z

∗
2

)
=
(
H1 (id∗)

s1·z∗1 ·H2 (id∗)
s2·z∗2 , z∗1 , z

∗
2

)
which is identically distributed to the response of the left-or-right oracle in the ex-
periment Exptmode

FP,ΠIBE
DBDH+DLIN,A

(λ). This completes the proof of Claim 4.2.
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Claim 4.3 When a3 is uniformly random in Zq, the distribution of the challenge
secret-key skid∗ is statistically independent of B’s choice of mode with overwhelmingly
large probability.

Proof. Recall that αj = logggj for j ∈ {1, 2, 3}. Consider the following system of
equations, determined by the public parameters pp and the secret-key skid∗ :

logg (gx1
1 · g

x3
3 ) = α1 · x1 + α3 · x3

logg (gx2
2 · g

x3
3 ) = α2 · x2 + α3 · x3

logg (ga1·x1
1 · ga2·x2

2 · ga3·x3
3 ) = a1 · α1 · x1 + a2 · α2 · x2 + a3 · α3 · x3

Since a3 is uniformly random in Zq, with all but negligible probability, we have
that a3 6= a1 + a2, which makes the aforementioned system of equations linearly
independent. Hence, the conditional distribution of skid∗ (where the conditioning is
on B’s choice of mode and everything else in A’s view) is uniform. This completes the
proof of Claim 4.3.
It now follows from Claims 4.2 and 4.3 that the advantage ε′ of B in solving the
DLIN instance may be quantified as ε′ = ε · (1− Pr [abort1])− Pr [abort2], where ε is
the advantage of the function privacy adversary A, while abort1 and abort2 denote
the events that aborting the simulation during the left-or-right query phase and the
second hash/secret-key query phases, respectively, leads to a loss of advantage for B.
We bound the probability of this event as follows:

• Abortion during Left-or-Right Query. Suppose that the adversary A makes
Q1 and Q2 queries to the random oracles and secret-key generation oracle, re-
spectively, prior to the left-or-right query. Recall that both the circuits ID∗0 and
ID∗1 generated by A represent k-sources over the identity space IDλ, such that
k = ω (log λ). Hence, the probability that a uniformly randomly sampled id∗

from either distribution has already been queried by A may be upper bounded

as (Q1+Q2)
2ω(log λ) ≤ negl (λ).

• Abortion during Query Phase-2. Note that when B aborts during a random
oracle/secret-key generation oracle query in phase-2, it always outputs 1, thereby
indicating that its input DLIN instance is valid. Hence, a loss of advantage for
B occurs only when it has to abort even if the DLIN instance is invalid. Now, as
per Claim 4.3, when the DLIN instance is invalid, the distribution of the chal-
lenge secret-key skid∗ is uniformly random and independent of mode. Given the
min-entropy bounds on the circuits represented by ID∗0 and ID∗1, the probabil-
ity that A still correctly guesses id∗ and issues oracle queries for the same is
O
(
2−ω(log λ)

)
≤ negl (λ).

In summary, we have Pr [abortβ ] ≤ negl (λ) for β ∈ {1, 2}, implying that B’s advan-
tage in solving the DLIN instance is negligibly close to the advantage of the function
privacy adversary A. This completes the proof of Claim 4.1.

We demonstrate in Appendix E that the ΠIBE
DBDH+DLIN scheme can be readily extended

to a sequence of IBE schemes that share the same data privacy guarantees, while
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enjoying progressively stronger function privacy guarantees under weaker variants of
the DLIN assumption, albeit at the cost of a constant growth in ciphertext size.

5 Computationally Function Private Subspace-Membership
Encryption

In this section we present an adaptively data private and computationally function
private SME scheme based on the matrix DDH assumption in the standard model.
The scheme is described below, and its proofs of data privacy and function privacy
are presented subsequently.

The Scheme. Let GroupGen(1λ) be a probabilistic polynomial-time algorithm that
takes as input a security parameter λ ∈ N, and outputs the tuple (G,GT , q, g, e),
where G and GT are groups of of order q (q being a λ-bit prime), g is a generator
for G and e : G × G −→ GT is an efficiently computable non-degenerate bilinear
map. Our scheme ΠSME

MDDH is parameterized by m,n, l1, l2 = poly(λ) (for l1 > l2), in
the sense that it supports predicate matrices of the form W ∈ Zm×nq , and attribute
vectors of the form x ∈ Znq . The payload message space Mλ is assumed to be a
polynomial-sized subset of Zq.

• Setup: The setup algorithm samples (G,GT , q, g, e)
R←− GroupGen(1λ) on input the

security parameter 1λ. It also randomly samples A
R←− Zl1×l2q , such that A has full

rank l2, and S
R←− Zn×l1q . It outputs the public parameter pp and the master-secret-

key msk as:

pp =
(
g, gA, gS·A

)
, msk = S

• KeyGen: On input the public parameter pp, the master-secret-key msk and a pred-

icate matrix W ∈ Zm×nq , the key-generation algorithm samples y
R←− Zmq and

outputs the secret-key skW = (d1, d2) where:

d1 = gy
T·W , d2 = gy

T·W·S

• Enc: On input the public parameter pp, an attribute vector x ∈ Znq and a message
M ∈ Zq, the encryption algorithm sets:

m =
[
M 0 0 · · · 0

]T ∈ Znq

It then samples r
R←− Zl2q and α

R←− Zq, and outputs the ciphertext C = (c1, c2)
where:

c1 = gA·r , c2 = gα·x+m+S·A·r
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• Dec: On input a ciphertext C = (c1, c2) and a secret-key skid = (d1, d2), the
decryption algorithm first computes:

T1 = e (d1, c2) , T2 = e (d2, c1)

Let d1 =
[
d1,1 d1,2 · · · d1,n

]
∈ (G)

n
. The decryption algorithm checks if there

exists an M ′ ∈ Mλ such that T2 · e (d1,1, g)
M ′

= T1. If such an M ′ is found, it
outputs M ′; else it outputs ⊥. Note that the decryption algorithm is efficient since
|Mλ| = poly (λ).

Correctness. Consider a ciphertext C = (c1, c2) corresponding to a message M un-
der an attribute vector x, and a secret-key skW = (d1, d2) corresponding to a predicate

matrix W. Also, let d1 =
[
d1,1 d1,2 · · · d1,n

]
∈ (G)

n
and let m =

[
M 0 0 · · · 0

]T ∈ Znq .
Then we have the following:

e (d1, g
m) = e

(
d1,1, g

M
)
·
n∏
j=2

e
(
d1,j , g

0
)

= e (d1,1, g)
M

Now, if W · x = 0, we have:

T1 = e (d1, c2)

= e
(
gy

T·W, gα·x+S·A·r
)
· e (d1, g

m)

= e (g, g)
α·yT·W·x+yT·W·S·A·r · e (d1, g

m)

= e (g, g)
yT·W·S·A·r · e (d1, g

m)

= e(gy
T·W·S, gA·r) · e (d1, g

m)

= e(d2, c1) · e (d1, g
m)

= T2 · e (d1,1, g)
M

Therefore, if W · x = 0, the decryption algorithm will output the payload message
correctly. On the other hand, if W ·x 6= 0, we have α ·yT ·W ·x 6= 0 with probability
1 − 1/q over the randomness of KeyGen, implying that the decryption algorithm
returns ⊥ with overwhelmingly large probability.

5.1 Security of the Scheme

Adaptive Data Privacy. We state the following theorem for the adaptive data
privacy of ΠSME

MDDH:

Theorem 5.1 Our SME scheme ΠSME
MDDH is adaptively data private for parameters

m,n, l1, l2 = poly (λ) under the (l1, l2, k)-Source-MDDH assumption for k = log2 q,
subject to the restrictions that:

• l1 > l2 ≥ 2
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• Q ≤ b(n× (l1 − l2)− 1) /l1c

where Q = poly(λ) is the maximum number of secret-key-generation queries made by
the adversary in the data privacy experiment.

Proof. The analysis of data privacy relies on hash proof systems, and uses arguments
similar to those of Cramer and Shoup [16, 17]. The analysis exploits the following fact:
the restriction on the number of secret-key queries Q ensures that the master-secret-
key S has sufficient entropy from an adversary’s point of view, even given the public
parameter pp and B’s responses to Q-many secret-key queries. This in turn ensures
that at some stage, if the challenge ciphertext is generated using the master-secret-
key instead of the public parameter, it will perfectly hide which attribute-message
pair among (x∗0,M

∗
0 ) and (x∗0,M

∗
1 ) is encrypted. Finally, the scheme is adaptively

secure because the reduction knows the master-secret-key at any time, which allows
it to answer all secret-key queries without knowing the challenge attribute-message
pairs beforehand. This feature is common to nearly all security proofs relying on hash
proof systems [16, 17]. The detailed analysis is presented in Appendix F.

Computational Function Privacy. We state the following theorem for the com-
putational function privacy of ΠSME

MDDH:

Theorem 5.2 Our SME scheme ΠSME
MDDH is function private for parameters m,n, l1, l2 =

poly (λ) under the (n, 2, k)-Source-MDDH assumption for k = ω (log λ), subject to the
restrictions that:

• Each predicate matrix W ∈ Zm×nq is sampled uniformly from an (m,n, k)-matrix
source.
• n > m ≥ 2
• Q ≤ b(n× (l1 − l2)− 1) /l1c

where Q is the maximum number of secret-key-generation queries made by the adver-
sary during the function privacy experiment.

Proof. The proof follows directly from the following claim:

Claim 5.1 For any probabilistic polynomial-time adversary A, the following holds:∣∣∣∣Pr
[
ExptleftFP,ΠSME

MDDH,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠSME
MDDH,A

(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time
adversary such that:∣∣∣∣Pr

[
ExptleftFP,ΠSME

MDDH,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠSME
MDDH,A

(λ) = 1
] ∣∣∣∣ = ε

We construct a probabilistic polynomial-time algorithm B such that:

AdvMDDH
n,m,k,B(λ) =

∣∣∣∣Pr
[
Expt

(0)
MDDH,n,m,k,B(λ) = 1

]
−Pr

[
Expt

(1)
MDDH,n,m,k,B(λ) = 1

] ∣∣∣∣ = ε
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for k = ω (log λ). B poses as the challenger for A in the function privacy experiment,
and delays outputting its own choice of matrix distribution in the min-entropy MDDH
game until A queries the left-or-right function privacy oracle. More concretely, B
proceeds as follows:

• Setup: B randomly samples A
R←− Zl1×l2q and S

R←− Zn×l1q , where l1, l2 ∈ N. It
sets the public parameter pp and the master-secret-key msk as:

pp =
(
g, gA, gS·A

)
, msk = S

It provides pp to A.

• Secret-Key Queries: Suppose A issues a key-generation query for a predicate

matrix W ∈ Zm×nq . B samples y
R←− Zmq and responds with the secret-key skW =

(d1, d2) where:

d1 = gy
T·W , d2 = gy

T·W·S

Quite evidently, the distribution of skW is B’s simulation is computationally in-
distinguishable from that in the response of the key-generation oracle in the ex-
periment Exptmode

FP,ΠSME
MDDH,A

(λ).

• Left-or-Right Query: Suppose A queries the left-or-right oracle with (V∗0,V
∗
1)

, where both V∗0 =
(
{V ∗i,j,0}i∈[1,m],j∈[1,n]

)
and V∗1 =

(
{V ∗i,j,1}i∈[1,m],j∈[1,n]

)
repre-

sent (m,n, k)-matrix-sources over Zm×nq for k = ω (log λ). B uniformly samples

mode
R←− {left, right}. If mode = left, it sets b = 0, else it sets b = 1.

At this point, B outputs the distribution (V∗b )
T

and receives in response a tu-

ple
(
g(W∗)T , gu

∗
)
∈
(

(G)
n×m × (G)

n
)

, for a matrix W∗ ∈ V∗b . Note that u∗

is either of the form (W∗)
T · y∗ for some uniformly random y∗ ∈ Zmq , or u∗ is

uniformly random in Znq .

B responds with the secret-key skW∗ = (d∗1, d
∗
2) where:

d∗1 = g(u∗)T , d∗2 = g(u∗)T·S

• Output: A outputs a bit b′. If b′ = b (where b = 0 if mode = left and b = 1 if
mode = right), B outputs 1; else, it outputs 0.

Note that once again, we considered the single-shot variant of the function privacy
adversary making a single left-or-right oracle query. Such an adversary is polynomially
equivalent to its multi-shot variant (see Section 3.4). The following claims now follow:

Claim 5.2 When u∗ is of the form (W∗)
T ·y∗ for some uniformly random y∗ ∈ Zmq ,

the joint distribution of mode and the challenge secret-key skW∗ in the simulation
of the left-or-right oracle by B is computationally indistinguishable from that in the
experiment Exptmode

FP,ΠSME
MDDH,A

(λ).
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Claim 5.3 When u∗ is uniformly random in Znq , the distribution of the challenge
secret-key skW∗ is statistically independent of B’s choice of mode with overwhelmingly
large probability.

Proof. The first claim is obvious. To prove the second claim, it is sufficient to prove
that the conditional distribution of (u∗)

T ·S (where the conditioning is on B’s choice
of mode and everything else in A’s view) is uniformly random, given that u∗ is a
uniformly random vector in Znq .

Suppose that during the function privacy experiment, A makes Q secret-key-
generation queries on predicate matrices W1, · · · ,WQ ∈ Zm×nq , and B responds with
skWj = (dj,1, dj,2) for j ∈ [1, Q]. Also, suppose that Q = b(n× (l1 − l2)− 1) /l1c. Now
consider the following system of (n× l2 +Q× l1) equations, determined by the public
parameters and the responses of B to the aforementioned key-generation queries:

logg
(
gS·A

)
= S ·A

logg (d1,2) = yT
1 ·W1 · S

logg (d2,2) = yT
2 ·W2 · S

...

logg (dQ,2) = yT
Q ·WQ · S

Quite evidently, the aforementioned system of equations has exponentially many so-
lutions for S ∈ Zn×l1q . Let S0 be one such solution, chosen deterministically. Also, let

Z1 ∈ Zl1q and Z2 ∈ Znq be deterministically chosen vectors such that:

• AT · Z1 = 0 ∈ Zl1q
• yT

j ·Wj · Z2 = 0 ∈ Znq for each j ∈ [1, Q]

Note that exponentially many such vectors exist since l1 > l2 and n > Q. Then, the
distribution of S ∈ Zn×l1q in the view of a computationally unbounded adversary is
as follows:

{S0 + µ · Z2 · ZT
1 | µ ∈ Zq}

Now, observe that the conditional distribution of (u∗)
T · S (where the conditioning

is on B’s choice of b and everything else in A’s view) is as follows:

{(u∗)T · S0 + µ · (u∗)T · Z2 · ZT
1 | µ ∈ Zq}

Since u∗ is uniformly random in Znq , we have (except with negligible probability)

(u∗)
T · Z2 6= 0, implying the conditional distribution of (u∗)

T · S is uniformly ran-
dom. This completes the proof of Claim 5.3.

It now follows from Claims 5.2, and 5.3, that:

AdvMDDH
n,2,k,B(λ) =

∣∣∣∣Pr
[
Expt

(0)
MDDH,n,2,k,B(λ) = 1

]
− Pr

[
Expt

(1)
MDDH,n,2,k,B(λ) = 1

] ∣∣∣∣
=

∣∣∣∣Pr
[
ExptleftFP,ΠSME

MDDH,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠSME
MDDH,A

(λ) = 1
] ∣∣∣∣ = ε
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This completes the proof of Claim 5.1.

Relaxing the Parameter Restriction for Function Privacy. Our SME scheme,
parameterized by m,n = poly (λ), is computationally function private subject to
the restriction that n > m. However, we demonstrate here any instance π of our
SME scheme that is parameterized by m,n such that n ≤ m can be transformed
into an equivalent instance π′ that is parameterized by m,n′, such that n′ > m.
In particular, the transformation works on the predicate matrices and the attribute
vectors as follows:

• Given a predicate matrix W ∈ Zm×nq for the instance π, the instance π′ uses a

corresponding predicate matrix W′ =
[
W | R

]
∈ Zm×n′q , where R ∈ Zm×(n′−n)

q

is sampled uniformly from an (m, (n′ − n) , k)-matrix-source for k = ω (log λ).
• Given an attribute vector x ∈ Znq for the instance π, the instance π′ uses a

corresponding attribute vector x′ =
[
xT | 0 0 · · · 0

]T ∈ Zn′q .

The following observations establish the validity of this transformation:

• W′ is an (m,n′, k)-matrix-source if and only if W is an (m,n, k)-matrix-source.
• W′ · x′ = 0 if and only if W · x = 0, where 0 ∈ Zmq .

The other restriction for function privacy, namely m ≥ 2, appears to have no such
immediate relaxation so long as our SME construction is based on symmetric bilinear
maps. However, an alternative approach is to base our construction on asymmetric bi-
linear maps over two distinct source groups G1 and G2, with the assumption that the
MDDH family of assumptions holds individually in both these groups (this is essen-
tially analogous to the symmetric external Diffie-Hellman assumption, or SXDH [20]).
The public parameter pp and the ciphertext C are then generated using a generator
g1 for the group G1, while the secret-key skW is generated using a generator g2 for
the group G2. The decryption algorithm proceeds analogously to recover the payload
message M . The data privacy of the scheme can then be based on the (l1, l2, log2 q)-
Source-MDDH assumption in G1, while its function privacy can be based on the
(n,m, k)-Source-MDDH assumption in G2 for k = ω (log λ). The asymmetric nature
of the bilinear map now allows m = 1, which in turn allows our SME scheme to
naturally subsume a function private inner-product encryption (IPE) scheme.

6 Computationally Function Private Hidden-Vector
Encryption

In this section we present an adaptively data private and computationally function
private HVE scheme based on the matrix DDH assumption in the standard model.
The scheme uses techniques similar to the function private HVE scheme presented
in Section 5, with subtle differences to account for the presence of the wildcard char-
acters. The scheme is described below, and its proofs of data privacy and function
privacy are presented subsequently.
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The Scheme. Let GroupGen(1λ) be a probabilistic polynomial-time algorithm that
takes as input a security parameter λ ∈ N, and outputs the tuple (G,GT , q, g, e),
where G and GT are groups of of order q (q being a λ-bit prime), g is a generator for
G and e : G × G −→ GT is an efficiently computable non-degenerate bilinear map.
Our scheme ΠHVE

MDDH is parameterized by n = poly(λ), in the sense that it supports
predicate vectors of the form v ∈ (Zq ∪ {?} \ {0})n, and attribute vectors of the form
x ∈ (Zq \ {0})n. The reason for excluding 0 from the attribute space will be clear
from the construction. The payload message space Mλ is a polynomial-sized subset
of Zq.

• Setup: The setup algorithm samples (G,GT , q, g, e)
R←− GroupGen(1λ) on input the

security parameter 1λ. It also randomly samples A1, · · · ,An,An+1
R←− Zl1×l2q and

S
R←− Z(n+1)×l1

q , where l1, l2 ∈ N. It then outputs the public parameter pp and the
master-secret-key msk as:

pp =
(
g, {gAj}j∈[1,n+1], {gS·Aj}j∈[1,n+1]

)
, msk = S

• KeyGen: On input the public parameter pp, the master-secret-key msk and a predi-
cate vector v = (v1, · · · , vn) ∈ (Zq ∪ {?} \ {0})n, the key-generation algorithm first
sets:

S = {j ∈ [1, n] : vj 6= ?}{
v′j =

{
vj if j ∈ S
0 if j /∈ S

}
j∈[1,n]

It then samples a random invertible matrix W1
R←− Zn×nq and sets the following:

v′ =


v′1
v′2
...
v′n

 ∈ Znq , W =
[
W1 |W1 · v′

]
∈ Zn×(n+1)

q

Finally, the key-generation algorithm samples y
R←− Znq and outputs the secret-key

skv = (d1, d2,S) where:

d1 = gy
T·W , d2 = gy

T·W·S
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• Enc: On input the public parameter pp, an attribute vector x = (x1, · · · , xn) ∈
(Zq \ {0})n and a message M ∈ Zq, the encryption algorithm sets:

m =
[
M 0 · · · 0 0 0

]T ∈ Zn+1
q

x1 =
[
x1 0 · · · 0 0 0

]T ∈ Zn+1
q

x2 =
[
0 x2 · · · 0 0 0

]T ∈ Zn+1
q

...

xn =
[
0 0 · · · 0 xn 0

]T ∈ Zn+1
q

xn+1 =
[
0 0 · · · 0 0 (−1)

]T ∈ Zn+1
q

Next, the encryption algorithm samples r1, · · · , rn, rn+1
R←− Zl2q and α

R←− Zq, and

outputs the ciphertext C =
(
{cj,1, cj,2}j∈[1,n+1]

)
where for each j ∈ [1, n], we have:

cj,1 = gAj ·rj , cj,2 = gα·xj+S·Aj ·rj

and:

cn+1,1 = gAn+1·rn+1 , cn+1,2 = gα·xn+1+m+S·An+1·rn+1

• Dec: On input a ciphertext C =
(
{cj,1, cj,2}j∈[1,n+1]

)
and a secret-key skv =

(d1, d2,S), the decryption algorithm computes the following:

T1 =

∏
j∈S

e (d1, cj,2)

 · e (d1, cn+1,2)

T2 =

∏
j∈S

e (d2, cj,1)

 · e (d2, cn+1,1)

Let d1 =
[
d1,1 d1,2 · · · d1,n+1

]
∈ (G)

n+1
. The decryption algorithm checks if there

exists an M ′ ∈ Mλ such that T2 · e (d1,1, g)
M ′

= T1. If such an M ′ is found, it
outputs M ′; else it outputs ⊥. Note that the decryption algorithm is efficient since
|Mλ| = poly (λ).

Correctness. Consider a predicate vector v = (v1, · · · , vn) ∈ (Zq ∪ {?} \ {0})n and
an attribute vector x = (x1, · · · , xn) ∈ (Zq \ {0})n, such that vj = xj for each
j ∈ [1, n] such that vj 6= ?. Also, let S = {j ∈ [1, n] : vj 6= ?}. It is easy to see the
following relation: ∑

j∈S∪{n+1}

xj =

[
v′

(−1)

]
∈ Zn+1

q

where v′ ∈ Znq and xj ∈ Zn+1
q for j ∈ [1, n + 1] are as defined above. This now

automatically yields the following:

W ·

 ∑
j∈S∪{n+1}

xj

 =
[
W1 |W1 · v′

]
·
[

v′

(−1)

]
= 0 ∈ Znq
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Now consider a ciphertext C =
(
{cj,1, cj,2}j∈[1,n+1]

)
corresponding to (x,M) and

a secret-key skv = (d1, d2). Also, let d1 =
[
d1,1 d1,2 · · · d1,n+1

]
∈ (G)

n+1
and let

m =
[
M 0 0 · · · 0

]T ∈ Zn+1
q . Then we have the following:

e (d1, g
m) = e

(
d1,1, g

M
)
·
n+1∏
j=2

e
(
d1,j , g

0
)

= e (d1,1, g)
M

The following now establishes the correctness of our HVE scheme:

T1 =
∏

j∈S∪{n+1}

e (d1, cj,2)

=
∏

j∈S∪{n+1}

e
(
gy

T·W, gα·xj+S·Aj ·rj
)
· e (d1, g

m)

=

 ∏
j∈S∪{n+1}

e (g, g)
α·yT·W·(xj)

 ·
 ∏
j∈S∪{n+1}

e
(
gy

T·W·S, gAj ·rj
) · e (d1, g

m)

=

 ∏
j∈S∪{n+1}

e (g, g)
α·yT·W·(xj)

 ·
 ∏
j∈S∪{n+1}

e (d2, cj,1)

 · e (d1, g
m)

=
(
e(g, g)α·y

T·W·(
∑
j∈S∪{n+1} xj)

)
· T2 · e (d1, g

m)

= T2 · e (d1,1, g)
M

6.1 Security of the Scheme

Adaptive Data Privacy. We state the following theorem for the adaptive data
privacy of ΠHVE

MDDH:

Theorem 6.1 Our HVE scheme ΠHVE
MDDH is adaptively data private for parameters

n, l1, l2 = poly (λ) under the (l1, l2, k)-source-matrix decisional Diffie Hellman as-
sumption for k = log2 q subject to the restrictions that:

• l1 > l2 ≥ 2

• Q ≤ b((n+ 1) · (l1 − l2)− 1) /l1c

where Q = poly(λ) is the maximum number of secret-key-generation queries made by
the adversary in the data privacy experiment.

We define a series of experiments {Expt(b,k)

ΠHVE
MDDH,A

(λ)}b∈{0,1},k∈[0,n+1]} as follows:

• The experiments {Expt(b,0)

ΠHVE
MDDH,A

(λ)}b∈{0,1} are identical to the data privacy ex-

periments {Expt(b)
DP,ΠHVE

MDDH,A
(λ)}b∈{0,1}.
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• For each k ∈ [1, n+ 1], the experiments {Expt(b,k)

ΠHVE
MDDH,A

(λ)}b∈{0,1} are identical to

their predecessor experiments {Expt(b,k−1)

ΠHVE
MDDH,A

(λ)}b∈{0,1} except that, in the chal-

lenge ciphertext C∗ =
(
{c∗j,1, c∗j,2}j∈[1,n+1]

)
, the components c∗k,1 and c∗k,2 are

additionally statistically independent of b.

Quite obviously, the following holds for any probabilistic polynomial-time adversary
A: ∣∣∣∣Pr

[
Expt

(0,n+1)

ΠHVE
MDDH,A

(λ) = 1
]
− Pr

[
Expt

(1,n+1)

ΠHVE
MDDH,A

(λ) = 1
] ∣∣∣∣ = 0

We state the following claim:

Claim 6.1 For a given k ∈ [1, n + 1] and b ∈ {0, 1}, and for any probabilistic
polynomial-time adversary A, the following holds:∣∣∣∣Pr

[
Expt

(b,k−1)

ΠHVE
MDDH,A

(λ) = 1
]
− Pr

[
Expt

(b,k)

ΠHVE
MDDH,A

(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

The proof of this claim is very similar to the proof of Theorem 5.1 and is detailed in
Appendix G. This claim naturally leads to the following relation:

AdvDP
ΠHVE

MDDH,A
(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠHVE
MDDH,A

(λ) = 1
]
− Pr

[
Expt

(1)

DP,ΠHVE
MDDH,A

(λ) = 1
] ∣∣∣∣

≤
n+1∑
k=1

∑
b∈{0,1}

∣∣∣∣Pr
[
Expt

(b,k−1)

ΠHVE
MDDH,A

(λ) = 1
]
− Pr

[
Expt

(b,k)

ΠHVE
MDDH,A

(λ) = 1
] ∣∣∣∣

≤ negl (λ)

which completes the proof of Theorem 6.1.

Computational Function Privacy. We state the following theorem for the com-
putational function privacy of ΠHVE

MDDH:

Theorem 6.2 Our HVE scheme ΠHVE
MDDH is function private for parameters n, l1, l2 =

poly (λ) under the (n, log2 q)-Source-MDDH assumption, subject to the restrictions
that:

• The non-wildcard entries of each predicate vector v ∈ Znq are sampled uniformly
from independent k-sources, for k = ω (log λ).
• n ≥ 2
• Q ≤ b((n+ 1)× (l1 − l2)− 1) /l1c

where Q is the maximum number of secret-key-generation queries made by the adver-
sary during the function privacy experiment.

Proof. The analysis of function privacy uses arguments based on hash proof systems,
akin to those in the proof of function privacy for our SME construction in Section 6.
The full analysis is presented in Appendix H. We detail here how a simulator B
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answers the left-or-right function privacy oracle. Note that B knows the master-secret-
key S at all points, which allows it to answer all secret-key queries. Suppose A queries
the left-or-right oracle with (V∗0,V

∗
1) , where both V∗0 =

(
{V ∗i,j,0}i∈[1,m],j∈[1,n]

)
and

V∗1 =
(
{V ∗i,j,1}i∈[1,m],j∈[1,n]

)
represent (m,n, k)-matrix-sources over Zm×nq for k =

ω (log λ). B uniformly samples mode
R←− {left, right}. If mode = left, it sets b = 0, else

it sets b = 1. At this point, B outputs the distribution (V∗b )
T

and receives in response

a tuple
(
g(W∗)T , gu

∗
)
∈
(

(G)
n×m × (G)

n
)

, for a matrix W∗ ∈ V∗b . Note that u∗ is

either of the form (W∗)
T ·y∗ for some uniformly random y∗ ∈ Zmq , or u∗ is uniformly

random in Znq . B responds with the secret-key skW∗ = (d∗1, d
∗
2) where:

d∗1 = g(u∗)T , d∗2 = g(u∗)T·S

The analysis now exploits the following fact: the restriction on the number of secret-
key queries Q ensures that the master-secret-key S has sufficient entropy from an
adversary’s point of view, even given the public parameter pp and B’s responses to
Q-many secret-key queries. This in turn ensures that skW∗ perfectly hides the bit b
chosen by the simulator B.
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A Definitions for Public-Key Predicate Encryption

A public-key predicate encryption scheme for a class of predicates F over an attribute
space Σ and a payload-message space M is a quadruple of probabilistic polynomial
time algorithms Π = (Setup,KeyGen,Enc,Dec). The Setup algorithm takes as input
the security parameter λ, and generates the public parameter pp and the master-
secret-key msk for the system. The key-generation algorithm, KeyGen takes as input
the public parameter pp, the master-secret-key msk and a predicate f ∈ F , and
generates a secret-key skf corresponding to f . The Enc algorithm takes as input the
public parameter pp, an attribute I ∈ Σ and a payload-message M ∈M, and outputs
the ciphertext C = Enc (pp, I,M). The Dec algorithm takes as input the public
parameter pp, a ciphertext C and a secret-key skf , and outputs either a payload-
message M ∈M or the symbol ⊥.

Correctness. A predicate encryption scheme Π is said to be functionally correct if
for any security parameter λ, for any predicate f ∈ F , for any attribute I ∈ Σ and
any payload-message M ∈M, the following hold:

1. If f(I) = 1, we have Dec (pp,Enc (pp, I,M) ,KeyGen (pp,msk, f)) = M .
2. If f(I) = 0, we have Dec (pp,Enc (pp, I,M) ,KeyGen (pp,msk, f)) = ⊥ with prob-

ability at least 1− negl(λ).

where the probability is taken over the internal randomness of the Setup,KeyGen,
Enc, and Dec algorithms.

A.1 Data Privacy of Public-Key Predicate Encryption

We recall the standard notion of attribute hiding data privacy for a predicate encryp-
tion scheme against an adaptive probabilistic polynomial-time adversary.

Definition A.1 (Adaptively Data Private Predicate Encryption). A predicate en-
cryption scheme Π = (Setup,KeyGen,Enc,Dec) is said to be adaptively data private
if for any probabilistic polynomial-time adversary A, the following holds:

AdvDP
Π,A(λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
DP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
DP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and b ∈ {0, 1}, the experiment Expt
(b)
DP,Π,A(λ) is defined as:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. ((I∗0 ,M
∗
0 ) , (I∗1 ,M

∗
1 ) , state)

R←− AKeyGen(msk,·) (1λ, pp), where I∗0 , I
∗
1 ∈ Σ and

M∗0 ,M
∗
1 ∈M.

3. C∗
R←− Enc (pp, I∗b ,M

∗
b ).

4. b′
R←− AKeyGen(msk,·) (C∗, state).

5. Output b′.
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subject to the following restrictions:

1. For each predicate fi with which A queries KeyGen (msk, ·), we have fi (I∗0 ) =
fi (I∗1 ).

2. If A queries KeyGen (msk, ·) with a predicate fi such that fi (I∗0 ) = fi (I∗1 ) = 1,
we have M∗0 = M∗1 .

The above notion of adaptive data privacy is referred to as DP throughout the rest of
the paper. There also exists a selective variant of the above security notion, referred
to as sDP throughout the rest of the paper, that requires the adversary to commit
to the challenge pair of attributes (I∗0 , I

∗
1 ) before seeing the public parameters of the

scheme.

B The Generalized Decisional k-Linear Assumption (k-DLIN)

Let G be a group of prime order q and let g1, · · · , gk, gk+1 be arbitrary generators for
G, for k ≥ 2. The generalized decisional k-linear assumption is that the distribution
ensembles: {(

g1, · · · , gk, gk+1, g
a1
1 , · · · , gakk , g

∑k
j=1 aj

k+1

)}
a1,··· ,ak

R←−Zq
and{(

g1, · · · , gk, gk+1, g
a1
1 , · · · , gakk , g

ak+1

k+1

)}
a1,··· ,ak,ak+1

R←−Zq

are computationally indistinguishable, where g1, · · · , gk, gk+1
R←− G.

Note that the k-DLIN assumption implies the (k+1)-DLIN assumption for all k ≥ 1,
but the reverse is not necessarily true. In other words, the k-DLIN assumption family
is a family of progressively weaker assumptions.

C Proofs of Claims 2.1 and 2.2

Let V =
(
{Vi,j}i∈[1,m],j∈[1,n]

)
be an (m,n, k)-matrix-source over Zm×nq for k =

ω (log λ). Sample uniformly at random W
R←− V and choose any n rows of W.

By definition of a matrix-source, the elements of the resulting n × n sub-matrix of
W have been sampled from mutually independent distributions, where each distri-
bution is uniformly random over a sub-field Zqk , where qk ≤ q is a k-bit prime.
Consequently, the probability that this sub-matrix has a zero determinant is given

by
(

1−
∏n
j=1

(
1− 1

2j·k

))
. It is easy to see that this quantity is upper bounded by

1
2k

= 1
2ω(log λ) ≤ negl(λ). In other words, the matrix W has full rank n with over-

whelmingly large probability. This completes the proof of Claim 2.1.

Again, let V1 =
(
{Vi,j,1}i∈[1,n],j∈[1,n]

)
be an (n, n, k)-matrix-source over Zn×nq , such

that k = ω (log λ), and let V2 =
(
{Vi,2}i∈[1,n]

)
be any non-zero distribution over over
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Znq . Let Ṽ =
[
V1 | V1 ·V2

]T ∈ Z(n+1)×n
q . Sample uniformly at random W

R←− Ṽ
and choose the first n rows of W. By definition of a matrix-source, the elements of
the resulting n× n sub-matrix of W have been sampled from mutually independent
distributions, where each distribution is uniformly random over a sub-field Zqk , where
qk ≤ q is a k-bit prime. Consequently, the probability that this sub-matrix has a zero

determinant is given by
(

1−
∏n
j=1

(
1− 1

2j·k

))
. It is easy to see that this quantity is

upper bounded by 1
2k

= 1
2ω(log λ) ≤ negl(λ). In other words, the matrix W has full

rank n with overwhelmingly large probability. This completes the proof of Claim 2.2.

D Proof of Theorem 4.1

We define a series of experiments {Expt(b,k)

ΠIBE
DBDH+DLIN,A

(λ)}b∈{0,1},k∈{0,1,2} as follows:

• The experiments {Expt(b,0)

ΠIBE
DBDH+DLIN,A

(λ)}b∈{0,1} are identical to the data privacy

experiments {Expt(b)
DP,ΠIBE

DBDH+DLIN,A
(λ)}b∈{0,1}.

• For each k ∈ {1, 2}, the experiments {Expt(b,k)

ΠIBE
DBDH+DLIN,A

(λ)}b∈{0,1} are identical

to their predecessor experiments {Expt(b,k−1)

ΠIBE
DBDH+DLIN,A

(λ)}b∈{0,1} except that, in

the challenge ciphertext C∗ = (c∗1, c
∗
2, c
∗
3), the component c∗k+1 is additionally

statistically independent of b.

Quite obviously, the following holds for any probabilistic polynomial-time adversary
A: ∣∣∣∣Pr

[
Expt

(0,2)

ΠIBE
DBDH+DLIN,A

(λ) = 1
]
− Pr

[
Expt

(1,2)

ΠIBE
DBDH+DLIN,A

(λ) = 1
] ∣∣∣∣ = 0

Now, for b ∈ {0, 1}, let A be any probabilistic polynomial-time adversary such that:∣∣∣∣Pr
[
Expt

(b,0)

ΠIBE
DBDH+DLIN,A

(λ) = 1
]
− Pr

[
Expt

(b,1)

ΠIBE
DBDH+DLIN,A

(λ) = 1
] ∣∣∣∣ = ε

where ε > negl(λ). We construct a polynomial-time algorithm B that solves an in-
stance of the DBDH problem with advantage ε′ ≥ ε/ (e (Q+ 1)), where Q is the
maximum number of oracle queries made by A during the data privacy experiment.
B receives as input a DBDH instance (g, ga1 , ga2 , ga3 , Z) over a bilinear group G with
prime order q and generator g, and interacts with A as follows:

• Setup: B randomly samples a4
R←− Zq, and provides A with the public parameter

pp as:
pp = (g, ga1 , ga4)

where g and ga1 are part of its input DBDH instance. Then observe that B’s
choice of public parameters formally fixes the master secret key to be:

msk = (s1 = a1, s2 = a4)
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• H1, H2 Query Phase-1 : A is allowed to issue H1 and H2 queries. B maintains a
list of four-tuples

(
idj , yj , y

′
j , δj

)
∈ IDλ×Zq×Zq×{0, 1}. Upon receiving a query

for an identity idi it first looks up the list for a matching (idi, yi, y
′
i, δi) entry. If

not found, it uniformly samples yi, y
′
i
R←− Zq, and samples δi from a distribution

over {0, 1} such that Pr [δi = 1] = γ. It then adds the tuple (idi, yi, y
′
i, δi) to the

list and proceeds as follows:
• If δi = 0, B responds with H1 (idi) = ga2·yi and H2 (idi) = gy

′
i , where ga2 is

part of its input DBDH instance.
• If δi = 1, B responds with H1 (idi) = gyi and H2 (idi) = gy

′
i .

Note that only the output of the random oracle H1 depends on δ.

• Secret-Key Queries: When A issues a secret-key query for some identity idi,
B looks up H1 (idi) and H2 (idi), as described above. Let yi, y

′
i and δi be the

corresponding tuple entries. B proceeds as follows:
• If δi = 0, B outputs a random bit and aborts.

• If δi = 1, B samples z1,i, z2,i
R←− Zq and responds with:

skidi =
(
ga1·y1·z1,i · ga4·y

′
1·z2,i , z1,i, z2,i

)
Observe that if δi = 1, we have H1 (idi) = gyi and H2 (idi) = gy

′
i ; consequently,

the secret-key skidi is well-formed with respect to the public parameter pp.

• Challenge: A outputs the challenge pair ((id∗0,M
∗
0 ) , (id∗1,M

∗
1 )). B samples a

random bit b
R←− {0, 1} and looks up H1 (id∗b) and H2 (id∗b), as described above.

Let y∗1 , y∗2 and δ∗ be the corresponding tuple entries. B proceeds as follows:
• If δ∗ = 1, B outputs a random bit and aborts.
• If δ∗ = 0, we must have we have H1 (id∗b) = ga2·y

∗
1 and H2 (id∗b) = gy

∗
2 . In this

case, B outputs the challenge ciphertext as:

C∗ =
(
ga3 ,Mb · Zy

∗
1 , e (ga3 , ga4)

y∗2
)

• Output: Finally, A outputs a guess b′ for b. If b′ = b, B outputs 1, else it outputs
0.

We now state and prove the following claims:

Claim D.1 When Z = e(g, g)a1·a2·a3 , the joint distribution of b and the challenge
ciphertext C∗ in the simulation by B is computationally indistinguishable from that

in the experiment Expt
(b,0)

ΠIBE
DBDH+DLIN,A

(λ).

Proof. Let Z = e(g, g)a1·a2·a3 . As already discussed above, if B does not abort, we
must have H1 (id∗b) = ga2·y

∗
1 and H2 (id∗b) = gy

∗
2 . Then the challenge ciphertext C∗

takes the form:

C∗ =
(
ga3 ,Mb · e(g, g)a1·a2·a3·y

∗
1 , e (ga3 , ga4)

y∗2
)

=
(
ga3 ,Mb · e (gs1 , H1 (id∗b))

a3 , e (gs2 , H2 (id∗b))
a3
)
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for s1 = a1 and s2 = a4. Quite evidently, C∗ is identically distributed to the challenge

ciphertext in the experiment Expt
(b,0)

ΠIBE
DBDH+DLIN,A

(λ). This completes the proof of Claim

D.1.

Claim D.2 When Z is uniformly random in GT , the joint distribution of b and the
challenge ciphertext C∗ in the simulation by B is computationally indistinguishable

from that in the experiment Expt
(b,1)

ΠIBE
DBDH+DLIN,A

(λ).

Proof. The claim follows trivially from the fact that if Z is uniformly random in
GT , the message Mb is perfectly one-time padded in the second component of the
challenge ciphertext C∗, while the remaining components of C∗ are well-formed with
respect to b.

It now follows from Claims D.1 and D.2 that the advantage ε′ of B in solving the
DBDH instance may be quantified as ε′ = ε · (1− Pr [abort]), where ε is the advan-
tage of A, and abort denotes the event of B aborting the simulation. We bound the
probability of this event as follows:

• Suppose that the adversary A makes a maximum of Q1, and Q2 queries to the
random oracle and the secret-key generation oracle, respectively. The probability
that A does not abort is lower-bounded by γQ2 · (1− γ).

• Now, B can set γ = 1− 1/ (Q2 + 1). Then, we have:

Pr [abort] ≤ 1− (1− 1/ (Q2 + 1))
Q2 / (Q2 + 1) ≤ 1− 1/e · (Q2 + 1)

In other words, we have ε′ ≥ ε/e · (Q2 + 1). Hence, we must have ε ≤ negl (λ).
Following a similar proof technique, one can also show that for any probabilistic
polynomial-time adversary A and for b ∈ {0, 1}, the following also holds:∣∣∣∣Pr

[
Expt

(b,1)

ΠIBE
DBDH+DLIN,A

(λ) = 1
]
− Pr

[
Expt

(b,2)

ΠIBE
DBDH+DLIN,A

(λ) = 1
] ∣∣∣∣ ≤ negl (λ)

The proof uses a simulation similar to the one described above, except that the
algorithm B embeds its input DBDH instance in the third component of the challenge
ciphertext C∗, while the second component is anyways set to a uniformly random
element in GT . It is now easy to see the following:

AdvDP
ΠIBE

DBDH+DLIN,A
(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠIBE
DBDH+DLIN,A

(λ) = 1
]
− Pr

[
Expt

(1)

DP,ΠIBE
DBDH+DLIN,A

(λ) = 1
] ∣∣∣∣

≤
∑

k∈{1,2}

∑
b∈{0,1}

∣∣∣∣Pr
[
Expt

(b,k−1)

ΠIBE
DBDH+DLIN,A

(λ) = 1
]
− Pr

[
Expt

(b,k)

ΠIBE
DBDH+DLIN,A

(λ) = 1
] ∣∣∣∣

≤ negl (λ)

This completes the proof of Theorem 4.1.
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E A DBDH+k-DLIN-based IBE Scheme

In this section, we demonstrate that our ΠIBE
DBDH+DLIN scheme () is that it can be

readily extended to a sequence of IBE schemes that share the same data privacy
guarantees, while enjoying progressively stronger function privacy guarantees. For
k > 1, the (k − 1)

th
IBE scheme in this sequence, denoted as ΠIBE

DBDH+k-DLIN, is
adaptively data private under the DBDH assumption, and computationally function
private under the k-DLIN assumption, in the random oracle model. We present the
construction for ΠIBE

DBDH+k-DLIN below. The detailed proofs for data and function
privacy are presented subsequently.

The Scheme. Let GroupGen(1λ) be a probabilistic polynomial-time algorithm that
takes as input a security parameter λ, and outputs the tuple (G,GT , q, g, e), where
G and GT are groups of of order q (q being a λ-bit prime), g is a generator for G
and e : G × G −→ GT is an efficiently computable non-degenerate bilinear map.
The scheme ΠIBE

DBDH+k-DLIN is parameterized by the security parameter λ ∈ N. For
any such λ, we denote by IDλ and Mλ the identity space and the message space,
respectively. The scheme uses k hash functions {Hj : IDλ −→ G}j∈[1,k] (modeled as
random oracles).

• Setup: The setup algorithm samples (G,GT , q, g, e)
R←− GroupGen(1λ) on input the

security parameter 1λ. It also samples s1, · · · , sk
R←− Zq, and outputs the public

parameter pp and the master-secret-key msk as:

pp =
(
g, {gsj}j∈[1,k]

)
, msk =

(
{sj}j∈[1,k]

)
• KeyGen: On input the public parameter pp, the master-secret-key msk and an

identity id ∈ IDλ, the key generation algorithm samples z1, · · · , zk
R←− Zq and

outputs the secret-key skid =
(
{dj}j∈[1,k+1]

)
where:

d1 =

k∏
j=1

Hj (id)
sj ·zj , dj+1 = zj for j ∈ [1, k]

• Enc: On input the public parameter pp, an identity id ∈ IDλ and a message

M ∈ Mλ, the encryption algorithm samples r
R←− Zq and outputs the ciphertext

C =
(
{cj}j∈[1,k+1]

)
where:

c1 = gr , c2 = M · e (gs1 , H1 (id))
r

, cj+1 = e (gsj , Hj (id))
r

for j ∈ [2, k]

• Dec: On input a ciphertext C =
(
{cj}j∈[1,k+1]

)
and a secret-key skid =

(
{dj}j∈[1,k+1]

)
,

the decryption algorithm outputs:

M ′ =

(∏k
j=1 c

dj+1

j+1

e (d1, c1)

)1/d2
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Correctness. Consider a ciphertext C =
(
{cj}j∈[1,k+1]

)
corresponding to a message

M under an identity id, and a secret-key skid =
(
{dj}j∈[1,k+1]

)
corresponding to the

same identity id. Then, we have:

M ′ =

(∏k
j=1 c

dj+1

j+1

e (d1, c1)

)1/d2

=

Mz1 ·
∏k
j=1 e (gsj , Hj (id))

r·zj

e
(∏k

j=1Hj (id)
sj ·zj , gr

)
1/z1

= M ·

(∏k
j=1 e (gsj , Hj (id))

r·zj∏k
j=1 e (gsj , Hj (id))

r·zj

)1/z1

= M

Therefore as long as z1 6= 0 (mod q) (an event which occurs with probability 1− 1/q
over the randomness of KeyGen), the message is recovered correctly.

Adaptive Data Privacy. We state the following theorem for the adaptive data
privacy of ΠIBE

DBDH+k-DLIN:

Theorem E.1 The IBE scheme ΠIBE
DBDH+k-DLIN is adaptively data private under the

DBDH assumption.

Proof. We define a series of experiments {Expt(b,k
′)

ΠIBE
DBDH+k-DLIN,A

(λ)}b∈{0,1},k′∈[1,k+1] as

follows:

• The experiments {Expt(b,0)

ΠIBE
DBDH+k-DLIN,A

(λ)}b∈{0,1} are identical to the experiments

{Expt(b)
DP,ΠIBE

DBDH+k-DLIN,A
(λ)}b∈{0,1}.

• For each k′ ∈ [1, k+1], the experiments {Expt(b,k
′)

ΠIBE
DBDH+k-DLIN,A

(λ)}b∈{0,1} are identi-

cal to their predecessor experiments {Expt(b,k
′−1)

ΠIBE
DBDH+k-DLIN,A

(λ)}b∈{0,1} except that,

in the challenge ciphertext C∗ =
(
{c∗j}j∈[1,k+2]

)
, the component c∗k′+1 is addi-

tionally statistically independent of b.

Quite obviously, the following holds for any probabilistic polynomial-time adversary
A: ∣∣∣∣Pr

[
Expt

(0,k+1)

ΠIBE
DBDH+k-DLIN,A

(λ) = 1
]
− Pr

[
Expt

(1,k+1)

ΠIBE
DBDH+k-DLIN,A

(λ) = 1
] ∣∣∣∣ = 0

Now, for b ∈ {0, 1}, let A be any probabilistic polynomial-time adversary such that:∣∣∣∣Pr
[
Expt

(b,0)

ΠIBE
DBDH+k-DLIN,A

(λ) = 1
]
− Pr

[
Expt

(b,1)

ΠIBE
DBDH+k-DLIN,A

(λ) = 1
] ∣∣∣∣ = ε
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where ε > negl(λ). We construct a polynomial-time algorithm B that solves an in-
stance of the DBDH problem with advantage ε′ ≥ ε/ (e (Q+ 1)), where Q is the
maximum number of oracle queries made by A during the data privacy experiment.
B receives as input a DBDH instance (g, ga1 , ga2 , ga3 , Z) over a bilinear group G with
prime order q and generator g, and interacts with A as follows:

• Setup: B randomly samples a4, · · · , ak+2
R←− Zq, and provides A with the public

parameter pp as:
pp = (g, ga1 , ga4 , · · · , gak+2)

where g and ga1 are part of its input DBDH instance. Then observe that B’s
choice of public parameters formally fixes the master secret key to be:

msk = (s1 = a1, s2 = a4, · · · , sk = ak+2)

• H1, · · · , Hk Query Phase-1 : A is allowed to issue queries to the random oracles
for H1, H2 · · · , Hk. B maintains a list of (k + 2)-tuples

(
idi, {yj,i}j∈[1,k], δi

)
∈

IDλ × (Zq)k × {0, 1}. Upon receiving a query for an identity idi it first looks
up the list for a matching

(
idi, {yj,i}j∈[1,k], δi

)
entry. If not found, it uniformly

samples y1,i, · · · , yk,i
R←− Zq, and samples δi from a distribution over {0, 1} such

that Pr [δi = 1] = γ. It then adds the tuple
(
idi, {yj,i}j∈[1,k], δi

)
to the list and

proceeds as follows:
• If δi = 0, B responds with H1 (idi) = ga2·y1,i and Hj (idi) = gyj,i for j ∈ [2, k],

where ga2 is part of its input DBDH instance.
• If δi = 1, B responds with Hj (idi) = gyj,i for j ∈ [1, k].

• Secret-Key Queries: When A issues a secret-key query for some identity idi,
B looks up Hj (idi) for j ∈ [1, k], as described above. Let {yj,i}j∈[1,k] and δi be
the corresponding tuple entries. B proceeds as follows:
• If δi = 0, B outputs a random bit and aborts.

• If δi = 1, B samples z1,i, · · · , zk,i
R←− Zq and responds with:

skidi =

ga1·y1,i·z1,i · k∏
j=2

gaj+2·yj,i·zj,i

 , {zj,i}j∈[1,k]


Observe that if δi = 1, we have Hj (idi) = gyj,i for j ∈ [1, k]; consequently, the
secret-key skidi is well-formed with respect to the public parameter pp.

• Challenge: A outputs the challenge pair ((id∗0,M
∗
0 ) , (id∗1,M

∗
1 )). B samples a

random bit b
R←− {0, 1} and looks up Hj (id∗b) for j ∈ [1, k], as described above.

Let {y∗j }j∈[1,k] and δ∗ be the corresponding tuple entries. B proceeds as follows:
• If δ∗ = 1, B outputs a random bit and aborts.
• If δ∗ = 0, we must have H1 (id∗b) = ga2·y

∗
1 and Hj (id∗b) = gy

∗
j for j ∈ [2, k]. In

this case, B outputs the challenge ciphertext as:

C∗ =
(
ga3 ,Mb · Zy

∗
1 , e (ga3 , ga4)

y∗2 , · · · , e (ga3 , gak+2)
y∗k
)
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• Output: Finally, A outputs a guess b′ for b. If b′ = b, B outputs 1, else it outputs
0.

We now state and prove the following claims:

Claim E.1 When Z = e(g, g)a1·a2·a3 , the joint distribution of b and the challenge
ciphertext C∗ in the simulation by B is computationally indistinguishable from that

in the experiment Expt
(b,0)

ΠIBE
DBDH+k-DLIN,A

(λ).

Proof. Let Z = e(g, g)a1·a2·a3 . As already discussed above, if B does not abort, we
must have H1 (id∗b) = ga2·y

∗
1 and Hj (id∗b) = gy

∗
j for j ∈ [2, k]. Then the challenge

ciphertext C∗ takes the form:

C∗ =
(
ga3 ,Mb · e(g, g)a1·a2·a3·y

∗
1 , e (ga3 , ga4)

y∗2 , · · · , e (ga3 , gak+2)
y∗k
)

=
(
ga3 ,Mb · e (gs1 , H1 (id∗b))

a3 , {e (gsj , Hj (id∗b))
a3}j∈[2,k]

)
for s1 = a1 and sj = aj+2 for j ∈ [2, k]. Quite evidently, C∗ is identically distributed to

the challenge ciphertext in the experiment Exptmode
FP,ΠIBE

DBDH+k-DLIN,A
(λ). This completes

the proof of Claim E.1.

Claim E.2 When Z is uniformly random in GT , the joint distribution of b and the
challenge ciphertext C∗ in the simulation by B is computationally indistinguishable

from that in the experiment Expt
(b,1)

ΠIBE
DBDH+k-DLIN,A

(λ).

Proof. The claim follows trivially from the fact that if Z is uniformly random in GT ,
the message Mb is perfectly one-time padded in the second component of the chal-
lenge ciphertext C∗, while all other components of C∗ are well-formed with respect
to b.

It now follows from Claims E.1 and E.2 that the advantage ε′ of B in solving the
DBDH instance may be quantified as ε′ = ε · (1− Pr [abort]), where ε is the advantage
of the adversary A, and abort denotes the event of B aborting the simulation. We
bound the probability of this event as follows:

• Suppose that the adversary A makes a maximum of Q1 and Q2 queries to the
random oracle and the secret-key generation oracle, respectively. The probability
that A does not abort is lower-bounded by γQ2 · (1− γ).
• Now, B can set γ = 1− 1/ (Q2 + 1). Then, we have:

Pr [abort] ≤ 1− (1− 1/ (Q2 + 1))
Q2 / (Q2 + 1) ≤ 1− 1/e · (Q2 + 1)

In other words, we have ε′ ≥ ε/e · (Q2 + 1). Hence, we must have ε ≤ negl (λ).
Following a similar proof technique, one can also show that for any probabilistic
polynomial-time adversary A, for any k′ ∈ [2, k+ 1], and for b ∈ {0, 1}, the following
holds:∣∣∣∣Pr

[
Expt

(b,k′−1)

ΠIBE
DBDH+k-DLIN,A

(λ) = 1
]
− Pr

[
Expt

(b,k′)

ΠIBE
DBDH+k-DLIN,A

(λ) = 1
] ∣∣∣∣ ≤ negl (λ)
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The proof uses a sequence of simulations similar to the one described above, except
that in the k′th simulation, the algorithm B embeds its input DBDH instance in the
(k′ + 1)

th
component of the challenge ciphertext C∗, while the preceding component

are anyways set to a uniformly random element in GT , and the succeeding components
are well-formed with respect to b. It is now easy to see the following:

AdvDP
ΠIBE

DBDH+k-DLIN,A
(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠIBE
DBDH+k-DLIN,A

(λ) = 1
]
− Pr

[
Expt

(1)

DP,ΠIBE
DBDH+k-DLIN,A

(λ) = 1
] ∣∣∣∣

≤
∑

k′∈[1,k+1]

∑
b∈{0,1}

∣∣∣∣Pr
[
Expt

(b,k′−1)

ΠIBE
DBDH+k-DLIN,A

(λ) = 1
]
− Pr

[
Expt

(b,k′)

ΠIBE
DBDH+k-DLIN,A

(λ) = 1
] ∣∣∣∣

≤ negl (λ)

This completes the proof of Theorem E.1.

Computational Function Privacy. We state the following theorem for the com-
putational function privacy of ΠIBE

DBDH+k-DLIN:

Theorem E.2 Our IBE scheme ΠIBE
DBDH+k-DLIN is function private under the k-

DLIN assumption for identities sampled uniformly from k′-sources with k′ = ω (log λ).

Proof. The proof follows directly from the following claim:

Claim E.3 For any probabilistic polynomial-time adversary A, the following holds:∣∣∣∣Pr
[
ExptleftFP,ΠIBE

DBDH+k-DLIN,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠIBE
DBDH+k-DLIN,A

(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time
adversary such that:∣∣∣∣Pr

[
ExptleftFP,ΠIBE

DBDH+k-DLIN,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠIBE
DBDH+k-DLIN,A

(λ) = 1
] ∣∣∣∣ = ε

where ε > negl(λ). We construct an algorithm B that solves an instance of the k-
DLIN problem with advantage ε′ negligibly close to ε. B receives as input a k-DLIN
instance

(
{gj}j∈[1,k+1], {g

aj
j }j∈[1,k+1]

)
over a bilinear group G with prime order q and

generator g, and interacts with A as follows:

• Setup: B samples x1, x2, · · · , xk+1
R←− Zq and providesA with the public parameter

pp as:
pp =

(
g, {gxjj · g

xk+1

k+1 }j∈[1,k]

)
where g1, · · · , gk, gk+1 are part of its input k-DLIN instance. Let αj = logggj for
j ∈ [1, k+ 1]. Then observe that B’s choice of public parameters formally fixes the
master secret key to be:

msk =
(
{sj = αj · xj + αk+1 · xk+1}j∈[1,k]

)
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• H1, · · · , Hk Query Phase-1 : A is allowed to issue queries to the random ora-
cles for H1, H2 · · · , Hk. B maintains a list of (k + 1)-tuples

(
idi, {yj,i}j∈[1,k]

)
∈

IDλ × (Zq)k. Upon receiving a query for an identity idi it first looks up the
list for a matching

(
idi, {yj,i}j∈[1,k]

)
entry. If not found, it uniformly samples

y1,i, · · · , yk,i
R←− Zq, and adds the tuple

(
idi, {yj,i}j∈[1,k]

)
to the list. It finally

responds with Hj (idi) = gyj,i for j ∈ [1, k].

• Secret-Key Query Phase-1: When A issues a secret-key query for some identity
idi, B looks up Hj (idi) for j ∈ [1, k], as described above. Let {yj,i}j∈[1,k] be the

corresponding tuple entries. B samples z1,i, · · · , zk,i
R←− Zq, and responds with:

skidi =

 k∏
j=1

(
g
xj
j · g

xk+1

k+1

)yj,i·zj,i
, {zj,i}j∈[1,k]


Once again, it is again easy to see that this simulation of the key-generation ora-
cle by B is computationally indistinguishable from the real oracle the experiment
Exptmode

FP,ΠIBE
DBDH+k-DLIN,A

(λ).

• Left-or-Right Query: Suppose A queries the left-or-right oracle with (ID∗0, ID
∗
1)

- a two-tuple of circuits representing k′-sources over the identity space IDλ such

that k′ = ω (log λ). B uniformly samples mode
R←− {left, right}. If mode = left,

it samples id∗
R←− ID∗0; otherwise, it samples id∗

R←− ID∗1. If any of Hj (id∗) for
j ∈ [1, k] has already been looked up, B outputs a random bit and aborts. Otherwise,

it samples z∗1 , z
∗
2 , · · · , z∗k

R←− Zq, and responds with:

skid∗ =

k+1∏
j=1

g
aj ·xj
j , {z∗j }j∈[1,k]


where

(
ga11 , · · · , gak+1

k+1

)
is part of its input k-DLIN instance. It also formally sets

Hj (id∗) = gaj/z
∗
j for j ∈ [1, k].

• H1, · · · , Hk Query Phase-2 : A continues to issue queries to the random oracles
for H1, H2 · · · , Hk. B responds as in Phase-1, except if a query for id∗ arrives. In
this case, B outputs 1 and aborts.

• Secret-Key Query Phase-2: A continues to issue secret-key queries, and B con-
tinues to respond as in Phase-1, except if a query for id∗ arrives. In this case, B
outputs 1 and aborts.

• Output: Finally, A outputs a bit b ∈ {0, 1}. B outputs 1 if the challenge identity
id∗ was sampled from ID∗b , and 0 otherwise.

Note that once again, we considered the single-shot variant of the function privacy
adversary making a single left-or-right oracle query. Such an adversary is polynomially
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equivalent to its multi-shot variant (see Section 3.4). We now state and prove the
following claims:

Claim E.4 When ak+1 =
∑k
j=1 aj, the joint distribution of mode and the challenge

secret-key skid∗ in the simulation of the left-or-right oracle by B is computationally
indistinguishable from that in the experiment Exptmode

FP,ΠIBE
DBDH+k-DLIN,A

(λ).

Proof. Note that the sampling of id∗ from either ID∗1 or ID∗1 by B is consistent with

its random choice of mode. Additionally, when ak+1 =
∑k
j=1 aj , the secret-key skid∗

takes the form:

skid∗ =

 k∏
j=1

g
aj ·xj
j

 · g(
∑k
j=1 aj)·xk+1

k+1 , {z∗j }j∈[1,k]


=

 k∏
j=1

(
g
xj
j · g

xk+1

k+1

)aj
, {z∗j }j∈[1,k]


=

 k∏
j=1

(
g
xj
j · g

xk+1

k+1

)(aj/z∗j )·z∗j , {z∗j }j∈[1,k]


=

 k∏
j=1

Hj (id∗)
sj ·z∗j , {z∗j }j∈[1,k]


which is identically distributed to the response of the left-or-right oracle in the ex-
periment Exptmode

FP,ΠIBE
DBDH+k-DLIN,A

(λ). This completes the proof of Claim E.4.

Claim E.5 When ak+2 is uniformly random in Zq, the distribution of the challenge
secret-key skid∗ is statistically independent of B’s choice of mode.

Proof. Recall that αj = logggj for j ∈ [1, k + 1]. Consider the following system of
equations, determined by the public parameters pp and the secret-key skid∗ :

logg
(
gx1

1 · g
xk+1

k+1

)
= α1 · x1 + αk+1 · xk+1

logg
(
gx2

2 · g
xk+1

k+1

)
= α2 · x2 + αk+1 · xk+1

...

logg
(
gxkk · g

xk+1

k+1

)
= αk · xk + αk+1 · xk+1

logg

k+1∏
j=1

g
aj ·xj
j

 =

k+1∑
j=1

aj · αj · xj

Since ak+2 is uniformly random in Zq, with all but negligible probability, we have

that ak+2 6=
∑k+1
j=1 aj , which makes the aforementioned system of equations linearly

independent. Hence, the conditional distribution of skid∗ (where the conditioning is
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on B’s choice of mode and everything else in A’s view) is uniform. This completes the
proof of Claim E.5.
It now follows from Claims E.4 and E.5, that the advantage ε′ of B in solving the
k-DLIN instance may be quantified as ε′ = ε · (1− Pr [abort1])− Pr [abort2], where ε
is the advantage of the function privacy adversary A, while abort1 and abort2 denote
the events that aborting the simulation during the left-or-right query phase and the
second hash/secret-key query phase, respectively, leads to a loss of advantage for B.
We bound the probability of this event as follows:

• Abortion during Left-or-Right Query. Suppose that the adversary A makes
a maximum of Q1 and Q2 queries to the random oracles and the secret-key gen-
eration oracle, respectively, prior to the left-or-right query. Recall that both the
circuits ID∗0 and ID∗1 generated by A represent k-sources over the identity space
IDλ, such that k = ω (log λ). Hence, the probability that a uniformly randomly
sampled id∗ from either distribution has already been queried by A may be upper
bounded as Q1+Q2

2ω(log λ) ≤ negl (λ).

• Abortion during Query Phase-2. Note that when B aborts during a random
oracle/secret-key generation oracle query in phase-2, it always outputs 1, thereby
indicating that its input k-DLIN instance is valid. Hence, a loss of advantage
for B occurs only when it has to abort even if the k-DLIN instance is invalid.
Now, as per Claim E.5, when the k-DLIN instance is invalid, the distribution
of the challenge secret-key skid∗ is uniformly random and independent of mode.
Given the min-entropy bounds on the circuits represented by ID∗0 and ID∗1, the
probability that A still correctly guesses id∗ and issues hash queries for the same
is O

(
2−ω(log λ)

)
≤ negl (λ).

In summary, we have Pr [abortβ ] ≤ negl (λ) for β ∈ {1, 2}, implying that B’s advantage
in solving the k-DLIN instance is negligibly close to the advantage of the function
privacy adversary A. This completes the proof of Claim E.3.

F Proof of Theorem 5.1

Let A be any probabilistic polynomial-time adversary such that:

AdvDP
ΠSME

MDDH,A
(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠSME
MDDH,A

(λ) = 1
]
− Pr

[
Expt

(1)

DP,ΠSME
MDDH,A

(λ) = 1
] ∣∣∣∣ = ε

where ε > negl(λ). We construct a probabilistic polynomial-time algorithm B such
that:

AdvMDDH
l1,l2,log2 q,B(λ) =

∣∣∣∣Pr
[
Expt

(0)
MDDH,l1,l2,log2 q,B

(λ) = 1
]
−Pr

[
Expt

(1)
MDDH,l1,l2,log2 q,B

(λ) = 1
] ∣∣∣∣ = ε

B proceeds as follows:

• Init: B outputs a circuit V∗ representing the uniform distribution over Zl1×l2q

(indeed, the uniform distribution over Zl1×l2q is a (l1, l2, k)-matrix-source for k =
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log2 q). In response, B receives a tuple
(
gA, gu

)
∈
(

(G)
l1×l2 × (G)

l1
)

, where u

is either of the form A · r for some uniformly random r ∈ Zl2q , or u is uniformly

random in Zl1q .

• Setup: B samples S
R←− Zn×l1q and sets the public parameter pp and the master-

secret-key msk as:

pp =
(
g, gA, gS·A

)
, msk = S

It provides pp to A.

• Secret-Key Queries: Suppose A issues a key-generation query for a predicate

matrix W ∈ Zm×nq . B samples y
R←− Zmq and responds with the secret-key skW =

(d1, d2) where:

d1 = gy
T·W , d2 = gy

T·W·S

Quite evidently, the distribution of skW is B’s simulation is computationally in-
distinguishable from that in the response of the key-generation oracle in the ex-

periment Expt
(b)

DP,ΠSME
MDDH,A

(λ).

• Challenge: A outputs the challenge pair ((x∗0,M
∗
0 ) , (x∗1,M

∗
1 )). B samples b

R←−
{0, 1} and α∗

R←− Zq, and outputs the challenge ciphertext C∗ = (c∗1, c
∗
2) where:

c∗1 = gu , c∗2 = gα
∗·x∗b+m∗b+S·u

where m∗b =
[
M∗b 0 0 · · · 0

]
∈ Znq .

• Output: Finally, A outputs a guess b′ for b. If b′ = b, B outputs 1, else it outputs
0.

We now state and prove the following claims:

Claim F.1 When u is of the form A · r for some uniformly random r ∈ Zl2q , the
joint distribution of b and the challenge ciphertext C∗ in the simulation by B is

computationally indistinguishable from that in the experiment Expt
(b)

DP,ΠSME
MDDH,A

(λ).

Proof. This is obvious from substituting u = A · r in the challenge ciphertext com-
ponents c∗1 and c∗2.

Claim F.2 When u is uniformly random in Zl1q , the distribution of the challenge
ciphertext C∗ is statistically independent of B’s choice of b.

Proof. Observe that the challenge ciphertext component c∗2 is essentially gα
∗·x∗b+m∗b+S·u.

Hence, c∗2 is statistically independent of b if and only if the conditional distribution
of S ·u (where the conditioning is on B’s choice of b and everything else in A’s view)
is uniformly random, given that u is a uniformly random vector in Zl1q .
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Suppose that during the data privacy experiment, the adversaryAmakesQ secret-
key-generation queries on predicate matrices W1, · · · ,WQ ∈ Zm×nq , and B responds
with skvj = (dj,1, dj,2) for j ∈ [1, Q]. Also, suppose that Q = b(n× (l1 − l2)− 1) /l1c.
Now consider the following system of (n× l2 +Q× l1) equations, determined by
the public parameters and the responses of B to the aforementioned key-generation
queries:

logg
(
gS·A

)
= S ·A

logg (d1,2) = yT
1 ·W1 · S

logg (d2,2) = yT
2 ·W2 · S

...

logg (dQ,2) = yT
Q ·WQ · S

Quite evidently, the aforementioned system of equations has exponentially many so-
lutions for S ∈ Zn×l1q . Let S0 be one such solution, chosen deterministically. Also, let

Z1 ∈ Zl1q and Z2 ∈ Znq be deterministically chosen vectors such that:

• AT · Z1 = 0 ∈ Zl1q
• yT

j ·Wj · Z2 = 0 ∈ Znq for each j ∈ [1, Q]

Note that exponentially many such vectors exist since l1 > l2 and n > Q. Then, the
distribution of S ∈ Zn×l1q in the view of a computationally unbounded adversary is
as follows:

{S0 + µ · Z2 · ZT
1 | µ ∈ Zq}

Now, observe that the conditional distribution of S · u (where the conditioning is on
B’s choice of b and everything else in A’s view) is as follows:

{S0 · u + µ · Z2 · ZT
1 · u | µ ∈ Zq}

Since u is uniformly random in Zl1q , we may assume that u is not of the form A · r,
since this occurs with only negligible probability. This essentially implies that, except
with negligible probability, ZT

1 · u 6= 0, and the conditional distribution of S · u is
uniformly random. This completes the proof of Claim F.2.

It now follows from Claims F.1 and F.2 that :

AdvMDDH
l1,l2,log2 q,B(λ) =

∣∣∣∣Pr
[
Expt

(0)
MDDH,l1,l2,log2 q,B

(λ) = 1
]
− Pr

[
Expt

(1)
MDDH,l1,l2,log2 q,B

(λ) = 1
] ∣∣∣∣

=

∣∣∣∣Pr
[
Expt

(0)

DP,ΠSME
MDDH,A

(λ) = 1
]
− Pr

[
Expt

(1)

DP,ΠSME
MDDH,A

(λ) = 1
] ∣∣∣∣

= AdvDP
ΠSME

MDDH,A
(λ) = ε

This completes the proof of Theorem 5.1.
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G Proof of Claim 6.1

For a given k ∈ [1, n + 1] and b ∈ {0, 1} let A be any probabilistic polynomial-time
adversary such that:∣∣∣∣Pr

[
Expt

(b,k−1)

ΠHVE
MDDH,A

(λ) = 1
]
− Pr

[
Expt

(b,k)

ΠHVE
MDDH,A

(λ) = 1
] ∣∣∣∣ = ε

where ε > negl(λ). We construct a probabilistic polynomial-time algorithm B such
that:

AdvMDDH
l1,l2,log2 q,B(λ) =

∣∣∣∣Pr
[
Expt

(0)
MDDH,l1,l2,log2 q,B

(λ) = 1
]
−Pr

[
Expt

(1)
MDDH,l1,l2,log2 q,B

(λ) = 1
] ∣∣∣∣ = ε

B proceeds as follows:

• Init: B outputs a circuit V∗ representing the uniform distribution over Zl1×l2q

(indeed, the uniform distribution over Zl1×l2q is a (l1, l2, k)-matrix-source for k =

log2 q). In response, B receives a tuple
(
gA, gu

)
∈
(

(G)
l1×l2 × (G)

l1
)

, where u

is either of the form A · r for some uniformly random r ∈ Zl2q , or u is uniformly

random in Zl1q .

• Setup: B randomly samples A1, · · · ,Ak−1,Ak+1,An,An+1
R←− Zl1×l2q and S

R←−
Z(n+1)×l1
q . It formally sets Ak = A. It sets the public parameter pp and the

master-secret-key msk as:

pp =
(
g, {gAj}j∈[1,n+1], {gS·Aj}j∈[1,n+1]

)
, msk = S

It provides pp to A.

• Secret-Key Queries: Suppose A issues a key-generation query for a predicate
vector v ∈ (Zq ∪ {?})m. B responds with skv = ΠHVE

MDDH.KeyGen (msk,v).

• Challenge: A outputs the challenge pair ((x∗0,M
∗
0 ) , (x∗1,M

∗
1 )), where for each

b ∈ [0, 1], we have x∗b =
(
x∗b,1, · · · , x∗b,n

)
∈ Zqn. B samples b

R←− {0, 1} and α∗
R←−

Zq, and proceeds as follows:

• For each j ∈ [1, k − 1], it randomly samples c∗j,1, c
∗
j,2

R←− Zn+1
q .

• For each j ∈ [k+1, n+1], it computes c∗j,1 and c∗j,2 as per ΠHVE
MDDH.Encrypt (pp,x∗b ,M

∗
b ).

• If k < n+ 1, it sets:

c∗k,1 = gu , c∗k,2 = gα
∗·x∗b,k+S·u

where x∗b,k =
[
0 0 · · · 0 x∗b,k 0 · · · 0

]T ∈ Zn+1
q . On the other hand, if k = n+1,

it sets

c∗n+1,1 = gu , c∗n+1,2 = gα
∗·x∗b,n+1+m∗b+S·u

where x∗b,n+1 =
[
0 0 · · · 0 −1

]T ∈ Zn+1
q and m∗b =

[
M∗b 0 0 · · · 0

]T ∈ Zn+1
q .
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• B finally responds with the ciphertext C∗ =
(
{c∗j,1, c∗j,2}j∈[1,n+1]

)
.

• Output: Finally, A outputs a guess b′ for b. If b′ = b, B outputs 1, else it outputs
0.

We now state and prove the following claims:

Claim G.1 When u is of the form A · r for some uniformly random r ∈ Zl2q , the
joint distribution of b and the challenge ciphertext C∗ in the simulation by B is

computationally indistinguishable from that in the experiment Expt
(b,k−1)

ΠHVE
MDDH,A

(λ).

Proof. This is obvious from substituting u = A · r in the challenge ciphertext com-
ponents c∗k,1 and c∗k,2.

Claim G.2 When u is uniformly random in Zl1q , the joint distribution of b and the
challenge ciphertext C∗ in the simulation by B is computationally indistinguishable

from that in the experiment Expt
(b,k)

ΠHVE
MDDH,A

(λ).

Proof. It is easy to see that c∗2,k is statistically independent of b if and only if the
conditional distribution of S · u (where the conditioning is on B’s choice of b and
everything else in A’s view) is uniformly random, given that u is a uniformly random
vector in Zl1q .

Suppose that during the data privacy experiment, the adversaryAmakesQ secret-
key-generation queries on predicate vectors v1, · · · ,vQ ∈ Znq , and B responds with
skvj = (dj,1, dj,2) for j ∈ [1, Q]. Also, suppose that Q = b((n+ 1)× (l1 − l2)− 1) /l1c.
Now consider the following system of ((n+ 1)× l2 +Q× l1) equations, determined
by the public parameters and the responses of B to the aforementioned key-generation
queries:

logg
(
gS·A

)
= S ·A

logg (d1,2) = yT
1 ·W1 · S

logg (d2,2) = yT
2 ·W2 · S

...

logg (dQ,2) = yT
Q ·WQ · S

Quite evidently, the aforementioned system of equations has exponentially many so-

lutions for S ∈ Z(n+1)×l1
q . Let S0 be one such solution, chosen deterministically. Also,

let Z1 ∈ Zl1q and Z2 ∈ Zn+1
q be deterministically chosen vectors such that:

• AT · Z1 = 0 ∈ Zl1q
• yT

j ·Wj · Z2 = 0 ∈ Zn+1
q for each j ∈ [1, Q]

Note that exponentially many such vectors exist since l1 > l2 and n+1 > Q. Then, the

distribution of S ∈ Z(n+1)×l1
q in the view of a computationally unbounded adversary

is as follows:
{S0 + µ · Z2 · ZT

1 | µ ∈ Zq}
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Now, observe that the conditional distribution of S · u (where the conditioning is on
B’s choice of b and everything else in A’s view) is as follows:

{S0 · u + µ · Z2 · ZT
1 · u | µ ∈ Zq}

Since u is uniformly random in Zl1q , we may assume that u is not of the form A · r,
since this occurs with only negligible probability. This essentially implies that, except
with negligible probability, ZT

1 · u 6= 0, and the conditional distribution of S · u is
uniformly random. This completes the proof of Claim G.2.

It now follows from Claims G.1 and G.2 that :

AdvMDDH
l1,l2,log2 q,B(λ) =

∣∣∣∣Pr
[
Expt

(0)
MDDH,l1,l2,log2 q,B

(λ) = 1
]
− Pr

[
Expt

(1)
MDDH,l1,l2,log2 q,B

(λ) = 1
] ∣∣∣∣

=

∣∣∣∣Pr
[
Expt

(b,k−1)

ΠHVE
MDDH,A

(λ) = 1
]
− Pr

[
Expt

(b,k)

ΠHVE
MDDH,A

(λ) = 1
] ∣∣∣∣

= ε

Hence, we must have ε ≤ negl (λ). This completes the proof of Claim 6.1.

H Proof of Theorem 6.2

The proof follows directly from the following claim:

Claim H.1 For any probabilistic polynomial-time adversary A, the following holds:∣∣∣∣Pr
[
ExptleftFP,ΠHVE

MDDH,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠHVE
MDDH,A

(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

Proof. Let A be a probabilistic polynomial-time adversary such that:∣∣∣∣Pr
[
ExptleftFP,ΠHVE

MDDH,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠHVE
MDDH,A

(λ) = 1
] ∣∣∣∣ = ε

We construct a probabilistic polynomial-time algorithm B such that:

AdvMDDH
n,k,B (λ) =

∣∣∣∣Pr
[
Expt

(0)
MDDH,n,k,B(λ) = 1

]
− Pr

[
Expt

(1)
MDDH,n,k,B(λ) = 1

] ∣∣∣∣ = ε

for k = log2 q. B poses as the challenger for A in the function privacy experiment, and
delays outputting its own choice of matrix distribution in the min-entropy MDDH
game until A queries the left-or-right function privacy oracle. More concretely, B
proceeds as follows:

• Setup: B randomly samples (G,GT , q, g, e)
R←− GroupGen(1λ) on input the se-

curity parameter 1λ. It also randomly samples A1, · · · ,An,An+1
R←− Zl1×l2q and
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S
R←− Z(n+1)×l1

q , where l1, l2 ∈ N. It then sets the public parameter pp and the
master-secret-key msk as:

pp =
(
g, {gAj}j∈[1,n+1], {gS·Aj}j∈[1,n+1]

)
, msk = S

It provides pp to A.

• Secret-Key Queries: Suppose A issues a key-generation query for a predicate
vector v ∈ (Zq ∪ {?})m. B responds with skv = ΠHVE

MDDH.KeyGen (msk,v).

• Left-or-Right Query: SupposeA queries the left-or-right oracle with (V∗0,V
∗
1,S∗),

where V∗0 =
(
{V ∗j,0}j∈[1,n]

)
and V∗1 =

(
{V ∗j,1}j∈[1,n]

)
represent (1, n, k)-matrix-

sources for k = ω (log λ), and S∗ ⊆ [1, n]. B uniformly samples mode
R←− {left, right}.

If mode = left, it sets b = 0, else it sets b = 1. It then creates a new distribution

V
′

b =
(
V
′

1 , · · · , V
′

n

)
∈ Znq , described as follows:{

V
′

j =

{
V ∗j,b if j ∈ S
0 if j /∈ S

}
j∈[1,n]

Note that V
′

b is a non-zero distribution so long as S 6= φ. At this point, B outputs

the distribution Ṽ∗ =
[
Un×n | Un×n ·V

′

b

]T
(where Un×n is a circuit represent-

ing the uniform distribution, and hence an (n, n, log2 q)-matrix-source, over Zn×nq )

and receives in response a tuple
(
g(W∗)T , gu

∗
)
∈
(

(G)
(n+1)×n × (G)

n+1
)

. Note

that u∗ is either of the form (W∗)
T · y∗ for some uniformly random y∗ ∈ Znq , or

u∗ is uniformly random in Zn+1
q .

B responds with the secret-key skv∗ = (d∗1, d
∗
2) where:

d∗1 = g(u∗)T , d∗2 = g(u∗)T·S

• Output: A outputs a bit b′. If b′ = b (where b = 0 if mode = left and b = 1 if
mode = right), B outputs 1; else, it outputs 0.

Note that once again, we considered the single-shot variant of the function privacy
adversary making a single left-or-right oracle query. Such an adversary is polynomially
equivalent to its multi-shot variant (see Section 3.4). The following claims now follow:

Claim H.2 When u∗ is of the form (W∗)
T ·y∗ for some uniformly random y∗ ∈ Znq ,

the joint distribution of mode and the challenge secret-key skv∗ in the simulation
of the left-or-right oracle by B is computationally indistinguishable from that in the
experiment Exptmode

FP,ΠHVE
MDDH,A

(λ).

Claim H.3 When u∗ is uniformly random in Znq , the distribution of the challenge
secret-key skv∗ is statistically independent of B’s choice of mode with overwhelmingly
large probability.
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Proof. The proof of Claim H.2 follows from the fact that a matrix W1
R←− Un×n

is invertible with overwhelmingly high probability, while the proof of Claim H.3 is
intuitively identical to the proof of Claim 5.3 in the proof of function privacy for
our SME scheme. Note that the restriction on the number of secret-key queries Q
ensures that the master-secret-key S has sufficient entropy from an adversary’s point
of view, even given the public parameter pp and B’s responses to Q-many secret-key
queries. This in turn ensures that when u∗ is uniformly random in Znq , the challenge
secret-key skv∗ perfectly hides the distribution V∗b from which the predicate vector
v∗ was sampled.

It now follows from Claims H.2, and H.3, that:

AdvMDDH
n,k,B (λ) =

∣∣∣∣Pr
[
Expt

(0)
MDDH,n,k,B(λ) = 1

]
− Pr

[
Expt

(1)
MDDH,n,k,B(λ) = 1

] ∣∣∣∣
=

∣∣∣∣Pr
[
ExptleftFP,ΠHVE

MDDH,A
(λ) = 1

]
− Pr

[
Exptright

FP,ΠHVE
MDDH,A

(λ) = 1
] ∣∣∣∣ = ε

This completes the proof of Claim H.1.
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