
Number "Not Used" Once - Practical fault
attack on pqm4 implementations of NIST

candidates

Prasanna Ravi12, Debapriya Basu Roy3, Shivam Bhasin1, Anupam
Chattopadhyay2, and Debdeep Mukhopadhyay3

1 Temasek Laboratories, Nanyang Technological University, Singapore
2 School of Computer Science and Engineering
Nanyang Technological University, Singapore
3 Indian Institute of Technology, Kharagpur

PRASANNA.RAVI@ntu.edu.sg dbroy24@gmail.com sbhasin@ntu.edu.sg
anupam@ntu.edu.sg debdeep.mukhopadhyay@gmail.com

Abstract In this paper, we demonstrate practical fault attacks over a
number of lattice-based schemes, in particular NewHope, Kyber, Frodo,
Dilithium which are based on the hardness of the Learning with Errors
(LWE) problem. One of the common traits of all the considered LWE
schemes is the use of nonces as domain separators to sample the secret
components of the LWE instance. We show that simple faults targeting
the usage of nonce can result in a nonce-reuse scenario which allows key
recovery and message recovery attacks. To the best of our knowledge, we
propose the first practical fault attack on lattice-based Key encapsulation
schemes secure in the CCA model. We perform experimental validation
of our attack using Electromagnetic fault injection on reference imple-
mentations of the aforementioned schemes taken from the pqm4 library,
a benchmarking and testing framework for post quantum cryptographic
implementations for the ARM Cortex-M4. We use the instruction skip
fault model, which is very practical and popular in microcontroller based
implementations. Our attack requires to inject a very few number of
faults (numbering less than 10 for recommended parameter sets) and
can be repeated with a 100% accuracy with our Electromagnetic fault
injection setup.

1 Introduction

Ever since the discovery of the Shor’s algorithm [27], there has always been an
imminent danger of the possibility of large scale quantum computers threatening
our existing public key infrastructure. The cryptographic community has long
felt the need to replace the existing public key cryptosystems with quantum
resistant alternatives, which is also justifiable given that research in the quantum
computing field has grown by leaps and bounds [25].

NIST recently initiated the process for standardization of post quantum
cryptographic alternatives for public key encryption (PKE), Key Exchange (KEX)

and digital signatures (DS) [22]. Among the 64 submissions which still remain in
the competition, lattice-based cryptography fields the largest contingent in terms
of the number of submissions. This is due to the fact that they provide a very good
balance of a number of attributes like key sizes, ciphertext sizes, computational
performance which are on par with existing public key cryptographic primitives
based on RSA and ECC along with providing post-quantum security.

The assessment of each candidate is being done based on multiple aspects
such as classical security, post-quantum security, performance on a wide-range
of devices (from Desktop PCs to resource constrained 8-bit microcontrollers)
among other other parameters. Another crucial aspect that is being looked at is
the implementation security of post quantum cryptographic alternatives against
active and passive physical attacks. In this regard, there have been a number of
works that have reported physical attacks over lattice-based schemes through
exploitation of a number of side channels like power/EM side [15, 24], cache
timing [10] and induced faults [11].

In this work, we try to analyze the fault vulnerabilities of multiple lattice-
based schemes which base their security on the Learning with Errors (LWE)
problem. One of the crucial components with respect to the implementation
of all the LWE based schemes is the error sampling procedure. We analyzed
the implementations of multiple lattice-based schemes such as NewHope [3],
Kyber [6], Frodo [9] Key Encapsulation (KEM) schemes & Dilithium digital
signature (DS) scheme [20] and observed common traits with respect to the usage
of fixed nonces as simple domain separators in the error sampling procedure. The
simplistic use of nonce to generate the secret components in the scheme raises
questions concerning security against potential fault attacks. Though nonce-
reuse based attacks such as the ones reported on ECDSA are well known in
literature [12], surprisingly, none of the specification documents of any of the
schemes discuss possible issues due to misuse of the nonces. Thus, we extend the
applicability of nonce-reuse based fault attacks to cryptographic schemes based
on the LWE problem. In this work, we mainly focus on targeting the simplistic

use of nonces through fault injection to create weak faulty LWE instances, result-

ing in key recovery and message recovery attacks in multiple lattice-based schemes.

The contribution of this work are as follows:

• We extend the applicability of nonce-misuse based attacks to lattice-based
LWE schemes mainly targeting nonces used as domain separators during
generation of LWE instances.

• We analyze four lattice-based LWE schemes such as NewHope, Kyber, Frodo
and Dilithium and demonstrate how nonce-misuse in these schemes could
result in key recovery (long term key) and message recovery (session key)
attacks. To the best of our knowledge, we perform the first fault analysis of
lattice-based KEM schemes while all prior works focussed on fault attacks
on lattice-based digital signatures [11,14].

• We propose a novel fault assisted Man-In-The-Middle (MITM) attack to per-
form message recovery in the considered KEM schemes secure in the Chosen

2

Ciphertext Attacker (CCA) model. We fault the encapsulation procedure
to perform successful message recovery, which is counter-intuitive given the
fact that a re-encapsulation is done at the decapsulator’s side in a Chosen
Cipehertext secure KEM scheme which might detect tampering due to fault
injection.

• We validated the vulnerabilities using electromagnetic fault injection on the
ARM Cortex-M4 microcontroller. We performed practical fault attacks over
reference implementations of the aforementioned NIST candidates taken from
the pqm4

3 public library, a testing and benchmarking framework for post
quantum cryptographic schemes on the ARM Cortex-M4 microcontroller [18].

The rest of the paper is organized as follows. Section 2 provides a brief
description of various lattice-based LWE cryptosystems. The identified fault
vulnerabilities and the associated key recovery and message recovery attacks
are described in Sec.3 with practical experimental results using our EMFI setup
covered in Sec.4. Possible countermeasures against the proposed fault attacks are
discussed in section 5 with final conclusions drawn in section 6.

2 Background on Lattice Based Cryptography

2.1 Lattice Preliminaries

This section provides a brief background on the Learning With Errors problem and
the LPR encryption scheme, which is the first Ring-LWE based PKE scheme [21]
that has been the foundation of a number of e�cient lattice-based PKE and
KEM schemes including the schemes considered in this work. This section also
further touches upon known insecure instantiations of the LWE problem and
prior work done with respect to fault analysis on lattice-based cryptographic
schemes.

We denote the polynomial ring Zq[X]/(Xn + 1) as Rq for q œ Z+. Poly-
nomials in Rq are denoted using bold lower case letters while matrices (Zk◊l

q)
and vectors(Zl

q) are denoted using bold upper case letters. Multiplication of two
polynomials a and b is denoted as c = a ◊ b while point wise multiplication of
two entities is denoted as c = a ú b. We use the notation Bp to denote an array of
p bytes and D‡ to denote the zero-centered Gaussian distribution with standard
deviation ‡.

2.2 The Learning with Errors Problem

The Learning With Errors (LWE) problem, introduced by Regev in 2006 [26]
is a versatile average case problem related to worst case hard lattice problems
like the Shortest Vector Problem (SVP) and the Bounded Distance Decoding
Problem (BDD) on related lattices. The general LWE problem can be briefly
defined as follows: Given a small secret S œ Zn

q , an LWE distribution consists of
3 Available on https://github.com/mupq/pqm4

3

https://github.com/mupq/pqm4

ordered pairs (A, t) œ Zn
q ◊Zq where A œ Zn

q is public and t = (A ◊ S + e) œ Zq

where e Ω D‡. Given polynomially many pairs (A, t), the search LWE problem
requires one to find a solution for S and the decision LWE problem requires one
to distinguish structured ordered pairs (A, t) from random ones in Zn

q ◊ Zq. Its
more structured variants like the Ring-LWE problem [21] and the Module-LWE
problem [19] that compute over polynomial rings Rq possess greatly reduced
key-sizes and computational time. All the four schemes considered in this paper
except for FRODO, base their hardness on these structured variants of the LWE
problem. There is another variant of the LWE problem, called the Learning With
Rounding (LWR) problem wherein deterministic noise is generated by rounding
every coe�cient of the product (A ◊ S) to a lower modulus and their subsequent
expansion back to the higher modulus. It is also interesting to note that this
rounding/modulus switching technique has been used in all the considered LWE
schemes in the paper, as an e�ort to reduce the key or ciphertext sizes.

We classify the LWE instances in general into two types, based on the purpose
for which they are utilized in the considered schemes.

1. An LWE instance can serve as the public key of a KEM/DS scheme. Such an
LWE instance is denoted as LWEPK.

2. An LWE instance which is indistinguishable from random, can help hide a
suitably encoded message in a KEM scheme. Ciphertexts are formed by adding
an encoded message with an LWE instance, thus obscuring the message. Such
an LWE instance is denoted as LWEOBS.

We will henceforth utilize this terminology for LWE instances throughout this
paper.

2.3 LPR Encryption scheme [21]

The three LWE based KEM schemes (i.e) NewHope, Frodo and Kyber contain in
their core, the LPR public key encryption scheme which is based on the hardness
of the Ring-LWE problem. The key generation procedure of all the three KEM
schemes (including Dilithium) and the encryption procedure of all the three KEM
schemes follow the same framework as that of the LPR encryption scheme. It
would be su�cient to describe the LPR encryption scheme, as it captures the
essence of our attack analysis in all the considered schemes. The LPR encryption
scheme can be briefly described as follows:

– KeyGen(a): Generate random polynomials a Ω Rq and e, s Ω Dn
‡ . The

public-key polynomial is calculated as follows: p = e + a ◊ s œ Rq with s
being the private key.

– Encrypt(a,p,m): Three polynomials ś, é, ´́e œ Rq are sampled from Dn
‡ . The

message m (m0, m1, m2, . . . , mn≠1) to be encrypted is encoded coe�cient-
wise into a polynomial as follows: The bit mi is encoded to coe�cient q/2 if
it is 1, else it is encoded to 0. Ciphertext c1 is calculated as a ◊ ś + é while
ciphertext c2 is formed by embedding the message into an LWE instance as
c2 = p ◊ ś + ´́e + m.

4

– Decrypt(c1, c2, r2): m̂ œ Rq is computed as c2 ≠ c1 ◊ s. The decoder further
retrieves the message m one bit at a time as m = D(ḿ) such that mi = 1
if the corresponding coe�cient is on [q/4, 3q/4] else mi = 0. This encoding
procedure can withstand a coe�cient wise error in m̂ upto q/4.

Our attack works by targeting appropriate variants of the aforementined
KeyGen and Encrypt procedures instantiated within the considered KEM (NewHope,
Frodo and Kyber) and signature schemes (Dilithium).

2.4 Insecure Instantiations of the LWE problem

The error component plays a major role in ensuring the hardness of the LWE
instance. An LWE instance without the error component is nothing but a system
of well defined modular linear equations, which can be solved by Gaussian
elimination. There are indeed certain other trivially solvable instantiations of
the LWE problem. If the error component only has values in a fixed interval
[z + 1

2 , z ≠ 1
2], then one can just "round away" the non-integral part and subtract z

to remove the error from every sample [23]. From a given set of n LWE instances,
if k of the n error components add up to zero, then one can simply add the
corresponding samples to cancel the error and obtain an error-free sample. It is
also possible to solve an LWE instance in roughly nd time and space using nd

samples if the error in the samples lies in a known set of size d [5]. For a very
small d, this yields a very practical attack. Our attack works by realizing such
an insecure instance of LWE through faults to mount key recovery and message
recovery attacks in the considered schemes.

2.5 Error Sampling procedure

Almost all of the earlier lattice-based schemes like BLISS [13], LPR Encryption
scheme [21] resorted to using complex discrete Gaussian samplers for their error
sampling procedures [17]. But, Gaussian samplers turned out to be ine�cient and
very di�cult to be implemented in constant time. Adding to that, implementations
of discrete Gaussian samplers came under heavy scrutiny owing to a number of
side channel attacks [10,15]. Moreover, Alkim et al. [4] reported that high precision
Gaussian sampling is overkill for encryption schemes and that it was only required
for schemes that require zero-knowledge proofs. Subsequently, all the newer lattice-
based proposals (including the schemes considered in this paper) resorted to
sampling from simpler and more secure noise distributions like the centered
Binomial distribution (CBD) [3, 6]. All the schemes considered in this paper
expand a given small seed using XOF’s such as SHAKE256, CSHAKE (Extendable
Output Functions) from the SHA3 family of cryptographic primitives to random
outputs of the desired length, which is further processed to generate samples
from simpler distributions like the CBD or uniform distribution. Alternatively,
coe�cient-wise modulus switching is also used to generate a deterministic error
in schemes based on the hardness of the LWR problem.

5

2.6 Prior work on fault analysis of lattice-based cryptographic
schemes

Bindel et al. [8] proposed the first fault analysis of a number of lattice-based
signature schemes like the GLP [16], BLISS [13] and Ring-Tesla [2] schemes that
follow the Fiat-Shamir framework. They identified a number of fault vulnerabilities
in multiple operations across the various key generation, signing and verification
procedures of lattice-based digital signature schemes. Later, Espitau et al. [14]
reported a generic and a stronger fault attack based on loop abort faults on
both the Fiat-Shamir type and Hash-and-Sign type signature schemes. It worked
by converting the signature component into a solvable closest vector problem
(CVP) instance when the error polynomial is limited to low degrees using loop-
abort faults. The first di�erential style fault attacks on Dilithium and qTESLA
signatures that are potential NIST standards, have been reported by Bruinderink
and Pessl [11] that mainly targets the deterministic nature of the signing procedure
by inducing random faults that can be injected during a large section of the
execution time. They utilize clock glitches to realize their faults on an ARM
Cortex-M4 based microcontroller. To the best of our knowledge, while all related
prior works have only reported fault attacks on lattice-based signature schemes,
our work is the first practical fault attack on lattice-based KEM schemes.

3 Fault attacks on LWE Schemes

3.1 General Attack Idea

The core idea of our attack is to create a nonce-reuse scenario using faults to
generate a trivially solvable LWE instance. One of the common traits of all the
considered schemes in this paper is the error sampling procedure. We explain
the intuition of our attack using the NewHope KEM scheme as an example. The
same vulnerability also applies to all the other considered schemes in this paper.
Refer to the key generation procedure of the NewHope KEM scheme in Alg.2. We
observe that both the secret (s) and error (e) components of the LWE instance
b̂ (in the NTT domain) are generated using the seeds which di�er only based
on a single nonce value (Line 8,10). These seeds are further input to the Sample

function which generates the required polynomials through use of XOF functions
from the SHA3 family. The most important observation being the use of almost
similar seeds that di�er only based on the nonce value, to generate the secret
and error components of the LWE instance.

For example, assume a Ring-LWE instance as created in the LPR encryption
scheme as follows:

t = a ◊ s + e œ Rq

The above equation can be alternatively seen as a modular linear system of
equations with n equations and 2n unknowns. Assume that the attacker injects

6

faults to create a nonce-reuse scenario where both s and e are generated using
the same seed. The corresponding faulty LWE instance generated is

t = a ◊ s + s œ Rq

The faulty LWE instance is a modular well defined linear system of equations
with n equations and n unknowns (* n coe�cients for each polynomial) which
can be trivially solved using Gaussian elimination. This principle also applies to
all the versions of the LWE problem such as the general-LWE, Ring-LWE and
the Module-LWE problem. Thus, the modus operandi of our attack is to ensure
that the nonces used for generation of both the secret and error are the same
through injection of appropriate faults.

3.2 Key Recovery Attacks

In the following discussion, we will show how the identified vulnerabilities with
respect to nonce reuse can result in key recovery attacks in the considered schemes.
By key recovery attacks, we refer to the recovery of the long term secret key.

3.2.1 Attacking NewHope and Frodo

Refer to Alg.2 for the key generation procedure of the NewHope KEM scheme.
The LWE instance b̂ formed as the public key in the key generation procedure is
of type LWEPK. Its corresponding secret and error components are created using
the same seed, but with di�erent nonces 0 and 1 respectively (Line 8 and 10 of
KeyGen procedure of Alg.2). If faults can be injected to realize a nonce-reuse
scenario, the secret key s can be trivially recovered from the public key, as per
the analysis shown in Sec.3.1. It is important to note that attack on the key
generation procedure is applicable to both the CPA (Chosen Plaintext Attacker)
and CCA (Chosen Ciphertext Attacker) secure model. The same attack can be
very similarly adapted to the key generation procedure of the FRODO KEM
scheme secure in both the CPA and CCA secure models. For brevity, we have not
included the key generation algorithm of the FRODO scheme and hence please
refer to [9] for the exact key generation procedure of the FRODO KEM scheme.

3.2.2 Attacking Dilithium

We also examine the applicability of our key recovery attack on schemes operating
over modules (matrices/vectors of polynomials in ring) such as Dilithium and
Kyber. This section explains our key recovery attack on the Dilithium signature
scheme which targets the key generation procedure (Refer Alg.1).

We can identify the LWE instance t as type LWEPK (Line 14 in the KeyGen

procedure of Alg.1). The multiple polynomials in its corresponding secret and
error components are created using very similar seeds which only di�er by a
deterministically incrementing nonce value (Line 5-12 in the KeyGen procedure of

7

Alg.1). If multiple faults can be injected to realize nonce-reuse during generation
of both the secret and error components, t reduces to a set of well defined linear
equations (k ◊ n unknowns since k > l).

There is a subtle but considerable di�erence with respect to publicly revealed
LWE instances in the Dilithium scheme. The public key reveals only t1, the
d higher order bits of t, while t0 (the lower order component) is part of the
secret key. Even on ensuring nonce-reuse, we would not be able to trivially solve
for the secret s from the faulty public key. But, note that the security analysis
of DILITHIUM is done with the assumption that the whole of t is declared as
the public key. In addition to this, some information about t0 is leaked with
every published signature and thus the whole of t can be reconstructed by just
observing several signatures generated using the same secret key [1]. Thus it
is reasonable to assume that successful faults injected in the key generation
procedure results in a key recovery attack over the Dilithium signature scheme.

3.2.3 Attacking Kyber

Refer to Alg.3 for the key generation procedure of Kyber KEM scheme. We
identify the LWE instance t to be of type LWEPK(Line 19 of KeyGen proce-
dure of Alg.3). Its corresponding secret and error components are generated
in a similar fashion as that of the key generation procedure of the Dilithium
signature scheme (Line 10-17 of KeyGen procedure of Alg.3). But, similar to the
compression technique used in Dilithium, we can also see that the LWE instance
t is not directly published as the public key. A coe�cient-wise modulus switching
procedure is performed over the LWE instance t, which is subsequently revealed
as the public key pk (Line 20 of KeyGen procedure of Alg.3).

This procedure adds a certain deterministic noise to the LWE instance similar
to the Module-Learning-with-Rounding (Module-LWR) problem. But, the authors
do not consider this as an added layer of security but simply as a technique
to reduce the output size, due to the absence of a Ring/Module variant of a
hardness reduction for LWR. The authors also state that they "believe" the
compression technique adds some security, but this has not been quantified. Due
to this compression technique, successful faults injected does not trivially result
in key recovery, Our attack directly targets LWE hardness bringing down the
security to LWR hardness. The attack on the residual LWR instance is out of
scope of this work.

3.2.4 Applicability of Key Recovery Attacks

Among many aspects that are considered for evaluation in the standardiza-
tion process, NIST also expects KEM schemes in particular, to provide perfect

forward secrecy. This requires the KEM schemes to often perform key gener-
ation over frequent intervals to generate fresh public-private key pairs. It is
often claimed that key generation is performed in certain secure locations thus
removing the threat from possible physical attacks, especially side-channel/fault

8

attacks. But, considering the use case of an IoT network housing a mesh of low
power constrained devices, frequent communication of an end device with a server
for a fresh public-private key pair would have a heavy toll on power-consumption
of remote devices. Power is a very critical resource and thus communication of
keys using power hungry RF transceiver modules would be much more expensive
than performing key generation directly on the device. Thus, it is reasonable to
assume that the key generation procedure will be performed over end-devices,
thus leaving it prone to possible fault attacks.

3.3 Message Recovery Attacks

In this section, we will show how the identified vulnerabilities with respect to
nonce reuse can result in message recovery attacks in the considered schemes.
We specifically target the encryption procedures within the larger encapsulation
procedures and our attack applies to the KEM schemes secure in both the CPA
and CCA model. By message recovery, we refer to the recovery of the short
term session key that is exchanged at the end of the encapsulation-decapsulation
procedure.

Our message recovery attack directly applies to the considered CPA secure
KEM schemes, similar to the analysis described for our key recovery attacks
albeit involving some additional analysis to recover the message. But, intuition
tells us that faulting the encapsulation procedure cannot be done in CCA secure
version of KEM schemes. This is due to the employed Fujisaki-Okamoto (FO)
transformation which performs a re-encapsulation during the decapsulation
procedure to check for the validity of ciphertexts. This technique e�ectively
thwarts use of chosen/faulted ciphertext attacks. But, we show that an MITM
(Man-In-The-Middle) attacker can still perform valid message recovery attacks
over CCA secure KEM schemes when faulting the encapsulation procedure.

Figure1: Fault assisted MITM attack on CCA Secure KEM scheme

9

Refer to Fig.1 for a pictorial description of our proposed fault assisted MITM
attack on a CCA secure KEM scheme employing the FO transformation. Alice
performs the encapsulation operation, Bob performs decapsulation with Eve being
the MITM attacker. We have abstracted away the internal details of both the
encapsulation and decapsulation procedures and have represented each of these
procedures as composition of the functions Encrypt,Decrypt and GenKey. The
Encrypt and Decrypt functions represent the encryption and decryption procedures
underlying the considered KEM schemes. The GenKey function which is used to
calculate the shared session key is a publicly known fixed transformation, varies
according to the KEM scheme. The faulted encryption procedure is denoted as
Encrypt

Õ.
Lets assume that the attacker Eve performs a targeted fault into the Encrypt

function of the encapsulation procedure to evoke a faulty ciphertext C’ for an inter-
nally generated message m. The shared key ssAlice is computed as GenKey(C’,m).
Lets assume that Eve receives the faulty ciphertext C’ from Alice and recovers
the message m using our analysis (Attack(C’,pk)), whose details will be furnished
later in this section. Further, Eve calculates Alice’s shared secret key ssAlice
similar to Alice, now that Eve has the knowledge of both the faulted ciphertext
C’ and the message m. Having recovered the message, Eve now performs the
correct encapsulation procedure with the recovered message m to generate the
correct ciphertext C and the corresponding shared secret key which we denote as
ssBob. The correct ciphertext is shared with Bob. Bob successfully decapsulates
the ciphertext to generate the shared key ssBob.

Though the keys shared by both Bob and Alice and di�erent, Eve has the
knowledge of both the shared secret keys (session keys) ssAlice and ssBob through
which she can decrypt all communication transcripts between Alice and Bob
during that session. To the best of our knowledge, we propose the first fault
attack methodology to perform message recovery in CCA secure lattice-based
KEM schemes. In the following discussion, we will show how nonce-reuse can
be performed over encryption procedures to recover messages in the individual
KEM schemes.

3.3.1 Attacking NewHope and Frodo

Refer to Alg.2 for the encryption procedure of the NewHope KEM scheme.
We identify û as a compound LWE instance of type LWEOBS which is used to
hide the encoded message v (Line 11 of Encrypt procedure of Alg.2). Its corre-
sponding secret ś (t̂ in the NTT form) is also used to create an LWE instance
û (Line 9). We can also see that the secret and error components of this LWE
instance û share the same input sampling seed while only di�ering by one byte
on the nonce value (Line 5 and 6). It is important to note that û is encoded as
part of the ciphertext, but is not tampered with (Not compressed). Thus, the
attacker can directly access the LWE instance û, as part of the ciphertext.

10

On ensuring the same nonce for both ś and é through faults, the resulting
faulty LWE instance û can be easily compromised, revealing t̂. Subsequently, we
can calculate and retrieve message µ as follows:

m = Decompress(h) ≠ NTT

≠1(b̂ ú t̂) (* t̂ = NTT(ś))
µ = D(m)

where D denotes the corresponding message decoder used in the scheme.
Upon recovery of the message, an attacker can use our aforementioned attack

methodology in an MITM setting to mount a successful message recovery attack
on both the CCA and CPA secure versions of the NewHope KEM scheme. The
same attack can be very similarly adapted to perform successful message recovery
in both the CPA and CCA secure versions of the FRODO KEM scheme as well.

3.3.2 Attacking Kyber

Refer to Alg.3 for the encryption procedure of the Kyber KEM scheme. We
identify a compound LWE instance u of type LWEOBS is used to hide the en-
coded version of the message m (Line 15 of Encrypt procedure of Alg.3). Its
corresponding secret r is also used to create another LWE instance u which is
exposed as part of the ciphertext (Line 14 of Encrypt procedure of Alg.3). So,
u can be appropriately faulted to enforce nonce-reuse. But, u is compressed
using the modulus-switching technique (LWR) before it is revealed as part of the
ciphertext. We thus reduce u to an LWR instance, whose security has not been
analysed for the given parameters.

4 Experimental Validation

In this section, we perform an experimental validation of all our proposed attacks
on a real device. We start by introducing our experimental setup, providing
details of our device under target, implementation details and our attack setup.
Since our attack requires to inject targeted faults, we further demonstrate our
analysis of the various implementations to identify our target operation and
ensure successful faults with very high repeatability.

4.1 Experimental Setup

For our experiments, we target the reference implementations of the consid-
ered schemes taken from the pqm4 library, a benchmarking and testing frame-
work for PQC schemes on the ARM Cortex-M4 family of microcontrollers.
1 Our attack removes the hardness guarantees of the generated hard instance from the

Module-LWE problem, while the Module-LWR problem remains to be solved.
2 Attack works under the assumption that the attacker is able to reconstruct the whole

of the generated instance t (Refer Alg.1)
3 Available on https://github.com/mupq/pqm4

11

https://github.com/mupq/pqm4

We ported the reference implementations to the STM32F4DISCOVERY board
(DUT) housing the STM32F407, ARM Cortex-M4 microcontroller. All our imple-
mentations (compiled with -O3 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard
-mfpu=fpv4-sp-d16) were running at a clock frequency of 24 MHz. We use the
ST-LINK/v2.1 add-on board for USART communication with our DUT. We
used the OpenOCD framework for flash configuration and on-chip hardware
debugging with the aid of the GNU debugger for ARM (arm-none-eabi-gdb). We
use Electromagnetic Fault injection (EMFI) to inject faults into our device.

PC

EM pulse
generator

DUT
(ARM Cortex-M4F)

Injection Probe

X-Y Table

Figure2: Experimental setup for the fault injection

Refer Fig.2 for our EMFI setup. The EMFI setup injects electromagnetic
pulses with high voltage with low rise time (<4ns) in order to disturb the target
operation. A controller software running on the laptop control both the EM
pulse generator and the DUT and synchronizes their operation through serial
communication. The EM pulse generator is directly triggered by an external
trigger signal from the DUT. The EM pulse injector, which is a customized
hand-made EM probe designed as a simple loop antenna. Refer to Fig.3 for the
EM probe used for our experiments.

4.2 Implementation of EMFI attack

We first analyzed the operations within our target implementations that utilized
the nonce value. The nonce value in implementations of all the considered
schemes are used as inputs to Extendable Output Function (SHAKE256 for
Kyber, NewHope, Dilithium and CSHAKE for FRODO) wherein they are simply
stored to a given location in an array (say A). The array A determines the value of
the sampled components. Di�erent polynomials within the schemes are generated
simply by changing the nonce value at the same index (memory location) while
all the other elements of the array are fixed. The nonce updates in the array A

12

(a) (b)

Figure3: (a) Hand-made probe used for our EMFI setup (b) Probe placed over
the DUT

were realized as store instructions (STR instruction for ARM) to the memory.
We attempt to skip all these store instructions and by doing so, we ensure that
a single random value is used as a nonce to generate both the secret and error
components, thus creating a nonce-reuse scenario.

ldr r3 ,[r5 ,#28]
stmia r4!,{r0 ,r1 ,r2 ,r3}
strb.w r7 ,[r6 ,# -132]!
movs r1 ,#1
mov r0 ,r6

(a) Target operation in NewHope

movs r1 ,#1
add r0 ,sp ,#52
strb.w r9 ,[r6 ,#32]
movs r2 ,#33
movs r3 ,#0

(b) Target operation in Kyber

lsrs r2 ,r7 ,#8
ldr r3 ,[pc ,#264]
strb.w r2 ,[sp ,#7]
movw r2 ,#4097
mov r1 ,sp

(c) Target operation in Frodo

movs r1 ,#128
ldr r0 ,[pc ,#208]
strb.w r7 ,[sp ,#44]
add r1 ,sp ,#12
add r0 ,sp ,#48

(d) Target operation in Dilithium

Figure4: Code snippet from reference implementations of the considered schemes.
Our target store operation is highlighted in red.

13

Table1: Fault Complexity (Number of Instruction Skip Faults) of our attack on
the various recommended parameter sets of the considered schemes

Attack Objective Fault Complexity
NEWHOPE FRODO

NEWHOPE512 NEWHOPE1024 Frodo-640 Frodo-976
Key Recovery 1 1 1 1

Message Recovery 1 1 1 1
KYBER DILITHIUM

KYBER512 KYBER768 KYBER1024 Weak Med. Rec. High
Key Recovery 4 6 8 5 7 9 11

Message Recovery 4 6 8 - - - -

Hence, we rely on the instruction skip fault model that has been widely
studied and practically demonstrated on a range of devices (AVR and ARM
microcontrollers) with high repeatability to satisfy our attack requirement [7, 28].
It has been realized over di�erent architectures through multiple fault injection
methodologies like laser shots [7, 28], clock [11] glitches and EM injection in
addition to serving as a basis for multiple cryptanalytic e�orts. We scanned
the entire top layer of the chip and could identify a precise location (close to
the center of the chip near the ARM logo), where we could achieve a 100%

repeatability in skipping the same store instruction, thus preventing update of
the nonce. Since we are only skipping the update of the nonce, it is important to
note that our attack works irrespective of the value of the nonce.

Refer to Fig.4 for the assembly code snippets of the compiled reference
implementations of the considered schemes. The faulted store operation in each
implementation is highlighted in red. Refer Tab.1 for the fault complexity of our
nonce misuse attack when applied to the recommended parameter sets of all the
schemes. Only a single fault is required in the case of NewHope and Frodo since
it is enough to skip the update of the nonce for only the error component and not
the secret component. But, in the case of Module-LWE schemes like Kyber and
Dilithium, it is required to skip the update of all the nonces used for generation
of polynomials. Thus, the number of faults amount to (k + l) when the dimension
of the public constant A in these schemes is assumed to Rk◊l

q .

5 Countermeasures

We have shown that the use of nonces in the reference implementations of all
the aforementioned schemes can be easily targeted through fault attacks. The
main reason however is due to use of seeds for generation of secret and error
components which only vary by one or two bytes due to the nonce. The value
of the nonce used primarily decide the di�erence between the secret and error
components. Thus, it becomes important to perform a sanity check on the value
of the nonce, which can possibly mitigate the attack. There are a lot of known
vulnerable instances of the LWE problem (Refer Sec.2.1 for some of them) and

14

we have realized one of these instances using faults (s = e). Thus, performing
simple checks on the secret and error components of the LWE instances for known
trivial weaknesses could also be a potential countermeasure against our attack.

6 Conclusion

In this work, we present practical fault attacks on a number of potential NIST
candidates for post quantum cryptography, mainly targeting schemes based on
the LWE problem such as NewHope, Kyber, Dilithium, Frodo. We exploit the
use of nonces in the sampling procedure in each of these schemes to demonstrate
key recovery and message recovery attacks. While long term keys are directly
recovered by faulting the key generation procedure, message recovery (session keys)
is demonstrated through a novel fault assisted MITM attack on the encryption
procedure on the CCA secure KEM schemes. We perform a practical validation
of all our attacks on an ARM Cortex-M4F microcontroller running reference
implementations taken from the pqm4 library.

References

1. Suppressed for blind review
2. Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An e�cient

lattice-based signature scheme with provably secure instantiation. In: International
Conference on Cryptology in Africa. pp. 44–60. Springer (2016)

3. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T., Schwabe,
P., Stebila, D.: Algorithm specifcations and supporting documentation (2017)

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-Quantum Key Exchange-A
New Hope. In: USENIX Security Symposium. pp. 327–343 (2016)

5. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: International
Colloquium on Automata, Languages, and Programming. pp. 403–415. Springer
(2011)

6. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber algorithm specifications
and supporting documentation (2017)

7. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characteriza-
tion of the e�ects of clock glitches on 8-bit mcus. In: Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2011 Workshop on. pp. 105–114. IEEE (2011)

8. Bindel, N., Buchmann, J., Krämer, J.: Lattice-based signature schemes and their
sensitivity to fault attacks. In: Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2016 Workshop on. pp. 63–77. IEEE (2016)

9. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V.,
Raghunathan, A., Stebila, D.: Frodo: Take o� the ring! practical, quantum-
secure key exchange from LWE. Tech. rep., National Institute of Stan-
dards and Technology (2017), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions

10. Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload–a
cache attack on the bliss lattice-based signature scheme. In: International Conference
on Cryptographic Hardware and Embedded Systems. pp. 323–345. Springer (2016)

15

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

11. Bruinderink, L.G., Pessl, P.: Di�erential Fault Attacks on Deterministic Lattice
Signatures. IACR Transactions on Cryptographic Hardware and Embedded Systems
2018(3) (2018), https://eprint.iacr.org/2018/355.pdf

12. Bushing, S., Sven, M.: Console hacking 2010: Ps3 epic fail. In: Talk at 27th Chaos
Communication Congress (2010)

13. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Advances in Cryptology–CRYPTO 2013, pp. 40–56. Springer
(2013)

14. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-
based Fiat-Shamir and hash-and-sign signatures. In: International Conference on
Selected Areas in Cryptography. pp. 140–158. Springer (2016)

15. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on
bliss lattice-based signatures: Exploiting branch tracing against strongswan and
electromagnetic emanations in microcontrollers. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1857–1874.
ACM (2017)

16. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: A signature scheme for embedded systems. In: International Workshop on
Cryptographic Hardware and Embedded Systems. pp. 530–547. Springer (2012)

17. Howe, J., Khalid, A., Ra�erty, C., Regazzoni, F., O’Neill, M.: On practical discrete
gaussian samplers for lattice-based cryptography. IEEE Transactions on Computers
(2016)

18. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Sto�elen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4

19. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3), 565–599 (2015)

20. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler,
G., Stehle, D.: CRYSTALS-Dilithium. Tech. rep., National Institute of Stan-
dards and Technology (2017), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013)

22. NIST: Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process. https://csrc.nist.
gov/csrc/media/projects/post-quantum-cryptography/documents/
call-for-proposals-final-dec-2016.pdf (2016)

23. Peikert, C.: How (not) to instantiate ring-lwe. In: International Conference on
Security and Cryptography for Networks. pp. 411–430. Springer (2016)

24. Pessl, P.: Analyzing the shu�ing side-channel countermeasure for lattice-based
signatures. In: Progress in Cryptology–INDOCRYPT 2016: 17th International Con-
ference on Cryptology in India, Kolkata, India, December 11-14, 2016, Proceedings
17. pp. 153–170. Springer (2016)

25. Preskill, J.: Reliable quantum computers. In: Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences. vol. 454, pp. 385–410.
The Royal Society (1998)

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM) 56(6), 34 (2009)

27. Shor, P.W.: Polynomial time algorithms for discrete logarithms and factoring on a
quantum computer. In: International Algorithmic Number Theory Symposium. pp.
289–289. Springer (1994)

16

https://eprint.iacr.org/2018/355.pdf
https://github.com/mupq/pqm4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf

28. Trichina, E., Korkikyan, R.: Multi fault laser attacks on protected crt-rsa. In: Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2010 Workshop on. pp. 75–86.
IEEE (2010)

A Appendix

Algorithm 1: Dilithium Signature scheme
1 Procedure Dilithium.KeyGen()
2 fl, fl

Õ Ω {0, 1}256

3 K Ω {0, 1}256

4 N = 0
5 for i from 0 to ¸ ≠ 1 do
6 s1[i] = Sample(PRF(flÕ

, N))
7 N := N + 1
8 end
9 for i from 0 to k ≠ 1 do

10 s2[i] = Sample(PRF(flÕ
, N))

11 N := N + 1
12 end
13 a ≥ R

k◊¸
q = ExpandA(fl)

14 t = a ◊ s1 + s2
15 t1 = Power2Roundq(t, d)
16 tr œ {0, 1}384 = CRH(fl||t1)
17 return pk = (fl, t1), sk = (fl, K, tr, s1, s2, t0)

17

Algorithm 2: NewHope KEM scheme
1 Procedure NewHope.KeyGen()
2 seed Ω {0, . . . , 255}32

3 z Ω SHAKE256(64, seed)
4 publicseed Ω z[0 : 31]
5 noiseseed Ω z[32 : 63]
6 â Ω GenA(publicseed)
7 s Ω PolyBitRev(Sample(noiseseed, 0))
8 ŝ = NTT(s)
9 e Ω PolyBitRev(Sample(noiseseed, 1))

10 ê = NTT(e)
11 b̂ = â ú ŝ + ê
12 return (pk = EncodePK(b̂, publicseed), sk = EncodePolynomial(s))

1 Procedure NewHope.Encrypt(pk œ B7.n/4+32
, µ œ B32

, coin œ B32)
2 b̂, publicseed Ω DecodePk(pk)
3 â Ω GenA(publicseed)
4 ś Ω PolyBitRev(Sample(coin, 0))
5 é Ω PolyBitRev(Sample(coin, 1))
6 ´́e Ω Sample(coin, 2)
7 t̂ = NTT(ś)
8 û = â ú t̂ + NTT(é)
9 v = Encode(µ)

10 v́ = NTT≠1(b̂ ú t̂) + ´́e + v
11 h = Compress(v́)
12 return c = EncodeC(û, h)

18

Algorithm 3: Kyber KEM scheme
1 Procedure Kyber.KeyGen()
2 d Ω {0, 1}256

3 (fl, ‡) := G(d)
4 N := 0
5 for i from 0 to k ≠ 1 do
6 for j from 0 to k ≠ 1 do
7 a[i][j] Ω Parse(XOF(fl||j||i))
8 end
9 end

10 for i from 0 to k ≠ 1 do
11 s[i] Ω CBD÷(PRF(‡, N))
12 N := N + 1
13 end
14 for i from 0 to k ≠ 1 do
15 e[i] Ω CBD÷(PRF(‡, N))
16 N := N + 1
17 end
18 ŝ Ω NTT(s)
19 t = NTT≠1(â ú ŝ) + e
20 pk := (Encodedt (Compressq(t, dt))||fl)
21 sk := Encode13(ŝ mod

+
q)

22 return (pk, sk)
1 Procedure NewHope.Encrypt(pk œ Bdt·k·n/8+32

, m œ B32
, r œ B32)

...
2
3 N = 0
4 for i from 0 to k ≠ 1 do
5 r[i] Ω CBD÷(PRF(r, N))
6 N := N + 1
7 end
8 for i from 0 to k ≠ 1 do
9 e1[i] Ω CBD÷(PRF(r, N))

10 N := N + 1
11 end
12 e2 Ω CBD÷(PRF(r, N))
13 r̂ = NTT(r)
14 u = NTT≠1(âT ú r̂) + e1

15 v = NTT≠1(t̂T ú r̂) + e2 + Decode1(Decomposeq(m, 1))
16 c1 = Encodedu (Compressq(u, du))
17 c2 = Encodedv (Compressq(v, dv))
18 return c = (c1, c2)

19

	Number "Not Used" Once - Practical fault attack on pqm4 implementations of NIST candidates

