
Threshold Properties of Prime Power Subgroups
with Application to Secure Integer Comparisons

Rhys Carlton, Aleksander Essex, and Krzysztof Kapulkin

Western University, London, Canada
{rcarlton, aessex, kkapulki}@uwo.ca

Abstract. We present a semantically secure somewhat homomorphic
public-key cryptosystem working in sub-groups of Z*

𝑛 of prime power
order. Our scheme introduces a novel threshold homomorphic property,
which we use to build a two-party protocol for secure integer comparison.
In contrast to related work which encrypts and acts on each bit of the
input separately, our protocol compares multiple input bits simultaneously
within a single ciphertext. Compared to the related protocol of Damgård
et al. [8,9] we present results showing this approach to be both several
times faster in computation and lower in communication complexity.

Keywords: Public-key encryption, homomorphic encryption, homomorphic
threshold, secure integer comparison.

1 Introduction

Numerous solutions to the problem of secure integer comparison have been
proposed going back to Yao’s original solution to the Millionaires problem [23].
Although previous work has employed a variety of methods including oblivious
transfers, garbled circuits and homomorphic encryption, the underlying approach
has largely been to realize the comparison operation using a Boolean circuit
acting in a bitwise fashion on the inputs.

In this paper we propose a new approach to secure integer comparison using
a novel threshold scalar homomorphic property of subgroups of Z*

𝑛 of prime
power order. We construct a protocol efficiently comparing two encrypted inte-
gers through the (nearly) direct application of the homomorphism on a single
encrypted value.

A one-sided homomorphic threshold function. Let 𝑡 be a positive integer
defining a threshold. In Section 4 we present a cryptosystem that introduces
novel scalar homomorphism allowing two parties 𝑃1, 𝑃2 each with a message
𝑚1, 𝑚2 ∈ N to securely evaluate the following one-sided threshold function:

𝑓𝑡(𝑚1, 𝑚2) =
{︃

𝑚1 + 𝑚2 𝑚1 + 𝑚2 < 𝑡

0 otherwise.

Throughout this paper we use the term threshold in the context of a cryptosystem
which homomorphically computes this threshold function, while noting that the
term threshold homomorphic cryptosystem is widely used in the literature to refer
to the (unrelated) notion of a cryptosystem requiring a threshold of participants
to decrypt a ciphertext such as e.g., the threshold cryptosystem of Schoenmakers
and Tuyls [19].

Paper Organization. Related work is described in Section 2. Mathematical
preliminaries of the construction are given in Section 3. The encryption scheme
is presented in Section 4 and the secure comparison protocol is presented in
Section 5. A security analysis of the protocol is given in Section 6 and Section 7
discusses performance of the implementation.

2 Related Work

Garbled circuits are the original construction solving the secure comparison
problem [23]. The approach involves decomposing inputs into their bitwise rep-
resentation and securely evaluating them in a Boolean circuit. Since that time
numerous protocols have focused on improving performance and reducing com-
munication cost [15] [14] [1] [5]. Recent advances in implementations of oblivious
transfers [6] have made this approach quite computationally efficient in practice.

Another category of secure computation is the arithmetic black box model
which seeks to abstract arithmetical operations into ideal reactive functionali-
ties [20][17][24]. It departs at some level from the garbled circuit model by making
invocations of the functionalities sublinear in the bit size of the inputs, but they
remain superlinear in bit complexity and can have large constants affecting
performance.

The third type of approach uses homomorphic encryption. Fishlin [10] first
introduced this approach using a boolean circuit for a secure comparison of two
numbers based on the semantically secure cryptosystem due to Goldwasser and
Micali [12]. Other examples of secure Boolean evaluation of bit-wise encrypted
values include the schemes of Blake and Kolesnikov [3], Garay et al. [11] and Lin
et al. [16]. The approach was later improved by Damgård, Geisler, and Krøigaard
(DGK) [8,9]. A slight improvement to their approach was made by Veugen [21,22]
utilizing additional cryptosystems such as the one due to Paillier [18].

Homomorphic encryption based solutions are typically less computationally
efficient than their garbled circuit counterparts. Nevertheless, homomorphic
based comparison protocols can be more straightforward to implement, and can
offer a lower overall communication cost, which is why new research into faster
constructions remains important.

Related Cryptosystems in Z*
𝑛. The cryptosystem used in the DGK com-

parison protocol is closely related to that of Groth [13]. DGK initially used a
subgroup of Z*

𝑛 of prime order dividing both (𝑝− 1) and (𝑞 − 1), but a correc-
tion was made [9] when it was realized this value was leaked by the public key.

Groth’s scheme suggested parameterizing the respective subgroups of 𝑝, and 𝑞
such that their combined order was still large relative to the discrete logarithm
problem, but individually smaller for efficiency. Coron et al. [7] showed an attack
breaking semantic security below the expected attack complexity. Following this,
Groth’s scheme and DGK parameterize the randomization space identically, and
have identical encryption functions, differing only in the message space: Groth
fills up the remaining space of Z*

𝑛 with smooth subgroups of unknown order to
accommodate a large message space. DGK uses small message spaces similar to
the cryptosystem of Benaloh [2], however the latter devotes the entirety of Z*

𝑛 to
being in the ciphertext space, which is highly efficient for encryption, but not
nearly as efficient as DGK for decryption.

Most closely related to our cryptosystem is the system of Joye et al. [?,?], a
generalization of the cryptosystem due to Goldwasser and Micali [12] in which
the message space has order 2𝑘 for 𝑘 ≥ 1. Their approach exploits the efficiency
of computing 2𝑘-th power residue symbols given knowledge of the factorization
of 𝑚, allowing fast decryption and higher bandwidth, i.e., a larger message space
relative to public key length.

Our Cryptosystem. The cryptosystem presented in Section 4 differs from the
above cryptosystems in two main ways. First is that we work with subgroups of
Z*

𝑛 of prime power, i.e., order 𝑏𝑑 for a prime base 𝑏 and exponent 𝑑 > 1 (though
our scheme is most similar to Joye et al. when 𝑏 = 2). Second is that unlike the
schemes above which encrypt a message 𝑚 as 𝑔𝑚ℎ𝑟, ciphertexts in our scheme
take the form 𝑔𝑏𝑚

ℎ𝑟, which introduces a novel threshold homomorphic property
outlined in Section 4.1. Using the homomorphic properties of this scheme, our
protocol for secure comparisons departs from the standard approach of bit-wise
encryption of inputs, instead performing the comparison on the entire value
inside a single ciphertext. There are, of course, qualifications. One is if the input
range is sufficiently large it may become more efficient to break the input into
blocks (cf. Section 5.4). The other is that the threshold homomorphism of the
proposed cryptosystem is one-sided, meaning the difference between the two
messages is only hidden in the case where 𝑚1 > 𝑚2, and is revealed when
𝑚1 ≤ 𝑚2. This property is useful and interesting in its own right, however
additional components beyond the base cryptosystem (cf. Section 5) are required
for two-sided (Millionaires) comparisons.

3 Preliminaries

Throughout the paper, we will work with an RSA modulus 𝑛 = 𝑝 · 𝑞, where 𝑝
and 𝑞 are primes chosen in such a way that:

𝑝 = 2𝑏𝑑𝑝𝑠𝑝𝑡 + 1 and 𝑞 = 2𝑏𝑑𝑞𝑠𝑞𝑡 + 1.

Here, 𝑏 is a small prime base (e.g., 2), 𝑑 is a positive integer greater than 1, and
𝑝𝑠, 𝑝𝑡, 𝑞𝑠, 𝑞𝑡 are pairwise distinct primes. We note that

Z*
𝑛
∼= Z2𝑏𝑑𝑝𝑠𝑝𝑡

× Z2𝑞𝑠𝑞𝑡

∼= (Z2)2 × (Z𝑏𝑑)2 × Z𝑝𝑠𝑞𝑠 × Z𝑝𝑡𝑞𝑡

and hence Z*
𝑛 has a cyclic subgroup G of order 𝑏𝑑 and a unique (necessarily

cyclic) subgroup H of order 𝑝𝑠𝑞𝑠. Primes 𝑝𝑡, 𝑞𝑡 are present to increase 𝑝 and 𝑞 to
their required lengths.

Let 𝑔 ← G and ℎ← H be random generators of their respective subgroups.
The public key is then given by 𝒫𝒦 = (𝑛, 𝑏, 𝑑, 𝑔, ℎ, 𝑢), where 𝑢 is the bit-length
of both 𝑝𝑠 and 𝑞𝑠. Let the notation 𝑥←$ 𝑆 denote a value 𝑥 sampled uniformly
at random from a set 𝑆. To encrypt a message 0 ≤ 𝑚 < 𝑑−1, one chooses a
random 𝑟←$ {1, . . . , 2𝑢 − 1} and computes 𝑐 = 𝑔𝑏𝑑

ℎ𝑟 mod 𝑛. To decrypt 𝑐, one
first computes 𝑐𝑝𝑠𝑞𝑠 = (𝑔𝑏𝑑)𝑝𝑠𝑞𝑠 by virtue of ℎ having order 𝑝𝑠𝑞𝑠. Further, let 𝑥
denote the inverse of 𝑝𝑠𝑞𝑠 in Z𝑏𝑑 . By raising 𝑐𝑝𝑠𝑞𝑠 to the power of 𝑥, it suffices to
solve the discrete logarithm problem:

𝑔𝑏𝑑

= (𝑐𝑝𝑠𝑞𝑠)𝑥.

Since 𝑔 is an element of order 𝑏𝑑 this can be done in 𝑂(𝑑
√

𝑏) operations, which
is efficient when 𝑏, 𝑑 are small. It is clear that one can choose the numbers 𝑏,
𝑝𝑠, 𝑞𝑠, 𝑝𝑡, 𝑞𝑡 at random (testing primality) in an efficient way. To complete the
mathematical description of the scheme, we need to explain how to efficiently
choose the generators 𝑔 and ℎ of the respective subgroups G and H. Generator
ℎ is chosen in the same manner as the generators of the respective randomizer
spaces of the schemes of Groth [13] and Damgård et al. [8], namely we find
generator ℎ𝑝𝑠 (resp. ℎ𝑞𝑠) of the subgroup of Z*

𝑝 (resp. Z*
𝑞) of order 𝑝𝑠 (resp. 𝑞𝑠).

The procedure for finding ℎ𝑝𝑠 and ℎ𝑞𝑠 is straightforward, and is found in most
software implementations of the discrete logarithm problem over finite fields (e.g.,
Diffie-Helmman, DSA, Elgamal, etc). Next use the Chinese remainder theorem
to find ℎ such that

ℎ ≡ ℎ𝑝𝑠
mod 𝑝

ℎ ≡ ℎ𝑞𝑠
mod 𝑞.

𝑔 is chosen in the same manner, however, importantly, because the order of
𝑔 is public, it is necessary for security that it have identical order in Z*

𝑝 and
Z*

𝑞 . Therefore to find a generator 𝑔𝑏𝑑 of a subgroup of order 𝑏𝑑 separately in Z*
𝑝

and Z*
𝑞 and use the Chinese remainder theorem to compute 𝑔 in the manner above.

Generator of a prime power subgroup. The procedure for finding a generator
of prime power order is not commonly found in the literature, so we outline it
here. To find a generator 𝑔𝑏𝑑 of a subgroup of Z*

𝑝 (for a prime 𝑝) of order 𝑏𝑑, it is
sufficient to perform the following:

while True :
𝑥 ←$ {2 . . . 𝑝−2}
𝑦 ← 𝑥(𝑝−1)/𝑏 mod 𝑝

if 𝑦 ̸= 1 :

return 𝑥(𝑝−1)/𝑏𝑑

.

This procedure is repeated to find a generator 𝑔𝑏𝑑 of a subgroup of Z*
𝑞 (for prime

𝑞), and these two generators are combined using the Chinese remainder theorem
to produce 𝑔, a generator of a subgroup of order 𝑔𝑏𝑑 of Z*

𝑛 (where 𝑛 = 𝑝𝑞).

3.1 The Small RSA Subgroup Decision Assumption

We construct our hardness assumption to make the proof of semantic security
for our system (cf. Theorem 2) as straightforward as possible. In brief, given the
parameters as above, it should be infeasible to distinguish between a randomly
selected quadratic residue mod 𝑛 and an element of order 𝑝𝑠𝑞𝑠 in Z*

𝑛, without
factoring 𝑛.

To make this intuition precise, we begin by extracting the essential information
from our public key generation algorithm.

Definition 1. An RSA quintuple is a quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢) where:

1. 𝑢 is an integer such that the Discrete Logarithm Problem is infeasible in a
subgroup of Z*

𝑛 whose order is a prime of bit-length 𝑢;
2. 𝑏 is a prime of bit-length less than 𝑢;
3. 𝑑 is an integer greater than 1;
4. 𝑛 is an integer of the form 𝑛 = 𝑝𝑞, whose factorization is infeasible, where:

𝑝 = 2𝑏𝑑𝑝𝑠𝑝𝑡 + 1 and 𝑞 = 2𝑏𝑑𝑞𝑠𝑞𝑡 + 1;

and where in turn 𝑝𝑠 and 𝑞𝑠 are primes of bit-length 𝑢, and 𝑝𝑡, 𝑞𝑡 are primes
whose bit-length is not 𝑢;

5. 𝑔 is an element of order 𝑏𝑑 in Z*
𝑛.

We point out that an RSA quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢) is only one number short of a
public key in our encryption scheme (Section 4). This is intentional in that we
will use the final parameter to define the problem and the corresponding hardness
assumption.

In particular, we note that the procedure for public key generation described
earlier in this section can be used to generate an RSA quintuple by simply
disregarding ℎ.

Definition 2 (Small RSA Subgroup Decision Problem). Given an RSA
quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢) and 𝑥 ∈ QR𝑛, output ‘yes’ if 𝑥 has order 𝑝𝑠𝑞𝑠 and ‘no’
otherwise. (Here, we write QR𝑛 for the set of quadratic residues mod 𝑛.)

Note that due to the requirements on the length of 𝑝𝑠, 𝑞𝑠, 𝑝𝑡, and 𝑞𝑡, this gives a
well-defined decision problem.

Of course, if we could factor 𝑛, then the problem would be easy to solve.
However, in the other case, it appears to be infeasible, which leads us to the
following definition:

Definition 3 (Small RSA Subgroup Decision Assumption). Given an
RSA quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢) and 𝑥 ∈ QR𝑛, we say that 𝒢 satisfies the Small
RSA Subgroup Decision Assumption if for any polynomial time algorithm 𝒜, the
advantage of 𝒜 in solving the Small RSA Subgroup Decision Problem is negligible.

Our assumption (and naming convention) closely resembles that of Groth (cf.
[13, Def. 2]), although it cannot be directly reduced. Indeed, in his assumption,
Groth compares the distribution of the message space to the distribution of
quadratic residues in Z*

𝑛. This is not possible in our case, since the order of the
message space is revealed as part of the public key and so instead we compare
the distribution of the randomizer space (i.e., the unique subgroup of order 𝑝𝑠𝑞𝑠)
and the distribution of a random quadratic residue.

4 Encryption Scheme

We now describe the algorithms making up our encryption scheme. We define
an algorithm 𝒢 that, when given a security parameter 𝜏 ∈ Z+, outputs a pair
(ℓ, 𝑢) where ℓ defines a length for which the factorization of the product of two
random ℓ-bit primes is computationally infeasible, and where 𝑢 defines a length
for which computing the discrete logarithm in a group of prime 𝑢-bit order is
computationally infeasible.

KGen(𝜏): Given security parameter 𝜏 > 0, run 𝒢(𝜏) to obtain (ℓ, 𝑢). Pick a small
prime base 𝑏 and message space upper bound 𝑑 ∈ Z+. Let 𝑛 = 𝑝𝑞 for ℓ-bit
primes 𝑝 and 𝑞 be constructed in the following manner:

𝑝 = 2𝑏𝑑𝑝𝑠𝑝𝑡 + 1
𝑞 = 2𝑏𝑑𝑞𝑠𝑞𝑡 + 1.

Let 𝑝𝑠, 𝑞𝑠 be independently chosen random 𝑢-bit primes, and 𝑝𝑡, 𝑞𝑡 be
independently chosen random 𝑣-bit primes such that 𝑏𝑑 < 1

4 |𝑛| − 𝜏 (see
Section 4). If ⌈log2(𝑏𝑑)⌉+ 𝑢 ≤ ℓ, let 𝑣 = ℓ− (⌈log2(𝑏𝑑)⌉+ 𝑢). Otherwise
if ⌈log2(𝑏𝑑)⌉ + 𝑢 > ℓ, let 𝑣 = 0 and set 𝑝𝑡 = 𝑞𝑡 = 1. Next let G be a
subgroup of Z*

𝑛 of order 𝑏𝑑, and H be a subgroup of Z*
𝑛 of order 𝑝𝑠𝑞𝑠. Pick

a generator 𝑔 of G such that 𝑔 has order 𝑏𝑑 in both Z*
𝑝 and Z*

𝑞 and pick a
generator ℎ of H such that ℎ has order 𝑝𝑠 in Z*

𝑝 and 𝑞𝑠 in Z*
𝑞 (cf. Section 3).

Finally let 𝑥 = 𝑝𝑠𝑞𝑠𝑥′ where 𝑥′ = (𝑝𝑠𝑞𝑠)−1 mod 𝑏𝑑.

The public key is 𝒫𝒦 = (𝑛, 𝑏, 𝑑, 𝑔, ℎ, 𝑢). The private key is 𝒮𝒦 = (𝑥).

Enc(𝒫𝒦, 𝑚): The message space consists of integers in the range {0 . . . 𝑑− 1}. To
encrypt message 𝑚 using public key 𝒫𝒦, pick random 𝑟←$ {1 . . . 2𝑢 − 1}
and compute

𝐶 = 𝑔𝑏𝑚

ℎ𝑟 mod 𝑛.

Output ciphertext 𝐶.

Dec(𝒮𝒦, 𝐶): To decrypt a ciphertext 𝐶 using private key 𝒮𝒦, compute

(𝐶)𝑥 mod 𝑛 = (𝑔𝑏𝑚

ℎ𝑟)𝑝𝑠𝑞𝑠𝑥′
= (𝑔𝑏𝑚

)𝑝𝑠𝑞𝑠𝑥′
(ℎ𝑟)𝑝𝑠𝑞𝑠𝑥′

= 𝑔𝑏𝑚𝑝𝑠𝑞𝑠𝑥′
= 𝑔𝑏𝑚

.

If the result is 1, output 𝑚 = 0. Otherwise recover 𝑚 by computing
𝑏𝑚 = log𝑔(𝑔𝑏𝑚 mod 𝑛) then 𝑚 = log𝑏(𝑏𝑚). Since the order of 𝑔 is a power
𝑑 of a small prime base 𝑏, this reduces to 𝑑 computations of the discrete log
in a cyclic group of order 𝑏. Since 𝑏 is chosen to be small, this is efficiently
computable.

Remark 1. In the special case 𝑏 = 2, we can write 𝑝 and 𝑞 in the following form:

𝑝 = 2𝑑𝑝𝑠𝑝𝑡 + 1,

𝑞 = 2𝑑𝑞𝑠𝑞𝑡 + 1.

This case yields a cryptosystem similar to the system of Joye et al. [?,?] based
on 2𝑑-th power residue symbols. Given knowledge of the factorization of n, 𝑑
in fact can be recovered directly (i.e., without exponentiating away the ℎ term)
using the algorithm by Joye et al. (cf. Algorithm 1 of [?]), resulting in faster
decryption.

Remark 2. By placing the message in the exponent of an exponent of 𝑔 (i.e., a
double exponent) and restricting the set of possible messages to 0 ≤ 𝑚 < 𝑑, we
obtain a cryptosystem with an interesting, and to our knowledge unexplored,
homomorphic property which will next discuss next.

Bounding the length of 𝑏𝑑. Common factors dividing (𝑝−1) and (𝑞−1) have
been used previously in related cryptosystems [?,?,8]. We consider appropriate
upper bound for |𝑏𝑑| relative to |𝑝| and |𝑞|. Recall 𝑝 = 𝑏𝑑𝑝𝑠𝑝𝑡 +1 and 𝑞 = 𝑏𝑑𝑞𝑠𝑞𝑡 +1
and thus 𝑛 = 𝑝𝑞 = 𝑏2𝑑𝑝𝑠𝑝𝑡𝑞𝑠𝑞𝑡 + 𝑏𝑑(𝑝𝑠𝑝𝑡 + 𝑞𝑠𝑞𝑡) + 1. Let 𝑥 = (𝑛 − 1)/𝑏𝑑 =
𝑏𝑑𝑝𝑠𝑝𝑡𝑞𝑠𝑞𝑡 + 𝑝𝑠𝑝𝑡 + 𝑞𝑠𝑞𝑡. A factorization method due to McKee and Pinch [?]
can recover the factors of 𝑛 in 𝑂

(︀
𝑛

1
4

𝑏𝑑

)︀
operations using a baby-step giant-step

approach. It is therefore necessary for security that

𝑏𝑑 <
1
4 |𝑛| − 𝜏.

4.1 Homomorphic Properties

First we observe that in contrast to related schemes in Z*
𝑛, our encryption scheme

is not additively homomorphic:

Enc(𝑚1) · Enc(𝑚2) = 𝑔𝑏𝑚1
ℎ𝑟1 · 𝑔𝑏𝑚2

ℎ𝑟2 = 𝑔(𝑏𝑚1 +𝑏𝑚2)ℎ(𝑟1+𝑟2).

That is, multiplying ciphertexts in Z*
𝑛 produces an exponent of 𝑔 which may not

be a power of 𝑏, which would not represent the encryption of a valid plaintext.
Similar however to the scalar multiplicative homomorphism of related systems is
the scalar additive homomorphism of our system:

Enc(𝑚1)𝑏𝑚2 mod 𝑛 = (𝑔𝑏𝑚1
ℎ𝑟)𝑏𝑚2 = 𝑔𝑏𝑚1 𝑏𝑚2

ℎ𝑟′
= 𝑔𝑏(𝑚1+𝑚2)

ℎ𝑟′
= Enc(𝑚1+𝑚2).

This gives rise to an interesting threshold homomorphic property:

Enc(𝑚1)𝑏𝑚2 =
{︂

Enc(𝑚1 + 𝑚2) if 𝑚1 + 𝑚2 < 𝑑
Enc(0) otherwise.

Theorem 1 (Homomorphic threshold function). Let 𝑓𝑑(𝑚1, 𝑚2) be the
threshold function outputting 𝑚1 +𝑚2 if 𝑚1 +𝑚2 < 𝑑, and outputting 0 otherwise.
For 𝑚1, 𝑚2 ∈ N, the scalar homomorphism above computes the encryption of 𝑓𝑑

on 𝑚1, 𝑚2, i.e., Enc(𝑚1)𝑏𝑚2 = Enc
(︀
𝑓𝑑(𝑚1, 𝑚2)

)︀
.

Proof. Since the order of 𝑔 in Z*
𝑛 was chosen to be 𝑏𝑑, then an exponent 𝑥 ∈ N of 𝑔

becomes 𝑔𝑥 mod 𝑏𝑑 mod 𝑛, thus Enc(𝑚1)𝑏𝑚2 can be written as 𝑔𝑏(𝑚1+𝑚2) mod 𝑏𝑑

ℎ𝑟.
If 𝑚1 + 𝑚2 < 𝑑, then 𝑏𝑚1+𝑚2 mod 𝑏𝑑 = 𝑏𝑚1+𝑚2 . However if 𝑚1 + 𝑚2 ≥ 𝑑, then
𝑏𝑚1+𝑚2 = 𝑏𝑑+𝑎 for some 𝑎 ≥ 0. Since 𝑏𝑑 ≡ 0 mod 𝑏𝑑, then 𝑏𝑑+𝑎 = 0 · 𝑏𝑎 ≡
0 mod 𝑏𝑑. ⊓⊔

4.2 Semantic Security of Encryption

In this section, we prove the semantic security of our system.

Theorem 2. The encryption scheme presented above is semantically secure,
provided that the Composite Order Subgroup Decision Assumption of Definition 3
is satisfied.

The proof is a straightforward application of the standard techniques (cf. e.g. [4,
Thm. 3.1]), although we phrase it purely in terms of algorithms. Namely, we
assume having an algorithm 𝒜′ which breaks the semantic security of our en-
cryption scheme with advantage 𝜀(𝜏), which is non-negligible. Using it we will
construct a polynomial time algorithm 𝒜, which solves the Small RSA Subgroup
Decision Problem.

The key piece of intuition here is that 𝒜 is trying to decide whether an
element 𝑥 fits into a valid public key for our encryption scheme.

Proof. Suppose there exists a polynomial time algorithm𝒜′ breaking the semantic
security of the above encryption scheme. Specifically, given a possibly invalid
public key, 𝒜′ produces two messages 𝑚0 and 𝑚1. If the key was valid, given a
ciphertext 𝑐 corresponding to one of them, it guesses correctly with probability
50% + 𝜀 which message 𝑐 is the encryption of. For an invalid key, 𝒜′ chooses one
of the messages at random.

Using 𝒜′, we will construct a polynomial time algorithm 𝒜 solving the Small
RSA Subgroup Decision Problem. The algorithm 𝒜 is given as input an RSA
quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢), and a quadratic residue 𝑥 ∈ Z*

𝑛. From these values we
construct a (possibly invalid) public key (𝑛, 𝑏, 𝑑, 𝑔, 𝑥, 𝑢) that can be given to 𝒜′.

The algorithm 𝒜′ responds by producing two plaintexts 𝑚0 and 𝑚1. We
choose 𝑖←$ {0, 1} and 𝑟←$ {1 . . . 2𝑢 − 1}, and compute the quantity 𝑐 ≡ 𝑔𝑏𝑚𝑖

𝑥𝑟

mod 𝑛. Given this value, 𝒜′ outputs 𝑗 ∈ {0, 1}. Based on this information, we
construct the output of 𝒜 as follows:{︂

yes if 𝑖 = 𝑗,
no otherwise.

If 𝑥 is selected uniformly from the quadratic residues of Z*
𝑛, then 𝑐 is uniform in

the appropriate coset of the subgroup generated by 𝑥. Thus as 𝑥 varies, 𝑐 varies
uniformly as well, and so it is in particular independent of the choice of 𝑖. Thus
the probability of 𝒜′ guessing correctly is equal to 50%.

On the other hand, as stated above, 𝑟 < 2𝑢 and hence crucially 𝑟 < 𝑝𝑠, 𝑞𝑠.
This gives 𝒜′ an advantage, say 𝜀, when 𝑥 is an element of order 𝑝𝑠𝑞𝑠, and this
advantage is clearly seen to transfer to 𝒜. ⊓⊔

5 Secure Comparison Protocol

In this section we present a protocol for the secure comparison of integers utilizing
the encryption scheme presented in the previous section. As we have previously
shown, the threshold homomorphic property of this scheme can be used to
privately compute the encryption of the one-sided threshold function 𝑓𝑑(𝑚1, 𝑚2).
This may be desirable for certain applications, however for a two-sided secure
comparison protocol i.e., one that outputs the single bit (𝑚1 ≥ 𝑚2), additional
components are required since 𝑓𝑑 outputs the sum (𝑚1 + 𝑚2) in the case where
𝑚1 < 𝑚2.

5.1 High-level Strategy

Our strategy involves using an additional (but different) cryptosystem. Cryp-
tosystem 𝐶𝑆𝑓𝑑

is the cryptosystem with the threshold homomorphic property
presented in Section 4. The additional cryptosystem 𝐶𝑆⊕ is a generic semantically
secure cryptosystem with an additive homomorphism. 𝑃1 and 𝑃2 hold the private
keys to 𝐶𝑆𝑓𝑑

and 𝐶𝑆⊕ respectively.
The idea is to use 𝐶𝑆𝑓𝑑

to compute the statement (𝑚1 > 𝑚2) using our
homomorphic threshold approach to computing 𝑓𝑑 by using the following inputs:

𝑓𝑑(𝑚1, 𝑑−𝑚2) =
{︃

𝑑 + 𝑚1 −𝑚2 𝑑 + 𝑚1 −𝑚2 < 𝑑

0 otherwise.

If 𝑚1 ≥ 𝑚2, 𝑃1 will receive the encryption of 0. Conversely if 𝑚1 < 𝑚2, 𝑃1 will
receive an encryption of their difference, which reveals information about 𝑃2’s
input to 𝑃1. To overcome this, 𝑃2 will homomorphically add a blinding factor 𝑠
to 𝐶𝑆𝑓𝑑

prior to 𝑃1 decrypting. If 𝑓𝑑(𝑚1, 𝑑−𝑚2) = 0, the exponent recovered
by 𝑃1 during decryption will equal the blind factor 𝑠 used by 𝑃2, otherwise it
will be 𝑑 + 𝑚1 −𝑚2 + 𝑠. The parties perform a plaintext equality test (PET) to
privately determine whether or not these values are equal, and hence whether or
not 𝑚1 ≥ 𝑚2

5.2 Plaintext Equality Test Sub-protocol

Let PET(𝑎1, 𝑎2) be a secure plaintext equality test conducted between two parties
𝑃1, 𝑃2 each of whom hold a private value 𝑎1, 𝑎2 respectively, and where 𝑃2 holds
the private key. The protocol accepts each party’s private input and outputs 0 if
𝑎1 = 𝑎2, and outputs a random value otherwise.

Let 𝐶𝑆⊕ = (Gen⊕, Enc⊕, Dec⊕) be such a semantically secure additively
homomorphic cryptosystem with a message space ℳ⊕ of large prime order.
Without loss of generality, an efficient option for 𝐶𝑆⊕ is the exponential variant
of Elgamal (cf. e.g., [19]) implemented on a fast elliptic curve.

Plaintext Equality Test. The plaintext equality test PET𝐶𝑆⊕ proceeds in 3
steps:

1. 𝑃2 computes the encryption 𝐴2 ← Enc⊕(𝑎2) and sends it to 𝑃1,
2. 𝑃1 homomorphically computes the difference between 𝑎1 and 𝑎2 as 𝐴1 ←

Enc2(−𝑎1) ·𝐴2 and then blinds the plaintext result by computing 𝐴′
1 ← (𝐴1)𝑟

for some uniform 𝑟 ̸= 0 in the message space ℳ⊕, then sends the result 𝐴′
1

to 𝑃2,
3. 𝑃2 computes 𝑚← Dec⊕(𝐴′

1) and outputs True if 𝑚 = 0, and False otherwise.

This approach to plaintext equality testing is widely used so we only briefly
recount its correctness and privacy. Regarding correctness, observe the result at
the end of step 2 is the encryption Enc⊕

(︀
𝑟(𝑎2 − 𝑎1)

)︀
, which is the encryption of

0 if 𝑎1 = 𝑎2, and a non-zero value otherwise. Briefly, 𝑃2’s privacy is guaranteed
by the semantic security of Enc⊕. 𝑃1’s privacy is guaranteed when 𝑎1 ̸= 𝑎2 if
two things things hold: (a) the difference is non zero, (b) the random factors
are non-zero and (c) the message space has some prime order 𝑘. The former
is true within the given case, and the latter two are true by definition, thus
(𝑎2 − 𝑎1), 𝑟 ∈ Z*

𝑘 are both generators of a cyclic group of order 𝑘, thus 𝑟(𝑎1 − 𝑎2)
is uniform in Z*

𝑘 if 𝑟 is.

Secure Comparison

Party P1 Party P2

Private Input: Private Input:
0 ≤ 𝑚1 < 𝑑 0 ≤ 𝑚2 < 𝑑

𝐶𝑆𝑓𝑑 private key 𝑥 𝐶𝑆⊕ private key

𝑟1 ←$ {1 . . . 2𝑢 − 1}
𝐶 ← Enc𝑓𝑑 (𝑚1)

= 𝑔𝑏𝑚1
ℎ𝑟1

𝐶

𝑟2 ←$ {1 . . . 2𝑢−1}

𝑠←$ {1 . . . 𝑏𝑑−1}
such that 𝑠 ̸≡ 0 mod 𝑏

𝐷 ← (𝐶)𝑏(𝑑−𝑚2)
𝑔𝑠ℎ𝑟2

𝐷

𝑔𝑤 ← (𝐷)𝑥

𝑤 ← log𝑔(𝑔𝑤)
PET𝐶𝑆⊕ (𝑤, 𝑠)

←−−−−−−−−−−−−−−−−−−→
Output True if (𝑤 = 𝑠),
Output False otherwise

Fig. 1. Secure integer comparison protocol evaluating (𝑚1 ≥ 𝑚2).

5.3 Secure Comparison protocol

We now present our secure integer comparison protocol in Figure 1. Correctness
is shown below and security is proven in Section 6.

Theorem 3 (Correctness). Two parties 𝑃1, 𝑃2 have private inputs 0 ≤ 𝑚1, 𝑚2 <
𝑑. The result of the protocol is Party 𝑃2 outputs a single bit corresponding to
(𝑚1 ≥ 𝑚2), 𝑃1 outputs nothing.

Party 𝑃1 begins by creating an encryption of 𝑏𝑚1 and sending to 𝑃2 who then
homomorphically computes

𝑤 = 𝑏𝑚1𝑏𝑑−𝑚2 + 𝑠 = 𝑏𝑑+𝑚1−𝑚2 + 𝑠.

Case 1. If 𝑚1 ≥ 𝑚2, then (𝑚1−𝑚2) ≥ 0 and thus we have 𝑏𝑑+𝑎 for some 𝑎 ≥ 0.
By the homomorphic property presented in Section 4.1, 𝑏𝑑+𝑎 = 0 · 𝑏𝑎 ≡ 0 mod 𝑏𝑑

and thus 𝑤 = 0 + 𝑠 = 𝑠.
Case 2. If 𝑚1 < 𝑚2 then (𝑚1−𝑚2) < 0 and thus we have 𝑏𝑑−𝑎 for some 0<𝑎<𝑑
and thus 𝑏𝑑+𝑚1−𝑚2 ≡ 𝑏𝑚1−𝑚2 mod 𝑏𝑑. Thus 𝑤 = 𝑏𝑚1−𝑚2 + 𝑠 mod 𝑏𝑑.

Later 𝑃1 decrypts and recovers 𝑤 and performs a secure plaintext equality test
with 𝑃2 to privately test whether 𝑤 = 𝑠. If the result of this test is True, then
𝑤 = 𝑠 meaning 𝑏𝑑+𝑚1−𝑚2−1 ≡ 0 mod 𝑏𝑑 and 𝑃2 outputs True, i.e., 𝑚1 ≥ 𝑚2.
Conversely for 𝑤 ̸= 𝑠, 𝑃2 outputs False, i.e., 𝑚1 < 𝑚2.

5.4 Extending to Arbitrary Length Comparisons with Blocking

Although it is possible to compare integers of arbitrary length using a single
execution of the protocol in Figure 1, the asymptotic complexity is exponential
in the bit length of the input numbers. Suppose we wish to compare two ℓ-bit
numbers. Then we have 𝑑 ≥ 2ℓ. Thus we require a subgroup of Z*

𝑛 of at least 2ℓ

bits (and more if 𝑏 > 2), which implies a public key of 𝑂(2ℓ) bits.
For efficiency reasons it would be helpful to consider fixed values for 𝑏 and

𝑑, and extend the protocol to accommodate arbitrary input sizes by running
multiple instances. The approach we take is to represent inputs in base 𝑑, and
perform the comparison on each coefficient separately. This approach requires
only a slight modification to the final plaintext equality testing phase.

Suppose we wish to compare two integers 0 ≤ 𝑚1, 𝑚2 < 2ℓ where 2ℓ > 𝑑. Let
𝑘 = ⌈log𝑑(2ℓ)⌉. Rewrite integers 𝑚1, 𝑚2 in base 𝑑 as follows:

𝑚1 = 𝛼𝑘−1𝑑𝑘−1 + 𝛼𝑘−2𝑑𝑘−2 + · · ·+ 𝛼1𝑑 + 𝛼0

and
𝑚2 = 𝛽𝑘−1𝑑𝑘−1 + 𝛽𝑘−2𝑑𝑘−2 + · · ·+ 𝛽1𝑑 + 𝛽0

for 0 ≤ 𝛼𝑖, 𝛽𝑖 < 𝑑. Next we observe that if 𝑚1 ≥ 𝑚2 then exactly one of the
following 𝑘 Boolean expressions will be True:

(𝛼𝑘−1 ≥ 𝛽𝑘−1)

or
(𝛼𝑘−1 = 𝛽𝑘−1) ∧ (𝛼𝑘−2 ≥ 𝛽𝑘−2)

or
(𝛼𝑘−1 = 𝛽𝑘−1) ∧ (𝛼𝑘−2 = 𝛽𝑘−2) ∧ (𝛼𝑘−2 ≥ 𝛽𝑘−2)

or
...

or
(𝛼𝑘−1 = 𝛽𝑘−1) ∧ (𝛼𝑘−2 = 𝛽𝑘−2) ∧ · · · ∧ (𝛼0 ≥ 𝛽0).

Conversely if 𝑚1 < 𝑚2, each of these expressions will be False. We can now apply
this fact to securely evaluate (𝑚1 ≥ 𝑚2) by running 𝑘 instances of the protocol,
and replacing the individual plaintext equality tests with each of the Boolean
tests above. In the final pass 𝑃1 sends the individual PET ciphertexts to 𝑃2 in
shuffled order. Then if one of the decryptions indicated a match, 𝑃2 would not
be able to tell which expression it was associated with—merely that a match had
occurred, and thus 𝑚1 ≥ 𝑚2.

6 Security

Our security model assumes a semi-honest (passive) adversary in a two-party
computational setting. Parties follow the correct path through the protocol, but
attempt to gain additional information about each other’s inputs from messages
exchanged during the protocol. We use a simulation based proof to demonstrate
the protocol is secure given that the view of a participant in a real execution of
the protocol is computationally indistinguishable from a simulated view given
only that party’s inputs and outputs. Below we define the semi-honest notion of
simulation security.

Parties 𝑃1 and 𝑃2 interact in a protocol 𝛱 which computes the function of
the protocol given the expected inputs and produces the expected outputs. Let
𝐹 be a function defining the ideal functionality of the protocol 𝛱, taking a pair
of inputs (in1, in2) to a pair of outputs (out1, out2). The view of participant 𝑃𝑖

(where 𝑖 = 𝐴, 𝐵) will be denoted by VIEW𝛱
𝑃𝑖

(in1, in2) and is defined as the
information 𝑃𝑖 observes and produces throughout the protocol. Let Sim𝑖 be a
simulator that takes in the inputs of party 𝑃𝑖 and the ideal functionality of the
protocol 𝐹 and produces a transcript of the protocol. With this setup, we now
give the definition of simulation security of a protocol.

Definition 4. We say that a protocol 𝛱 is secure against passive adversaries from
the point of view of 𝑃𝑖 (for 𝑖 = 𝐴, 𝐵) if there exists a probabilistic polynomial time
simulator Sim𝑖 for each party such that Sim𝑖(in𝑖, 𝐹 (in1, in2)) is computationally
indistinguishable from (VIEW𝛱

𝑃𝑖
(in1, in2), out𝑖).

We say that a protocol 𝛱 is secure against passive adversaries if it is secure
from the point of view of both 𝑃1 and 𝑃2.

Our goal in the remainder of this section is to prove that the comparison protocol
of Figure 1, which throughout will be denoted 𝛱, is secure against passive
adversaries. We do so by proving security separately for 𝑃1 and 𝑃2.

In our case, the ideal functionality 𝐹 is a function with the inputs (𝑚1, 𝑚2)
and output 𝛼 (a binary indicator which results in True if 𝑚1 ≥ 𝑚2 and False
otherwise. It is clear that 𝐹 defines the functionality of the protocol 𝛱. When
𝛱 terminates, 𝑃2 receives output of 𝐹 . Let OUTPUT𝛱(𝑚1, 𝑚2) be the output
received by 𝑃2.

Lemma 1. The protocol 𝛱 protects 𝑃1’s privacy.

Proof. In order to show that 𝑃2 does not learn anything about 𝑚1 we will
construct a valid simulator Sim2 for 𝑃2 with the property that

Sim2(𝑚2, 𝐶𝑆2 private key, (𝑚1 ≥ 𝑚2)) 𝑐≡ VIEW𝛱
𝑃2

(𝑚1, 𝑚2).

Here, we write 𝑐≡ for the relation of computational indistinguishability. The
simulator Sim2 is given 𝑚1 and is able to simulate 𝑃2’s by first sampling a
random value 𝐶 ← Z*

𝑛, sampling random values 𝑟, 𝑠 and computing the ciphertext
𝐷 ← 𝐶𝑚2 · 𝑔𝑠ℎ𝑟 and Enc′(𝑠). To simulate the final PET ciphertext received from
𝑃2, the simulator encrypts Enc′(0) if (𝑚1 ≥ 𝑚2), otherwise samples a random
non-zero value 𝑟 from the plaintext space of Enc and computes Enc′(𝑟) otherwise.

By the semantic security of 𝐶𝑆1, a polynomial-time algorithm cannot distin-
guish between 𝐶 and a valid encryption of 𝑚1. All other values are computable
directly from 𝐶 and the inputs given to Sim2. ⊓⊔

Lemma 2. The protocol 𝛱 protects 𝑃2’s privacy.

Proof. Now we construct a simulator Sim1 with the property that

Sim1(𝑚1, 𝐶𝑆1 private key,) 𝑐≡ (VIEW𝛱
𝑃1

(𝑚1, 𝑚2), OUTPUT𝛱(𝑚1, 𝑚2)).

In the first step Sim1 constructs 𝐶 ← Enc(𝑚1) from 𝐶𝑆1 using its inputs. Next
it constructs a 𝐶𝑆1 encryption 𝐷 ← Enc(𝑧) for 𝑧←$ 𝑏𝑑. It applies the private
key of 𝐶𝑆1 to 𝐷 to recover 𝑧. For the plaintext equality ciphertext received from
𝑃2 it selects a random value in the ciphertext space of 𝐶𝑆2. For example if using
Elgamal in a prime order group G, it sends 𝐸 = ⟨𝛼, 𝛽⟩ for 𝛼, 𝛽←$ G. Finally it
computes the homomorphic difference between 𝑧 and the encrypted plaintext
in 𝐸, and blinds/re-randomizes using the public key of 𝐶𝑆2. By the semantic
security of 𝐶𝑆2, 𝐸 is a uniform value and therefore no polynomial-time algorithm
has advantage distinguishing 𝐸 from 𝑃1’s view of Enc′(𝑠).

It only remains to show that the exponent recovered from the simulated
ciphertext 𝐷, i.e., 𝑧←$ 𝑏𝑑 is computationally indistinguishable from 𝑃1’s real
view of the recovered exponent 𝑤. First let us define the set ℛ ⊂ Z𝑏𝑑 as the
set of values 𝑟 ∈ Z𝑏𝑑 for which 𝑟 ̸≡ 0 mod 𝑏. Let 𝑠, 𝑧←$ℛ. 𝑃1 decrypts 𝐷 and
recovers plaintext 𝑤, but cannot distinguish between a real-world value in which
𝑤 = 𝑏𝑑+𝑚1−𝑚2−1 + 𝑠 or a simulated value 𝑧. The latter case is a uniform value

in ℛ by definition. To show the former case results in a uniform value in ℛ it
is sufficient to show first that (𝑏𝑑+𝑚1−𝑚2−1 + 𝑠) mod 𝑏𝑑 ∈ ℛ for all (𝑚1, 𝑚2, 𝑠),
and second that the result is uniform in ℛ.

First we note that (𝑏𝑑+𝑚1−𝑚2 +𝑠) mod 𝑏𝑑 ∈ ℛ if (𝑏𝑑+𝑚1−𝑚2 +𝑠 mod 𝑏𝑑) mod
𝑏 ≠ 0. Since the inner and outer moduli share the same base we can reduce this
to (𝑏𝑑+𝑚1−𝑚2 + 𝑠) mod 𝑏 ̸= 0. Next observe that 𝑏𝑥 ≡ 0 mod 𝑏 for all 𝑥, and
thus we are left only with the requirement that 𝑠 mod 𝑏 ̸= 0, which is inherently
satisfied from the definition of 𝑠. Therefore (𝑏𝑑+𝑚1−𝑚2 + 𝑠) ∈ ℛ. Second, since
𝑠 is uniform in ℛ then 𝑏𝑑+𝑚1−𝑚2 + 𝑠 will be uniform in ℛ as well. Therefore
an algorithm cannot distinguish between real values of 𝑤 and uniform values
in ℛ with advantage and thus cannot distinguish between a real ciphertext
𝑔𝑏𝑑+𝑚1−𝑚2 +𝑠ℎ𝑟 and a simulated ciphertext 𝑔𝑧ℎ𝑟. ⊓⊔

7 Performance Analysis

In this section we compare the performance of our protocol in Figure 1 against the
2-party secure integer comparison protocol of Damgård, Geisler, and Krøigaard
(DGK) [8,9].

The primary difference between the respective approaches is that DGK
performs its homomorphic operations on an element-wise encryption of the
bitwise decomposition of the input integers, whereas our scheme performs the
comparison inside a single encryption plus a plaintext equality test. This makes
for an an interesting opportunity to compare the two approaches, since the bits
of the plaintext space in our scheme grows linearly with the input size, whereas
DGK uses logarithmically many ciphertexts with a logarithmic message space.

First let us consider messages in the range 0 ≤ 𝑚 < 𝑑 and let 𝑚 = 𝑎𝑘2𝑘 +
· · ·+ 𝑎1𝑘 + 𝑎0 represent its binary decomposition. The DGK secure comparison
protocol consists of 𝑘 = ⌈log2(𝑑)⌉ ciphertexts encrypting the coefficients 𝑎𝑖 as

EncDGK(𝑎𝑖) = 𝑔𝑎𝑖ℎ𝑟 mod 𝑛

in which generator 𝑔 has a small order corresponding to the next largest prime
greater than 𝑘 + 2. Our scheme in its basic form consists of a single ciphertext
which encrypts 𝑚 directly as

Enc𝑓𝑑
(𝑎𝑖) = 𝑔𝑏𝑎𝑖

ℎ𝑟 mod 𝑛

in which generator 𝑔 has a large order corresponding to 𝑏𝑑. As described in Sec-
tion 5.4 we can extend the scheme to arbitrary bit lengths without resorting to
linear growth in the modulus 𝑛 by fixing 𝑏𝑑 and performing multiple instantiations.

Eight bits for the price of one? For concreteness in this analysis we will
set 𝑏𝑑 = 28 = 256, and then compare a run of the DGK protocol involving 8
ciphertexts with an 8-bit message space against runs of our protocol involving
a single ciphertext with a 256-bit message space of prime power order (plus a
plaintext equality test). Messages of greater bit length, e.g., 16, 32, 64, etc, can

be achieved through 2, 4, and 8 etc. concurrent executions of our protocol with
the modification to the PET outlined in Section 5.4.

Encryption and Re-randomization Cost. Notwithstanding the differences,
from a performance standpoint the encryption operations are quite similar. Since
the plaintext space is small, the main time consumer of time in DGK encryption
comes in computing the random factor ℎ𝑟 mod 𝑛. We size these equivalently in
both schemes (ℎ has order 𝑝𝑠𝑞𝑠 in ours, 𝑣𝑝𝑣𝑘 in DGK). In both cases powers of
𝑔 and ℎ can be pre-computed, and computing ℎ is equivalent in both schemes,
however computing 𝑔 is generally more costly in our scheme since we’re encrypting
one 256-bit value, as opposed to 8 single bit values. Since a message in our scheme
consists of only 1 of 256 possible values, we can store these powers of 𝑔 in a
lookup table to make encryption faster.

Since re-randomization is modeled as the homomorphic addition with the
encryption of 0, this operation too takes an identical amount of time in both
schemes. Blinding the plaintext space, however, consists of a variable-base expo-
nentiation which (short of what can be accomplished through addition chains) is
not readily optimized, and takes longer in our scheme, give its comparably larger
message space.

Decryption Cost. Damgård et al. [9] point out that decryption in their scheme
can be efficiently performed in a short exponentiation modulo 𝑝 (instead of
𝑛 = 𝑝𝑞):

𝐶𝑣𝑝 mod 𝑝 = 𝑔𝑚𝑣𝑝ℎ𝑣𝑝 = 𝑔𝑚𝑣𝑝 .

In the DGK protocol, decryption is only used to check if 𝐶𝑣𝑝 ≡ 1 mod 𝑝, and
thus if 𝑚 = 0. Nominally decryption in our scheme is almost as fast, given the
message space consists of only 𝑑 = 256 possibilities for 𝑚. Our decryption scheme
however must also account for the contribution of the secret exponent 𝑝𝑠 in the
plaintext space during decryption, i.e.,

𝐶𝑝𝑠 = 𝑔𝑚𝑝𝑠
𝑝 ℎ𝑝𝑠 ≡ 𝑔𝑚𝑝𝑠 mod 𝑝.

In the description in Section 4 we used the factor 𝑥′ to eliminate the 𝑝𝑠 term
in the exponent of 𝑔 in which 𝑥 = 𝑝𝑠𝑥′ ≡ 1 mod 𝑏𝑑. However this requires the
receiever to perform a

(︀
|𝑝𝑠|+ |𝑏𝑑|

)︀
-bit exponentiation. This can be made more

efficient by insteald computing 𝐶𝑝𝑠 and then computing the discrete logarithm
to recover 𝑚𝑝𝑠, and then computing (𝑚𝑝𝑠)(𝑝𝑠)−1 mod 𝑏𝑑. Taking the discrete
log is efficient for a small base such as 𝑏 = 2. In our implementation below we
use pre-computation to optimize taking the discrete log in the subgroup of or-
der 2256 to approximately the cost of about one 256-bit fixed-base exponentiation.

Communication Complexity. In terms of round complexity DGK is a two-
pass protocol: each party makes a single transmission. Our protocol is two-
passes involving cryptosystem 𝐶𝑆𝑓𝑑

and two passes of 𝐶𝑆⊕ in the PET sub-
protocol. Both the 𝐶𝑆𝑓𝑑

and 𝐶𝑆⊕ ciphertexts can be combined by 𝑃2 into a
single transmission, making the overall protocol 3 passes.

In terms of communication complexity our scheme operates on an 8-bit
number in a single ciphertext, compared to DGK which employs 8 ciphertexs of
an equivalent size. When using elliptic curves 𝐶𝑆⊕ its contribution is relatively
small. As an example, at the 128-bit security level each party in DGK transmits
24𝑘𝑏 per comparison. In our scheme each party transmits 3.1kb—a reduction of
7.7 times, with an asymptotic trend towards 8x at higher security levels.

As a simplifying assumption we did not factor in the time cost of network
transmission, though it would only impact performance in our favor given the
significant difference in the total communication cost between the two protocols.

Cost of PET and 𝐶𝑆⊕. Our protocol uses an additional cryptosystem 𝐶𝑆⊕ to
securely test for plaintext equivalence. The primary requirement of 𝐶𝑆⊕ is that
it be semantically secure, additively homomorphic and that the message space
be of a large prime power. Many such schemes exists, providing us with a range
of options.

In particular for performance we use exponential Elgamal and implement
the group over a fast elliptic curve in order to minimize the cost of the PET𝐶𝑆⊕

sub-protocol relative to 𝐶𝑆𝑓𝑑
operating in Z*

𝑛

Parameterizations. For cryptographic parameters we adhere to current NIST1

minimum recommended guidelines on key lengths which prescribe bit lengths
on the modulus and discrete logarithm groups. We note Groth [13] conjectured
that since the order of the randomizer space of his cryptosystem is hidden, for
performance reasons it may be possible to safely parameterize it to a size smaller
than what would typically be required to make the discrete logarithm hard. Coron
et al. [7] nonetheless found an attack on this approach essentially in 𝑂(√𝑝𝑠) time
and 𝑂(√𝑝𝑠) space. Although the 𝑂(√𝑝𝑠) space requirement makes the attack
strictly worse than generic methods for solving a discrete logarithm (and in fact a
significant real-world implementation challenge), we argue it would be inadvisable
to go below minimum recommendations on discrete logarithm groups sizes. We
parameterize the bit length 𝑢 of 𝑝𝑠 and 𝑞𝑠 (and corresponding DGK randomizer
space) accordingly. Working at the 128-bit security level requires |𝑛| = 3072,
|𝑝|, |𝑞| = 1536, 𝑢 = |𝑝𝑠|, |𝑞𝑠| = 256, and |𝑝𝑡|, |𝑞𝑡| = 1536−256−⌈log2(2256)⌉ = 1024.
The 192-bit security level requires |𝑛| = 7680, |𝑢| = 384, and the 256-bit level
requires |𝑛| = 15360, |𝑢| = 512.

For the implementation of Enc⊕ we use Elgamal implemented over an ellip-
tic curve. We considered the using the NIST curve secp256r1,2 but chose the
Edwards curve Ed255193 for performance. For the DGK implementation we use
the analogous parameterizations. Using the notation of [9] we set |𝑛| = 3072,
|𝑝|, |𝑞| = 1536, randomizer space |𝑣𝑝|, |𝑣𝑞| = 256, and message space of order
𝑢 = 11, which is the next prime up from log2(𝑑 + 2).

1 https://www.keylength.com/en/4/
2 http://www.secg.org/SEC2-Ver-1.0.pdf
3 https://ed25519.cr.yp.to/

https://www.keylength.com/en/4/
http://www.secg.org/SEC2-Ver-1.0.pdf
https://ed25519.cr.yp.to/

Security Time (ms)
level DGK [8,9] Our protocol Section 4

(bits) Enc𝑃1 Comp𝑃2 Dec𝑃1 Enc𝑃1 Comp𝑃2 PET𝑃1 PET𝑃2

128 1.04 1.19 0.46 0.13 0.37 0.26 0.01
192 6.02 6.56 3.08 0.81 1.70 0.95 0.01
256 22.6 23.3 12.8 2.84 5.22 2.88 0.01

Table 1. Amortized per bit cost of secure integer comparison protocols for respective
operations.

Security Total Time (ms)
level DGK [8,9] Our protocol Speedup
128 2.7 0.8 3.5x
192 15.7 3.5 4.5x
256 58.7 10.9 5.4x

Table 2. Amortized total per bit cost.

Implementation. We implemented the DGK protocol [8,9] and our protocol
from Figure 1 in Python using the gmpy2 packages for optimized GMP-based
integer operations. For 𝐶𝑆⊕ we used PyNaCl, a Python binding to libsodium4

which has an optimized implementation of curve Ed25519. The implementation
of 𝐶𝑆⊕ however was not complete since elliptic-curve based Elgamal requires
point-additions, and most implementations of Ed25519 are focused on applica-
tions of ECDH and ECDSA and explicitly do not expose this low-level curve
operation in their APIs. In terms of performance however, the contributions of
point additions are minor relative to point multiplications, which in turn are
minor relative to operations in 𝐶𝑆𝑓𝑑

. In each case we use optimizations such as
pre-computation of fixed-base exponents and working mod 𝑝 instead of mod 𝑛.

Performance results. We benchmarked on an Intel Xeon E5-2697A @ 2.60GHz
using a single-threaded instance of each protocol. We ran each protocol 1000
times using random 8-bit numbers and recorded the online computation time
(i.e., excluding building lookup tables). We present our performance results in
Table 1 amortized to the per-bit cost of each operation and show in Table 2 that
our scheme has a per-bit comparison up to 5 times faster than DGK.

The reason our scheme becomes relatively faster at higher security levels can
be attributed to two factors. One is that the arithmetic operations in the RSA
setting grow faster than their elliptic curve counterparts, diminishing the relative
contribution of the plaintext equality test. The other is that the order of 𝑔 is
4 https://github.com/jedisct1/libsodium

https://github.com/jedisct1/libsodium

fixed at 256 bits making operations in this subgroup (comparing, blinding, etc)
contribute to the total in decreasing amount relative to operations in ℎ which
grows at successive security levels.

8 Conclusion

Even after all these years, cryptosystems in Z*
𝑛 continue to surprise us with new

properties. In this paper we presented a new cryptosystem working in sub-groups
of prime power order leading to a novel threshold homomorphic property. We
exploited this property toward a public-key based secure integer comparison
protocol that can perform the entire comparison in a single ciphertext faster than
the conventional approach of using bitwise decompositions.

References

1. B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with
constant online rate, or how to compress garbled circuit keys. SIAM Journal on
Computing, 44(2):433–466, 2015.

2. J. Benaloh. Dense probabilistic encryption. In Workshop on Selected Areas of
Cryptography, 1994.

3. I. F. Blake and V. Kolesnikov. Conditional encrypted mapping and comparing
encrypted numbers. In International Conference on Financial Cryptography and
Data Security, pages 206–220. Springer, 2006.

4. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Theory of cryptography, volume 3378 of Lecture Notes in Comput. Sci., pages
325–341. Springer, Berlin, 2005.

5. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification over
encrypted data. In NDSS, 2015.

6. T. Chou and C. Orlandi. The Simplest Protocol for Oblivious Transfer, pages 40–58.
Springer International Publishing, Cham, 2015.

7. J.-S. Coron, A. Joux, A. Mandal, D. Naccache, and M. Tibouchi. Cryptanalysis of
the rsa subgroup assumption from tcc 2005. In 14th International Conference on
Practice and Theory in Public Key Cryptography (PKC), pages 147–155, 2011.

8. I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure comparison for on-
line auctions. In Information Security and Privacy: 12th Australasian Conference,
ACISP 2007, Townsville, Australia, July 2-4, 2007. Proceedings, pages 416–430,
2007.

9. I. Damgård, M. Geisler, and M. Krøigaard. A correction to “efficient and secure
comparison for online auctions”. Int. J. Appl. Cryptol., 1(4):323–324, 2009.

10. M. Fischlin. A cost-effective pay-per-multiplication comparison method for million-
aires. In Cryptographers’ Track at the RSA Conference, pages 457–471. Springer,
2001.

11. J. Garay, B. Schoenmakers, and J. Villegas. Practical and secure solutions for
integer comparison. In International Workshop on Public Key Cryptography, pages
330–342. Springer, 2007.

12. S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pages 365–377, 1982.

13. J. Groth. Cryptography in subgroups of 𝑧*
𝑛. In Theory of Cryptography: Second

Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005. Proceedings, pages 50–65, 2005.

14. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. How to combine homomorphic
encryption and garbled circuits. Signal Processing in the Encrypted Domain,
100:2009, 2009.

15. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building
blocks and applications to auctions and computing minima. Cryptology and Network
Security, pages 1–20, 2009.

16. H.-Y. Lin, W.-G. Tzeng, et al. An efficient solution to the millionaires’ problem
based on homomorphic encryption. In ACNS, volume 5, pages 456–466. Springer,
2005.

17. H. Lipmaa and T. Toft. Secure equality and greater-than tests with sublinear
online complexity. In International Colloquium on Automata, Languages, and
Programming, pages 645–656. Springer, 2013.

18. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology - EUROCRYPT 1999, pages 223–238. Springer-Verlag,
1999.

19. B. Schoenmakers and P. Tuyls. Practical Two-Party Computation Based on the
Conditional Gate, pages 119–136. Springer Berlin Heidelberg, 2004.

20. T. Toft. Sub-linear, secure comparison with two non-colluding parties. In Public
Key Cryptography, volume 6571, pages 174–191. Springer, 2011.

21. T. Veugen. Improving the dgk comparison protocol. In Information Forensics and
Security (WIFS), 2012 IEEE International Workshop on, pages 49–54. IEEE, 2012.

22. T. Veugen. Encrypted integer division and secure comparison. Int. J. Appl. Cryptol.,
3(2):166–180, 2014.

23. A. C.-C. Yao. How to generate and exchange secrets. In 27th FOCS, pages 162–167.
IEEE Computer Society Press, 1986.

24. C.-H. Yu and B.-Y. Yang. Probabilistically Correct Secure Arithmetic Computation
for Modular Conversion, Zero Test, Comparison, MOD and Exponentiation, pages
426–444. 2012.

	Threshold Properties of Prime Power Subgroups with Application to Secure Integer Comparisons

