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Abstract

Many voting systems rely on art, rather than science, to ensure that
votes are freely made, with equal influence. Such systems build upon
creativity and skill, rather than scientific foundations. These systems are
routinely broken in ways that compromise free-choice or permit undue
influence. Breaks can be avoided by proving that voting systems satisfy
formal notions of voters voting freely and of detecting undue influence.
This manuscript provides a detailed technical introduction to a definition
of ballot secrecy by Smyth that formalises the former notion and a defini-
tion of verifiability by Smyth, Frink & Clarkson that formalises the latter.
The definitions are presented in the computational model of cryptogra-
phy: Ballot secrecy is expressed as the inability to distinguish between
an instance of the voting system in which voters cast some votes, from
another instance in which the voters cast a permutation of those votes.
Verifiability decomposes into individual verifiability, which is expressed
as the inability to cause a collision between ballots, and universal verifi-
ability, which is expressed as the inability to cause an incorrect election
outcome to be accepted. The definitions are complimented with simple
examples that demonstrate the essence of these properties and detailed
proofs are constructed to show how secrecy and verifiability can be for-
mally proved. Finally, the Helios and Helios Mixnet voting systems are
presented as case studies to provide an understanding of state-of-the-art
systems that are being used for binding elections.

Keywords. Elections, privacy, provable security, verifiability, voting.

1 Introduction

An election is a decision-making procedure to choose representatives [LG84,
Saa95, Gum05, AH10]. Choices should be made by voters with equal influence,
and this must be ensured by voting systems, as prescribed by the United Na-
tions [UN48], the Organisation for Security & Cooperation in Europe [OSC90],
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and the Organization of American States [OAS69]. Historically, “Americans
[voted] with their voices – viva voce – or with their hands or with their feet.
Yea or nay. Raise your hand. All in favor of Jones, stand on this side of the
town common; if you support Smith, line up over there” [Lep08]. Thus, ensur-
ing that only voters voted and did so with equal influence was straightforward.
Indeed, the election outcome could be determined by anyone present, simply by
considering at most one vote per voter and disregarding non-voters. Yet, voting
systems must also ensure choices are made freely, as prescribed by the aforemen-
tioned organisations [UN48,OSC90,OAS69]. Mill eloquently argues that choices
cannot be expressed freely in public: “The unfortunate voter is in the power of
some opulent man; the opulent man informs him how he must vote. Conscience,
virtue, moral obligation, religion, all cry to him, that he ought to consult his
own judgement, and faithfully follow its dictates. The consequences of pleasing,
or offending the opulent man, stare him in the face...the moral obligation is
disregarded, a faithless, a prostitute, a pernicious vote is given” [Mil30].

The need for free-choice started a movement towards voting as a private
act, i.e., “when numerous social constraints in which citizens are routinely
and universally enmeshed – community of religious allegiances, the patronage
of big men, employers or notables, parties, ‘political machines’ – are kept at
bay,” and “this idea has become the current doxa of democracy-builders world-
wide” [BBP07]. The most widely used embodiment of this idea is the Australian
system, which demands that votes be marked on uniform ballots in polling
booths and deposited into ballot boxes. Uniformity is intended to enable free-
choice during distribution, collection and tallying of ballots, and the isolation
of polling booths is intended to facilitate free-choice whilst marking.1 More-
over, the Australian system can assure that only voters vote and do so with
equal influence. Indeed, observers can check that ballots are only distributed
to voters and at most one ballot is deposited by each voter. Furthermore, ob-
servers can check that spoiled ballots are discarded and that votes expressed in
the remaining ballots correspond to the election outcome. Albeit, assurance is
limited by an observer’s ability to monitor [Bjo04, Kel12, Nor15] and the abil-
ity to transfer that assurance is limited to the observer’s “good word or sworn
testimony” [NA03].

Many electronic voting systems – including systems that have been used in
large-scale, binding elections – rely on art, rather than science, to ensure that
votes are freely made, with equal influence. Such systems build upon creativity
and skill, rather than scientific foundations. These systems are routinely bro-
ken in ways that violate free-choice, e.g., [KSRW04, GH07, Bow07, WWH+10,
WWIH12, SFD+14], or permit undue influence, e.g., [KSRW04, UK07, Bow07,
Ger09,JS12]. Breaks can be avoided by proving that systems satisfy formal no-
tions of voters voting freely and of detecting undue influence. Smyth, Frink &
Clarkson [SFC17] propose a definition of verifiability that formalises the latter
notion, and Smyth [Smy18a] proposes a definition of ballot secrecy that for-

1Earlier systems merely required ballots to be marked in polling booths and deposited into
ballot boxes, which permitted non-uniform ballots, including ballots of different colours and
sizes, that could be easily identified as party tickets [Bre06].
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malises the former. This manuscript provides a detailed technical introduction
to those definitions. The definitions are presented in the computational model of
cryptography using games, whereby a benign challenger, a malicious adversary
and a voting system engage in a series of interactions which task the adversary
to break security.

Verifiability. Verifiability requires voting systems to produce evidence of cor-
rect operation. Such evidence can be checked to determine whether the selection
of representatives has been unduly influenced. Hence, breaks permitting undue
influence can be eradicated, moreover, the aforementioned limitations of ob-
servers can be overcome. Indeed, universal verifiability formalises a notion of
checking whether votes expressed in ballots correspond to the election outcome.
Thus, undue influence can be detected, without monitoring.

• Universal verifiability. Anyone can check whether an outcome corresponds
to votes expressed in collected ballots.

Smyth, Frink & Clarkson capture universal verifiability as a game that tasks
the adversary to falsify evidence that causes checks to succeed when the out-
come does not correspond to the votes expressed in collected ballots, or that
cause checks to fail when the outcome does correspond to the votes expressed.
Hence, winning signifies the existence of a scenario in which a spurious outcome
will be accepted or a legitimate outcome rejected, i.e., a security breach. By
comparison, when no winning adversary exists, anyone can determine whether
the election outcome is correct.

Voting systems must ensure outcomes include only voters’ votes, which can
be achieved by collecting only voters’ ballots. Moreover, only one ballot should
be collected from each voter, to ensure equal influence. Alternatively, voting
systems may satisfy a stronger notion universal verifiability (whereby, anyone
can check whether an outcome corresponds to votes expressed in collected bal-
lots that are authorised, except votes cast by the same voter) and a notion of
unforgeability, i.e., only voters can construct authorised ballots.2 Unforgeability
seems to require expensive infrastructures for voter credentials and some sys-
tems – including Helios and Helios Mixnet – forgo unforgeability in favour of
cheaper, non-verifiable ballot authentication mechanisms. We focus on voting
systems with such non-verifiable mechanisms.

Merely casting a ballot is insufficient to ensure it is collected, because an
adversary may discard or modify ballots. Hence, evidence produced by voting
systems should include the set of collected ballots and voters should check that
their ballot has not been omitted. Yet, this is insufficient, because two ballots
may collide and an adversary may discard just one ballot. Thus, voters must
uniquely identify their ballot. Individual verifiability formalises a notion of vot-
ers convincing themselves that their ballot is amongst those collected, assuming
ballots are constructed in the prescribed manner.

2I have previously used ‘eligibility verifiability’ as a synonym for ‘unforgeability’ [SFC17],
despite the absence of any checks in the corresponding security definition. In hindsight,
unforgeability is a better name.
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• Individual verifiability. A voter can check whether their ballot is collected.

Smyth, Frink & Clarkson capture individual verifiability as a game that tasks
the adversary to cause a collision between ballots constructed in the manner
prescribed by the voting system. The game proceeds as follows: First, the
adversary provides any inputs necessary to construct a ballot. Secondly, the
challenger constructs a ballot using those inputs, in the manner prescribed by
the voting system. Finally, the adversary and the challenger repeat the process
to construct a second ballot. The adversary wins if the two independently con-
structed ballots are equal. Hence, winning signifies the existence of a scenario
in which voters cannot uniquely identify their ballot, thus voters cannot be con-
vinced that their ballot is collected. By comparison, when no winning adversary
exists, voters can determine whether their ballot is collected.

Privacy. Privacy requires voting systems to ensure free-choice. Formulations
of privacy differ depending on the adversary’s capabilities and any operational
assumptions. Ballot secrecy formalises a notion of free-choice assuming the
adversary’s capabilities are limited to controlling ballot collection and assuming
voters’ ballots are constructed and tallied in the prescribed manner.3

• Ballot secrecy. A voter’s vote is not revealed to anyone.

Smyth captures ballot secrecy as a game that proceeds as follows. First, the
adversary picks a pair of votes v0 and v1. Secondly, the challenger constructs a
ballot for vote vβ , in the manner prescribed by the voting system, where β is a
bit chosen uniformly at random. That ballot is given to the adversary. The ad-
versary and challenger repeat the process to construct further ballots, using the
same bit β. Thirdly, the adversary constructs a set of ballots, which may include
ballots constructed by the adversary and ballots constructed by the challenger.
Thus, the game captures a setting where the adversary casts ballots on behalf
of some voters and controls the distribution of votes cast by the remaining vot-
ers. Fourthly, the challenger tallies the set of ballots, in the manner prescribed
by the voting system, to determine the election outcome, which is given to the
adversary. Finally, the adversary is tasked with determining if β = 0 or β = 1.
To avoid trivial distinctions, we require that the aforementioned distribution of
votes cast (which the adversary controls) remains constant regardless of whether
β = 0 or β = 1. If the adversary wins, then a voter’s vote can be revealed, oth-
erwise, it cannot, i.e., the voting system provides ballot secrecy.

Equipped with definitions of ballot secrecy and verifiability, we can analyse
existing voting systems to determine whether they are secure and we can build
new systems that can be proven secure.

We introduce two voting systems to demonstrate how secrecy and verifiabil-
ity can be achieved. The first (Nonce) instructs each voter to pair their vote with

3Ballot secrecy and privacy occasionally appear as synonyms in the literature. We favour
ballot secrecy to avoid confusion with other privacy notions, such as receipt-freeness and
coercion resistance.
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a nonce and instructs the tallier to publish the distribution of votes. The sec-
ond (Enc2Vote) instructs each voter to encrypt their vote using an asymmetric
encryption scheme and instructs the tallier to decrypt the encrypted votes and
publish the distribution of votes. Verifiability is ensured by the former system,
because voter’s can use their nonce to check that their ballot is collected (in-
dividual verifiability) and anyone can recompute the election outcome to check
that it corresponds to votes expressed in collected ballots (universal verifia-
bility). But, ballot secrecy is not ensured, because voters’ votes are revealed.
By comparison, secrecy is ensured by the latter system, because asymmetric
encryption can ensure that votes cannot be recovered from ballots and the tal-
lying procedure ensures that individual votes are not revealed. But, verifiability
is not ensured. Indeed, spurious election outcomes need not correspond to the
encrypted votes, which violates universal verifiability, and public keys can be
maliciously constructed such that ciphertexts collide, which violates individual
verifiability. Thus, Enc2Vote ensures secrecy not verifiability, and Nonce achieves
the reverse. More advanced voting systems must simultaneously satisfy both
secrecy and verifiability, and we will consider the Helios voting system.

Helios is an open-source, web-based electronic voting system, which has been
used in binding elections. In particular, the International Association of Cryp-
tologic Research (IACR) has used Helios annually since 2010 to elect board
members [BVQ10, HBH10], the Association for Computing Machinery (ACM)
used Helios for their 2014 general election [Sta14], the Catholic University of
Louvain used Helios to elect their university president in 2009 [AMPQ09], and
Princeton University has used Helios since 2009 to elect student governments.
Helios is intended to satisfy verifiability whilst maintaining ballot secrecy. For
ballot secrecy, each voter is instructed to encrypt their vote using an asym-
metric homomorphic encryption scheme. Encrypted votes are homomorphically
combined and the homomorphic combination is decrypted to reveal the out-
come [AMPQ09]. Alternatively, a mixnet is applied to the encrypted votes and
the mixed encrypted votes are decrypted to reveal the outcome [Adi08,BGP11].
We refer to the former voting system as Helios and the latter as Helios Mixnet.
For verifiability, the encryption step is accompanied by a non-interactive zero-
knowledge proof demonstrating correct computation. This ensures homomor-
phic combinations of encrypted votes and mixed encrypted votes can be de-
crypted, hence, the outcome can be recovered. Helios additionally requires proof
that ciphertexts encrypt votes. This prevents an adversarial voter crafting a ci-
phertext that could be combined with others to derive an election outcome in
the voter’s favour. (E.g., votes might be switched between candidates.) The
decryption step is similarly accompanied by a non-interactive zero-knowledge
proof to prevent spurious outcomes.

Structure. Figure 1 introduces notation and games-based security definitions.
Section 2 presents the syntax we will use to model voting systems and to define
their properties. Section 3 introduces definitions of universal (§3.1) and indi-
vidual (§3.2) verifiability by Smyth, Frink & Clarkson, models the Nonce voting
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system and proves that verifiability definitions are satisfied (§3.3), contextualises
our definitions of verifiability (§3.4), and provides insights into further aspects
of verifiability (§3.5). Section 4 introduces the definition of ballot secrecy by
Smyth (§4.1), models the Enc2Vote voting system (§4.2), introduces sufficient
conditions for ballot secrecy that simplify proofs and proves that Enc2Vote sat-
isfies secrecy (§4.3), contextualises our definition of ballot secrecy (§4.4), and
provides insights into further aspects of secrecy (§4.5). Section 5 introduces He-
lios; shows how our definitions of secrecy and universal verifiability detect known
vulnerabilities against the initial Helios release (§5.1), the current release (§5.2),
and the next release (§5.3), and discusses fixes; and proves that a variant of He-
lios satisfies our secrecy and verifiability definitions (§5.4). Section 6 introduces
Helios Mixnet, detects a universal verifiability vulnerability using our definition,
discusses a fix, and proves secrecy and verifiability are satisfied when the fix is
applied. Finally, Section 7 presents a brief reflection. (The manuscript is in-
tended to be read sequentially, but Sections 3 & 4 can be studied in any order,
Figure 1 can be skipped by readers familiar with games, Sections 3.4, 3.5 &
4.3–4.5 can be skipped by readers uninterested in the broader literature, and
Sections 5 & 6 can be read in any order too.)

2 Election scheme syntax

We recall election scheme syntax (Definition 1), which captures voting systems
that consist of the following four steps. First, a tallier generates a key pair.
Secondly, each voter constructs and casts a ballot for their vote. These ballots
are collected and recorded on a bulletin board. Thirdly, the tallier tallies the
collected ballots and announces an outcome, i.e., a distribution of votes. The
chosen representative is derived from this distribution, e.g., as the candidate
with the most votes.4 Finally, voters and other interested parties check that the
outcome corresponds to votes expressed in collected ballots.

Definition 1 (Election scheme [SFC17]). An election scheme is a tuple of
probabilistic polynomial-time algorithms (Setup,Vote,Tally,Verify) such that:5

Setup, denoted (pk , sk ,mb,mc) ← Setup(κ), is run by the tallier. The algo-
rithm takes a security parameter κ as input and outputs a key pair pk , sk,
a maximum number of ballots mb, and a maximum number of candidates
mc.

Vote, denoted b← Vote(pk , v,nc, κ), is run by voters. The algorithm takes as
input a public key pk, a voter’s vote v, some number of candidates nc, and

4Beyond first-past-the-post voting systems, Smyth shows the syntax can model ranked-
choice voting systems too [Smy17].

5The syntax bounds the number of ballots mb, respectively candidates mc, to broaden the
correctness definition’s scope (indeed, Helios requires mb and mc to be less than or equal to
the size of the underlying encryption scheme’s message space); represents votes as integers,
rather than alphanumeric strings, for brevity; and omits algorithm Verify, because we focus
on ballot secrecy, not verifiability.
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Figure 1 Preliminaries: Games and notation

A game formulates a series of interactions between a benign challenger, a mali-
cious adversary, and a cryptographic scheme. The adversary wins by completing
a task that captures an execution of the scheme in which security is broken, i.e.,
winning captures what should be unachievable. Tasks can generally be expressed
as indistinguishability or reachability requirements. For example, universal ver-
ifiability can be expressed as the inability to reach a state that causes a voting
system’s checks to succeed for invalid election outcomes, or fail for valid out-
comes. Moreover, ballot secrecy can be expressed as the inability to distinguish
between an instance of a voting system in which voters cast some votes, from
another instance in which the voters cast a permutation of those votes.
Formally, games are probabilistic algorithms that output booleans. We let
A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs
x1, . . . , xn and random coins r, and we let A(x1, . . . , xn) denote A(x1, . . . , xn; r),
where coins r are chosen uniformly at random. Moreover, we let x← T denote
assignment of T to x, and x ←R S denote assignment to x of an element cho-
sen uniformly at random from set S. Using our notation, we can formulate
the following game Exp(H,S,A) that tasks an adversary A to distinguish be-
tween a function H and a simulator S: m ← A();β ←R {0, 1}; if β = 0 then
x← H(m); else x← S(m); g ← A(x); return g = β. Adversaries are stateful,
i.e., information persists across invocations of an adversary in a game. In par-
ticular, adversaries can access earlier assignments. For instance, the adversary’s
second instantiation in game Exp has access to any assignments made during its
first instantiation. An adversary wins a game by causing it to output true (>)
and the adversary’s success in a game Exp(·), denoted Succ(Exp(·)), is the prob-
ability that the adversary wins, that is, Succ(Exp(·)) = Pr[x← Exp(·) : x = >].
We focus on computational security, rather than information-theoretic security,
and tolerate breaks by adversaries in non-polynomial time and breaks with neg-
ligible success, since such breaks are infeasible in practice.
Game Exp captures a single interaction between the challenger and the ad-
versary. We can extend games with oracles to capture arbitrarily many in-
teractions. For instance, we can formulate a strengthening of Exp as follows:
β ←R {0, 1}; g ← AO(x); return g = β, where AO denotes A’s access to oracle
O and O(m) computes if β = 0 then x ← H(m); else x ← S(m); return x.
Oracles may access game parameters such as bit β.
Beyond the above notation, we let x[i] denote component i of vector x and let
|x| denote the length of vector x. Moreover, we write (x1, . . . , x|T |) ← T for
x ← T ;x1 ← x[1]; . . . ;x|T | ← x[|T |], when T is a vector, and x, x′ ←R S for
x←R S;x′ ←R S.
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a security parameter κ. Vote v should be selected from a sequence 1, . . . ,nc
of candidates. The algorithm outputs a ballot b or error symbol ⊥.

Tally, denoted (v, pf ) ← Tally(sk , bb,nc, κ), is run by the tallier. The algo-
rithm takes as input a private key sk, a bulletin board bb, some number
of candidates nc, and a security parameter κ, where bb is a set. And out-
puts an election outcome v and a non-interactive tallying proof pf . The
election outcome must be a vector of length nc and each index v of that
vector should indicate the number of votes for candidate v. Moreover, the
tallying proof should demonstrate that the outcome corresponds to votes
expressed in ballots on the bulletin board.

Verify, denoted s← Verify(pk , bb,nc, v, pf , κ), is run to audit an election. The
algorithm takes as input a public key pk, a bulletin board bb, some number
of candidates nc, an election outcome v, a tallying proof pf , and a security
parameter κ. And outputs a bit s, which is 1 if the outcome should be
accepted and 0 otherwise. We require the algorithm to be deterministic.

Election schemes must satisfy correctness: there exists a negligible function
negl, such that for all security parameters κ, integers nb and nc, and votes
v1, . . . , vnb ∈ {1, . . . ,nc}, it holds that, given a zero-filled vector v of length nc,
we have:

Pr[(pk , sk ,mb,mc)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Vote(pk , vi,nc, κ);
v[vi]← v[vi] + 1;

(v′, pf )← Tally(sk , {b1, . . . , bnb},nc, κ) :
nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1− negl(κ).

The syntax provides a language to model voting systems and the correctness
condition ensures that such systems function. That is, election outcomes cor-
respond to votes expressed in ballots, when ballots are constructed and tallied
in the prescribed manner. We will use our syntax to express verifiability and
secrecy properties of election schemes, moreover, we will model and analyse
voting systems, including Helios and Helios Mixnet.

3 Verifiability

The Australian system is reliant on monitoring to ensure election outcomes
correspond to votes expressed in collected ballots, moreover, depositing bal-
lots into ballot boxes suffices to ensure they collected. By comparison, election
schemes compute outcomes in a manner that should not be monitored. Indeed,
such monitoring would reveal the tallier’s private key, which would compro-
mise ballot secrecy. Furthermore, casting a ballot is insufficient to ensure it is
collected, because an adversary may discard or modify ballots. Nevertheless,
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election schemes produce tallying proofs to provide evidence that outcomes are
correctly computed and voters can check whether their ballot is collected. The
former notion is formalised by universal verifiability and the latter by individual
verifiability.

3.1 Universal verifiability

Universal verifiability asserts that anyone must be able to check whether an elec-
tion outcome corresponds to votes expressed in collected ballots. Since checks
can be performed by algorithm Verify, it suffices that Verify accept if and only
if the outcome corresponds to votes expressed in collected ballots. The only if
requirement is captured by soundness, which requires algorithm Verify to only
accept correct outcomes, and the if requirement is captured by completeness,
which requires election outcomes produced by algorithm Tally to be accepted
by algorithm Verify.

Soundness. Correct outcomes are formalised using function correct-outcome.
That function uses a predicate (∃=`x : P (x)) that holds exactly when there
are ` distinct values of x for which P (x) is satisfied [Sch05]. (Variable x is
bound by the predicate and integer ` is free.) Using the predicate, function
correct-outcome is defined such that

correct-outcome(pk ,nc, bb, κ)[v] = ` iff

∃=`b ∈ bb \ {⊥} : ∃r : b = Vote(pk , v,nc, κ; r),

where correct-outcome(pk ,nc, bb, κ) is a vector of length nc and 1 ≤ v ≤ nc.
Hence, component v of vector correct-outcome(pk ,nc, bb, κ) equals ` iff there
exist ` ballots for vote v on the bulletin board. The function requires that ballots
be interpreted for only one candidate, which can be ensured by injectivity.

Definition 2 (Injectivity [SFC17, Smy18b]). An election scheme (Setup,Vote,
Tally,Verify) satisfies Injectivity, if for all probabilistic polynomial-time adver-
saries A, security parameters κ and computations (pk ,nc, v, v′) ← A(κ); b ←
Vote(pk , v,nc, κ); b′ ← Vote(pk , v′,nc, κ) such that v 6= v′ ∧ b 6= ⊥ ∧ b′ 6= ⊥, we
have b 6= b′.

Our definition of injectivity ensures that a ballot for vote v can never be in-
terpreted for a distinct vote v′, hence, votes expressed in ballots correspond to
unique outcomes.

Equipped with a notion of correct outcomes, we formalise soundness (Defini-
tion 3) as a game that tasks the adversary to compute inputs to algorithm Verify
(Line 1), including an election outcome and some ballots, that cause the algo-
rithm to accept when the outcome does not correspond to the votes expressed
in those ballots (Line 2).

Definition 3 (Soundness [SFC17]). Let Γ = (Setup,Vote,Tally,Verify) be an
election scheme, A be an adversary, κ be a security parameter, and Soundness(Γ,
A, κ) be the following game.



3 VERIFIABILITY 10

Soundness(Γ,A, κ) =

1 (pk , bb,nc, v, pf )← A(κ);
2 return Verify(pk , bb,nc, v, pf , κ) = 1 ∧ v 6= correct-outcome(pk ,nc, bb, κ);

We say Γ satisfies Soundness, if Γ satisfies injectivity and for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl, such that
for all security parameters κ, we have Succ(Soundness(Γ,A, κ)) ≤ negl(κ).

An election scheme satisfies Soundness when algorithm Verify only accepts out-
comes that correspond to votes expressed in collected ballots.

Design guideline 1. Verification must only accept outcomes that cor-
respond to votes expressed in collected ballots.

Completeness. We formalise completeness (Definition 4) as a game that
tasks the adversary to compute a bulletin board and some number of candidates
(Line 2) such that the corresponding election outcome computed by algorithm
Tally (Line 3) is rejected by algorithm Verify (Line 4), when the key pair is
computed by algorithm Setup (Line 1).

Definition 4 (Completeness [SFC17]). Let Γ = (Setup,Vote,Tally,Verify) be
an election scheme, A be an adversary, κ be a security parameter, and
Completeness(Γ,A, κ) be the following game.

Completeness(Γ,A, κ) =

1 (pk , sk ,mb,mc)← Setup(κ);
2 (bb,nc)← A(pk , κ);
3 (v, pf )← Tally(sk , bb,nc, κ);
4 return Verify(pk , bb,nc, v, pf , κ) 6= 1 ∧ |bb| ≤ mb ∧ nc ≤ mc;

We say Γ satisfies Completeness, if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function negl, such that for all security param-
eters κ, we have Succ(Completeness(Γ,A, κ)) ≤ negl(κ).

An election scheme satisfies Completeness when algorithm Verify accepts out-
comes computed by algorithm Tally, for key pairs computed by algorithm Setup.
It follows that completeness implies an aspect of accountability. Indeed, if ver-
ification fails, then the tallier is responsible for that failure, in particular, they
must have incorrectly computed their key pair or the election outcome.

Design guideline 2. Tallying must produce outcomes that will be ac-
cepted during verification.

We formalise universal verifiability by combining the above notions.

Definition 5 (Universal-Verifiability [SFC17, Smy18b]). An election scheme Γ
satisfies Universal-Verifiability, if Soundness and Completeness are satisfied.
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3.2 Individual verifiability

Individual verifiability asserts that voters must be able to check whether their
ballot is amongst those collected. Since ballots should be collected and recorded
on a bulletin board, and since the board must be available to everyone, it suf-
fices for voters to check that their ballot (i.e., the ballot they constructed) is on
the bulletin board. Hence, it is necessary for voters to check that their ballot
has not been omitted from the bulletin board. Yet, this is insufficient, because
the presence of a ballot identical to a voter’s ballot, does not imply the presence
of the ballot constructed by the voter. Indeed, such a ballot might have been
constructed by another voter. Thus, individual verifiability requires that voters
must be able to uniquely identify their ballot, i.e., ballots do not collide. We
formalise individual verifiability (Definition 6) as a game that tasks the adver-
sary to compute inputs to algorithm Vote (Line 1) that cause the algorithm to
output ballots (Lines 2 & 3) that collide (Line 4).

Definition 6 (Individual verifiability [SFC17]). Let Γ = (Setup,Vote,Tally,
Verify) be an election scheme, A be an adversary, κ be a security parameter,
and Individual-Verifiability(Γ,A, κ) be the following game.

Individual-Verifiability(Γ,A, κ) =

1 (pk ,nc, v, v′)← A(κ);
2 b← Vote(pk ,nc, v, κ);
3 b′ ← Vote(pk ,nc, v′, κ);
4 return b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥;

We say Γ satisfies Individual-Verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Individual-Verifiability(Γ,A, κ)) ≤ negl(κ).

An election scheme satisfies Individual-Verifiability when algorithm Vote generates
uniquely identifiable ballots, i.e., ballots that do not collide.6

Design guideline 3. Ballots must be distinct.

3.3 Example

We model our Nonce voting system (§1) as the following election scheme.

Definition 7 (Nonce [SFC17]). Nonce is defined as follows:

6Correctness, individual verifiability and injectivity all require that ballots do not collide,
albeit under different assumptions. Indeed, correctness requires that ballots do not collide,
with overwhelming probability, for public keys computed by algorithm Setup; Injectivity re-
quires that ballots for distinct votes never collide; and Individual-Verifiability requires that bal-
lots do not collide with overwhelming probability. Hence, Individual-Verifiability implies that
ballots do not collide in the context of correctness. But, Individual-Verifiability and Injectivity
are orthogonal, in particular, Individual-Verifiability permits collisions with negligible probabil-
ity and Injectivity permits collisions between ballots for the same vote.
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• Setup(κ) outputs (⊥,⊥, p1(k), p2(k)), where p1 and p2 are some polynomial
functions.

• Vote(pk , v,nc, κ) samples nonce r ←R Z2κ and outputs (r, v).

• Tally(sk , bb,nc, κ) computes a vector v of length nc, such that v is the tally
of each vote in set bb which is paired with a nonce from Z2κ , and outputs
(v,⊥).

• Verify(pk , bb,nc, v, pf , κ) outputs 1 if (v, pf ) = Tally(⊥, bb,nc, κ) and 0
otherwise.

Lemma 1. Nonce is an election scheme.

To prove our lemma, we show that Nonce satisfies the correctness property of
Definition 1.

Proof. Let Nonce = (Setup,Vote,Tally,Verify). Moreover, let κ be a security
parameter, nb and nc be integers, v1, . . . , vnb ∈ {1, . . . ,nc} be votes, and v be a
zero-filled vector of length nc. Suppose (pk , sk ,mb,mc) is an output of Setup(κ)
such that nb ≤ mb ∧ nc ≤ mc. Further suppose we compute for 1 ≤ i ≤ nb
do bi ← Vote(pk , vi,nc, κ); v[vi] ← v[vi] + 1. Moreover, suppose (v′, pf ) is an
output of Tally(sk , {b1, . . . , bnb},nc, κ). To prove correctness, it suffices to prove
v = v′, with overwhelming probability. We have that v is the election outcome
corresponding to votes v1, . . . , vnb . Moreover, by definition of algorithms Vote
and Tally, we have v′ is the tally of the votes in set {(r1, v1), . . . , (rnb , vnb)},
where r1, . . . , rnb are nonces chosen uniformly at random from Z2κ . Hence,
v′ is the election outcome corresponding to votes v1, . . . , vnb , i.e., v = v′, as-
suming nonces r1, . . . , rnb are pairwise distinct, which holds with overwhelming
probability, thereby concluding our proof.

Intuitively, election scheme Nonce satisfies Individual-Verifiability, because nonces
collide with negligible probability, hence, ballots collide with negligible probabil-
ity too, which suffices for Individual-Verifiability. Moreover, Universal-Verifiability
is satisfied too, because outcomes correspond to votes expressed in collected
ballots (Soundness) and such outcomes are accepted (Completeness).

Proposition 2. Nonce satisfies Individual-Verifiability and Universal-Verifiability.

Proof. Let Nonce = (Setup,Vote,Tally,Verify). We proceed by proving
that Individual-Verifiability, Injectivity (which is a prerequisite for Soundness),
Soundness, and Completeness are satisfied.

For individual verifiability, suppose an adversary outputs public key pk ,
some number of candidates nc, and votes v and v′. Further suppose b is an
output of Vote(pk ,nc, v, κ) and b′ is an output of Vote(pk ,nc, v′, κ), for some
security parameter κ. By definition of algorithm Vote, we have b = (r, v) and
b′ = (r′, v′), where r and r′ are nonces chosen uniformly at random from Z2κ .
Hence, r and r′ are distinct with overwhelming probability, thus, b 6= b′ with
overwhelming probability, as required.
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Our proof of injectivity is similar to our proof of individual verifiability,
except we require v 6= v′, which ensures b 6= b′.

For soundness, letA be an adversary and κ be a security parameter. Suppose
(pk , bb,nc, v, pf ) is an output of A(κ) such that Verify(pk , bb,nc, v, pf , κ) = 1.
By definition of algorithm Verify, we have (v, pf ) = Tally(⊥, bb,nc, κ) and, by
definition of algorithm Tally, we have v is a vector of length nc such that v is
the tally of each vote in set bb which is paired with a nonce from Z2κ . Hence,
for each v ∈ {1, . . . ,nc} we have

v[v] = `⇔ ∃=`b ∈ bb : ∃r ∈ Z2κ : b = (v, r)

and, by definition of algorithm Vote and since ⊥ is not a pair, we have

⇔ ∃=`b ∈ bb \ {⊥} : ∃r : b = Vote(pk , v,nc, κ; r)

Thus, v = correct-outcome(pk ,nc, bb, κ), as required.
For completeness, let A be an adversary and κ be a security parameter. Sup-

pose (pk , sk ,mb,mc) is an output of Setup(κ), (bb,nc) is an output of A(pk , κ),
and (v, pf ) is an output of Tally(sk , bb,nc, κ). By definition of algorithm Setup,
we have pk = ⊥, hence, (v, pf ) = Tally(⊥, bb,nc, κ). It follows by the definition
of algorithm Verify that Verify(pk , bb,nc, v, pf , κ) = 1, as required.

3.4 Related definitions of verifiability

Discussion of verifiability originates from Cohen & Fischer [CF85] and is ad-
vanced by Fujioka, Okamoto & Ohta [FOO92], Benaloh & Tuinstra [BT94a] and
Sako & Kilian [SK95]. More recently, definitions of universal verifiability have
been proposed by Juels, Catalano & Jakobsson [JCJ10], Cortier et al. [CGGI14]
and Kiayias, Zacharias & Zhang [KZZ15]. Smyth, Frink & Clarkson [SFC17, §7]
show that definitions by Juels, Catalano & Jakobsson and Cortier et al. do not
detect vulnerabilities that arise when tallying and verification procedures are
corrupt nor when verification procedures reject legitimate outcomes. Moreover,
they show that the definition by Kiayias, Zacharias & Zhang does not detect the
latter class of vulnerabilities. By comparison, the definition of universal verifi-
ability that we consider (Definition 5) detects these vulnerabilities and appears
to be the strongest definition in the literature.

Küsters et al. [KTV10, KTV11, KTV12b] propose an alternative, holistic
notion of verifiability called global verifiability, which must be instantiated with a
goal. Smyth, Frink & Clarkson [SFC17, §8] show that goals proposed by Küsters
et al. [KTV15, §5.2] and by Cortier et al. [CGK+16, §10.2] are too strong (in the
sense that they cannot be satisfied by some verifiable voting systems, including
Helios). Moreover, Smyth, Frink & Clarkson propose a slight weakening of the
goal by Küsters et al. and prove that their notion of verifiability is strictly
stronger than global verifiability with that goal. Nonetheless, the “gap” is due
to an uninteresting technical detail and those definitions might coincide if the
gap is filled.
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Beyond the computational model of security, Smyth et al. [SRKK10] for-
mulate a definition of verifiability in the applied pi calculus. The definition is
amenable to automated reasoning, but it is stronger than necessary and cannot
be satisfied by many election schemes, including Helios. Kremer et al. [KRS10]
overcome this limitation with a weaker definition that sacrifices amenability to
automated reasoning, and Smyth [Smy11, §3] extends this definition.

3.5 Further notions of verifiability

Individual verifiability formalises a notion of uniquely identifiable ballots, as-
suming ballots are constructed in the prescribed manner. We have seen that
voting system Nonce satisfies this notion, but individual verifiability does not
ensure ballots are unique when voters deviate from the prescribed voting pro-
cedure. Indeed, a ballot’s nonce serves as its unique identifier in Nonce and
substituting that nonce for some other value may compromise individual ver-
ifiability. Further notions of verifiability, such as cast-as-intended [AN06], are
needed when deviations from the voting procedure are possible, e.g., when the
voting procedure is subverted by an adversary.

The soundness aspect of universal verifiability formalises a notion of only ac-
cepting election outcomes that correspond to votes expressed in collected ballots.
Our definition does not ensure outcomes include only voters’ votes and at most
one vote each. Indeed, an adversary that controls ballot collection can “stuff”
the bulletin board with ballots and the corresponding votes will be included
in the election outcome. Some voting systems rely on a trusted third party to
authenticate ballots and only tally ballots that have been authenticated. E.g.,
Helios supports authentication via Facebook, Google and Twitter using OAuth.7

Other voting systems use cryptography to ensure that only voters can construct
authorised ballots. E.g., the voting system by Juels, Catalano & Jakobsson uses
a combination of encrypted nonces and plaintext equality tests for authentica-
tion [JCJ10]. Albeit such systems seem to require expensive infrastructures for
voter credentials and are reliant on a trusted third party to certify credentials.
Our soundness definition is suitable for analysing the former class of voting
systems, and Smyth, Frink & Clarkson [SFC17] formulate an alternative sound-
ness definition to analyse the latter class. (Quaglia & Smyth [QS18a] define
a transformation from schemes satisfying our soundness definition to schemes
satisfying the alternative soundness definition.) Ultimately, we would prefer not
to trust any third party, but that does not seem possible in a scalable manner.

4 Ballot secrecy

The Australian system is reliant on uniform ballots to ensure voters’ votes are
not revealed. Indeed, uniformity ensures ballots are indistinguishable during
distribution and the isolation of polling booths ensures votes are not revealed
whilst marking. Moreover, folded ballots are indistinguishable during collection

7Meyer & Smyth describe the application of OAuth in Helios [MS17].
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and indistinguishability of markings can ensure votes are not revealed whilst
tallying. Hence, the Australian system derives ballot secrecy from physical
characteristics of the world. By comparison, election schemes cannot rely on
such physical characteristics,8 they must rely on cryptography to ensures voters’
votes are not revealed.

Some scenarios inevitably reveal voters’ votes: Unanimous election outcomes
reveal how everyone voted and, more generally, election outcomes can be cou-
pled with partial knowledge on the distribution of voters’ votes to deduce voters’
votes. For example, suppose Alice, Bob and Mallory participate in a referen-
dum and the outcome has frequency two for ‘yes’ and one for ‘no.’ Mallory and
Alice can deduce Bob’s vote by pooling knowledge of their own votes. Similarly,
Mallory and Bob can deduce Alice’s vote. Furthermore, Mallory can deduce
that Alice and Bob both voted yes, if she voted no. For simplicity, our informal
definition of ballot secrecy (§1) deliberately omitted side-conditions which ex-
clude these inevitable revelations and which are necessary for satisfiability. We
now refine that definition as follows:

A voter’s vote is not revealed to anyone, except when the vote can
be deduced from the election outcome and any partial knowledge on
the distribution of votes.

This refinement ensures the aforementioned examples are not violations of ballot
secrecy. By comparison, if Mallory votes yes and she can deduce the vote of
Alice, without knowledge of Bob’s vote, then ballot secrecy is violated.

4.1 Security definition

We formalise ballot secrecy (Definition 8) as a game that tasks the adversary
to select two distributions of votes, construct a bulletin board from ballots for
one distribution, which is decided by a coin flip, and (non-trivially) determine
the result of the coin flip from the resulting election outcome and tallying proof.
That is, the game tasks the adversary to distinguish between an instance of
the voting system for one distribution, from another instance with the other
distribution, when the votes cast from each distribution are permutations of
each other (hence, the distinction is non-trivial). The game proceeds as follows:
The challenger generates a key pair (Line 1), the adversary chooses some number
of candidates (Line 2), and the challenger flips a coin (Line 3). The adversary
computes a bulletin board from ballots for one of two possible distributions
(Line 5), where the distributions are chosen by the adversary, the choice between
distributions is determined by the coin flip, and the ballots (for one of the
distributions) are constructed by an oracle (further ballots may be constructed
by the adversary). The challenger tallies the bulletin board to derive the election

8Some electronic voting systems are reliant on physical characteristics of the world. For
instance, MarkPledge [Nef04], Pret à Voter [CRS05], Remotegrity [ZCC+13], Scantegrity
II [CCC+08] and Three Ballot [RS07] are reliant on features implemented with paper, such
as scratch-off surfaces and detachable columns. But these systems fall outside the scope of
our election scheme syntax.
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outcome and tallying proof (Line 6), which are given to the adversary and the
adversary is tasked with determining the result of the coin flip (Line 7 & 8).

Definition 8 (Ballot-Secrecy [Smy18a]). Let Γ = (Setup,Vote,Tally,Verify) be
an election scheme, A be an adversary, κ be a security parameter, and Ballot-
Secrecy(Γ,A, κ) be the following game.

Ballot-Secrecy(Γ,A, κ) =

1 (pk , sk ,mb,mc)← Setup(κ);
2 nc ← A(pk , κ);
3 β ←R {0, 1};
4 L← ∅;
5 bb← AO();
6 (v, pf )← Tally(sk , bb,nc, κ);
7 g ← A(v, pf );
8 return g = β ∧ balanced(bb,nc, L) ∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb;

Predicate balanced(bb,nc, L) holds when: for all votes v ∈ {1, . . . ,nc} we have
|{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈ L}| = |{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ L}|. And
oracle O is defined as follows:

• O(v0, v1) computes b← Vote(pk , vβ ,nc, κ);L← L ∪ {(b, v0, v1)} and out-
puts b, where v0, v1 ∈ {1, ...,nc}.

We say Γ satisfies Ballot-Secrecy, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Ballot-Secrecy(Γ,A, κ)) ≤ 1

2 + negl(κ).

An election scheme satisfies ballot secrecy when algorithm Vote outputs ballots
that do not reveal votes and algorithm Tally outputs election outcomes and
proofs that do not reveal the relation between votes expressed in collected ballots
and the outcome.

Game Ballot-Secrecy tasks the adversary to compute a bulletin board, from
ballots constructed by an oracle for one of two possible distributions, and deter-
mine which distribution was used from the election outcome and proof generated
from tallying that board. The choice between distributions is determined by the
result β of a coin flip, and the oracle outputs a ballot for vote vβ on input of a
pair of votes v0, v1. Hence, the oracle constructs ballots for one of two possible
distributions, where the distributions are chosen by the adversary, and the bul-
letin board may contain those ballots in addition to ballots constructed by the
adversary.

Election schemes reveal the number of votes for each candidate (i.e., the
election outcome). Hence, to avoid trivial distinctions in game Ballot-Secrecy, we
require that runs of the game are balanced : “left” and “right” inputs to the oracle
are equivalent, when the corresponding outputs appear on the bulletin board.
For example, suppose the inputs to the oracle are (v1,0, v1,1), . . . , (vn,0, vn,1) and
the corresponding outputs are b1, . . . , bn, further suppose the bulletin board
is {b1, . . . , b`} such that ` ≤ n. That game is balanced if the “left” inputs
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v1,0, . . . , v`,0 are a permutation of the “right” inputs v1,1, . . . , v`,1. The balanced
condition prevents trivial distinctions. For instance, an adversary that computes
a bulletin board containing only the ballot output by an oracle query with input
(1, 2) cannot win the game, because it is unbalanced. Albeit, that adversary
could trivially determine whether β = 0 or β = 1, given the tally of that
bulletin board. (Formally defining a winning adversary is left as an exercise for
the reader.)

Intuitively, if the adversary wins game Ballot-Secrecy, then there exists a
strategy to distinguish ballots. Indeed, such an adversary can distinguish be-
tween an instance of the voting system in which voters cast some votes, from
another instance in which voters cast a permutation of those votes, thus, voters’
votes are revealed. Otherwise, the adversary is unable to distinguish between a
voter casting a ballot for vote v0 and another voter casting a ballot for vote v1,
hence, voters’ votes cannot be revealed.

4.2 Example

We recall syntax for asymmetric encryption scheme in the appendix and model
our Enc2Vote voting system (§1) as the following election scheme.

Definition 9 (Enc2Vote [Smy18a]). Given an asymmetric encryption scheme
Π = (Gen,Enc,Dec), we define Enc2Vote(Π) = (Setup,Vote,Tally,Verify) such
that:

• Setup(κ) computes (pk , sk ,m) ← Gen(κ); pk ′ ← (pk ,m); sk ′ ← (pk , sk),
derives mc as the largest integer such that {0, . . . ,mc} ⊆ {0} ∪ m and
for all m0,m1 ∈ {1, . . . ,mc} we have |m0| = |m1|, and outputs (pk ′, sk ′,
p(κ),mc), where p is a polynomial function.

• Vote(pk ′, v,nc, κ) parses pk ′ as pair (pk ,m), outputting ⊥ if parsing fails
or v 6∈ {1, . . . ,nc} ∨ {1, . . . ,nc} 6⊆ m, computes b ← Enc(pk , v), and
outputs b.

• Tally(sk ′, bb,nc, κ) initialises v as a zero-filled vector of length nc, parses
sk ′ as pair (pk , sk), outputting (v,⊥) if parsing fails, computes for b ∈ bb
do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v]← v[v] + 1, and outputs (v, ε),
where ε is a constant symbol.

• Verify(pk , bb,nc, v, pf , κ) outputs 1.

To ensure Enc2Vote(Π) is an election scheme, we require asymmetric encryp-
tion scheme Π to produce distinct ciphertexts with overwhelming probability,
otherwise correctness cannot be satisfied, as the following lemma demonstrates.

Lemma 3. There exists an asymmetric encryption scheme Π such that
Enc2Vote(Π) is not an election scheme.

To prove our lemma, we show that colliding ciphertexts suffice to ensure that
election scheme Enc2Vote cannot satisfy the correctness property of Definition 1.
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Proof. Let Enc2Vote(Π) = (Setup,Vote,Tally,Verify). Suppose (pk , sk ,mb,mc)
is an output of Setup(κ) and b and b′ are outputs of Vote(pk , v,nc, κ) such that
2 ≤ mb ∧ 1 ≤ v ≤ nc ≤ mc, where κ is a security parameter. Further suppose
v is a zero-filled vector of length nc, except for index v which contains two.
Moreover, suppose (v′, pf ) is an output of Tally(sk , {b, b′},nc, κ). If b and b′

collide, then outcome v′ is computed from set {b, b′} = {b}, therefore, the cor-
rect outcome cannot have been computed, we have v 6= v′, with non-negligible
probability, hence, correctness is not satisfied. By definition of algorithm Setup,
we have pk is a pair and, by definition of algorithm Vote, we have b and b′ are
ciphertexts on plaintext v. Thus, it remains to show that asymmetric encryp-
tion schemes can produce ciphertexts that collide. Indeed, they can: Consider
Π = (Gen,Enc,Dec) such that Enc(pk ,m) outputs m and Dec(sk , c) outputs
c. Although Π is clearly not secure, it is straightforward to see that Π satis-
fies correctness, because Dec(sk ,Enc(pk ,m; r)) = m for all key pairs (pk , sk),
plaintexts m, and coins r, which concludes our proof.

It follows from Lemma 3 that we must restrict the class of asymmetric encryp-
tion schemes used to instantiate Enc2Vote. We could consider a broad class of
schemes that produce distinct ciphertexts with overwhelming probability, but
we favour the narrower class of non-malleable schemes, since we require non-
malleability for ballot secrecy. Definitions of non-malleability are complex and
proofs of non-malleability are relatively difficult, so we adopt the definition of
indistinguishability under parallel attack (IND-PA0) by Bellare & Sahai [BS99],
which is simpler, yet equivalent to their definition of comparison based non-
malleability (CNM-CPA). We recall the definition of IND-PA0 in the appendix.

Lemma 4. Given an asymmetric encryption scheme Π satisfying IND-PA0, we
have Enc2Vote(Π) is an election scheme.

To prove our lemma, we show that Enc2Vote satisfies the correctness property
of Definition 1 when ciphertexts do not collide.

Proof. Let Enc2Vote(Π) = (Setup,Vote,Tally,Verify) and Π = (Gen,Enc,Dec).
Moreover, let κ be a security parameter, nb and nc be integers, v1, . . . , vnb ∈
{1, . . . ,nc} be votes, and v be a zero-filled vector of length nc. Suppose (pk ′,
sk ′,mb,mc) is an output of Setup(κ) such that nb ≤ mb ∧ nc ≤ mc. Further
suppose we compute for 1 ≤ i ≤ nb do bi ← Vote(pk , vi,nc, κ); v[vi] ← v[vi] +
1. Moreover, suppose (v′, pf ) is an output of Tally(sk , {b1, . . . , bnb},nc, κ). To
prove correctness, it suffices to prove v = v′, with overwhelming probability.

By definition of algorithm Setup, we have pk ′ is a pair (pk ,m) and sk ′ is a
pair (pk , sk) such that (pk , sk ,m) was output by Gen(κ). Moreover, mc is the
largest integer such that {0, . . . ,mc} ⊆ {0} ∪ m, hence, {1, . . . ,nc} ⊆ m. It
follows by definition of algorithm Vote that for each i ∈ {1, . . . ,nb} we have bi
is an output of Enc(pk , vi). Moreover, by definition of algorithm Tally, outcome
v′ is initialised as a zero-filled vector of length nc and computed as follows:

for b ∈ {b1, . . . , bnb} do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v′[v]← v′[v]+1.
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Since Π satisfies IND-PA0, ciphertexts b1, . . . , bnb are distinct with overwhelming
probability, hence, that computation is equivalent to the following:

for 1 ≤ i ≤ nb do v ← Dec(sk , bi); if 1 ≤ v ≤ nc then v′[v]← v′[v] + 1.
Moreover, by correctness of Π, we have Dec(sk , bi) = vi for all i ∈ {1, . . . ,nb},
with overwhelming probability. Thus, the above computation is equivalent to
computing

for 1 ≤ i ≤ nb do v′[vi]← v′[vi] + 1,
with overwhelming probability. It follows that outcomes v and v′ are computed
identically, with overwhelming probability, thereby concluding our proof.

Intuitively, scheme Enc2Vote(Π) satisfies ballot secrecy until tallying, because
asymmetric encryption scheme Π can ensure that voters’ votes are not revealed,
and tallying maintains ballot secrecy by revealing only the election outcome.

Proposition 5. Given an asymmetric encryption scheme Π satisfying IND-PA0,
election scheme Enc2Vote(Π) satisfies Ballot-Secrecy.

Proving this proposition and other ballot secrecy results is time consuming.
Indeed, Quaglia & Smyth’s proof of ballot secrecy for our simple Enc2Vote voting
system fills over six and a half pages [QS18b, Appendix C.6] and Cortier et al.
devoted one person-year to their proof of ballot secrecy for Helios [CSD+17].
To reduce the expense of ballot-secrecy proofs, the following section introduces
sufficient conditions that enable the simplification of game Ballot-Secrecy, which
gives way to simpler proofs. Indeed, we prove Proposition 5 in just over a page.

4.3 Simplifying proofs

Tallying proofs may reveal voters’ votes. For example, a variant of Enc2Vote
might define tallying proofs that map ballots to votes. Hence, such proofs are
rightly provided to the adversary in game Ballot-Secrecy (Line 7). Nevertheless,
if tallying proofs reveal nothing about the votes expressed in ballots on the
bulletin board, then they can be omitted from the game. This precondition is
ensured by election schemes that use zero-knowledge tallying proofs. Thus, the
adversary need not be provided with such proofs in game Ballot-Secrecy when
analysing such schemes, which achieves our first reduction in the expense of
ballot-secrecy proofs. Our second reduction involves modifying the computation
of election outcomes.

Game Ballot-Secrecy computes the election outcome from ballots constructed
by the oracle and ballots constructed by the adversary (Line 6). Intuitively, such
an outcome can be equivalently computed as follows:

(v, pf )← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
(v′, pf ′)← Tally(sk , bb ∩ {b | (b, v0, v1) ∈ L},nc, κ);
v← v + v′;

Yet, a poorly designed tallying algorithm might not ensure equivalence. In
particular, ballots constructed by the adversary can cause the algorithm to
behave unexpectedly. (Such algorithms are nonetheless compatible with our
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correctness requirement, because correctness does not consider an adversary.)
Nevertheless, the equivalence holds when individual ballots are tallied correctly.
Moreover, the above computation is equivalent to the following:

(v, pf )← Tally(sk , bb \ {b | (b, v0, v1) ∈ L},nc, κ);
for b ∈ bb ∧ (b, v0, v1) ∈ L do

(v′, pf ′)← Tally(sk , {b},nc, κ);
v← v + v′;

Furthermore, by correctness of the election scheme, the above for-loop can be
equivalently computed as follows:

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v[vβ ]← v[vβ ] + 1;

Indeed, for each b ∈ bb∧(b, v0, v1) ∈ L, we have b is an output of Vote(pk , vβ ,nc,
κ), hence, Tally(sk , {b},nc, κ) outputs (v, pf ) such that v is a zero-filled vector,
except for index vβ which contains one, and this suffices to ensure equivalence.
In addition, for any adversary that wins game Ballot-Secrecy, we are assured
that balanced(bb,nc, L) holds, hence, the above for-loop can be computed as

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v[v0]← v[v0] + 1;

or
for b ∈ bb ∧ (b, v0, v1) ∈ L do

v[v1]← v[v1] + 1;

without weakening the game. Thus, perhaps surprisingly, tallying ballots con-
structed by the oracle does not provide the adversary with an advantage (in
determining whether β = 0 or β = 1) and we can omit such ballots from tal-
lying in game Ballot-Secrecy. That is, we need only consider the game derived
from Ballot-Secrecy by replacing A(v, pf ) with A(v) and balanced(bb,nc, L) with
b 6∈ bb, where the former modification captures our first reduction in the expense
of ballot-secrecy proofs and the latter captures our second.

Smyth [Smy18a] further reduces the expense of ballot-secrecy proofs by re-
moving the oracle in favour of a single challenge ballot:

Definition 10 (IND-CVA [Smy18a]). Let Γ = (Setup,Vote,Tally,Verify) be an
election scheme, A be an adversary, κ be the security parameter, and IND-
CVA(Γ,A, κ) be the following game.

IND-CVA(Γ,A, κ) =

1 (pk , sk ,mb,mc)← Setup(κ);
2 (v0, v1,nc)← A(pk , κ);
3 β ←R {0, 1};
4 b← Vote(pk , vβ ,nc, κ);
5 bb← A(b);
6 (v, pf )← Tally(sk , bb,nc, κ);
7 g ← A(v);
8 return g = β ∧ b 6∈ bb ∧ 1 ≤ v0, v1 ≤ nc ≤ mc ∧ |bb| ≤ mb;
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We say Γ satisfies IND-CVA, if for all probabilistic polynomial-time adversaries
A, there exists a negligible function negl, such that for all security parameters
κ, we have Succ(IND-CVA(Γ,A, κ)) ≤ 1

2 + negl(κ).

An election scheme satisfies IND-CVA when algorithm Vote outputs non-malleable
ballots. Smyth proves that game Ballot-Secrecy is strictly stronger than game
IND-CVA, moreover, he proves that the games coincide for election schemes with
zero-knowledge tallying proofs that tally individual ballots correctly [Smy18a,
Theorems 2 & 5]. Furthermore, he proves that universally-verifiable election
schemes tally individual ballots correctly [Smy18a, Lemmata 9 & 28].

Design guideline 4. Ballots must be non-malleable.

These results significantly reduce the expense of ballot-secrecy proofs and
we now use them to prove Proposition 5.

Proof of Proposition 5. We proceed by contradiction: Suppose election scheme
Enc2Vote(Π) does not satisfy Ballot-Secrecy. Since Ballot-Secrecy is strictly
stronger than IND-CVA [Smy18a, Theorem 2], scheme Enc2Vote(Π) does not
satisfy IND-CVA either, hence, there exists a probabilistic polynomial-time ad-
versary A that wins IND-CVA(Enc2Vote(Π),A, κ) with success greater than neg-
ligibly better than guessing, for some security parameter κ. From A, we con-
struct the following adversary B that wins IND-PA0.

• B(pk ,m, κ) computes pk ′ ← (pk ,m); (v0, v1,nc) ← A(pk ′, κ) and outputs
(v0, v1).

• B(b) computes bb ← A(b), parses bb as a set {b1, . . . , b|bb|}, and outputs
vector (b1, . . . , b|bb|).

• B(m) initialises v as a zero-filled vector of length nc, computes for 1 ≤
i ≤ |m| do v ← m[i]; if 1 ≤ v ≤ nc then v[v] ← v[v] + 1; g ← A(v) and
outputs g.

We prove that the success of adversary B is equivalent to the success of adver-
sary A, which contradicts our assumption that Π satisfies IND-PA0.

Let Π = (Gen,Enc,Dec) and Enc2Vote(Π) = (Setup,Vote,Tally,Verify). Sup-
pose (pk , sk ,m) is an output of Gen(κ), (v0, v1) is an output of B(pk ,m, κ),
and b is an output of Enc(pk , vβ), for some bit β chosen uniformly at ran-
dom. Moreover, suppose (b1, . . . , b`) is an output of B(b). By inspection of
algorithms Setup and Vote, and of adversary B, it is trivial to see that B sim-
ulates the challenger in IND-CVA to adversary A. Indeed, adversary B cou-
ples public key pk with message space m, and inputs the resulting pair pk ′ to
A, which corresponds to the public key computed by algorithm Setup, hence,
the public key input to A by the challenger in IND-CVA. Thus, adversary A
behaves as if playing game IND-CVA and output (v0, v1) is indistinguishable
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from outputs that would be observed whilst playing that game. Moreover,
since A wins with success greater than negligibly better than guessing, we have
1 ≤ v0, v1 ≤ nc ≤ mc, furthermore, {1, . . . ,nc} ⊆ m, where mc is the largest in-
teger such that {0, . . . ,mc} ⊆ {0} ∪m and for all m0,m1 ∈ {1, . . . ,mc} we have
|m0| = |m1| (hence, |v0| = |v1|, which is required to win IND-PA0), with the
same probability. It follows that outputs of Enc(pk , vβ) and Vote(pk , vβ ,nc, κ)
are indistinguishable. Thus, output (b1, . . . , b`) is indistinguishable from outputs
that would be observed in game IND-CVA, with the same probability. More-
over, since A wins, we have b 6∈ {b1, . . . , b`}, hence,

∧
1≤i≤` b 6= bi, again with

the same probability.
Let m = (Dec(sk , b1), . . . ,Dec(sk , b`)) and suppose g is an output of B(m).

By inspection of algorithm Tally and of adversary B, it is straightforward to see
that B simulates the challenger in IND-CVA to adversary A. Indeed, both the
algorithm and adversary initialise v as a zero-filled vector of length nc, then the
adversary B computes

for 1 ≤ i ≤ |m| do v ←m[i]; if 1 ≤ v ≤ nc then v[v]← v[v] + 1;

which is equivalent to algorithm Tally computing

for b ∈ {b1, . . . , b`} do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v]← v[v] + 1;

because algorithm Dec is deterministic. Thus, output g is indistinguishable
from outputs that would be observed in game IND-CVA. It follows that the
success of adversary B is equivalent to the success of A, and we conclude our
proof by [Smy18a, Theorem 5], since Smyth proves that games IND-CVA and
Ballot-Secrecy coincide for election schemes with zero-knowledge tallying proofs
that tally individual ballots correctly. (We omit proving that election scheme
Enc2Vote(Π) has zero-knowledge tallying proofs and tallies individual ballots
correctly to avoid recalling formal definitions of those properties. Proving the
former is trivial, because pf is a constant, hence, it reveals nothing about the
votes expressed in ballots b1, . . . , b`. And the latter follows from the definition
of algorithm Tally, by correctness of Π, and since Π satisfies IND-PA0, which
is required only to ensure ciphertexts do not collide. Formally proving these
details is left as an exercise for the reader.)

We can exploit Proposition 5 to achieve our fourth and final reduction in
the expense of ballot-secrecy proofs. Indeed, if an election scheme tallies sets of
ballots correctly (rather than individual ballots, as previously required), then we
can compute the election outcome using function correct-outcome in game IND-
CVA, rather than the tallying algorithm, i.e., by replacing (v, pf ) ← Tally(sk ,
bb,nc, κ) with v ← correct-outcome(pk ,nc, bb, κ). It follows that election
scheme (Setup,Vote,Tally,Verify) satisfies Ballot-Secrecy if and only if (Setup,
Vote,Tally′,Verify′) does, assuming algorithms Tally and Tally′ both tally sets
of ballots correctly. Proposition 5 proves that election scheme Enc2Vote(Π)
satisfies Ballot-Secrecy, assuming Π is an asymmetric encryption scheme satis-
fying IND-PA0, and Smyth [Smy18a, Lemma 14] proves that Enc2Vote(Π) tal-
lies sets of ballots correctly, under the additional assumption that Π satisfies
well-definedness, i.e., “ill-formed” ciphertexts are distinguishable from “well-



4 BALLOT SECRECY 23

formed” ciphertexts. Thus, Ballot-Secrecy is satisfied by any election scheme
derived from Enc2Vote(Π) by replacing its tallying and verification algorithms,
assuming the replacement tallying algorithm tallies sets of ballots correctly
and uses zero-knowledge tallying proofs [Smy18a, Theorem 15]. Moreover,
Smyth proves that universally-verifiable election schemes tally sets of ballots
correctly [Smy18a, Lemma 28]. It follows that proofs of ballot secrecy are triv-
ial for a class of universally-verifiable, encryption-based voting systems: Any
universally-verifiable election scheme derived from Enc2Vote(Π) satisfies Ballot-
Secrecy if Π satisfies IND-PA0 and well-definedness, and tallying proofs are zero-
knowledge.

We will use our third simplification to prove that a variant of Helios satisfies
Ballot-Secrecy and the fourth to prove that a variant of Helios Mixtnet does too
(the original schemes have known vulnerabilities and they do not satisfy Ballot-
Secrecy), thereby demonstrating the application of these results.

4.4 Related definitions of ballot secrecy

Discussion of ballot secrecy originates from Chaum [Cha81] and the earliest
definitions of ballot secrecy are due to Benaloh et al. [BY86,BT94b,Ben96]. More
recently, Bernhard et al. propose a series of ballot secrecy definitions [BPW12,
SB13, SB14, BCG+15]. Smyth [Smy18a] shows that these definitions do not
detect vulnerabilities that arise when an adversary controls the bulletin board
or the communication channel. By comparison, the definition of ballot secrecy
that we consider (Definition 8) detects such vulnerabilities and appears to be
the strongest definition in the literature.

Beyond the computational model of security, Delaune, Kremer & Ryan
formulate a definition of ballot secrecy in the applied pi calculus [DKR09]
and Smyth et al. show that this definition is amenable to automated rea-
soning [DRS08, Smy11, BS16, BS17]. An alternative definition is proposed by
Cremers & Hirschi, along with sufficient conditions which are also amenable
to automated reasoning [CH17]. Albeit, the scope of automated reasoning is
limited by analysis tools (e.g., ProVerif [BSCS16]), because the function sym-
bols and equational theory used to model cryptographic primitives might not
be suitable for automated analysis (cf. [DKRS11,PB12,ABR12]).

4.5 Further notions of privacy

Ballot secrecy formalises a notion of free-choice assuming ballots are constructed
and tallied in the prescribed manner. Moreover, Smyth’s definition assumes the
adversary’s capabilities are limited to casting ballots on behalf of some voters
and controlling the distribution of votes cast by the remaining voters. We have
seen that voting system Enc2Vote satisfies this definition, but ballot secrecy does
not ensure free-choice when adversaries are able to communicate with voters nor
when voters deviate from the prescribed voting procedure to follow instructions
provided by adversaries. Indeed, the coins used for encryption serve as proof of
how a voter voted in Enc2Vote and the voter may communicate those coins to
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the adversary. Stronger notions of free-choice, such as receipt-freeness [MN06,
KZZ15,CCFG16] and coercion resistance [JCJ05,GGR09,UM10,KTV12a], are
needed in the presence of such adversaries.

Ballot secrecy does not provide assurances when deviations from the pre-
scribed tallying procedure are possible. Indeed, ballots can be tallied indi-
vidually to reveal votes. Hence, the tallier must be trusted. Alternatively,
we can design election schemes that distribute the tallier’s role amongst sev-
eral talliers and ensure free-choice assuming at least one tallier tallies ballots
in the prescribed manner. Extending results in this direction is an opportu-
nity for future work. Ultimately, we would prefer not to trust talliers. Un-
fortunately, this is only known to be possible for decentralised voting systems,
e.g., [Sch99,KY02,Gro04,HRZ10,KSRH12], which are designed such that ballots
cannot be individually tallied, but are unsuitable for large-scale elections.

5 Case study I: Helios

Helios can be informally modelled as the following election scheme:

Setup generates a key pair for an asymmetric additively-homomorphic encryp-
tion scheme, proves correct key generation in zero-knowledge, and outputs
the key pair and proof.

Vote enciphers the vote’s bitstring encoding to a tuple of ciphertexts, proves
in zero-knowledge that each ciphertext is correctly constructed and that
the vote is selected from the sequence of candidates, and outputs the
ciphertexts coupled with the proofs. (Figure 2 provides further details.)

Tally selects ballots from the bulletin board for which proofs hold, homomorphi-
cally combines the ciphertexts in those ballots, decrypts the homomorphic
combination to reveal the election outcome, and announces the outcome,
along with a zero-knowledge proof of correct decryption. (Figure 2 pro-
vides further details.)

Verify checks the proofs and accepts the distribution if these checks succeed.

Helios was first released in 2009 as Helios 2.0, the current release is Helios 3.1.4,
and a new release is planned.9 Henceforth, we’ll refer to the planned release as
Helios’12.

5.1 Helios 2.0

Cortier & Smyth show that Helios 2.0 does not satisfy ballot secrecy [CS13,
CS11]. Thus, we would not expect our definition of ballot secrecy to hold.
Indeed, Smyth [Smy18a] adopts the formal description of Helios 2.0 by Smyth,

9http://documentation.heliosvoting.org/verification-specs/helios-v4, published c.
2012, accessed 21 Sep 2017.



5 CASE STUDY I: HELIOS 25

Figure 2 Helios: Ballot construction and tallying

Algorithm Vote inputs a vote v selected from candidates 1, . . . ,nc and com-
putes ciphertexts c1, . . . , cnc−1 such that if v < nc, then ciphertext cv contains
plaintext 1 and the remaining ciphertexts contain plaintext 0, otherwise, all ci-
phertexts contain plaintext 0. The algorithm also computes proofs σ1, . . . , σnc
demonstrating correct computation. Proof σj demonstrates that ciphertext cj
contains 0 or 1, where 1 ≤ j ≤ nc − 1. And proof σnc demonstrates that the
homomorphic combination of ciphertexts c1 ⊗ · · · ⊗ cnc−1 contains 0 or 1. The
algorithm outputs the ciphertexts and proofs.
Algorithm Tally inputs a bulletin board bb; selects all the ballots b1, . . . , bk ∈
bb for which proofs hold, i.e., ballots bi = Enc(pk ,mi,1), . . . ,Enc(pk ,mi,nc−1),
σi,1, . . . , σi,nc such that proofs σi,1, . . . , σi,nc hold, where 1 ≤ i ≤ k; forms a
matrix of the encapsulated ciphertexts, i.e.,

Enc(pk ,m1,1), . . . , Enc(pk ,m1,nc−1)
...

...
Enc(pk ,mk,1), . . . , Enc(pk ,mk,nc−1);

homomorphically combines the ciphertexts in each column to derive the en-
crypted outcome, i.e.,

Enc(pk ,Σki=1mi,1), . . . , Enc(pk ,Σki=1mi,nc−1);

decrypts the homomorphic combinations to reveal the frequency of votes
1, . . . ,nc − 1, i.e.,

Σki=1mi,1, . . . , Σki=1mi,nc−1;

computes the frequency of vote nc by subtracting the frequency of any other vote
from the number of ballots for which proofs hold, i.e., k−

∑nc−1
j=1

∑k
i=1mi,j ; and

announces the outcome as those frequencies, along with a proof demonstrating
correctness of decryption.

Frink & Clarkson [SFC17] and uses that description to prove that Ballot-Secrecy
is not satisfied.

Theorem 6. Helios 2.0 does not satisfy Ballot-Secrecy.

Cortier & Smyth attribute the vulnerability to tallying meaningfully related
ballots. Indeed, Helios uses malleable ballots: Given a ballot c1, . . . , cnc−1,
σ1, . . . , σnc , we have cχ(1), . . . , cχ(nc−1), σχ(1), . . . , σχ(nc−1), σnc is a ballot for
all permutations χ on {1, . . . ,nc − 1}. Thus, ballots are malleable, which is
incompatible with ballot secrecy (§4.3).

Proof sketch. Suppose an adversary queries the oracle with inputs v0 and v1
to derive a ballot for vβ , where bit β is chosen by the challenger. Further
suppose the adversary abuses malleability to derive a related ballot b for vβ
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and outputs bulletin board {b}. The board is balanced, because it does not
contain the ballot output by the oracle. Suppose the adversary performs the
following computation on input of election outcome v: if v[v0] = 1, then output
0, otherwise, output 1. Since b is a ballot for vβ , it follows by correctness that
v[v0] = 1 iff β = 0, and v[v1] = 1 iff β = 1, hence, the adversary wins the
game.

For simplicity, the proof sketch considers an adversary that omits ballots from
the bulletin board. Voters might detect such an adversary, because Helios satis-
fies individual verifiability, hence, voters can discover if their ballot is omitted.
The proof sketch can be extended to avoid such detection: Let b1 be the ballot
output by the oracle in the proof sketch and suppose b2 is the ballot output by
a (second) oracle query with inputs v1 and v0. Further suppose the adversary
outputs (the balanced) bulletin board {b, b1, b2} and performs the following com-
putation on input of election outcome v: if v[v0] = 2, then output 0, otherwise,
output 1. Hence, the adversary wins the game.

Chang-Fong & Essex show that Helios 2.0 does not satisfy universal verifia-
bility [CE16, §4.1], and Smyth, Frink & Clarkson use their result to prove that
the completeness aspect of Universal-Verifiability is not satisfied [SFC17].10

Theorem 7. Helios 2.0 does not satisfy Completeness.

Chang-Fong & Essex attribute the vulnerability to not checking the suitability
of cryptographic parameters nor checking that ballots are constructed from such
parameters.

Proof sketch. Suppose an adversary computes a ciphertext and masks a term
of that ciphertext. Moreover, suppose the adversary falsifies a proof of correct
construction in a manner that hides malice. In particular, the adversary com-
putes the proof such that an exponent will evaluate to zero during verification,
which causes cancellation of the mask. (This is possible because verification does
not check that ballots are constructed from suitable cryptographic parameters.)
Suppose the adversary computes a bulletin board containing the masked cipher-
text and proof. Moreover, suppose that the challenger tallies that board. The
masked ciphertext will be homomorphically combined with other ciphertexts
and decrypted, because the proof holds. Yet, the prove of correct decryption
constructed by the challenger will fail, due to the masked ciphertext, hence, the
adversary wins the game.

The vulnerability was mitigated against in Helios 3.1.4 by performing the nec-
essary checks.

10Chang-Fong & Essex present a vulnerability [CE16, §4.2] that should violate Soundness,
proving this result is left as an exercise for the reader.
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5.2 Helios 3.1.4

Ballots remain malleable in Helios 3.1.4, hence, ballot secrecy is not satisfied,
and Smyth [Smy18a] proves that Ballot-Secrecy is not satisfied, using the formal
description of Helios 3.1.4 by Smyth, Frink & Clarkson [SFC17].

Corollary 8. Helios 3.1.4 does not satisfy Ballot-Secrecy.

A proof of Corollary 8 follows from Theorem 6, because Helios 3.1.4 does not
address issues arising from related ballots.

Bernhard, Pereira & Warinschi show that Helios 3.1.4 does not satisfy uni-
versal verifiability [BPW12, §3], and Smyth, Frink & Clarkson use their result
to prove that the soundness aspect of Universal-Verifiability is not satisfied.11

Theorem 9. Helios 3.1.4 does not satisfy Soundness.

Bernhard et al. attribute vulnerabilities to application of the Fiat-Shamir trans-
formation without inclusion of statements in hashes (i.e., weak Fiat-Shamir).

Proof sketch. Suppose an adversary partially computes a proof of ciphertext
construction, before computing a ciphertext and without computing a key pair.
In particular, suppose the adversary computes the challenge hash. (This is
possible because weak Fiat-Shamir does not include statements in hashes, hence,
ciphertexts are not included in hashes.) Further suppose the adversary computes
a private key as a function of that hash, challenges as functions of the hash and
the private key, and responses as functions of the challenges and some coins.
Moreover, suppose the adversary computes a public key (from the private key)
and a proof of correct key generation. That proof is valid, because the private
key could have been correctly computed. Suppose the adversary enciphers some
plaintext m (such that m > 1) to a ciphertext, using the aforementioned coins.
Further suppose the adversary proves correct decryption of that ciphertext.
That proof is valid, because the ciphertext is well-formed. Finally, suppose
the adversary claims (m,m − 1) is the election outcome corresponding to the
ballot containing the ciphertext and falsified proof of correct construction. The
verification procedure will accept that outcome, because all proofs hold, yet the
election outcome is clearly invalid, hence, the adversary wins the game.

5.3 Helios’12

Helios’12 is intended to mitigate against vulnerabilities. In particular, the spec-
ification incorporates the Fiat-Shamir transformation (rather than weak Fiat-
Shamir), and there are plans to incorporate ballot weeding, i.e., to omit meaning-
fully related ballots from tallying. Smyth, Frink & Clarkson show that Helios’12

11Bernhard, Pereira & Warinschi present a vulnerability [CE16, p632] that should violate
Completeness, proving this result is left as an exercise for the reader.
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does not satisfy universal verifiability [SFC17], and Smyth shows that ballot se-
crecy is not satisfied either [Smy18a].12

Remark 10. Helios’12 does not satisfy Soundness.

Proof sketch. Suppose an adversary constructs a ballot. Further suppose the
adversary abuses malleability to derive a related ballot. Moreover, suppose those
ballots are tallied by the adversary. Ballot weeding will omit at least one of those
ballots. (Helios’12 does not yet define a particular ballot weeding mechanism,
hence, the precise behaviour is unknown. Nonetheless, we are assured that at
least one ballot will be omitted, because the ballots are related.) Hence, tallying
produces an election outcome that omits a vote, which soundness forbids, thus,
the adversary wins the game.

Remark 11. Helios’12 does not satisfy Ballot-Secrecy.

Proof sketch. Neither ballot weeding nor the Fiat-Shamir transformation elimi-
nate the vulnerability we identified in Helios 3.1.4, because related ballots need
not be tallied (as shown in the proof sketch of Theorem 6). Hence, we conclude
by Corollary 8.

5.4 Helios’16

Smyth, Frink & Clarkson [SFC17] propose Helios’16, a variant of Helios that
uses the Fiat-Shamir transformation and non-malleable ballots, to overcome the
aforementioned vulnerabilities. They prove that Helios’16 satisfies verifiability,
and Smyth [Smy18a] proves that ballot secrecy is satisfied too.

Theorem 12. Helios’16 satisfies both Individual-Verifiability and Universal-
Verifiability.

Proof sketch. Smyth et al. [SFC17, Smy18c] prove that El Gamal produces ci-
phertexts that do not collide for correctly generated keys. Hence, Helios’16
ballots do not collide, because they contain El Gamal ciphertexts constructed
using such keys. Thus, Helios’16 satisfies Individual-Verifiability. Smyth, Frink
& Clarkson also prove that Universal-Verifiability is satisfied. Their proof shows
that tallying discards ill-formed ballots and that the remaining ballots all con-
tain ciphertexts that encipher bitstring encodings of votes, hence, the homomor-
phic combination of those ciphertexts contain the encrypted outcome, which is
decrypted to reveal the correct outcome (Soundness). Moreover, they show that
such outcomes are always accepted (Completeness).

Theorem 13. Helios’16 satisfies Ballot-Secrecy.

12Remarks 10 & 11 are stated informally, because there is no formal description of Helios’12.
Such a description can be derived as a straightforward variant of Helios 3.1.4 that uses bal-
lot weeding and applies the Fiat-Shamir transformation (rather than the weak Fiat-Shamir
transformation). But, these details provide little value, so we do not pursue them.
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Helios 2.0 Helios 3.1.4 Helios’12 Helios’16
Ballot secrecy 7 7 7 3

Individual verifiability 3 3 3 3

Universal verifiability 7 7 7 3

Cortier & Smyth identify a secrecy vulnerability in Helios 2.0 and Helios 3.1.4 [CS13], and
Smyth shows the vulnerability is exploitable in Helios’12 when the adversary controls ballot
collection [Smy18a]. Moreover, Smyth proves that Helios’16 satisfies ballot secrecy. Bernhard,
Pereira & Warinschi identify universal-verifiability vulnerabilities in Helios 2.0 and Helios
3.1.4 [BPW12], Chang-Fong & Essex identify vulnerabilities in Helios 2.0 [CE16], and Smyth,
Frink, & Clarkson identify a vulnerability in Helios’12 [SFC17]. Moreover, Smyth, Frink, &
Clarkson prove that Helios’16 satisfies individual and universal verifiability.

Table 1: Summary of Helios security results

Proof sketch. Smyth proves that Helios’16 satisfies IND-CVA [Smy18a, Proposi-
tion 25] and Smyth, Frink & Clarkson prove that Universal-Verifiability is satisfied
too (Theorem 12), moreover, Smyth proves that Helios’16 uses zero-knowledge
tallying proofs, which suffices for Ballot-Secrecy (§4.3).

These results (summarised in Table 1) provide strong motivation for future
Helios releases being based upon Helios’16, since it is the only variant of Helios
which is proven to satisfy both ballot secrecy and verifiability.13

6 Case study II: Helios Mixnet

Helios Mixnet can be informally modelled as the following election scheme:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the key pair
and proof.

Vote enciphers the vote to a ciphertext, proves correct ciphertext construction
in zero-knowledge, and outputs the ciphertext coupled with the proof.

Tally selects ballots from the bulletin board for which proofs hold, mixes the
ciphertexts in those ballots, decrypts the ciphertexts output by the mix
to reveal the election outcome (i.e., the distribution of votes) and any
ill-formed votes (i.e., votes that are not selected from the sequence of can-
didates), and announces that outcome, along with zero-knowledge proofs
demonstrating correct decryption.

Verify checks the proofs and accepts the distribution if these checks succeed.

Neither Adida [Adi08] nor Bulens, Giry & Pereira [BGP11] have released an
implementation of Helios Mixnet. Tsoukalas et al. [TPLT13] released Zeus as
a fork of Helios spliced with mixnet code to derive an implementation, and

13Beyond secrecy and verifiability, eligibility is known not to be satisfied [SP13,SP15,MS17].
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Yingtong Li released helios-server-mixnet as an extension of Zeus with threshold
asymmetric encryption and some other minor changes.

We have seen that Helios 2.0 does not satisfy completeness (Theorem 7),
hence, implementations of Helios Mixnet did not satisfy completeness until He-
lios was patched (because the implementations fork Helios and do not add code
to check cryptographic parameters). Moreover, Smyth [Smy18b, Smy18c] iden-
tifies a soundness vulnerability in Helios Mixnet.

Remark 14. Zeus does not satisfy Soundness.

Smyth attributes the vulnerability to the weak Fiat-Shamir transformation.

Proof sketch. Suppose an adversary constructs some ballots and mixes the ci-
phertexts in those ballots. Further suppose the adversary decrypts the cipher-
texts output by the mix to reveal the distribution of votes, selects some cipher-
texts that decrypt to a (strict) subdistribution, proves correct decryption of
those ciphertexts, and falsifies proofs that the remaining ciphertexts decrypt to
arbitrary elements of the message space (by exploiting a vulnerability against
Helios [BPW12], which exists due to the weak Fiat-Shamir transformation).
Finally, suppose the adversary claims the subdistribution of votes is the elec-
tion outcome. The verification procedure will accept that outcome, because all
proofs hold, yet the election outcome excludes votes, hence, the adversary wins
the game.

Similarly, voting system helios-server-mixnet does not satisfy Soundness when a
(n, n)-threshold is used [Smy18b,Smy18c].

Smyth proposes a formal description of Helios Mixnet that uses the Fiat-
Shamir transformation and proves that Ballot-Secrecy, Individual-Verifiability,
and Universal-Verifiability are satisfied [Smy18a,Smy18c].

Theorem 15. Helios Mixnet satisfies both Individual-Verifiability and Universal-
Verifiability.

Proof sketch. As per Helios (Theorem 12), ballots do not collide, because they
contain El Gamal ciphertexts constructed using correctly generated keys, hence,
Individual-Verifiability is satisfied. Moreover, Universal-Verifiability is satisfied
too, because tallying discards ill-formed ballots and votes, hence, the mix out-
puts the correct outcome (Soundness), and such outcomes are always accepted
(Completeness).

Theorem 16. Helios Mixnet satisfies Ballot-Secrecy.

Proof sketch. Smyth [Smy18c,Smy18b] shows that Helios Mixnet can be derived
from Enc2Vote(Π) using suitable tallying and verification algorithms, moreover,
he proves that Universal-Verifiability is satisfied, which suffices for Ballot-Secrecy
(§4.3), assuming Π satisfies IND-PA0 and well-definedness.

Smyth reported these findings to the developers of Zeus and helios-server-
mixnet, who promptly adopted and deployed the proposed fix [Smy18c, §4].
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7 Reflection

We have studied definitions of secrecy and verifiability, and shown how these
definitions can be used to detect subtle vulnerabilities in the Helios and Helios
Mixnet voting systems. Moreover, we have seen how analysis drives development
and ultimately leads to systems that are proven secure. Thereby demonstrat-
ing the necessity of security definitions and accompanying analysis to ensure
security of voting systems, especially those used in binding elections. I hope
this manuscript advances the reader’s understanding of these matters and, ul-
timately, aids democracy-builders in deploying their systems securely.

A Asymmetric encryption

Definition 11 (Asymmetric encryption scheme [KL07, SFC17]). An asym-
metric encryption scheme is a tuple of probabilistic polynomial-time algorithms
(Gen,Enc,Dec), such that:

• Gen, denoted (pk , sk ,m) ← Gen(κ), inputs a security parameter κ and
outputs a key pair (pk , sk) and message space m.

• Enc, denoted c← Enc(pk ,m), inputs a public key pk and message m ∈ m,
and outputs a ciphertext c.

• Dec, denoted m ← Dec(sk , c), inputs a private key sk and ciphertext c,
and outputs a message m or an error symbol. We assume Dec is deter-
ministic.

Moreover, the scheme must be correct: there exists a negligible function negl,
such that for all security parameters κ and messages m, we have Pr[(pk , sk ,m)
← Gen(κ); c← Enc(pk ,m) : m ∈ m⇒ Dec(sk , c) = m] > 1− negl(κ).

Definition 12 (IND-PA0 [BS99]). Let Π = (Gen,Enc,Dec) be an asymmet-
ric encryption scheme, A be an adversary, κ be the security parameter, and
IND-PA0(Π,A, κ) be the following game.

IND-PA0(Π,A, κ) =

1 (pk , sk ,m)← Gen(κ);
2 (m0,m1)← A(pk ,m, κ);
3 β ←R {0, 1};
4 c← Enc(pk ,mβ);
5 c← A(c);
6 m← (Dec(sk , c[1]), . . . ,Dec(sk , c[|c|]);
7 g ← A(m);
8 return g = β ∧

∧
1≤i≤|c| c 6= c[i];

In the above game, we require m0,m1 ∈ m and |m0| = |m1|. We say Π satis-
fies indistinguishability under parallel attack (IND-PA0), if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl, such that
for all security parameters κ, we have Succ(IND-PA0(Π,A, κ)) ≤ 1

2 + negl(κ).
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