
Can We Overcome the n log n Barrier for Oblivious Sorting?

Wei-Kai Lin
Cornell

Elaine Shi
Cornell

Tiancheng Xie
SJTU∗

{wklin,elaine}@cs.cornell.edu, niconiconi@sjtu.edu.cn

Abstract

It is well-known that non-comparison-based techniques can allow us to sort n elements in
o(n log n) time on a Random-Access Machine (RAM). On the other hand, it is a long-standing
open question whether (non-comparison-based) circuits can sort n elements from the domain
[1..2k] with o(kn log n) boolean gates. We consider weakened forms of this question: first, we
consider a restricted class of sorting where the number of distinct keys is much smaller than
the input length; and second, we explore Oblivious RAMs and probabilistic circuit families,
i.e., computational models that are somewhat more powerful than circuits but much weaker
than RAM. We show that Oblivious RAMs and probabilistic circuit families can sort o(log n)-
bit keys in o(n log n) time or o(kn log n) circuit complexity where n is the input length. We
also show that in the balls-and-bins model of sorting where each key may carry an opaque ball
that can only be moved around atomically but cannot be computed upon, our result achieves
optimality, in that any oblivious algorithm or probabilistic circuit family that sorts n balls each
with a Ω(log n)-bit key must incur at least Ω(n log n) atomic movement operations on balls.
We extend our result to support the case when the keys are chosen from a large space but the
number of distinct keys is small.

Finally, we optimize the IO efficiency of our oblivious algorithms for RAMs — we show that
even the 1-bit special case of our algorithm can solve open questions regarding whether there
exist oblivious algorithms for tight compaction and selection in linear IO.

∗Work done while visiting Cornell.

Contents

1 Introduction 3
1.1 Main Results . 4
1.2 IO Efficiency on Oblivious RAMs and Applications to Open Problems 5

2 Technical Roadmap 7
2.1 Partition 1-Bit Keys . 7
2.2 Sorting Longer Keys: A Simple Algorithm . 8
2.3 A Better Recurrence . 10
2.4 Extension: Large Key Space but Few Distinct Keys 11
2.5 IO Efficiency in the Cache-Agnostic Model . 13
2.6 Related Work . 13

3 Definitions and Preliminaries 15
3.1 Oblivious Algorithms on a RAM . 15
3.2 Probabilistic Circuits for Sorting in the Balls-and-Bins Model 16
3.3 External-Memory and Cache-Agnostic Algorithms 17
3.4 Building Blocks . 18

3.4.1 Cache-Agnostic Algorithms . 18
3.4.2 Oblivious Sorting . 18

4 Oblivious Sorting Lower Bounds in the Balls-and-Bins Model 19
4.1 Preliminaries on Routing Graph Complexity . 19
4.2 Limits of Oblivious Sorting in the Balls-and-Bins Model 20
4.3 Limits of Stability . 21
4.4 Implications for Probabilistic Sorting Circuits in the Balls-and-Bins Model 22

5 Partitioning 1-Bit Keys 22
5.1 Intuition . 23
5.2 New Building Blocks . 23
5.3 Algorithm for Partitioning 1-Bit Keys . 24
5.4 Analysis . 24

6 Sorting Short Keys 26
6.1 Intuition . 26
6.2 Warmup Scheme . 27
6.3 Improved Recurrence . 30

7 Sorting Arbitrary-Length but Few Distinct Keys 33
7.1 Counting Distinct Keys . 33

7.1.1 Preliminaries . 33
7.1.2 Algorithm for Estimating Number of Distinct Keys 35
7.1.3 Analysis . 35

7.2 Sorting Arbitrary-Length but Few Distinct Keys . 37

1

8 Applications to Other Open Problems 39
8.1 Tight Compaction . 39
8.2 Selection . 40
8.3 Additional Applications . 41

9 Conclusion and Open Questions 42

A Additional Preliminaries for the External-Memory Model 47

B Deterministic Partitioning 48
B.1 Intuition . 48
B.2 Algorithm . 48
B.3 Analysis . 49

C Counting Few Number of Distinct Keys 51

2

1 Introduction

Sorting has always been one of the most central abstractions in computing. Traditionally, sorting
was intensively studied in both the circuit and Random Access Machine (RAM) models of computa-
tion. It is well-understood that there exist comparison-based sorting circuits of O(n log n) size and
O(log n) depth where n denotes the number of input elements [3, 34]. Comparison-based sorting,
in either the circuit or the RAM model, has a well-known Ω(n log n) lower bound in circuit size
or runtime [44]. This lower bound can be circumvented on a RAM using non-comparison-based
techniques, and (almost) linear-time sorting is possible [6, 40,41,43,63].

In this paper, we consider a specific version of sorting which we refer to as sorting in the balls-
and-bins model. Imagine that initially we have n balls each tagged with a key from some known
domain [1..K] of size K = 2k. Our goal is to sort the balls based on the relative order of their keys.
Informally speaking, if an algorithm (or a circuit) calls only comparator operations on the keys, we
say that the algorithm (or circuit) is comparison-based; else if the algorithm (or circuit) performs
arbitrary boolean operations on the keys, it is said to be non-comparison-based (see Section 2.6 for
further clarifications). Regardless of which case, we always assume that the balls are opaque —
they can be moved around atomically, but cannot be computed upon1.

A long-standing open problem is whether there exist (non-comparison-based) circuits of o(kn log n)-
size capable of sorting n inputs chosen from the domain [1..2k] where k is the word-length [14]. In
this paper, we explore weakened forms of this question: first, we consider restricted classes of sort-
ing where the number of distinct keys is much smaller than the input length; and second, instead of
circuits, we consider Oblivious RAMs and probabilistic circuit families as the computational model
both of which are somewhat more powerful than circuits but much weaker than Random Access
Machine (RAM). We now elaborate on these two computation models.

• Oblivious RAMs. An algorithm in the Oblivious ORAM model [32,33,60] (also referred to as
an oblivious algorithm2) is one that executes on a standard Random-Access Machine (RAM),
but we additionally require that for any two inputs of the same length, the CPU’s memory
access patterns be statistically close. In other words, by observing the memory access patterns,
an adversary learns almost no information about the secret input. We allow the CPU to have
access to private random bits that are unobservable by the adversary. Throughout this paper
we consider RAMs with O(1) CPU registers.

• Probabilistic circuit family. A probabilistic circuit family C is said to sort n balls whose
keys are from the domain [K] iff given any input key assignment from [K]n, a randomly chosen
circuit from C will correctly sort this input with overwhelming probability. This means that the
input key assignment may be chosen adversarially but the adversary cannot examine the circuit
that is randomly sampled prior to choosing the input. In this paper, we assume that each circuit
in the family has two types of gates: 1) boolean gates with constant fan-in and fan-out; and 2)
selector gates that takes a single bit and two balls, and selects one of the two balls.

Despite the rich results on (almost) linear-time sorting on (non-oblivious) RAMs [6, 40, 41,
43, 63], in the aforementioned Oblivious RAM or probabilistic circuit family models, the most
asymptotically efficient sorting algorithm remains comparator-based sorting networks, e.g., the
AKS sorting network [3] or Zigzag sort [34] can sort n input elements in O(n log n) comparator

1Note that the balls-and-bins model precludes certain types of algorithms, e.g., if the key is only 1-bit long, a
non-balls-and-bins algorithm could simply count the number of 0s and write out an answer; but this algorithm fails
to move the balls into sorted order.

2 In some literature, this notion is referred to as “data-oblivious” algorithms, but we use the word “oblivious”.

3

operations. To the best of our knowledge, there is no known result whether non-comparison-based
techniques can asymptotically speed up sorting in these two models.

1.1 Main Results

We give a two-sided answer to the questions raised earlier. In this section we summarize our main
results, stated using runtime (or circuit complexity) as a metric. Later in Section 1.2 we shall
present additional results regarding metrics beyond the runtime — specifically we will describe
how to optimize our algorithms’ IO efficiency (i.e., the number of transfers between cache and
memory) when executed on an Oblivious RAM.

Lower bounds for oblivious “balls-and-bins” sorting. On the pessimistic side, we show that
any oblivious algorithm that sorts Ω(log n)-bit keys in the balls-and-bins model must incur at least
Ω(n log n) runtime — this lower bound holds even when the algorithm is non-comparison-based
and moreover, even when allowing the algorithm to err with O(1) probability on any input. Our
lower bound proof has a direct interpretation in the probabilistic circuit model mentioned above:
we show that any probabilistic circuit family that sorts n balls each with an Ω(log n)-bit key must
consume at least Ω(n log n) selector-gates (for moving opaque balls around). Our lower bound
results are stated informally below.

Theorem 1 (Informal: limits of oblivious “balls-and-bins” sorting). Any (possibly randomized)
oblivious algorithm that sorts n balls each with an Ω(log n)-bit key must incur at least Ω(n log n)
runtime, even when the algorithm is allowed O(1) correctness failure on any input.

Corollary 1 (Informal: limits of “balls-and-bins” sorting with probabilistic circuits). Any proba-
bilistic circuit family that sorts n balls each with an Ω(log n)-bit key must consume at least Ω(n log n)
selector-gates, even when we allow O(1) correctness failure on any input.

Oblivious sorting in o(n log n) runtime for o(log n)-bit keys. Although at first sight, it might
seem that we are at a dead end due to the aforementioned lower bounds, we show that for smaller
key sizes, non-comparison-based techniques can indeed help us defeat the Ω(n log n) barrier for
oblivious sorting. We prove the following result.

Theorem 2 (Informal: oblivious sorting for o(log n)-bit keys). There is a randomized oblivious
algorithm which, except with negligible probability3, correctly sorts n balls each with a key from the
domain [1..2k] in running time O(kn log logn/ log k).

As a special case, this implies that oblivious sorting of n balls each with a constant-sized key
can be accomplished in O(n log log n) time. Furthermore, when the key is o(log n) bits long (note
that this means there must be many duplicate keys), our algorithm completes in o(n log n) time,
and thus we are the first to overcome the n log n barrier for oblivious sorting. In fact, to the best of
our knowledge, there is no prior result in this vein even for 1-bit keys4. We also note that our result
is tight in the balls-and-bins model: in light of our lower bound, if the keys were c log n bits long
for any arbitrarily small constant c, Ω(n log n) runtime is a necessary price to pay for obliviousness.

3For simplicity, in the introduction, we assume that negligible failure is expressed in terms of n, i.e., the input
length; although later in the paper we will use λ as the security parameter to explicitly distinguish from the input
size.

4Although Leighton et al.’s O(n log logn) selection network [46] may seem close in nature, their construction is
comparator-based and obviously cannot solve the 1-bit sorting problem or else it would violate the well-known 0-1
principle — see Section 2.6 for further discussions.

4

Although in general oblivious algorithms may not have efficient circuit implementations (e.g.,
if they make data-dependent memory accesses [32,33,60,62,66]), all oblivious algorithms presented
in this paper indeed access memory only in data-independent manners and thus can be easily
implemented with probabilistic circuit families. We thus have the following corollary.

Corollary 2 (Informal: sorting with probabilistic circuits for o(log n)-bit keys). There exists a prob-
abilistic circuit family which, except with negligible probability, correctly sorts n balls each with a key
from the domain [1..2k] consuming only O(k2n log logn/ log k) boolean gates and O(kn log log n/ log k)
selector gates.

Extension: sorting few distinct keys from a large space. Our results stated earlier can
sort keys chosen from a small space in o(n log n) time. Note that one immediate implication that
the keys are chosen from a small space is that the number of distinct keys is small. Thus a very
natural question is whether our results would extend to the case when the keys are chosen from a
large space but the number of distinct keys is small. We answer this question in the affirmative as
informally stated in the following corollary.

Corollary 3. For any positive α(n) := ω(1), there is a randomized oblivious algorithm which,
except with n−Ω(α(n)) probability, correctly sorts n balls tagged with at most 2k distinct keys in
running time O(nαL + nα2 log log n + kLn log log n/ log k) where L denotes the number of words
needed for storing each key.

To achieve the above corollary, we devise efficient oblivious algorithms for estimating the number
of distinct keys given an input array — these new building blocks might be of independent interest
in other applications.

Limits of stability. Our sorting algorithm is not stable but as we show, this is in fact inherent.
Recall that in the context of sorting, stability means that for any two balls whose keys are equal,
the ordering of the balls in the output must agree with their relative order in the input. We prove
a lower bound showing that even for 1-bit keys, stable oblivious sorting is impossible in o(n log n)
time in the balls-and-bins model.

Theorem 3 (Limits on stable oblivious sort). Any (possibly randomized) oblivious algorithm that
stably sorts n balls each with a 1-bit key must incur at least Ω(n log n) runtime, even when we allow
the algorithm to err with O(1) probability on any input.

Similar as before, our lower bound proof has a natural interpretation in a probabilistic circuit
model, giving rise to the following corollary.

Corollary 4 (Limits on stable sort with probabilistic circuits). Any probabilistic circuit family that
stably sorts n balls each with a 1-bit key must incur at least Ω(n log n) selector gates, even when
we allow O(1) correctness failure on any input.

1.2 IO Efficiency on Oblivious RAMs and Applications to Open Problems

So far, we have solely focused on the algorithm’s runtime (or circuit size). When oblivious sorting is
implemented on a RAM, not only do we care about its runtime, IO performance is also a particularly
important metric — this is exactly why there is a long line of research on external-memory and
cache-agnostic5 algorithms [25,31,36,37].

5In the standard algorithms literature this was typically referred to as the cache-oblivious model [25, 31], but we
use the term cache-agnostic instead to avoid overloading the word “oblivious”.

5

We devise additional techniques to make our algorithms IO-efficient in the cache-agnostic
model [25, 31]. The cache-agnostic model is an elegant and well-accepted notion first proposed
by Frigo et al. [31] requiring that 1) an algorithm need not know the cache parameters and thus
a single algorithm can readily execute on any target architecture without parameter tuning; and
2) when executed on any multi-level memory hierarchy, the algorithm minimizes cache misses on
every level of the memory hierarchy simultaneously (including between cache and memory, between
memory and disk, and between client and cloud). Below we present our IO efficiency results for the
1-bit special case — we show that even the 1-bit special case allows us to solve open questions raised
by prior work [36]. In the following, we denote cache size as M and cache-line size as B memory
words. We defer the general statement of the IO results for longer keys to the main technical
sections.

Theorem 4 (Informal: linear IO oblivious sort for constant-sized keys). There exists an oblivious
and cache-agnostic algorithm that can sort O(1)-bit keys (except with negligible probability) in only
O(n/B) IOs under standard cache assumptions (i.e., tall cache and wide cache-line).

Sorting 1-bit keys in linear IO immediately implies tight compaction and selection in linear IO
— both are fundamentally important algorithmic abstractions that have been extensively studied
in the algorithms literature [13, 36, 46]. We now explain why our IO-efficient construction for
obliviously sorting 1-bit keys solves open algorithmic challenges.

Tight compaction. Tight compaction is the following problem: given an input array I containing
n real or dummy elements, output an array of equal size such that all real elements in I reside in
the front of the array and remainder of the output array is padded with dummies. Note that using
the probabilistic selection network construction by Leighton et al. [46], we can achieve oblivious
tight compaction in O(n log log n) time — however, Leighton’s algorithm does not achieve good
IO efficiency when implemented on a RAM. In an elegant work by Goodrich [36], he phrased the
following open challenge:

Can we achieve oblivious tight compaction in linear IO?

As an immediate implication of our main theorem, we answer Goodrich’s question in the affir-
mative — not only so, our algorithm is cache-agnostic. We stress that previously, it was not even
known how to design a cache-aware oblivious algorithm that achieves tight compaction in linear
IO. We state our result informally below:

Theorem 5 (Informal: tight compaction). There is a cache-agnostic, oblivious algorithm which,
except with negligible probability, correctly compacts an input array containing n real or dummy
elements in running time O(n log logn) and with IO-cost O(n/B) under standard cache assumptions
(i.e., tall cache and wide cache-line).

Selection. Selection is the following problem: given an input array containing n opaque balls
each associated with a key, output the k ≤ n smallest balls (and their keys). Using small-key
sorting as a building block, we show how to achieve oblivious selection in a cache-agnostic model
in O(n/B) IO-cost and O(n log log n) runtime as stated informally below.

Theorem 6 (Informal: selection). There is a cache-agnostic, oblivious algorithm such that given
any input array containing n elements, except with negligible probability the algorithm correctly
outputs the k ≤ n smallest elements in running time O(n log log n) and with IO-cost O(n/B) under
standard cache assumptions.

6

In comparison, the previous best known results for selection are the following: First, we may use
the elegant result by Leighton et al. [46] and achieve O(n log logn) runtime but the IO performance
can be as bad as O(n log log n). Previously the most IO-efficient algorithm for oblivious selection
in the cache-agnostic model is simply by applying Chan et al. [20] cache-agnostic oblivious sort
algorithm which would require Ω((n/B) logM/B(n/B)) IO-cost and O(n log n log log n) runtime. In

the cache-aware6 model, a partial result exists, again by Goodrich [36], showing how to obliviously
select the k-th smallest element alone in linear time and IO — however (even in the cache-aware
model) any direct extension of his algorithm would immediately incur Ω(n log n) runtime if all k
elements must be selected for reasonably large k.

2 Technical Roadmap

In this section, we present an informal technical roadmap on how we achieve the claimed results.
For simplicity, we shall first explain our results focusing on only the runtime metric — additional
techniques are required to achieve IO efficiency and we defer the explanation of these techniques
to Section 2.5.

2.1 Partition 1-Bit Keys

We first show how to obliviously partition 1-bit keys: given an input array consisting n balls each
carrying a 1-bit key, we would like to partition the array such that the balls marked with 0 appear
before those marked with 1.

1-bit sorting is not selection. Let us first consider the probabilistic selection circuit construc-
tion by Leighton et al. [46]. Specifically, Leighton et al. construct a comparator-based circuit of
O(n log log n) size that can select and output the m smallest elements with very high probability
when given an input array that has been randomly permuted. Interestingly, although at first sight,
sorting 1-bit keys and selection seem like very similar problems, we stress that in fact our problem
formulation (i.e., sorting 1-bit keys) is stronger than that of Leighton et al.’s [46] (i.e., selecting m
smallest elements). We stress that there is no straightforward way (i.e., without relying on some
kind of non-comparison-based techniques) of applying Leighton et al. [46]’s (comparator-based)
selection network in a blackbox fashion to sort 0-1 sequences in o(n log n) time, or else it would
clearly violate the 0-1 principle. (For example, it is not difficult to realize that the näıve approach
of first selecting the smaller half and then selecting the larger half does not work — see remark
below.)

Remark 1. Interestingly, we remark that if one could reveal the number of 0s and 1s in the input,
it would be trivial to rely on a selection network to realize 1-bit sorting; however, in our problem
formulation, this count must be hidden.

Our algorithm for partitioning 1-bit keys. Instead, we rely on the core ideas of Leighton et
al. [46] in a non-blackbox fashion. Our 1-bit partitioning algorithm works as follows:

Partition(A):

6 That is, the

7

1. Randomly permute the input elements in A using a linear-time implementation of the Fisher-
Yates shuffle [27]. This random permutation is used only for load balancing and measure con-
centration and thus the permutation need not be secret.

2. Divide the permuted input array into bins of Z = log6 λ in size where λ is the security parameter
(i.e., we aim to achieve negligible in λ correctness failure).

3. Apply a sorting network such as Zigzag sort [34] to sort each bin. When each bin becomes
sorted, we express all bins as a short-and-fat matrix denoted A′ where each column represents
a bin.

4. Our crucial observation is the following: in this matrix A′, there must exist a set of at most
log4 λ consecutive rows henceforth called the mixed stripe, such that all elements above the
mixed stripe (if any) are 0s, and all elements below (if any) are 1s.

5. Now, in one scan of the rows, we can identify the location of the mixed stripe.

6. Now, in one scan of the rows, we can copy the mixed stripe to a working buffer without revealing
where the mixed stripe resides (see the simple Algorithm 1 for details on how to achieve this).
We then call Zigzag sort to sort the working buffer. Finally, using oblivious sorting to cyclically
shift the working buffer, combined with another scan of the rows, we can copy this working
buffer back to where the mixed stripe was without revealing the location of the mixed stripe
(see Section 5 for details).

The Partition algorithm is non-comparison-based. We stress that the above algorithm is
non-comparison-based due to Steps 5 and 6. In these two steps, the algorithm makes use of the
location of the mixed stripe, which is a variable that depends on the number of 0s and 1s in the
input sequence. More specifically, if one were to implement as a circuit the oblivious procedure for
copying the mixed stripe to the working buffer, such a circuit would require gates that take this
mixed stripe location as input. As we further clarify in Section 2.6 (the Related Work section),
for such circuits the 0-1 principle for comparison-based sorting is not applicable (and thus such
algorithms should be regarded as non-comparison-based).

2.2 Sorting Longer Keys: A Simple Algorithm

Our next step is to consider how to leverage our 1-bit partitioning building block to sort longer
keys. For clarity, we will first describe a conceptually simple version of this reduction — this simple
version already allows us to sort o(log n/ log logn)-bit keys in o(n log n) time. Later in Section 2.3,
we describe how to reparametrize our recursion such that we can sort o(log n)-bit keys in o(n log n)
time — this is tight in the “balls-and-bins” model in light of our lower bound in Section 4.

Consider an input array containing n balls each with a key from the domain [1..K]. Henceforth
let SortK(A) denote an instance of our oblivious sorting algorithm capable of sorting keys from a
domain [a+ 1..a+K] of size K for some integer a when given an input array A. We assume that
the input array has already been randomly permuted — if not, we can always permute it at random
in linear time, e.g., using an efficient implementation of the Fisher-Yates shuffle [27]. As we shall
see, this random permutation is used only for load balancing and thus the permutation need not
be secret.

The algorithm. The algorithm SortK(A) breaks up a larger instance into a good half G and a

bad half B, it calls itself on the good half, i.e., SortK(G); and calls Sortd
K
2
e(B) on the bad half. In

other words, if we have an efficient algorithm for partitioning keys from a domain [a+ 1..a+ dK2 e]

8

of size dK2 e for some appropriate a, we would have an algorithm for partitioning a domain roughly
twice as large. We describe the algorithm slightly informally below while leaving a more formal
description to Section 6.2.

1. As base cases: 1) if the array A is less than 2Z in size, we simply apply the sorting network
Zigzag sort [34] and output the result; and 2) if K ≤ 2, we simply invoke our earlier Partition
algorithm to complete the sorting. Otherwise we will continue with the following steps.

2. First, we divide the input array A into bins of size Z = log6 λ where λ is a security parameter —
our algorithm should preserve correctness with 1−negl(λ) probability where negl(·) is a negligible
function and moreover we assume that n = poly(λ) for some polynomial function poly(·).

3. Next, we sort each Z-sized small bin using Zigzag sort, an O(Z logZ)-sized sorting network by
Goodrich [34] — in total this takes O(n log log λ) time.

4. Now, imagine we express the outcome as a short-and-fat matrix, where each column, of height
Z, is a sorted bin. Henceforth we refer to the middle 2 log4 λ rows of this matrix as the crossover
stripe. Now we again rely on Zigzag sort to sort all elements in this crossover stripe (all elements
in all bins in the crossover stripe are sorted altogether).

Our key observation is the following: after this crossover stripe is sorted, except with negligible
in λ probability, it holds that any element in the top half of the matrix is no larger than even the
minimum element in the bottom half. We formally prove this fact later in Section 6.3. There are
two direct implications of this observation — both of the following hold except with negligible
probability:

(a) First, either the top half or the bottom half can still have K distinct keys remaining but not
both.

(b) Second, one of the halves must have no more than dK/2e distinct keys remaining.

5. Henceforth, the half that has more distinct keys remaining is referred to as the bad half, and the
half that has fewer distinct keys remaining is referred to as the good half. If both halves have
the same number of distinct keys remaining, we may break ties arbitrarily.

Now, in one scan of each half, we can find the minimum and maximum keys of each half, and
thus we can decide which is the good and which is the bad half7.

6. Now in linear time, we can create an array where the good half is arranged before the bad half.
To do this, suppose that the starting point is [A0, A1] where A0 is the top half and A1 is the
bottom half. First, we create two possible arrays in linear time: 1) [A0, A1] and 2) [A1, A0].
Now, we can simply use a multiplexer to pick the right one in linear time. Let X = [G,B] be
the outcome of this step. It holds that except with negligible probability, B can have as many
as K distinct keys and G can have no more than dK/2e distinct keys.

7. We next recurse on the bad half B by calling B̃ ← SortK(B). Further, we call G̃← SortdK/2e(G)
on the good half G — note that SortdK/2e(·) is an instance of the algorithm capable of sorting
keys from the domain [1..dK/2e].

8. Finally, we again use a multiplexer to select the correct arrangement among [G̃, B̃] and [B̃, G̃].
Clearly this can be accomplished in linear time.
7Note that here our algorithm is not comparison-based, since this step produces a bit that is dependent on the

inputs and this bit will later be used in multiplexers for selecting the good and bad half respectively.

9

Obliviousness. The obliviousness of the algorithm is trivial to see: the algorithm’s access pat-
terns include a random permutation in the beginning, and then afterwards all access patterns are
deterministic and data independent.

Runtime. The runtime of this algorithm can be analyzed using the following recurrence where
T (n,K) denotes the runtime for sorting n elements whose keys are from [1..K]:

T (n,K) = T (dn
2
e,K) + T (dn

2
e, dK/2e) +O(n log log λ)

Further, we have the following base cases where the former is due to the calling Zigzag sort [34]
for small enough bins, and the latter is due to applying our earlier Partition algorithm for the base
case K ≤ 2.

For n ≤ 2Z : T (n,K) = O(n log n) (1)

∀n : T (n, 2) = O(n log log λ) (2)

It is not difficult to show that this recurrence solves to T (n,K) = O(n logK log log λ). At
this moment, we have that for o(log n/ log log n)-bit keys, oblivious sorting can be accomplished in
o(n log n) time. Our next section will describe how to optimize parameters of this recurrence to
obtain a tighter upper bound, such that we can sort o(log n)-bit keys in o(n log n) time.

2.3 A Better Recurrence

We observe that in fact, the method in the previous section can be generalized and the parameters
improved. We describe our improved algorithm SortK(A) below where K denotes an upper bound
on the number of distinct keys in the input array A.

1. We assume that the input A has already been arranged in a matrix where each column represents
a polylogarithmically-sized bin that has been Zigzag-sorted — this preprocessing step consumes
O(n log log λ) time.

2. Instead of dividing the matrix A into a good half and a bad half, we can divide it into logK
pieces of equal size. We call the neighboring 2 log4 λ rows near every boundary two pieces a
crossover stripe.

3. Now, call Zigzag sort to sort every crossover stripe.

4. Let us examine the logK pieces of the resulting matrix A. We can now generalize our previ-
ous reasoning to conclude the following useful observation which holds except with negligible
probability: for any i < j, any element in the i-th piece must be smaller than even the smallest
element in the j-th piece. We will formally prove this later in Section 6.3.

5. As a result, in one linear scan, we can write down (an upper bound on) the number of distinct
elements in each piece. More specifically, in one linear scan, we can find the maximum and
minimum key for each piece and their difference is clearly an upper bound on the number of
distinct elements in the corresponding piece.

6. Now, in O((n/ logK)·logK ·log logK) = O(n log logK) time, we can Zigzag-sort all these pieces
based on how many distinct keys each piece has, from small to large. Let A1, A2, . . . , Ak denote
the resulting pieces where k = logK and Ai has a smaller number of distinct keys than Aj if
i < j.

10

Now, using similar reasoning as Section 2.2, we observe that Ak can have at most K distinct
keys, Ak−1 can have at most dK/2e distinct keys, Ak−2 can have at most dK/3e distinct keys,
Ak−3 can have at most dK/4e distinct keys, and so on; finally, A2 can have at most have at most
dK/(k − 1)e distinct keys and A1 can have at most have at most dK/ke distinct keys where
k = logK.

7. Based on the above observation, we can make the following recursively calls to sort each piece:
SortdK/ke(A1), SortdK/(k−1)e(A2), . . ., SortK(Ak). We obtain k sorted pieces as a result; and fi-
nally, in O(n log logK) time, we can Zigzag-sort all these pieces such that their keys are arranged
from small to large.

The improved recurrence. Using the above reparametrized variant, we obtain the following
recurrence:

T (n,K) = O(n log logK) +O(n log log λ) +

logK∑
i

T

(
n

logK
,

⌈
K

k − i+ 1

⌉)
where the O(n log logK) term is due to sorting the collection of pieces twice (first time by the
number of distinct keys and the second time by the order of the keys), the O(n log log λ) comes
from Zigzag-sorting each bin in the preprocessing step, and all other operations that take linear
time are asymptotically absorbed and not explicitly denoted.

The base cases remain unchanged — see Equations (1) and (2). Solving this new recurrence is
a bit more challenging, but it is not difficult to verify that T (n) = O(n log log λ logK/ log logK) is
a legitimate solution under the standard assumption that both n and K ≤ poly(λ).

At this moment, it is not difficult to see that if K = 2o(logn) we can obliviously sort in o(n log n)
time.

2.4 Extension: Large Key Space but Few Distinct Keys

So far we have made a short-key assumption, i.e., each ball carries a key that is at most o(log n)
bits long. Upon careful examination, in our earlier algorithm in Section 2.3 the only place where
we needed the short-key assumption is due to how we estimated the number of distinct keys for
each piece, i.e., by subtracting the minimum key of each piece from the maximum key.

We next propose an extension such that we can remove the short-key assumption, and instead
rely on the weaker assumption that the number of distinct keys K̂ in the input array is small,
although each key can be from a large space. Henceforth we assume that an upper bound on the
number of distinct keys denoted K̂ is known a-priori to the algorithm. To achieve this we devise
a new, almost linear-time oblivious algorithm for estimating the number of distinct keys for each
piece — and this building block might be of independent interest in other applications. Our idea
is the following.

First, consider a non-oblivious algorithm that estimates the number of distinct elements given
an input array that makes use of a random oracle — we will remove the random oracle later using
almost k-wise independent hash families; and we will also make the algorithm oblivious. We begin
by first hashing all elements into log n bins using the random oracle — note that elements with
the same key will land in the same bin. We can then identify a bin whose load is at most n

logn .
We then count the number of distinct elements D in this bin: it is not difficult to prove that the
quantity D · log n would be a constant-factor approximation of the number of distinct elements in
the input array (except with negligible probability).

11

Our algorithm is based on this idea but we must additionally 1) remove the random oracle and
replace it with almost k-wise independent hash families; and 2) make the algorithm oblivious while
preserving efficiency. We thus devise the following algorithm where A is an input array provided
to the algorithm:

1. Select a random hash h from a k-wise ε-independent hash family for appropriate choices of k
and ε to be specified later in our technical sections.

2. For each element x in the input array A, tag the element with its hash h(x) that is log log n-bits
long.

3. Let B1 be A to start with. Henceforth assume that each element is tagged with its hash.

For j = 1, 2, . . . , log logn,

• Obliviously partition Bj based on the j-th bit of the hashes of all elements in Bj — using
the algorithm described in Section 2.1, this can be accomplished in O(|Bj | log log λ) runtime.

• After this partitioning, either the first half of the resulting array contains the 0-th partition
or the second half of the resulting array contains the 1-st partition. Use a multiplexer to
select the half of the array that contains either the 0-th partition or the 1-st partition.

• Without loss of generality, assume that the first (or second) half of the array is selected: now
in one linear scan of the outcome, overwrite any element that does not belong to the 0-th
partition (or the 1-st partition).

• Let the resulting array be Bj+1 — note that the length of Bj+1 is exactly |Bj |/2.

4. Finally, use an oblivious sorting algorithm to count the number of distinct items in Blog logn,
and let D be the outcome. Output D · log n as an estimate of the number of distinct items in A.

In our subsequent technical sections, we will show that there is a way to concretely instantiate
the k-wise, ε-independent hash family using a construction proposed by Meka et al. [52] such that
the above algorithm completes in O(|A| ·α2 log log λ) time and provides an estimate of the number
of distinct keys in A that is accurate up to a small constant factor except with λ−Ω(α) probability
— moreover, this can be accomplished assuming 1) that the RAM’s word is large enough to store
a ball and its key; and 2) word-level multiplications can be performed in unit cost on a RAM
(whereas our earlier algorithms for short keys only required word-level addition, subtraction, and
comparison in unit cost).

In our later technical sections, we will further remove the requirement that the RAM’s word
is large enough to store the key — to achieve this, we rely on a collision-resistant compression
function (which can be instantiated from a 2-wise independent hash family and the Merkle-Damg̊ard
construction) to compress each possibly long key before embarking on the aforementioned algorithm.
We defer the details to Section 7. Further, we will also show that using our new distinct key
estimation algorithm in lieu of the earlier approach of computing the expression (maximum key
- minimum key), we can sort arbitrary-length keys in (nαL + nα2 log log n + kLn log log n/ log k)
time where 2k denotes an upper bound on the number of distinct keys, L denotes the number of
RAM words required for storing each key, and α is a term related to the security failure probability
n−Ω(α).

12

2.5 IO Efficiency in the Cache-Agnostic Model

So far, we have focused entirely on running time. We now show how to improve the IO efficiency
of our construction in a cache-agnostic model. Goodrich [36] phrased the open question: can we
achieve a linear-IO tight compaction scheme? We show that our IO-efficient scheme solves this
open question in the 1-bit special case — previously it was not known how to do this even in the
cache-aware model. Further, our result implies an IO-efficient selection algorithm (for selecting all
m smallest elements) in the cache-agnostic model (and this question was implicitly left open by
Goodrich [36] as well).

Random permutation of inputs lacks IO efficiency. The reason our algorithms weren’t
IO-efficient mainly arises from the need to randomly permute the input array during a preprocess-
ing stage. This random permutation is necessary to defeat adversarially chosen inputs, such that
for every input, except with negligible probability the output is correct. Näıve linear-time imple-
mentations of this random permutation would certainly break IO efficiency, e.g., the Fisher-Yates
shuffle [27] would require accessing random memory locations. On the other hand, known permu-
tation networks require Ω(n log n) runtime and are too expensive for our purpose. Unfortunately,
we are not aware of any techniques that allow us to randomly permute memory in an IO-efficient
manner (even in the cache-aware model).

Bin-wise independent shuffle. We observe that a complete random permutation of the inputs is
an overkill; and all we need to do is to permute the inputs barely enough, such that our probabilistic
analysis will nonetheless hold in the same manner as if the data were permuted completely at
random. Interestingly, to realize our bin-wise independent shuffle idea, we make use of an additional
building block, i.e., a cache-agnostic matrix transpose procedure [31] which is well-known in the
algorithms literature — in fact, our algorithm uses this matrix transposition building block in
several other places to be able to collect both the rows and columns of a matrix in an IO-efficient
manner.

We now elaborate: abstracting away other details of our algorithm, our goal is to divide the
input elements into bins such that each bin will have roughly the same fraction of 0s and 1s as the
input array. To achieve this, the idea is to view the input array as a short-and-fat matrix, perform a
random, cyclic shift of each row (which, as we show, can be accomplished in an IO-efficient manner);
and finally relying on a cache-agnostic matrix transpose operation, transform each column of the
matrix into a bin. It is not difficult to observe that the Z random coins for each bin are independent
where Z denotes the bin’s size — hence the name “bin-wise independent shuffle”. In Section 5,
we formally state and prove the statistical properties we need from this random bin assignment
process.

2.6 Related Work

Sorting. Sorting is a classical algorithmic abstraction, and the study of efficient sorting algorithms
in both the circuit [3, 9, 34] and the Random Access Machine (RAM) [6, 40, 41, 43, 63] models of
computation has been long-standing and extensive.

It is well-understood that there exist deterministic, comparator-based sorting networks that
sort n elements consuming only O(n log n) comparators [3, 34]. For any comparison-based sorting
algorithm (not only for circuits but also for RAMs), it is well-known that Ω(n log n) comparison
operations are necessary. On a RAM, it is also well-known that non-comparison-based techniques
can sort n elements in o(n log n)-time (e.g., Radix sort, counting sort, and others [6,40,41,43,63]).

13

A subset (but not all) of these o(n log n)-time algorithms [5,64] additionally allow each key to carry
an opaque ball and the sorting algorithm will rearrange the balls according to the relative order of
their keys — in our paper such an algorithm is said to support sorting in the balls-and-bins model.

Circuit-based sorting techniques are inherently oblivious, classical RAM-based algorithms are
not particularly concerned about being oblivious. To the best of our knowledge, all o(n log n)-time
sorting algorithms on RAMs are not oblivious [6, 40,41,43,44,63].

Clarifications on the 0-1 principle. It is important to note the 0-1 principle for comparison-
based sorting [34,35,44]: any (possibly probabilistic), comparison-based sorting algorithm (in either
the circuit model or RAM model) that can correctly sort any input array consisting only of 0s and
1s (with high probability) can correctly sort any input array containing any set of comparable items
(with high probability). One implication of this principle is that there cannot be any comparison-
based algorithm (even not requiring obliviousness) that sorts even 0-1 arrays in o(n log n) time —
thus a result of our nature must be non-comparison-based.

We stress that the 0-1 principle is applicable even when the algorithm is allowed to perform
arbitrary computation not dependent on the outcome of the comparison operations — however, if the
algorithm performs arbitrary computations that are dependent on the outcomes of the comparisons,
then the 0-1 principle is no longer applicable. The algorithms described in our paper indeed require
computations dependent on the outcomes of the comparators.

In earlier works and resources online, any sorting algorithm that invokes only comparison oper-
ations on the keys is often said to be comparison-based sorting — such a definition does not clearly
articulate whether additional arbitrary computations are allowed. In this paper, we simply use the
0-1 principle as a criterion for classifying comparison-based vs. non-comparison-based sorting.

Oblivious RAM and oblivious algorithms. In a ground-breaking work by Goldreich and
Ostrovsky [32, 33], they propose a new model of computation henceforth referred to as Oblivious
RAM (ORAM) [32, 33, 60]. Specifically, an Oblivious RAM is a Random-Access Machine (RAM)
in which the CPU’s memory access patterns are computationally or statistically independent of the
data that is input to the computation — to achieve this, we assume that the CPU can obtain and
make use of private randomness.

Oblivious RAM (ORAM) is a rather intriguing model of computation. On one hand, we know
that allowing randomness, any RAM program can be simulated with an ORAM with only O(log2 n)
blowup in runtime [21,66]. On the other hand, this does not mean that every algorithm must incur
such a poly-logarithmic blowup when obliviously simulated — in fact, a recent line of research
showed that a broad class of algorithms and data structures can be computed obliviously while
incurring asymptotically smaller overhead than generic ORAM simulation [12,26,32,33,36,38,48,54].

Circuit complexity for sorting? It remains an open question whether there is a o(w ·n log n)-
sized circuit for sorting n words each w-bits long. To the best of our knowledge, no upper bounds
or lower bounds are known regarding the (non-comparator-based) circuit complexity for sorting.
Perhaps rather surprisingly, there does not even seem to be a partial answer for 1-bit words —
note that the probabilistic selection circuit construction by Leighton et al. [46] is comparator-based
and without introducing non-comparison-based techniques, their construction does not imply 1-bit
sorting in o(n log n) time in any immediate, blackbox manner.

Our work may be regarded as some partial progress at understanding the (non-comparator-
based) circuit complexity for sorting — however, our results apply only for a probabilistic circuit

14

family model, where we consider a family of circuits and we sample a random circuit to give to an
input (that is chosen by a possibly unbounded adversary who has not observed the circuit).

Estimating the number of distinct elements. There is a long line of research on algorithms
that estimate the number of distinct elements in a data stream [28, 42]. This line of work culmi-
nated in Kane et al. [42] who described a streaming algorithm that is tight in time and space —
although it is not difficult to make their algorithm oblivious, to the best of our knowledge, their
failure probability of correctness is o(1) whereas we require negligibly small failure. In Section 7,
we describe a novel, almost linear-time oblivious algorithm for estimating the number of distinct
elements in an array — in comparison, our algorithm need not be streaming in nature but must
be oblivious. Thus our result here is related but incomparable to those achieved in the streaming
algorithms literature.

Subsequent work. In a work by Chan et al. [18] that was recently released8, the authors define
the notion of (ε, δ)-differential obliviousness (i.e., (ε, δ)-differential privacy for access patterns).
In the sorting context, (ε, δ)-differential obliviousness is strictly weaker than obliviousness. They
show that for differential obliviousness one can sort k-bit keys in O(kN(log k + log logN)) time
for ε = Θ(1) and δ being a suitable negligible function, and moreover with stability. As we show
in this paper, stable oblivious sorting (in the balls-and-bins model) is impossible without at least
Ω(n log n) runtime even for the 1-bit case. Thus Chan et al. [18]’s results show that with appropriate
relaxations in privacy, one can overcome this stability lower bound. The new techniques for proving
lower bounds described in this paper are also extended by Chan et al. [18] to prove more lower
bounds for oblivious and differentially oblivious algorithms.

3 Definitions and Preliminaries

Negligible functions. A function ε(·) is said to be negligible if for every polynomial p(·), there
exists some λ0 such that ε(λ) ≤ 1

p(λ) for all λ ≥ λ0.

Statistical indistinguishability. For an ensemble of distributions {Dλ} (parametrized with
λ), we denote by x ← Dλ a sampling of an instance according to the distribution Dλ. Given
two ensembles of distributions {Xλ} and {Yλ}, we say that the two ensembles are statistically

indistinguishable, often written as {Xλ}
ε(λ)
≡ {Yλ}, iff for any unbounded adversary A,∣∣∣∣ Pr

x←Xλ

[
A(1λ, x) = 1

]
− Pr
y←Yλ

[
A(1λ, y) = 1

]∣∣∣∣ ≤ ε(λ).

3.1 Oblivious Algorithms on a RAM

In this paper, we consider a Random-Access Machine (RAM) where a CPU interacts with a memory
to perform computation. In every step of the computation, the CPU can read and/or write a
memory location, perform computation over words stored in its CPU registers, update the values
stored in (a subset of) its CPU registers.

8Although their work was released earlier, chronologically it actually happened subsequently to the writing of this
paper.

15

Assumptions. We assume that the CPU has only O(1) registers, and it also has access to a
private random string that is unobservable by the adversary. Unless otherwise noted, we assume
that word-level additions and comparisons can be performed in unit cost on the RAM, where word
size is Θ(log λ) bits — for our algorithms for short keys (Sections 5 and 6), this is sufficient; however,
our algorithm in Section 7 that support arbitrary key spaces but few distinct keys additionally
require that word-level multiplication be computed in unit cost.

Oblivious algorithms. We formally define what it means for a RAM program to be oblivious.

Definition 1 (Oblivious algorithm). We say that a (possibly randomized) algorithm Alg is oblivi-
ous, iff the following holds: for any inputs I0, I1 ∈ {0, 1}∗ such that |I0| = |I1|, Alg(1λ, I0)’s access
patterns to memory and Alg(1λ, I1)’s access patterns to memory are identically distributed.

Throughout this paper, all of our algorithms are perfectly oblivious but may suffer negligibly
small statistical failure probability in terms of correctness.

3.2 Probabilistic Circuits for Sorting in the Balls-and-Bins Model

Both our upper bound and lower bound results have natural interpretations for probabilistic circuit
families that realizes sort.

Consider a family of circuits C for sorting. Each circuit is allowed to have two types of gates:
1) arbitrary boolean gates with constant fan-in and constant fan-out; and 2) selector gates, each of
which takes in a bit b and two balls, and outputs one of the balls.

Definition 2 (Probabilistic circuit family for sorting in the balls-and-bins model). We say that the
circuit family C is an (n,K, ε)-sorting circuit family in the balls-and-bins model, iff for any input
~X containing n balls each assigned with a key from the domain [K],

Pr
C←$C

[
C correctly sorts ~X

]
≥ 1− ε.

Metrics for probabilistic sorting circuits. Given a probabilistic circuit family C, we define
the following metrics where S is referred to as the circuit complexity of C and Ssel is referred to as
the selector complexity which accounts for the number of atomic operations on opaque balls.

S(C) := max
C∈C

(# gates in C)

Ssel(C) := max
C∈C

(# selection gates in C)

Although in general, a sorting algorithm in the Oblivious RAM model may not have an efficient
probabilistic-circuit realization, for our concrete constructions this is true. As explained later,
our upper bound results also imply the existence of an (n,K, negl(n))-sorting circuit family for
K = 2o(logn) and a suitable negligible function negl(·), with o(n log n) selector-gates, and o(k·n log n)
circuit complexity where k := logK denotes the word-width for storing a from the domain [K] — the
O(k) factor arises from implementing word-level addition, subtraction, and comparison operations
with O(k) boolean gates.

On the other hand, our lower bounds are stated in terms of the number of ball movements
incurred in the Oblivious RAM model — thus our lower bound results immediately imply lower
bounds in terms of the number of selector-gates for probabilistic sorting circuit families.

16

3.3 External-Memory and Cache-Agnostic Algorithms

Not only do we care about the runtime of a RAM program, we also care about minimizing IO-cost.
To characterize IO efficiency, we adopt the same (possibly multi-level) cache-memory model as
adopted in the standard, external-memory algorithms literature [2, 25, 30, 31, 65]. We consider an
external-memory model [2, 30, 65] where besides the CPU, the storage hierarchy is implemented
by a cache and an external-memory. As before, in each step of execution, a CPU performs some
computation over its internal registers, and then makes a read or a write request to the storage
hierarchy.

Memory requests are served in the following manner:

• If the address requested is already in the cache, the CPU then interacts with the cache to
complete the read or write request and thus no external memory read or write is incurred;

• Else if the address requested does not exist in the cache: 1) first, a cache-line containing the
requested address is copied into the cache from external memory possibly evicting some existing
cache-line from the cache in the process where the evicted cache-line is written back to memory;
and 2) then the CPU interacts with the cache to complete the read or write request. Thus, a
cache-line defines the atomic unit of access between the cache and the external memory.

Notation. Throughout this paper, we use the notation M to denote the cache size, i.e., the
number of words the cache can contain; and we use the notation B to denote a cache-line size, i.e.,
the number of words contained in a cache-line.

An algorithm’s IO efficiency. In such an external-memory model, an algorithm’s IO-cost is
the number of times a cache-line is transferred between the memory and the cache (thus IO-cost
characterizes the number of cache misses).

Cache-aware vs. cache-agnostic algorithms. As in the standard algorithms literature, if an
external-memory algorithm must know a-priori the parameters of the cache (i.e., M and B), it is
said to be cache-aware. If an external-memory algorithm need not know the cache parameters,
it is said to be cache-agnostic [25, 31]. As is well-known in the algorithms community, cache-
agnostic algorithms offer numerous compelling advantages over cache-aware ones: first, any cache-
agnostic algorithm with optimal IO performance can readily run on any architecture with unknown
architectural parameters and achieve optimal IO performance; second, on any multi-level memory
hierarchy, optimality is achieved in between any two adjacent levels (e.g., between the cache and
memory, between the memory and disk, and between the local disk and the cloud server).

Standard cache assumptions. Our assumptions about the cache are standard and well-accepted
in the algorithms literature. We assume that the cache has full associativity and moreover imple-
ments an optimal replacement policy — the justifications of such assumptions have been clearly
articulated in the algorithms literature: although common architectures in practice may have dif-
ferent realizations, costs in this ideal cache model can be easily translated to costs on common
practical architectures (see Appendix A for more details).

Our IO-efficiency-related upper bound results assume that M ≥ log1.1N — this is satisfied if we
assume the following standard cache assumptions that are widely adopted in the external-memory
algorithms literature [7, 10,11,15,25,31,36,51,55,57,58,67,69]:

17

• Tall cache. A tall cache assumption states that the cache is taller than it’s width; that is, the
number of cache line, M/B, is greater than the size of one cache line, B, where M is the size of
cache; or simply stated, M ≥ B2.

• Wide cache-line. The wide cache-line assumption states that B ≥ logc n where c is a constant
(typical works assume that c ≥ 0.55) and n is space consumed by the algorithm.

Oblivious algorithms in the external-memory model. Oblivious algorithms in the external-
memory model is similarly defined as in Definition 1. We stress that even in the external-memory
model, for our obliviousness definition we assume that the adversary can observe full memory
addresses being requested in every CPU step — our definition is stronger than those adopted by
some earlier works on external-memory oblivious algorithms [36,37,39] such as Goodrich et al. [36]
— earlier works assume that the adversary can only observe the accesses between the cache and
the memory but not the accesses between the CPU and the cache. Chan et al. [20] were in fact
the first to phrase this notion of obliviousness for external-memory algorithms — they referred to
this stronger notion as strong obliviousness, and the weaker notions adopted earlier [36] as weak
obliviousness. They also argue that this strong notion is desired in practical applications such as
oblivious algorithms for secure processors such as the popular Intel SGX [4, 22, 50] — since strong
obliviousness defends against a well-known cache-timing attack whereas the weak obliviousness
provides no such defense.

3.4 Building Blocks

3.4.1 Cache-Agnostic Algorithms

Cache-agnostic oblivious matrix transpose. Frigo et al. [31] provides a matrix transposition
with optimal runtime and IO-cost. Note the algorithm is also oblivious.

Lemma 1 (Theorem 3, [31]). There is an cache-agnostic, oblivious algorithm Transpose such that
given an m× n matrix A stored in row-major layout, the algorithm computes the transpose AT in
runtime O(mn) and IO-cost O(mnB).

Cache-agnostic non-oblivious random cyclic-shift. Given an input array I of n elements,
a random cyclic-shift algorithm outputs an array O such that O[i] := I[(i + r) mod n] for all i,
where r is uniformly sampled at random from [n]. The näıve cache-agnostic algorithm shift runs
in time O(n) and IO-cost O(dn/Be) as follows: sample r uniformly from [n]; for i from 0 to n− 1,
move I[(i + r) mod n] to O[i]. Note that shift reveals randomness r (and hence is not oblivious
w.r.t. r.)

3.4.2 Oblivious Sorting

Sorting circuits. Ajtai et al. [3] and Goodrich [34] show that sorting circuits with O(n log n)
comparators can be constructed. Our algorithms later will make use of such sorting circuits as a
building block (particularly on problems of small sizes).

Funnel oblivious sort. Though Zigzag and AKS sort are asymptotically efficient in runtime,
they are not as good in terms of IO-cost. Chan et al. [20] devised an IO-optimal (randomized)
oblivious sorting algorithm in the cache-agnostic model. At a high level, their algorithm invokes
an instance of funnel sort [31] in a non-blackbox fashion to randomly permute inputs, and then

18

invokes another instance of funnel sort [31] (this time in a blackbox fashion) to sort the permuted
inputs — hence we call their algorithm “funnel oblivious sort”.

In our paper, we rely on a further improved version of Chan et al. [20]’s algorithm henceforth
denoted FunnelOSort — in particular, we substitute the bitonic sort in Chan et al. [20]’s construc-
tion with an improved building block called DeterministicPart (i.e., deterministic partitioning) as
described in Appendix B. We state the improved result in the following lemma.

Lemma 2 (Theorem 5.7, [20] with improvements described in Appendix B). Assuming M =
Ω(B2), and B = Ω(log0.55 λ), there exists a cache-agnostic, oblivious sorting algorithm henceforth
denoted FunnelOSort, which, except with negligible in λ probability, correctly sorts n elements in
O(n log n log log λ) time, O(n) space and O(nB logM

B

n
B) IO-cost.

Note that the work of Chan et al. claims the runtime O(n log n(log log λ)2), and thus our im-
provements in Appendix B improves a log log λ factor.

4 Oblivious Sorting Lower Bounds in the Balls-and-Bins Model

In this section, we prove lower bounds for oblivious sorting in the “balls-and-bins” model. In this
model, we would like to obliviously sort n opaque balls each carrying a k-bit key by the relative
order of the keys. Our lower bounds work for a probabilistic Oblivious RAM model with the
following assumptions:

• There are O(1) number of CPU registers;

• The CPU is allowed to perform arbitrary computation on the keys (and moreover such compu-
tation is for free in our lower bound which makes our lower bound stronger);

• Whenever the CPU visits a memory location, it may (but does not have to) read the ball in
the memory location into some CPU register, and/or write a ball from some (possibly different)
CPU register into the memory location. Each such memory operation will count towards cost
in our lower bound.

4.1 Preliminaries on Routing Graph Complexity

We consider a routing graph. Let I and O denote a set of n input nodes and n output nodes
respectively. We say that A is an assignment from I to O if A is a bijection from nodes in I to
nodes O. A routing graph G is a directed graph, and we say that G implements the assignment A
if there exist n vertex-disjoint paths from I to O.

Pippenger and Valiant proved the following useful theorem [56].

Theorem 7 (Pippenger and Valiant [56]). Let A := (A1, A2, . . . , As) denote a set of assignments
from I to O where |I| = |O| = n, such that each input in I is assigned to s different outputs in O
by the s assignments in A. Let G be a graph that implements every Ai for i ∈ [s]. It holds that the
number of edges in G must be at least 3n log3 s.

In our lower bound proof, we shall make use of this theorem to reason about access pattern
graphs of an Oblivious RAM machine.

Definition 3 (Shift assignment). We say that A is a shift assignment for the input nodes I =
{x0, x1, . . . , xn−1} and output nodes O = {y0, y1, . . . , yn−1} iff there is some s such that for any
i ∈ {0, 1, . . . , n− 1}, xi is mapped to yj where j = (i+ s) mod n — we also refer to s as the shift
offset.

19

4.2 Limits of Oblivious Sorting in the Balls-and-Bins Model

Theorem 8 (Oblivious sorting Ω(log n)-bit keys in the balls-and-bins model must take Ω(n log n)
time). Let c > 0 be an arbitrarily small constant. Any (possibly probabilistic) oblivious sorting
algorithm in the balls-and-bins model which correctly sorts any input sequence n balls each carrying
a c log n-bit key must incur at least Ω(n log n) expected runtime. Further, this lower bound holds
even if for any input, the algorithm is allowed to err with probability O(1).

Proof. For simplicity, we first prove the following: assuming that the algorithm achieves perfect
correctness for any input sequence, then it must incur Ω(n log n) runtime with probability 1. With-
out loss of generality, henceforth we may assume a RAM with a single CPU register — but our
proof easily extends to RAMs with O(1) CPU registers since clearly any such O(1)-register RAM
can be simulated by a 1-register RAM with constant blowup in runtime.

Imagine that there are n balls in memory, and consider any fixed initial key assignment ~X ∈ [K]n

where K = 2c logn. Recall that the execution of the algorithm may be probabilistic, and thus we
consider a specific sample path for input ~X that occurs with non-zero probability. Let G be the
sequence of physical access patterns observable in this sample path. Henceforth we will think of G
as a directed graph in which each node is labeled by one or more pairs of the form (a, t) where a
denotes the (physical) memory address and t denotes the time step in which this node is created.
Henceforth for convenience we will assume that the single CPU register resides at memory address
0 and all other memory locations reside at addresses 1 or greater. In this graph G, there are n
input nodes corresponding to the n balls initially in memory each labeled with (a, 0) for a ∈ [n],
and there are n output nodes corresponding to the sorted array at the end of the algorithm each
labeled with (a, T) where a ∈ [n] and T denotes the runtime of the algorithm in this sample path
— note that without loss of generality, we may assume that the output array is copied to addresses
1..n. In every time step t ∈ [T] of the execution (recall that the CPU accesses exactly one memory
location in every time step):

• Create a new node (0, t) denoting a copy of the CPU’s register at the end of this time step;

• If the CPU accesses some memory location a during this step (there is exactly one such a), then
we create also a node (a, t); further, we draw the following directed edges:

(0, t− 1)→ (0, t), (0, t− 1)→ (a, t), (a, t− 1)→ (a, t), (a, t− 1)→ (0, t)

• If the CPU does not access a memory location a during this step, then we henceforth use notation
(a, t) as an alias for (a, t− 1), i.e., without actually creating a new node called (a, t).

We stress that the same node may have multiple labels of the form (a, t), since if the node (cor-
responding to some memory address) did not get accessed in some time step, there is no need to
create a new copy of this address.

Since due to our simplifying assumption, the algorithm has perfect correctness and perfect
obliviousness, it must be that the access pattern G can explain any initial key assignment ~X ′ ∈ [K]n.
Henceforth we say that an access pattern G can explain an initial key assignment ~X iff subject to
this physical access pattern, there is a feasible way for a CPU to rearrange the input array ~X such
that in the output array such that the output array becomes sorted — here we assume that the
CPU can even examine ~X and G and then decide a posteriori, possibly in unbounded time, how to
perform such rearrangement subject to this access pattern G.

Claim 1. Suppose that an access pattern G can explain any input sequence ~X ′ ∈ [K]n, then G,
when viewed as a graph as defined above, can implement all K − 1 shift assignments for any shift
offset s ∈ {−1,−2, . . . ,−K + 1}.

20

Proof. We can consider the following subset containing K − 1 possible input sequences. For i ∈
[K − 1], the i-th such input sequence is defined as follows: the last i balls are assigned with keys
1, 2, . . . , i respectively and all other balls are assigned with the key K.

It is not difficult to see that the K − 1 shift assignments considered in the above claim satisfy
the conditions required by Theorem 7, that is, any input node is mapped to K−1 different outputs
in these K − 1 shift assignments. Thus by Theorem 7, we conclude that the graph G must have
at least Ω(n logK) = Ω(n log n) edges. Therefore it must be that the runtime of this sample path
T = Ω(n log n). Since this must hold for any sample path of non-zero probability given any fixed
input sequence, it holds that with probability 1, the program’s execution time is Ω(n log n).

It suffices to describe how to extend this proof for the case when, given any input sequence, the
algorithm succeeds with p = O(1) probability. Without loss of generality, we assume that p = 1

2
since we can easily readjust the parameters of the proof for other constants. Since the algorithm
has perfect obliviousness, we have that for any input sequence the distribution of the access pattern
graph G is the same — and let D denote this distribution on G.

Let S denote the set of all shift assignments with shift offset {−1,−2, . . . ,−K + 1}. Since for
any input ~X, the algorithm succeeds with at least p probability, we have that

∀ ~X : Pr
G←$D

[
G can explain ~X

]
≥ 1

2

which implies that

E ~X←$S
EG

[
I(G, ~X)

]
≥ 1

2
(3)

where I(G, ~X) is the indicator function denoting whether G can explain ~X. It suffices to prove
that

Pr
G←$D

[
G can explain at least

1

4
fraction of S

]
≥ 1

10

For the sake of contradiction suppose that

Pr
G←$D

[
G can explain at least

1

4
fraction of S

]
<

1

10

We have that

EGE ~X←$S

[
I(G, ~X))

]
≤ 1

10
· 1 +

9

10
· 1

4
<

1

2

This contradicts Equation (3).

4.3 Limits of Stability

As mentioned, our oblivious sorting algorithm is not stable. As the following theorem states, this
is in fact inherent since one cannot hope to achieve o(n log n)-time stable oblivious sort even for
1-bit keys in the balls-and-bins model.

Theorem 9 (Stable oblivious sorting of even 1-bit keys in the balls-and-bins model must consume
Ω(n log n) runtime). Let c > 0 be an arbitrarily small constant. Any (possibly probabilistic) oblivious
sorting algorithm in the balls-and-bins model which correctly and stably sorts any input sequence of
n balls each carrying 1-bit key must incur at least Ω(n log n) expected runtime. Further, this lower
bound holds even if for any input, the algorithm is allowed to err with probability O(1).

21

Proof. The proof proceeds in almost identical manner as Theorem 8. The only modification nec-
essary is that we now have to prove an equivalent of Claim 1 for the case of stable, 1-bit sorting.
This is not difficult to construct by considering the following subset of up to n − 1 number of 0-1
input sequences: in the i-th such sequence where i ∈ [n], the last i balls are marked with 0 and
the remaining balls are marked with 1. We note that this claim no longer holds if the sort is not
required to be stable (and that is why our Partition algorithm, which is not stable, can possibly
work).

4.4 Implications for Probabilistic Sorting Circuits in the Balls-and-Bins Model

Note that a lower bound in such a probabilistic Oblivious RAM model immediately implies a lower
bound in a probabilistic circuit model as described in Section 3.2. We thus conclude with the
following immediate corollaries.

Corollary 5 (Lower bound for probabilistic sorting circuits). For any constant 0 < ε < 1 and any
arbitrarily small positive constant c, let K = 2c logn; for any (n,K, ε)-sorting circuit family C, it
must be that Ssel(C) ≥ Ω(n log n).

We may now define a family of circuits for stably sorting 1-bit keys in the balls-and-bins model
in a similar fashion as Definition 2. We also obtain the following immediate corollary for the
selector-complexity of any circuit family that stably sorts 1-bit keys.

Corollary 6 (Lower bound for probabilistic 1-bit stable sorting circuits). For any constant 0 <
ε < 1 and any arbitrarily small positive constant c, for any circuit family C that stably sorts n balls
with 1-bit keys with correctness error ε, it must be that Ssel(C) ≥ Ω(n log n).

Remark 2 (Comparison with the ORAM lower bound). We remark that neither of our lower
bounds, Theorem 8 or Theorem 9, is implied in a blackbox fashion from Goldreich and Ostrovksy’s
ORAM lower bound [32, 33]. The ORAM lower bound says that a logarithmic blowup is necessary
to compile a generic RAM program to an oblivious one; it does not imply that a logarithmic blowup
must be necessary for compiling any specific RAM algorithm. Among the two lower bounds, Theo-
rem 8 can be proven using techniques that are similar to Goldreich and Ostrovksy’s ORAM lower
bound [32, 33]. However, the same techniques are insufficient for proving Theorem 9 — there the
keys are only 1-bit and the number of possibilities in the counting argument is significantly reduced.
Our techniques for proving Theorem 9 are novel and draw inspiration from the algorithms literature
on non-blocking graphs [56].

5 Partitioning 1-Bit Keys

Our first step is to realize 1-bit partitioning: given n balls each tagged with a 1-bit key, output
an array containing the same balls (tagged with keys) according to the relative ordering of their
keys. The algorithm need not be stable — as shown in Theorem 9, no oblivious algorithm in the
balls-and-bins model can realize 1-bit stable partitioning in o(n log n) time.

Assumptions. Throughout this section, we shall assume that the RAM’s word size is large
enough to store each ball as well as its key. We assume that word-level addition, subtraction, and
comparison operations can be computed in unit cost (but we do not need word-level multiplication
in this section).

22

1 0 0 0 0 0
1 0 1 0 1 0

Top Stripe

Mixed Stripe

Bottom Stripe

0

1

Figure 1: Matrix layout and example matrix after transpose

5.1 Intuition

The high-level idea of our 1-bit partitioning scheme (the IO-inefficient version) was described in
Section 2.1. To quickly recap, the idea is to randomly permute the input balls and divide them into
log6 λ-sized bins. Now we arrange each bin as the column of a matrix, and sort each column. It
thus holds that except with negligible in λ probability, there exists a small mixed stripe containing
at most log4 λ rows such that all rows above (called the top stripe) contain 0s and all rows below
(called the bottom stripe) contain 1s (see Figure 1). The formal proof of this statement will be
presented later for Lemma 3. Now, our algorithm simply obliviously sorts (e.g., using Zigzag sort)
the mixed stripe, and outputs the top stripe, mixed stripe, and bottom stripe in this order.

To make the above algorithm IO-efficient, first, we need to instantiate the oblivious sort with
an IO-efficient construction. In our case, we only need to sort 1-bit keys — we thus devise an
IO-efficient, deterministic 1-bit sorting algorithm described in Appendix B. Secondly, as mentioned
earlier in Section 2.5, a novel idea we have is to replace the random permutation in the preprocessing
stage with a weaker primitive that is IO-efficient and still sufficient for our statistical guarantees.
Thus, we perform a “bin-wise independent shuffle” operation, where we express the initial array A
as a short-and-fat matrix of log6 λ height. We then perform an independent random cyclic shift of
each row (the random shift offset need not be secret), and then we call each column a bin. In our
formal algorithm description to follow, we show how to combine this idea with a cache-agnostic
matrix transpose operation to achieve IO efficiency.

5.2 New Building Blocks

We will need two new building blocks, MoveStripe and DeterministicPart.

Oblivious deterministic partitioning. We devise an IO-efficient algorithm (in the cache-
agnostic model) called DeterministicPart that is capable of sorting balls tagged with 1-bit keys in
O(n log n) runtime and O(nB logM n) IO-cost. We defer the details of this algorithm to Appendix B.

Obliviously copying a stripe to a working buffer. Given a matrix A written down in a
row-major manner in memory, a stripe is defined as a set of consecutive rows from l to r. The
following MoveStripe algorithm can copy all elements in the rows from l to r to a working buffer of
equivalent size (in any order), without revealing the location of the stripe.

23

Algorithm 1 MoveStripe

1: procedure MoveStripe(A, l, r) // This function is an oblivious and cache-agnostic procedure, it

will move items in the interval [l, r) to a temp memory.

2: Let M be the temporary memory to hold the mixed stripe.
3: Parse A as Z × n

Z matrix, where Z = log6 λ.
4: Move ptr to the first row of M .
5: for i from 0 to Z do
6: if i ∈ [l, r) then // inside the region

7: M [ptr]← A[i], where X[t] denotes the t-th row of matrix X.
Move ptr to next row. If it reaches the end of M , move it to the beginning.

8: return M

5.3 Algorithm for Partitioning 1-Bit Keys

We now describe the detailed algorithm that sorts balls tagged with 1-bit keys, and it is IO-efficient
in the cache-agnostic model. In our algorithms below, all matrices are row-major in memory, which
matters when discussing IO efficiency. Let δ be log4 λ and Z be log6 λ.

Algorithm 2 Partitioning 1-bit keys

1: procedure Partition(A) // We parse A as a Z × n
Z matrix where Z = log6 λ

2: For each row in A, perform a RandCyclicShift.
3: Sort columns:

AT ← Transpose(A). Use DeterministicPart to sort each row of AT . A← Transpose(AT).
4: In one scan, identify the first row i with mixed 0s and 1s, and rows [i, . . . , i+ δ] are said

to be the mixed stripe where δ := log4 λ.

5: Move the mixed stripe to a working buffer using MoveStripe(A, i, i+δ), where the working
buffer is represented as a δ × n

Z matrix.
6: Using DeterministicPart to sort the working buffer.
7: Obliviously cyclic-shift the working buffer by (i mod δ) rows using FunnelOSort.
8: Move the working buffer back to the original location in A.
9: return A

5.4 Analysis

Correctness. Recall that the minimum mixed stripe is defined as the minimum set of rows such
that all rows above it contain 0s and all rows below it contain 1s. The number of rows contained
in the minimum mixed stripe is said to be the height of the minimum mixed stripe.

Lemma 3 (Mixed stripe is small). There exists a negligible function negl(·) such that for any
input key assignment, except with negl(λ) probability, the height of the minimum mixed stripe in
the Partition algorithm is upper bounded by δ = log4 λ.

Proof. Sorting a row in AT is equivalent to sorting the corresponding column in A, and hence, in
this proof, we consider columns in A. Consider a fixed column in A after the Partition algorithm
performs the RandCyclicShift step — recall that such a column is called a bin, and its size is
Z = log6 λ.

Let bin B be a fixed column. Let Xi denote the bit associated with the i-th ball in bin B.
We observe that Xi is picked at random from the i-th row of the original matrix A (before the

24

RandCyclicShift step). Note that Xi draws from Bernoulli distribution B(1, pi), where pi is the
fraction of 1 in i-th row. Further, for any i 6= j, Xi and Xj are independent. Let X :=

∑Z
i=1Xi be

the total number of 1s in B. We next observe that

E[X] =
Z∑
i=1

pi.

By Hoeffding’s inequality, for this fixed bin B, we have

Pr(|X −E[X]| ≥ 1

2
log4 λ) ≤ 2e−2

(log4 λ)2

4Z = 2e−
1
2

log2 λ.

It follows that, for each bin, except with probability ε(λ) = 2e−0.5 log2 λ, the total number of 1s
must be within the range R = (E[X] − 1

2δ,E[X] + 1
2δ). Let Yj be the total number of 1s in the

j-th bin. By union bound, the probability that there exists j such that Yj /∈ R is upper bounded
by negl(λ) = n

Z ε(λ). It follows that, after sorting each row in AT and transposition, the height of
the minimum mixed stripe is at most δ except with negl(λ) probability.

Corollary 7. Given any input array with n elements and each with a 1-bit key, Partition correctly
sorts it except with negl(λ) probability.

Proof. Note that all 0s and 1s that are not in the mixed stripe are located in the correct position after
sorting each row in AT and transposition. By Lemma 3, except with negligible probability, there
exists some mixed stripe of fixed size R that contains the minimum mixed stripe. Conditioning
on such good event, the remaining procedures of Partition finds the minimum mixed stripe and
correctly sorts elements in the mixed stripe, which implies the correctness of the final output.

Time complexity. We now analyze the scheme’s running time.

Lemma 4. Given input A and security parameter λ, where n denotes number of elements in A,
Partition completes in time O(n log log λ).

Proof. RandCyclicShift and Transpose run in O(n) time. For each column of A, DeterministicPart
takes time O(log6 λ log log λ), summing up to O(n log log λ). MoveStripe takes time O(n), and then
sorting the working buffer of n

log2 λ
elements (using FunnelOSort) takes time O(n

log2 λ
log n log log λ),

which is o(n) given n = poly(λ). Hence, the total runtime is O(n log log λ).

IO-cost. We now analyze the scheme’s IO efficiency.

Lemma 5. The overall IO cost of RandCyclicShift in line 2 is O(nB).

Proof. Let Z be the bin size (or column size in matrix A).
We have two cases, n

Z > B or n
Z ≤ B.

1. n
Z > B, each RandCyclicShift instance takes at most 2(n

ZB + 1) IOs. Further, there are Z such
instances, thus the overall cost is O(nB).

2. n
Z ≤ B, with each cache load, we load b B

n/Z c rows in the matrix. Since we need to load Z

rows in total, the total number of loads is Z
b B
n/Z
c ≤ 2 Z

B
n/Z

= 2 nB .

25

Lemma 6. The algorithm takes O(d nB e logM log λ) IO-cost.

Proof. We analyze the algorithm line by line. By Lemma 5, line 2 takes O(nB) IOs. For line 3,
Transpose takes O(nB) IOs by Lemma 1. After the transpose, each column in A is consecutive in
memory, so DeterministicPart runs in O(nZ · d

Z
B e logM Z) IOs if Z > M (and O(d nM e) otherwise).

Then, MoveStripe performs linear scan and costs O(d nB e) IOs. Sorting the working buffer and cyclic
shifting run in O(d nB e) as the problem size is only O(n

log2 n
). In summary, the overall IO-cost is

O(d nB e logM log λ).

The following theorem follows from Lemmas 4 and 6.

Theorem 10. There exists a negligible function negl(·) such that for all input A, Partition is
a cache-agnostic and oblivious algorithm, correctly sorts A in time O(n log log λ) and IO-cost
O(d nB e logM log λ) except with probability negl(λ).

Assuming wide cache-line and tall cache (M ≥ logc λ for some constant c > 0), the IO-cost is
O(d nB e).

6 Sorting Short Keys

Our earlier algorithm Partition allows us to sort balls carrying 1-bit keys. In this section, we show
how to use Partition as a starting point and recursively solve the problem of sorting larger keys.
For simplicity, we first describe a simple reduction that allows us to sort only o(log n/ log log n)-bit
keys in o(n log n) time. Later in Section 6.3, we will show how to improve the recurrence to sort
o(log n)-bit keys in o(n log n) time.

Assumptions. Throughout this section, we shall assume that the RAM’s word size is large
enough to store each ball as well as its key. We assume that word-level addition, subtraction, and
comparison operations can be computed in unit cost (but we do not need word-level multiplication
in this section).

Notation. The notation “range [K]” is sometimes abused to denote any set {a, a+1, . . . , a+K−1}
of size K for some integer a — in other words, our SortSmall algorithm can sort not just integer
keys from [K], but in fact any contiguous range of size K as long as each key and ball can be stored
in a single memory word.

6.1 Intuition

Earlier we described the intuition how to leverage a 1-bit partitioning building block to solve the
problem of sorting longer keys. We briefly recap at this moment.

Suppose we would like to sort keys from some contiguous domain [K]. The idea is to still sort
each column of the matrix where each column is a bin of size Z = log6 λ. Now, we make a critical
observation: if we sort the middle 2 log4 λ rows of this matrix, then, except with negligible in λ
probability, it must be that any element in the top half of the matrix is no larger than even the
minimum element in the bottom half.

Two useful implications come out of this observation. First, at most one half (either the top
half or the bottom half but not both) can still have K distinct keys left. Second, the instance that
has fewer number of distinct keys left has at most dK2 e distinct keys. These two observations allow
us to break the problem apart into 1) an instance of half the size of sorting keys from the same

26

range [K] as where we started, and 2) an instance of half the size, but sorting keys from the range
[dK2 e] which is roughly half the size of the initial range. Note that to realize this divide-and-conquer
strategy obliviously requires using multiplexers to select a problem instance from two possibilities,
and then for the outcome we again need to apply a multiplexer to select an answer from two possible
answers — we defer these somewhat more tedious details to Section 6.2.

In our full algorithm description in Section 6.2, we also aim to optimize the IO efficiency of
the algorithm. The techniques for IO efficiency here are the same as our techniques for the 1-bit
partitioning algorithm earlier in Section 5: essentially, we use bin-wise independent shuffling rather
than a full random permutation in the preprocessing stage; and further, we rely on cache-agnostic
matrix transposition several times to be able to operate on either the rows or the columns of a
matrix in an IO-efficient manner.

6.2 Warmup Scheme

Notations. Let δ = log4 λ. For simplicity, we use “element” and “key of element” interchangeably
in the following.

New building block. The building block Selection is an oblivious algorithm that finds the
element of rank r in input an array, and its runtime and IO-cost is asymptotically the same as
Partition — in fact, in Section 8.2, we show that we can select all r smallest elements (not just the
r-th element) in almost linear time and linear IO; and just this building block alone solves an open
problem phrased by Goodrich [36].

Detailed algorithm. In Algorithm 3, we describe a warmup algorithm that can sort o(log n/ log log n)-
bit keys in o(n log n) time. The algorithm also describes several optimizations that are necessary
for IO efficiency.

Analysis. Below, we will prove the warmup algorithm’s correctness, and analyze its runtime and
IO efficiency.

Lemma 7 (Piecewise-ordered partition). Let m be the median key in A. There exists a negligible
function negl(·) such that after we sort the crossover stripe, the maximum element in the top half is
at most m and the minimum element in the bottom half is at least m except with probability negl(λ).

Proof. We prove the statement of the top half, and the bottom half follows symmetrically. Let A
be the Z× n

Z matrix after RandCyclicShift, For each element Aij , define the random variable Xij as

Xij :=

{
1 if Aij ≤ m
0 if Aij > m

.

Let random variable Xj :=
∑Z−1

i=0 Xij be the number of keys in column j that is at most m. For
every column j, observe that the expectation E[Xj] is the same value µ = (

∑
i

∑
j Xij)/n. For

every j, the following Hoeffding’s inequality holds (similar to Lemma 3):

Pr(|Xj − µ| ≥
1

2
δ) ≤ 2e−2

(log4 λ)2

4Z = 2e−0.5 log2 λ.

Considering random variables Ymax := maxj{Xj} and Ymin := minj{Xj}, we have Ymax − Ymin < δ

except with probability negl(λ) := n
Z 2e−0.5 log2 λ by union bound. We say that the conceptual mixed

27

Algorithm 3 Sort keys from [K]

1: procedure SortSmall(A, K) // We parse A as a Z × n
Z matrix where Z = log6 λ.

2: if |A| < 2Z then return FunnelOSort(A)

3: if K ≤ 2 then return Partition(A)

4: Perform RandCyclicShift on each row and transpose the resulting matrix.
5: Sort columns: AT ← Transpose(A). Let ranks r1, r2 be Z/2−δ and Z/2+δ respectively.

For each column of A, find elements a1, a2 of ranks r1, r2 using Selection, and then partially
sort the column (using Partition) such that: (a) a1, a2 are the r1, r2-th elements, (b) all
elements located above a1 are taking value at most a1, (c) all elements between a1 and
a2 are in the range [a1, a2], (d) and all below a2 are at least a2. A← Transpose(AT).

6: Sort crossover stripe: Let the middle 2δ rows be the crossover stripe. FunnelOSort
the crossover stripe.

7: In one scan, find the minimum and maximum key for each half.
8: The number of distinct keys in each half is (max key−min key + 1).
9: if top half has ≤ dK2 e distinct keys then // Swap, DummySwap implement a multiplexer

10: Dummyswap(top half, bottom half).
11: Sort sub-problems: SortSmall(top half, dK2 e), SortSmall(bottom half, K).
12: Dummyswap(top half, bottom half).
13: else
14: Swap(top half, bottom half).
15: Sort sub-problems: SortSmall(top half, dK2 e), SortSmall(bottom half, K).
16: Swap(top half, bottom half).

17: return the resulting matrix A

stripe (after sorting columns) is the rows between Ymin and Ymax. Conditioning on the event that
Ymax − Ymin < δ, i.e., the height of the mixed stripe is less than δ, we consider the location of the
conceptual mixed stripe in the following cases.

• If the mixed stripe is totally in the bottom half, i.e., Ymin ≥ Z
2 , then there are at least Z

2
elements greater than m for every column of A. It follows that after sorting the crossover
stripe, every element is at most m in the top half.

• If the mixed strip is on the boundary of the top and bottom half, i.e., Z
2 − δ ≤ Ymin <

Z
2 ,

then the mixed stripe (of height δ) is totally covered by the crossover stripe (of height 2δ).
Note that any element a such that a > m and in the top half must be in the crossover stripe
by Z

2 − δ ≤ Ymin and Line 5(c). Hence, after sorting the crossover stripe, any a > m must
be in the bottom half because there are at most n/2 such a. The statement of the top half
follows by the contraposition.

Note that the mixed stripe cannot be totally in the top half (Ymin <
Z
2 − δ) while conditioning

on Ymax−Ymin < δ (otherwise Ymax <
Z
2 , and then m cannot be the median). It follows that every

element in the top half is at most m.

After sorting the crossover stripe, we say the top and bottom half pieces form a piecewise-ordered
partition of A iff the partition satisfies the median property as stated in the above Lemma 7. Now,
we prove the correctness of SortSmall using the following fact and union bound.

28

Fact 1. If the top and bottom halves is a piecewise-ordered partition of A, then at least one in the
two pieces has at most dK2 e distinct keys.

Lemma 8. There exists a negligible function negl(·) such that for any input array of n elements
and keys from the domain [K], SortSmall correctly sorts the array with probability 1− negl(λ).

Proof. If all partitions of A in the recursive SortSmall are piecewise-ordered, and all base-case
Partitions are correct, then SortSmall outputs correctly by Fact 1. By taking union bound over
Lemma 7 and Theorem 10, the bad event happens with probability negligible in λ as there are at
most n crossover stripes and K Partitions.

Lemma 9. The algorithm runs in time O(n logK log log λ) for all n ≥ λ.

Proof. Let c0, c1 be constants such that FunnelOSort runs in time c0n log n log log λ and Partition
runs in time c1n log log λ. Denote T (n,K) as the runtime of SortSmall on n elements in the range
[K]. Observe that sorting a column takes a constant number of Partition as Selection is implemented
by Partition. Hence, the recursion of runtime is

T (n,K) = T
(n

2
,K
)

+ T

(
n

2
,

⌈
K

2

⌉)
+ c′1n log log λ,

where c′1 > c1 is the constant absorbing the runtime of all other linear-time operations. We prove
by induction that the property T (n,K) ≤ c · n logK log log λ holds for all positive integer n and

K ≥ 2, where c :=
c′1

log 1.3 is a constant. For two base cases,

1. If n ≤ 2Z, the runtime is not bounded by c · n logK log log λ. We set T (n,K) = 1 in the
recursion and will sum up this term later.

2. If K = 2, the runtime is c1n log log λ ≤ c · n logK log log λ.

Assuming the induction hypothesis holds: for all n′ < n, K ′ ≤ K, T (n′,K ′) ≤ c · n′ logK ′ log log λ.
To prove that T (n,K) ≤ c · n logK log log λ holds, we substitute the recursion,

T (n,K) ≤ c · n2 logK log log λ+ c · n2 log dK2 e log log λ+ c′1n log log λ
≤ c · n logK log log λ− (log 1.3)c · n log log λ+ c′1n log log λ

where the second inequality holds by dK/2e ≤ K/1.3 for all K ≥ 2. By c = c′1/(log 1.3), it follows
that T (n,K) ≤ c ·n logK log log λ. Now we consider the base case, n < 2Z. If logK ≥ log log λ, the
total time of all base cases is O(n log2 log λ), which is dominated by O(n logK log log λ). Otherwise,
K < log log λ, and then only a small fraction of elements go to such base case: the number of such
base cases is

logK−1∑
i=0

(
log n− log 2Z

i

)
≤
(

log n− log 2Z

logK − 1

)
≤
(

(log n− log 2Z)e

logK − 1

)logK−1

≤ 2O(log2 log λ),

where the first and third inequalities follow by n ≥ λc for sufficiently large constant c. Hence, the
total time is dominated by recursion and Partition, T (n,K) = O(n logK log log λ), for all sufficiently
large n.

Lemma 10. Assuming tall cache and wide cache-line, SortSmall runs in IO-cost O(d nB e logK).

29

Proof. The IO-cost has a similar recursion,

C(n,K) = C(
n

2
,K) + C(

n

2
,
K

2
) +O(d n

B
e logM log λ),

where the base case n < 2Z is O(dZB e logM
B
dZB e) by FunnelOSort, and the base case K ≤ 2 is

O(d nB e logM log λ) by Partition. Hence, the total IO-cost is O(d nB e(logK logM log λ+logM
B
d log6 λ

B e)).
Recall that wide cache-line assumes B ≥ logc n for some c ≥ 0.55 and tall cache assumes M ≥ B2,
the IO-cost is bounded by O(d nB e logK).

Theorem 11 (Sorting small keys). Assuming tall cache and wide cache-line, there exists a neg-
ligible function negl(·) and a cache-agnostic, oblivious algorithm (with an explicit construction)
which, except with negl(λ) probability, correctly sorts an input array containing n (key, value) pairs
where the keys take value in the domain [1..K] in running time O(n logK log log λ) and IO-cost
O(d nB e logK).

6.3 Improved Recurrence

To sort even longer keys in o(n log n) time, we further divide the matrix into more pieces (rather
than only two pieces), and thus the key range of each piece is further reduced except for the
worst piece. To achieve obliviousness, we perform an additional oblivious sort to permute pieces,
so the access pattern is independent from the real key range of pieces. The algorithm Sort is
presented in Algorithm 4. The differences between Sort and SortSmall (Algorithm 3) are marked
in blue (Lines 8, 13, 15, 16). The building block osort is an oblivious sorting algorithm, which is
instantiated differently to achieve either time or IO efficiency.

Correctness. The following Lemma is a counterpart of Lemma 7, and their proofs are identical
except for that the element of rank tn

p is used instead of the median. Thus the proof of the following
lemma is omitted.

Lemma 11. For every t ∈ [p − 1], let mt be the element of rank tn
p in A (which should be sorted

to the tZ
p -th row of A). After sorting the crossover stripes, let Topt be the piece above the tn

pZ -th
row, and Bottomt be the piece below the row. There exists a negligible function negl(·) such that
the maximum element in Topt is at most mt and the minimum element in Bottomt is at least mt

except with probability negl(λ).

After sorting the crossover stripes, we extend the terminology and say that A1, . . . , Ap is a
piecewise-ordered partition of A iff for every t ∈ [p − 1], the maximum element in Topt is at most
mt and the minimum element in Bottomt is at least mt, where mt,Topt,Bottomt are defined as the
above Lemma 11. Now, conditioning on the event that {Ai}i∈[p] is piecewise-ordered, we show that
there exist pieces such that consists of a bounded faction of key range.

Lemma 12. Let A be an array of key in the range [K], A := {A1, . . . , Ap} be a piecewise-ordered
partition of A. Then, for every i ∈ [p], there exist at least i pieces of A′ ∈ A such that the range of
A′ is at most d K

p−i+1e.

Proof. Define the set Ai := {A′ ∈ A|A′ has at most d K
p−i+1e distinct keys} for every i ∈ [p]. Equiv-

alently, the lemma states that |Ai| ≥ i. It is equivalent to prove the property holds had {Ai}i∈[p]

was totally sorted as the number of distinct keys in each are identical. We prove that |Ai| ≥ i
holds for every i ∈ [p] by induction.

30

Algorithm 4 Sort o(log n)-Bit Keys

1: procedure Sort(A, K) // The input A is an array of n elements, each element is a key in a range

[K]. Parse the array into a Z × n
Z matrix, where Z = log6 λ.

2: if |A| < 2Z then
3: return osort(A)

4: if K < 64 then
5: return SortSmall(A,K)

6: Perform RandCyclicShift on each row of A.
7: Sort columns: AT ← Transpose(A). osort each row of AT . A← Transpose(AT).
8: Let p := blogKc, q := Z

p . Parse matrix A as p pieces, A0, . . . , Ap−1, where each piece Aj

is a q × n
Z sub-matrix of A.

9: for i from 1 to p− 1 do
10: Sort crossover stripes: osort the boundary between Ai and Ai+1. That is, sort all

elements between row iq − δ and row iq + δ.

11: for i from 1 to p do
12: Find the maximum key x and minimum key y in Ai. Let Ki := x− y + 1.

13: Sort all pieces {Ai}i∈[p] obliviously in increasing order of Ki:

{Bi}i∈[p] ← osort({Ai}i∈[p]). We assume each Bi remembers its original piece index.
14: for i from 1 to p do
15: Sort sub-problems: Sort(Bi, d K

p−i+1e).

16: Obliviously sort {Bi}i∈[p] by their original piece indexes: {Ci}i∈[p] ← osort({Bi}i∈[p]).
17: return {Ci}i∈[p].

To show the property holds for i = 1, let Kj be the number of distinct keys of the piece Aj ,
Kmin := minj{Kj}j∈[p]. Then, the total number of distinct keys in A is at least pKmin − (p − 1),
where pKmin follows from {Ai}i∈[p] is totally sorted, and p − 1 deducts the double counting on
(p − 1) boundaries. Solving pKmin − (p − 1) ≤ K, we have Kmin ≤ dK/pe, and then the property
holds for i = 1. For any i > 1, assume by induction hypothesis that the property holds for i − 1,
i.e., |Ai−1| ≥ i−1. The p− i+ 1 pieces not in Ai−1 consist at most K distinct keys, and then there
must exists a piece A′ /∈ Ai−1 such that has at most d K

p−i+1e distinct keys by the same argument
as i = 1. Observing Ai−1 ⊆ Ai and |Ai−1| ≥ i− 1, it follows |Ai| ≥ i.

By Lemma 11 and Lemma 12, we conclude that Sort is correct except for negligible probability.

Time complexity. To get the best running time, we shall instantiate osort with Zigzag sort [34]
in Algorithm 4. We now analyze the algorithm’s running time for this specific instantiation.

Lemma 13. The algorithm Sort runs in time O(n logK
log logK log log λ).

Proof. Let c0, c1 be constants such that Zigzag sort runs in time c0n log n and SortSmall runs in
time c1n logK log log λ. Denote T (n,K) as the runtime of Sort on n elements in the range [K].
Observe that all operations are linear-time except for recursion, sorting columns, and sorting pieces.
Sorting columns takes time 6c0n log log λ, and sorting pieces takes time 2c0n log p ≤ 2c0n log logK ≤
4c0n log log λ for K ≤ λc2 , where c2 is a constant. (Recall that the key length is at most word length,

31

which is O(log λ), which implies K ≤ λc2 .) Hence, the recursion of runtime is

T (n,K) =

(
p∑
i=1

T (
n

p
,
K

i
)

)
+ c′0n log log λ,

where c′0 ≥ 10c0 + 1 is the constant absorbing the runtime of all other linear-time operations.
We prove by induction that the property T (n,K) ≤ c · n logK

log logK log log λ holds for all positive

integer n and K ≥ 64, where c := max(
c′0

0.39 , 3c1) is a constant. The property holds for two base
cases:

1. If n < 2Z, the runtime is c0n log n < c0n(log 2Z) ≤ c · n logK
log logK log log λ (recall that Z =

log6 λ).

2. If K ≤ 64, the runtime is c1n logK log log λ ≤ c · n logK
3 log log λ ≤ c · n logK

log logK log log λ.

Assuming the induction hypothesis holds: for all n′ < n, K ′ ≤ K, T (n′,K ′) ≤ c·n′ logK′

log logK′ log log λ.
To prove that T (n,K) ≤ c · n logK log log λ holds, we substitute the recursion,

T (n,K) =

(
p∑
i=1

c · n
p

log (K/i)

log log (K/i)
log log λ

)
+ c′0n log log λ

≤

(
cn

p log log(K/p)
log log λ

p∑
i=1

log (K/i)

)
+ c′0n log log λ.

Note that
∑p

i=1 log (K/i) = p logK − log p! ≤ p(logK − log p) by log p! ≥ p log p. By p = logK, we
have

T (n,K) ≤ cn(log log λ)
logK − log logK

log(logK − log logK)
+ c′0n log log λ.

Note the fact that g(x) := x
log x −

x−log x
log(x−log x) > 0.39 for all x ≥ 6 (as the derivative is positive). By

K > 64, it follows that logK−log logK
log(logK−log logK) ≤

logK
log logK − 0.39, and the induction holds as c′ − 0.39c ≤

0.

Summarizing the above, we derive the following theorem.

Theorem 12 (Sorting keys in range K). There exists a negligible function negl(·) and a cache-
agnostic, oblivious algorithm (with an explicit construction) which, except with negl(λ) probability,
correctly sorts an input array containing n (key, value) pairs where the keys take value in the
domain [1..K] in running time O(n logK

log logK log log λ).

IO-efficient instantiation. To achieve IO efficiency in the cache-agnostic model, in the algo-
rithm Sort we instantiate every osort with FunnelOSort except for sorting the pieces. To sort
p = logK pieces, arrange the memory layout such that for any i, the i-th element in piece j are
packed together for every j ∈ [p], and then perform FunnelOSort on each pack of p elements for
every i ∈ [n/p]. Note that p < M as M = Ω(log1.1 λ) by wide cache-line and tall cache assumptions.

Corollary 8. Assuming tall cache and wide cache-line, the aforementioned IO-efficient instantia-
tion of Sort runs in time O(n logK

log logK log2 log λ) and IO-cost O(d nB e
logK

log logK).

32

Proof. In the running time, sorting columns take O(n logZ log log λ), the crossover stripes take
O(n log log λ), and sorting pieces takeO(n log p log log λ). The recursion solves toO(n logK

log logK log2 log λ).

The IO-cost to sort columns is O(nZ d
Z
B e logM

B

Z
B), to sort crossover stripes is O(d nB e), to sort

pieces is O(np d
p
B e) as p < M , and the base case SortSmall is O(d nB e logK). Hence, the recursion

solves to O(d nB e
logK

log logK) as the dominating factor logM
B

Z
B of sorting columns is bounded by a

constant assuming tall cache and wide cache-line.

7 Sorting Arbitrary-Length but Few Distinct Keys

So far, our algorithms assumed that the key is short in order to overcome the n log n barrier. In this
section, we show how to relax this assumption on the key length — we show how to overcome the
n log n barrier for arbitrary-length keys but assuming that the number of distinct keys is 2o(logn).

Assumptions. In this section, we shall assume that the RAM’s word size is Θ(log n) bits, and
that each key may be large and require L words to store. We assume that word-level addition,
subtraction, comparison, and multiplication operations can be computed in unit cost (c.f. in earlier
sections, we did not need unit-cost word-level multiplication).

7.1 Counting Distinct Keys

Recall that in our earlier algorithms, we needed the short-key assumption because we used the
expression (maximum key − minimum key + 1) to estimate the number of distinct keys in each
piece. In this section, we will propose a new oblivious algorithm for estimating the number of
distinct keys accurate up to a constant factor (except with negligible probability).

As mentioned, we assume each key is of L-words such that L ≤ poly(λ) (rather than 1-word as
in previous sections). We use the notation F0(A) (or F0 for short) to denote the number of distinct
keys in the array A as in the literature [28,42]. Our algorithm estimates F0 in O(nαL+nα2 log log λ)
time with negligible failure probability assuming n := |A| ≤ poly(λ).

7.1.1 Preliminaries

We define the problem of cardinality estimation (i.e., estimating the number of distinct keys given
an input array) as follows.

Definition 4 (Cardinality estimation problem). Given an array of elements x1, x2, ..., xn with
repetitions, we use the notation F0 = |{x1, x2, ..., xn}| to denote the number of distinct elements in
the array. For constants a, b > 0, we say F̃0 is an [a, b]-estimation of F0 iff aF0 ≤ F̃0 ≤ bF0.

k-wise ε-independent hash family. We will leverage a k-wise ε-independent hash family to
sub-sample keys (Meka et al. [52]), and the tail bound of k-wise ε-almost independent variables
(Celis et al. [17]) is needed in the analysis.

Definition 5 (k-wise ε-almost independent hash function). A hash family H = {h : {0, 1}p →
{0, 1}q} is said to be k-wise ε-almost independent if for any k fixed inputs, their (joint) output
distribution is ε-close to uniform (in statistical distance, where the probability is over the choice of
a function from the family).

33

Lemma 14 (Construction 1, [52]). Let k > 1, 2`1 ≥ k`2/ε, and F be the field GF (2`1). Then, there
exists a k-wise ε-almost independent hash family H = {h : F → {0, 1}`2} such that every h ∈ H
can be evaluated in O(log k`2) field operations, where each field operation is either an addition or
a multiplication in GF (2`1), and the seed of h is two elements sampled at random from F.

Lemma 15 (Lemma 2.2, [17]). Let X1, . . . , Xm ∈ {0, 1} be k-wise ε-almost independent random
variables for some k/2 ∈ N and 0 ≤ ε < 1. Let X =

∑m
i=1Xi and µ = E[X]. Then, for any t > 0,

it holds that

Pr[|X − µ| > t] ≤ 2

(
mk

t2

)k/2
+ ε
(m
t

)k
.

Counting few distinct elements. As described in Appendix C, the algorithm FewDistinct
counts the number of distinct elements in an array efficiently and obliviously.

Lemma 16. For all m,n ∈ N, let A be an array of length n such that consists of at most m − 1
distinct elements. The algorithm FewDistinct[m] is oblivious and computes F0(A) in time O(n logm)
for all A.

Collision-resistant compression family. We say a family of function G := {g : {0, 1}tp →
{0, 1}p} is a collision-resistant compression iff for all x 6= y ∈ {0, 1}tp,

Pr
g∈G

[g(x) = g(y)] ≤ t2−p.

The following is a family of functions constructed from the pairwise independent hash family
H2 = {h : {0, 1}2p → {0, 1}p} using the Merkle-Damg̊ard construction [23,53].

• For t > 1, define a family of functions G := {gh1,...,ht−1 : {0, 1}tp → {0, 1}p | h1, . . . , ht−1 ∈
H2}, where

gh1,...,ht−1(x) := ht−1(ht−2(. . . h1(x1||x2)|| . . . xt−1)||xt),

where x is parsed as x1||x2|| . . . xt and xi ∈ {0, 1}p for all i ∈ [t].

Lemma 17. The family G is collision-resistant compression family.

Proof. Fix any pair x 6= y ∈ {0, 1}tp, there exists i ∈ [t] such that xi 6= yi and for all j ∈ [i+ 1, t],
xj = yj . If g(x) = g(y), then there exists i′ ∈ [i, t] such that

hi′−1(hi′−2(. . . h1(x1||x2) . . .)||xi′) = hi′−1(hi′−2(. . . h1(y1||y2) . . .)||yi′)

and hi′−2(. . . h1(x1||x2) . . .)||xi′ 6= hi′−2(. . . h1(y1||y2) . . .)||yi′ . That is, i′ is the first collision of h
after xi and yi. By union bound, i ≤ t, and H2 is pairwise independent, the collision probability is
at most t2−p.

A standard instantiation of the pairwise hash family H2 was described by Carter and Weg-
man [16]. Hence, in the RAM model, to compress a long input of L words, it takes O(L) words to
write down one such function g ∈ G, and applying g to an input is by construction oblivious and
completes in O(Lp/w) runtime as field multiplication, where w is the word size.

34

Algorithm 5 Cardinality estimation

1: procedure InitHash(A) // The input A is an array of n keys, where each key ai ∈ A is L-word

long. This procedure pre-calculates all hash values that will be used in the Distinct procedure.

2: Sample at random functions h from H, g from G.
3: For each ai ∈ A, let Gi = g(ai) if L ≥ 12α, Gi = ai otherwise.
4: Let HA := {(ai, Hi, Gi)}i∈[n], where Hi ← h(Gi) is (log log n)-bit for each Gi.
5: return HA.

6: procedure Distinct(HA) // The input HA := {(ai, Hi, Gi)}i∈[n] is an array of n elements that is

generated by InitHash(A). It outputs an estimation of F0(A).

7: Let B1 be the array {(H,G)|(a,H,G) ∈ HA}, i.e., using only the latter two entries.
8: for j from 1 to dlog log ne do
9: Partition(Bj) according to Hi,j for all (Hi, Gi) ∈ Bj , where Hi,j is the j-th bit of Hi.

10: Count the number of 0s and 1s in {Hi,j}i∈[n/2j], let b be the bit with count ≤ n/2j .
11: Let Bj+1 be an array of length n/2j . Obliviously copy into Bj+1 each pair (Hi, Gi) ∈ Bj

such that Hi,j = b (and pad Bj+1 with dummies for obliviousness).

12: Let Ḡ be the array consists of second entries of Bdlog logne+1, i.e., Ḡ = {G|(H,G) ∈
Bdlog logne+1}. Sort G using FunnelOSort.

13: Let est be the number of elements in G (using a linear scan).
14: Let G′ be the array {Gi}(ai,Hi,Gi)∈HA .

15: Let ans := FewDistinct[log5 λ](G′); return ans if ans 6= FAIL else return est · log n.

7.1.2 Algorithm for Estimating Number of Distinct Keys

To estimate F0 of the array A (of length n), the idea is to put keys into log n bins by the hash value
of each key. There exists a small bin such that consists of at most n/ log n (possibly duplicated)
keys, and then we can sort and count keys in such small bin in time O(n). Observing that all
identical keys are put into the same bin, the counting of the small bin is a good approximation of
F0/ log n if F0 is large enough and the hash is random enough. When F0 is small, we can simply
use FewDistinct (Algorithm 10) and obtain a exact number.

Algorithm 5 obliviously searches for the small bin of size at most n/ log n and performs the
estimation. We instantiate the k-wise ε-almost hash family H of Meka et al. (Lemma 14), where
the parameters are k := 2 log λ

log log λα, ε := 2−4α log λ, `2 := log log n, and F = GF (26α log λ), where

α(λ) := ω(1) is a super constant such that 1 < α ≤ log λ. Note that 26α log λ ≥ k`2/ε holds
for all λ ≥ 28 and α > 1. The collision-bounded compression G := {gh1,...,ht−1 : {0, 1}tp →
{0, 1}p | h1, . . . , ht−1 ∈ H2} (see Lemma 17) is instantiated with parameters p := 6α log λ and
t := L/p, where H2 := {{0, 1}2p → {0, 1}p} is the standard pairwise independent hash family of
Carter and Wegman [16]. The above h ∈ H and g ∈ G take space O(α) and O(L) words respectively,
and their sampling and evaluation are fast and oblivious.

7.1.3 Analysis

To show correctness, note that there exists no collision for all i, i′ such that ai 6= ai′ but g(ai) = g(ai′)
except with negligible probability by Lemma 17 and union bound. Hence, it suffices to show the
following holds had we generated Hi as Hi ← h(a′i) at Line 4, where a′i ∈ {0, 1}

p for all i.

35

Lemma 18. There exists a negligible function negl(·) such that for all A, Distinct(InitHash(A))
outputs a [1

2 ,
3
2]-estimation except with probability negl(λ).

Proof. If F0 < log5 λ, then Distinct outputs an exact number. Otherwise, the algorithm is equivalent
to distribute F0 balls into log n bins using hash valuesHj . We claim that for every bin Z, the number
of balls in Z is in the range [1

2µ,
3
2µ], except with negligible probability, where µ = F0/ log n is the

expectation. We note that the bound holds for every bin, and thus how does Distinct choose a bin
doesn’t affect correctness.

To prove the claim, fix a bin Z, let X1, . . . , XF0 be random variables such that Xj = 1 iff the j-

th distinct key hashes to bin Z, X =
∑F0

i=1. Note that {Xj}j∈[F0] are ε-almost k-wise independent

random variables, where k = 2 log λ
log log λα, ε = 2−4α log λ. By Lemma 15, plugging in m = F0,

µ = F0/ log n, t = 1
2µ, we have

Pr[|X − µ| > t] ≤ 2

(
mk

t2

)k/2
+ ε
(m
t

)k
= 2

(
4k log2 n

F0

)k/2
+ ε(2 log n)k

≤ 2−Ω(α log λ) + 2−Ω(α log λ),

where the last inequality follows by F0 ≥ log5 λ and n ≤ poly(λ). Choosing negl1(λ) be the right-
hand side, we have the claim holds for every bin except with probability negl(λ) := (log n)negl1(λ)
by union bound.

The time complexity of InitHash is dominated by evaluating g and h. Recall that w = Ω(log λ)
is the length of a word, and the field F = GF (26α log λ) is used in both g and h, where a field
operation takes time (6α log λ/w)2 = O(α2) as multiplication. As evaluating g takes O(t) and h
takes O(log k) field operations, InitHash runs in time O(nαL+nα2 log log λ). Note that the collision-
resistant g reduces a factor of L in the evaluation of the k-wise ε-almost independent h. The the
runtime of Distinct depends on β := min(L,α), which is dominated by Partition, FunnelOSort, and
FewDistinct[log5 λ], which are all O(βn log log λ). Also, both InitHash and Distinct are oblivious as
the access pattern doesn’t depend on A or randomness except for the input length n and security
parameter λ.

Summarizing the above, we conclude with the following theorem.

Theorem 13. Let A an array of n keys, where each key has L words. There exists a negligible func-
tion negl(·) such that for n,L ≤ poly(λ), the algorithm InitHash runs in time O(nαL+nα2 log log λ),
Distinct runs in time O(min(L,α)n log log λ), and the pair (InitHash,Distinct) is oblivious and out-
puts a [1

2 ,
3
2]-estimation except with probability negl(λ).

IO-cost. We now analyze the IO-efficiency of our construction.

Corollary 9. Assuming tall cache and wide cache-lines, InitHash consumes O(dnLB e) IO-cost, and

Distinct consumes O(dβnB e) IO-cost and time O(βn log2 log λ), where β = min(L,α).

Proof. By tall cache and wide cache-line assumption, we choose α ≤ log0.5 λ = o(B). The IO-cost
of InitHash is dominated by evaluating g on L words as each evaluation of h needs only O(α) words,
which fits into the cache of size M .

The IO-cost follows the fact that Partition, FunnelOSort the array Bdlog logne+1 of length n
logn ,

and FewDistinct are all O(dβnB e) under the tall cache and wide cache-line assumption, where β

36

in logarithmic factors are canceled under the assumption. The time complexity follows by the
dominating term of FewDistinct, O(βn log2 log λ).

7.2 Sorting Arbitrary-Length but Few Distinct Keys

In the previous Sort algorithm (Algorithm 4), we assumed that keys are short integers in the range
[K]. In this section, we relax this assumption — instead of assuming that keys are short, we
assume that the number of distinct keys is small relative to n but the keys can be from a large
range. Henceforth let K̂ denote the an upper bound on F0, i.e., the number of distinct elements
in the input — we assume that the algorithm knows K̂. To achieve this, we rely on our earlier
distinct element estimation algorithm Distinct — we will show that a constant-factor approximation
suffices.

Detailed algorithm. Before calling SortArbitrary as shown in Algorithm 6, we begin by per-
forming the following initialization procedure. Given an input array A, we begin by 1) applying
the collision-resilient compression function to compress each long key; and 2) applying a k-wise,
ε-independent hash function to each compressed key. Note that the above initialization procedure
is performed only once upfront, and the resulting compressed keys and their hash values will be used
by all instances of Distinct algorithms subsequently. Therefore, in the description of SortArbitrary,
we simply assume that each input element is already tagged with and a compressed key and its
hash value.

After this initialization procedure, we proceed with the main algorithm (i.e., SortArbitrary) as
follows. As before, we will divide the input into polylogarithmically sized bins and obliviously
sort each bin. We now write the bins as columns and divide the resulting matrix into pieces. We
then apply the Distinct algorithm to estimate the number of distinct elements in each piece and
obliviously sort pieces in increasing order of the estimation. To upper-bound the real number of
distinct elements in each piece, the upper bound of the previous Sort is multiplied by 3 as Distinct
outputs [1

2 ,
3
2]-estimations (except with negligible probability). Now we recurse on each piece using

this estimated distinct count (multiplied by 3). Finally, the base cases of K̂ < 64 are implemented
with the exact distinct counting algorithm FewDistinct (see Appendix C).

In our detailed algorithm description (Algorithm 6) ZigZagSort by default sorts in increasing
order of key if not specified.

Correctness. We first argue that in the execution of SortArbitrary, all instances of Distinct output
[1
2 ,

3
2]-estimation except with negligible probability. For each Distinct, the failure probability is

negligible by Theorem 13. We take union bound over polynomially many Distinct, and it follows the
total failure probability is still negligible. Note the union bound holds even though the probabilities
of two Distinct are not independent (as they depend on the same g and h, sampled once upfront).

The following variant to bound the number of distinct keys in partitions follows from a proof
that is similar to Lemma 12 — thus we state the following lemma without repeating the proof.

Lemma 19. Let A be an array of at most K̂ distinct keys, A := {A1, . . . , Ap} be a piecewise-
ordered partition of A. Then, for every i ∈ [p], there exist at least i pieces of A′ ∈ A such that A′

has at most d K̂
p−i+1e distinct keys.

Compared to Sort integers (Algorithm 4), the only difference is that SortArbitrary works on esti-

mated values K̃i when K̂ ≥ 64, and it suffices to show the relaxed sub-problem SortArbitrary(Bi,min(3d K̂
p−i+1e, K̂))

is correctly solved except with negligible probability. Suppose that A has at most K̂ distinct keys.

37

Algorithm 6 Sort Arbitrary-Length but Few Distinct Keys

1: procedure SortArbitrary(A, K̂) // The input A is an array of

n elements, each element is a tuple (key , H,G), where key is L-word long and F0(A) is at most K̂, and

H,G are the hashes generated by InitHash. Parse the array as a Z × n
Z matrix, where Z = log6 λ.

2: if |A| < 2Z then
3: return ZigZagSort(A)

4: if K̂ ≤ 2 then return Partition(A)

5: Perform RandCyclicShift on each row of A.
6: Sort columns: AT ← Transpose(A). ZigZagSort each row of AT . A← Transpose(AT).
7: Let p := 2 if K̂ < 64, otherwise p := blog K̂c. Let q := Z

p . Parse matrix A as p pieces,

A1, . . . , Ap, where each piece Aj is a q × n
Z sub-matrix of A.

8: for i from 1 to p− 1 do
9: Sort crossover stripes: ZigZagSort the boundary between Ai and Ai+1. That is, sort

all elements between row iq − δ and row iq + δ.

10: for i from 1 to p do
11: Estimate the number of distinct keys in Ai:

K̃i ←
{

FewDistinct[64](Ai) if K̂ < 64
Distinct(Ai) otherwise.

12: Sort all pieces {Ai}i∈[p] obliviously in increasing order of K̃i:

{Bi}i∈[p] ← ZigZagSort({Ai}i∈[p]). We assume each Bi remembers its original piece index.
13: for i from 1 to p do

14: Sort sub-problems:

{
SortArbitrary(Bi, d K̂

p−i+1e) if K̂ < 64

SortArbitrary(Bi,min(3d K̂
p−i+1e, K̂)) otherwise.

15: Obliviously sort {Bi}i∈[p] by their original piece indexes: {Ci}i∈[p] ← ZigZagSort({Bi}i∈[p]).
16: return {Ci}i∈[p].

Condition on the good event such that {A1, . . . , Ap} is a piecewise-ordered partitioning of A, and
all K̃i are [1

2 ,
3
2]-estimation of the real F0(Ai). It suffices to observe the following fact, and thus, by

union bound, SortArbitrary is correct except with probability negligible in λ.

Fact 2. Conditioning on the good event stated above, for any i ∈ [p], if the real F0(Ai) ranks j
among all real {F0(At)|t ∈ [p]} and the estimation K̃i ranks j̃ among all estimation {K̃t|t ∈ [p]}
such that j̃ < j, then F0(Ai) ≤ 3d K̂

p−j̃+1
e.

Proof. Assume for contradiction that F0(Ai) > 3d K̂
p−j̃+1

e. By [1
2 , ·]-estimation, K̃i >

3
2d

K̂
p−j̃+1

e.
Also, as K̃i ranks j̃ < j, there exists a piece Ai∗ such that F0(Ai∗) < F0(Ai) and ranks at most j̃
among all real {F0(At)|t ∈ [p]}, but the estimation K̃i∗ ranks > j̃ among all estimation {K̃t|t ∈ [p]}.
This cannot happen: F0(Ai∗) ≤ d K̂

p−j̃+1
e by ranking j̃ and Lemma 19, which implies K̃i∗ ≤ 3

2d
K̂

p−j̃+1
e

by [·, 3
2]-estimation; it follows K̃i∗ < K̃i and contradicts that K̃i∗ ranks > j̃.

38

Running time. The overall sorting consists of one InitHash and one SortArbitrary. To InitHash, it
takes O(nαL+nα2 log log λ) time. To SortArbitrary, it takes O(nL log log λ) to perform column-wise
ZigZagSort, and then the recursion of SortArbitrary is

T (n, K̂) =

p∑
i=1

T

(
n

p
,min(3d K̂

p− i+ 1
e, K̂)

)
+O(nL log log λ),

where the base cases are: if |A| < 2Z, then it is ZigZagSort and runs in time O(nL log n); if K̂ < 64,
then it is exactly SortSmall and runs in time O(n log K̂ log log λ). The recurrence and hence the
solution are identical to that of Sort (Lemma 13) except with a larger constant. Following the same
induction and induction hypothesis, we have the inequality

T (n, K̂) ≤ (cnL log log λ)
log K̂ − log p+ log(3)

log log(3K̂/p)
+ c1nL log log λ,

where c1 is the constant of the term O(nL log log λ) in the recursion. Choosing sufficiently large

c ≥ c1/0.16 such that cn log K̂

log log K̂
log log λ bounds both base cases, we have

T (n, K̂) ≤ O

(
nL

log K̂

log log K̂
log log λ

)

by the fact that log K̂−log p+log(3)

log log(3K̂/p)
≤ log K̂

log log K̂
− 0.16 for all K̂ ≥ 64.

Summarizing the above, we conclude with the following theorem.

Theorem 14. Let A an array of n keys and at most K̂ distinct keys, where each key has L
words. There exists a negligible function negl(·) for all A such that n, K̂, L ≤ poly(λ), the pair

(InitHash,SortArbitrary) obliviously sorts A in time O(nαL + nα2 log log λ + nL log K̂

log log K̂
log log λ)

except with probability negl(λ).

Remark 3. Compared to the earlier Sort algorithm in Section 6, we remark that SortArbitrary has
a couple more advantages (even when the key space is small): 1) Sort requires that the subtraction
operation be well-defined on the key space (w.r.t. the ordering) whereas SortArbitrary requires only a
comparison operator on the key space (and yet SortArbitrary is not comparison-based sorting since
it needs to evaluate boolean expressions over comparison results); and 2) even when the key space
K is small, if the number of distinct keys K̂ is much smaller than the key space K, SortArbitrary
can be more efficient than the earlier Sort algorithm.

If keys are L-word long and L can be greater than cache size M , then just comparing two
keys costs L/B IOs. Hence, the IO-cost is simply runtime divided by cache-line size B in the
cache-agnostic model.

8 Applications to Other Open Problems

8.1 Tight Compaction

Tight compaction is the following problem: given an input array containing n real or dummy
elements, output an array where all the dummy elements are moved to the end of the array9.

9This formulation is slightly stronger than Goodrich’s [36]. Unlike Goodrich’s formulation, here our algorithm is
not aware of the number of real elements.

39

Oblivious compaction is a fundamental building block — in fact, the large majority of existing
oblivious algorithms [48, 54] as well as ORAM/OPRAM schemes [8, 19, 32, 33, 37, 45] have adopted
compaction as a building block. Goodrich phrased an open question in his elegant paper [36]:

Can we achieve tight compaction in linear IO?

As mentioned earlier, the probabilistic selection network construction by Leighton et al. [46]
can easily be extended to perform tight compaction in O(n log logn) time — however the resulting
algorithm would not have good IO efficiency when implemented on a RAM machine. It is obvious
that IO-efficient oblivious sorting algorithm for the 1-bit-key special case could answer Goodrich’s
open question as stated in the following corollary.

Corollary 10 (Tight compaction in almost linear time and linear IO). There exists a negligible
function negl(·) and a cache-agnostic, oblivious algorithm (with an explicit construction) which,
except with negl(λ) probability, correctly achieves tight compaction over n real or dummy elements
in O(n log log λ) time and with O(n/B) IOs assuming the cache size M ≥ log1.1 λ (which is satisfied
under the standard tall cache and wide cache-line assumptions).

Goodrich stated a notion of “order-preserving” for tight compaction which is the same as the
standard stability notion for sorting. Our tight compaction algorithm is not stable but our 1-
bit-key stable sorting lower bound (Theorem 9) rules out the existence of any o(n log n)-runtime
oblivious algorithm for tight stable compaction in the balls-and-bins model (since from tight stable
compaction one can easily construct oblivious sorting for 1-bit keys).

8.2 Selection

We consider the selection problem studied frequently in the classical algorithms literature [13, 46]:
given an input array containing n number of (key, value) pairs, output the k ≤ n pairs with smallest
keys. We note that Goodrich [36] considered a much weaker selection abstraction in which only
the k-th smallest element is required to be output (henceforth we refer to his variant as the weak-
selection problem). Goodrich [36] showed that weak-selection can be realized with O(n/B) IOs and
almost linear time if the algorithm knows the cache’s parameters M and B. It is not too difficult to
extend Goodrich’s algorithm to realize (strong) selection for k = o(n/ log2 n) — however, for larger
k values, e.g., k = O(n), a straightforward extension of their algorithm would result in Ω(n log n)
since they lack an efficient tight compaction building block (which they phrased as an open question
in their paper).

Using our oblivious tight compaction algorithm, we can easily devise a linear IO, almost linear-
time selection algorithm that not only selects all k smallest elements for any k ≤ n, but also is
cache-agnostic. The idea is simple:

1. First, as we explain in more detail below, we rely on an oblivious variant of Demaine’s median
algorithm [25] (which is a modification of the classical, linear-time median algorithm by Blum
et al. [13]) to find the element of the k-th rank.

2. Next, in one scan, we mark all elements greater than k as dummy, and we call tight compaction
to suppress all dummies.

It thus suffices to describe how to find the element of the k-th rank. We first describe Demaine’s
cache-agnostic selection algorithm which proceeds as follows. First, divide the input array into
groups of 5 and finds the median of every 5 elements. Then the algorithm recurses and finds the

40

median of the medians. Then in a partitioning step, the elements are partitioned into a set smaller
than this median (of the medians) and a set that is larger than or equal to this median. Finally, the
algorithm recurses on the partition which contains the element of the desired rank. This algorithm
is not oblivious due to two reasons:

1. First, Demaine’s implementation of the partitioning step is not oblivious.

2. Second, we cannot reveal how many elements fall on each side of the median (of the medians).

In light of these issues, we make the following modifications to Demaine’s algorithm.

• First, we rely on our new Partition algorithm to perform the partitioning step in an oblivious
manner.

• Second, since we cannot reveal how many elements are on each side of the median of the median,
no matter which side we recurse on, we always overapproximate and use 7

10n as the length of
the array to recurse on — note that the algorithm guarantees that the number of elements on
either side must be bounded by 7

10n.

• Third, due to the conditions necessary for our probabilistic analysis, whenever the problem size
is smaller than log6 λ, we stop the recursion and simply rely on FunnelOSort to find the element
of the desired rank.

It is not difficult to see that this modified algorithm achieves O(n log logn) runtime and con-
sumes O(n/B) IOs whenever M ≥ log1.1 λ (which is satisfied under the standard tall cache and
wide cache-line assumptions). This gives rise to the following corollary:

Corollary 11 (Selection in almost linear time and linear IO). There exists a negligible function
negl(·) and a cache-agnostic, oblivious algorithm (with an explicit construction) which, except with
negl(λ) probability, correctly achieves selection over n elements in O(n log log λ) time and with
O(n/B) IOs assuming the cache size M ≥ log1.1 λ (which is satisfied under the standard tall cache
and wide cache-line assumptions).

8.3 Additional Applications

Although oblivious algorithms aroused significant interest in the security and architecture commu-
nities due to emerging applications such as cloud outsourcing [24, 37, 61, 68] and secure processor
design [29, 47, 49, 59], the available toolbox for designing oblivious algorithms in practical applica-
tions is in fact embarrassingly small in comparison with our rich body of knowledge on classical
algorithms for (non-oblivious) RAMs.

Our work also enriches the toolbox for oblivious algorithms. For example, Goodrich and Mitzen-
macher [37] and others [48, 54] have shown that any algorithm that has an efficient representation
in a MapReduce model (with a streaming reduce function) can be obliviously computed asymp-
totically faster than the best known ORAM scheme [21, 45, 66]. Goodrich and Mitzenmacher’s
compiler [37] that converts a streaming MapReduce program to an oblivious form makes use of
oblivious sort to aggregate keys of the same value. Thus, for cases where the key space is small,
our results will immediately improve both the runtime and IO efficiency of such a compiler. This
observation has numerous applications and we give some examples below:

• Histogram. Histogram is efficiently expressible in the streaming-MapReduce framework, our
results immediately imply that there exists a o(n log n)-time oblivious algorithm for evaluating
histograms with 2o(logn) distinct bins.

41

• K-means. K-means is a well-known algorithm for performing clustering of data. Each iteration
of the K-means algorithm reassigns each data point to the nearest cluster, and then updates the
cluster centers by averaging. Our results imply that for K-means where K = O(log log n), each
iteration of the algorithm can be obliviously evaluated in O(n log log n) time and O(n/B) IOs
(assuming standard cache assumptions) where n denotes the number of data points.

9 Conclusion and Open Questions

Our paper raises several interesting open questions:

• Can we achieve similar results as in our paper but with deterministic algorithms?

• In a non-balls-and-bins model, can we overcome the n log n barrier for oblivious sorting and/or
tight, order-preserving compaction with non-comparison-based techniques?

• In our algorithm for sorting o(log n)-bit keys as well as the prior work by Chan et al. [20], to get
the best IO efficiency results would introduce an extra log log factor to the runtime (relative to
the best known algorithm optimized for runtime). Can we obtain the same IO efficiency results
without trading off runtime?

Acknowledgments

We would like to acknowledge helpful discussions with Elette Boyle, Hubert Chan, Kai-Min Chung,
Robert Kleinberg, Ilan Komargodski, Dexter Kozen, Bruce Maggs, Moni Naor, and Rafael Pass.
This work is supported in part by NSF grants CNS-1314857, CNS-1514261, CNS-1544613, CNS-
1561209, CNS-1601879, CNS-1617676, an Office of Naval Research Young Investigator Program
Award, a Packard Fellowship, a DARPA Safeware grant (subcontractor under IBM), a Sloan Fel-
lowship, Google Faculty Research Awards, a Baidu Research Award, and a VMWare Research
Award.

References

[1] Cache replacement policies. https://en.wikipedia.org/wiki/Cache_replacement_

policies.

[2] Alok Aggarwal and S. Vitter, Jeffrey. The Input/Output Complexity of Sorting and Related
Problems. Commun. ACM, 31(9):1116–1127, September 1988.

[3] M. Ajtai, J. Komlós, and E. Szemerédi. An O(N Log N) sorting network. In Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages 1–9, New
York, NY, USA, 1983. ACM.

[4] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. Innovative technology
for cpu based attestation and sealing. In HASP, 2013.

[5] A. Andersson. Faster deterministic sorting and searching in linear space. In Proceedings of
the 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, pages 135–,
Washington, DC, USA, 1996. IEEE Computer Society.

42

https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies

[6] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time?
J. Comput. Syst. Sci., 57(1):74–93, August 1998.

[7] Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian Munro.
An optimal cache-oblivious priority queue and its application to graph algorithms. SIAM
Journal on Computing, 36(6):1672–1695, 2007.

[8] Gilad Asharov, T-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi.
Oblivious computation with data locality. Cryptology ePrint Archive, Report 2017/772, 2017.
http://eprint.iacr.org/2017/772.

[9] K. E. Batcher. Sorting Networks and Their Applications. AFIPS ’68 (Spring), 1968.

[10] M. Bender, E. Demaine, and M. Farach-Colton. Cache-Oblivious B-Trees. SIAM Journal on
Computing, 35(2):341–358, January 2005.

[11] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel, Bradley C.
Kuszmaul, and Jelani Nelson. Cache-oblivious streaming b-trees. In Proceedings of the Nine-
teenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’07, pages
81–92, New York, NY, USA, 2007. ACM.

[12] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. Data-oblivious graph algorithms for
secure computation and outsourcing. In Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security, ASIA CCS ’13, pages 207–218. ACM,
2013.

[13] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, August 1973.

[14] Elette Boyle and Moni Naor. Is there an oblivious ram lower bound? In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, ITCS ’16, pages 357–368,
New York, NY, USA, 2016. ACM.

[15] Gerth Stolting Brodal and Rolf Fagerberg. Lower Bounds for External Memory Dictionar-
ies. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’03, pages 546–554, Philadelphia, PA, USA, 2003. Society for Industrial and Applied
Mathematics.

[16] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, April 1979.

[17] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and Bins: Smaller Hash
Families and Faster Evaluation. In Proceedings of the 2011 IEEE 52Nd Annual Symposium
on Foundations of Computer Science, FOCS ’11, pages 599–608, Washington, DC, USA, 2011.
IEEE Computer Society.

[18] T-H. Hubert Chan, Kai-Min Chung, Bruce Maggs, and Elaine Shi. Foundations of differentially
oblivious algorithms. https://eprint.iacr.org/2017/1033.pdf.

[19] T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Oblivious hashing revisited, and
applications to asymptotically efficient ORAM and OPRAM. In Asiacrypt, 2017.

43

http://eprint.iacr.org/2017/772
https://eprint.iacr.org/2017/1033.pdf

[20] T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Cache-oblivious and data-oblivious
sorting and applications. In SODA, 2018.

[21] T-H. Hubert Chan and Elaine Shi. Circuit OPRAM: Unifying computationally and statistically
secure ORAMs and OPRAMs. In TCC, 2017.

[22] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, Report
2016/086, 2016. http://eprint.iacr.org/2016/086.

[23] Ivan Bjerre Damg̊ard. A Design Principle for Hash Functions. In Advances in Cryptology,
CRYPTO’ 89 Proceedings, Lecture Notes in Computer Science, pages 416–427. Springer, New
York, NY, August 1989.

[24] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst oram: Minimizing oram response
times for bursty access patterns. In 23rd USENIX Security Symposium (USENIX Security
14), pages 749–764, San Diego, CA, August 2014. USENIX Association.

[25] Erik D. Demaine. Cache-oblivious algorithms and data structures. In Lecture Notes from the
EEF Summer School on Massive Data Sets. BRICS, University of Aarhus, Denmark, June
27–July 1 2002.

[26] David Eppstein, Michael T. Goodrich, and Roberto Tamassia. Privacy-preserving data-
oblivious geometric algorithms for geographic data. In GIS, pages 13–22, 2010.

[27] R.A. Fisher and F. Yates. Statistical Tables for Biological, Agricultural and Medical Research.
Oliver and Boyd, 1975.

[28] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base appli-
cations. Journal of Computer and System Sciences, 31(2):182–209, October 1985.

[29] Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan, and Srinivas
Devadas. Suppressing the oblivious RAM timing channel while making information leakage
and program efficiency trade-offs. In HPCA, pages 213–224, 2014.

[30] Robert W. Floyd. Permuting Information in Idealized Two-Level Storage. In Complexity of
Computer Computations, The IBM Research Symposia Series, pages 105–109. Springer US,
1972. DOI: 10.1007/978-1-4684-2001-2 10.

[31] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In Foundations of Computer Science, 1999. 40th Annual Symposium
on, pages 285–297. IEEE, 1999.

[32] O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In
ACM Symposium on Theory of Computing (STOC), 1987.

[33] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
J. ACM, 1996.

[34] Michael T. Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm
running in o(n log n) time. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC ’14.

44

http://eprint.iacr.org/2016/086

[35] Michael T. Goodrich. Randomized shellsort: A simple oblivious sorting algorithm. In Pro-
ceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’10, pages 1262–1277, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Math-
ematics.

[36] Michael T. Goodrich. Data-oblivious External-memory Algorithms for the Compaction, Se-
lection, and Sorting of Outsourced Data. In Proceedings of the Twenty-third Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 379–388, New
York, NY, USA, 2011. ACM.

[37] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of outsourced
data via oblivious RAM simulation. In International Colloquium on Automata, Languages
and Programming (ICALP), pages 576–587, 2011.

[38] Michael T. Goodrich, Olga Ohrimenko, and Roberto Tamassia. Data-oblivious graph drawing
model and algorithms. CoRR, abs/1209.0756, 2012.

[39] Michael T Goodrich and Joseph A Simons. Data-oblivious graph algorithms in outsourced ex-
ternal memory. In International Conference on Combinatorial Optimization and Applications,
pages 241–257. Springer, 2014.

[40] Yijie Han. Deterministic sorting in o(nloglogn) time and linear space. J. Algorithms, 50(1):96–
105, 2004.

[41] Yijie Han and Mikkel Thorup. Integer sorting in 0(n sqrt (log log n)) expected time and linear
space. In Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS ’02,
pages 135–144, 2002.

[42] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An Optimal Algorithm for the Distinct
Elements Problem. In Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’10, pages 41–52, New York, NY, USA,
2010. ACM.

[43] David G. Kirkpatrick and Stefan Reisch. Upper bounds for sorting integers on random access
machines. Technical report, 1981.

[44] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

[45] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivi-
ous RAM and a new balancing scheme. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2012.

[46] Tom Leighton, Yuan Ma, and Torsten Suel. On probabilistic networks for selection, merging,
and sorting. In Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’95, pages 106–118, 1995.

[47] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine Shi.
Ghostrider: A hardware-software system for memory trace oblivious computation. SIGPLAN
Not., 50(4):87–101, March 2015.

45

[48] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. Oblivm: A program-
ming framework for secure computation. In 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 359–376, 2015.

[49] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Kriste Asanovic, John
Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a secure processor.
In ACM Conference on Computer and Communications Security (CCS), 2013.

[50] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software model for isolated
execution. HASP, 13:10, 2013.

[51] Kurt Mehlhorn and Ulrich Meyer. External-memory breadth-first search with sublinear i/o. In
Proceedings of the 10th Annual European Symposium on Algorithms, ESA ’02, pages 723–735,
London, UK, UK, 2002. Springer-Verlag.

[52] Raghu Meka, Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Fast Pseudorandom-
ness for Independence and Load Balancing, pages 859–870. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[53] Ralph Charles Merkle. Secrecy, authentication, and public key systems. PhD thesis, Stanford
University, 1979.

[54] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and Elaine Shi.
GraphSC: Parallel Secure Computation Made Easy. In IEEE S & P, 2015.

[55] Rasmus Pagh and Srinivasa Rao Satti. Secondary indexing in one dimension: Beyond b-trees
and bitmap indexes. In Proceedings of the Twenty-eighth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’09, pages 177–186, New York, NY,
USA, 2009. ACM.

[56] Nicholas Pippenger and Leslie G. Valiant. Shifting graphs and their applications. J. ACM,
23(3):423–432, July 1976.

[57] Harald Prokop. Cache-Oblivious Algorithms. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, June 1999.

[58] Sanguthevar Rajasekaran and Sandeep Sen. Optimal and practical algorithms for sorting on
the pdm. IEEE Trans. Comput., 57(4):547–561, April 2008.

[59] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas.
Design space exploration and optimization of path oblivious RAM in secure processors. In
ISCA, pages 571–582, 2013.

[60] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In ASIACRYPT, pages 197–214, 2011.

[61] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud storage. In IEEE
Symposium on Security and Privacy (S & P), 2013.

[62] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM – an extremely simple oblivious ram protocol. In ACM
Conference on Computer and Communications Security (CCS), 2013.

46

[63] Mikkel Thorup. Randomized sorting in o(nloglogn) time and linear space using addition, shift,
and bit-wise boolean operations. J. Algorithms, 42(2):205–230, 2002.

[64] P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proceedings
of the 16th Annual Symposium on Foundations of Computer Science, SFCS ’75, pages 75–84,
Washington, DC, USA, 1975. IEEE Computer Society.

[65] Jeffrey Scott Vitter. External Memory Algorithms and Data Structures: Dealing with Massive
Data. ACM Comput. Surv., 33(2):209–271, June 2001.

[66] Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On Tightness of the
Goldreich-Ostrovsky Lower Bound. In ACM CCS, 2015.

[67] Zhewei Wei, Ke Yi, and Qin Zhang. Dynamic external hashing: The limit of buffering. In
Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA ’09, pages 253–259, New York, NY, USA, 2009. ACM.

[68] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file system. In
ACM Conference on Computer and Communications Security (CCS), 2012.

[69] Ke Yi and Qin Zhang. On the Cell Probe Complexity of Dynamic Membership. In Proceedings
of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages
123–133, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathematics.

Appendices

A Additional Preliminaries for the External-Memory Model

Cache associativity and replacement policy. The design of the cache can affect the IO-cost
of an external-memory algorithm. In the fully-associative model, each cache-line from the memory
can be placed in any of the M

B slots in the cache. In an r-way associative model, the cache is
divided into clusters each containing r cache-lines, and any cache-line can be placed in only one
cluster (but can be placed anywhere within that cluster).

If there is no valid slot in the relevant cluster (or the entire cache in the case of full associativity),
some cache-line will be evicted from the cluster back to the memory to make space — which cache-
line is evicted is decided by what we call a “replacement policy”. Common replacement policies in
practical systems include Least Recently Used (LRU) and First-In-First-Out (FIFO) [1, 25].

Ideal cache assumptions and justifications. The IO-cost of external-memory algorithms (in-
cluding cache-agnostic algorithms) depend on the design of the cache, including its associativity
and replacement policy. Throughout this paper, we will adopt the standard practice in the litera-
ture [7,10,25,31,57] and analyze our algorithms assuming an “ideal cache” that adopts an optimal
replacement policy and is fully associative. It is important to justify why these assumptions extend
to realistic storage architectures, despite the fact that realistic storage architectures are not “ideal”.
These justifications are standard and well-accepted by the algorithms community [7, 10,25,31,57].
Specifically, Frigo et al. [31,57] justify the ideal-cache model by proving that ideal-cache algorithms
can be simulated on realistic storage hierarchies with degraded runtime — but in worst cases the
slowdown is only a constant factor. Henceforth, we omit these justifications.

47

B Deterministic Partitioning

In this section, we describe a deterministic algorithm in the cache-agnostic model for performing
partitioning of 1-bit keys. As mentioned earlier, this can be used as a building block in some of
our algorithms and to improve the runtime of the FunnelOSort algorithm of Chan et al. [20] by a
log logn factor.

B.1 Intuition

Given an input array containing n balls each tagged with a 1-bit key, the algorithm DeterministicPart
performs following steps:

• Divide the array into
√
n blocks each of size

√
n.

• Recurse on each
√
n-sized block to partition each block using our DeterministicPart algorithm

itself — let A1, A2, . . . , A√n denote the outcome blocks.

• Let (P,M)← PurifyHalf(B0, B1) be an algorithm that upon receiving two sorted blocks B0 and
B1, outputs two blocks P and M such that P ∪M = B0 ∪ B1, and moreover, 1) P must be
pure, i.e., it contains either all 0s or all 1s; and 2) M is sorted. Notice that from B0 ∪ B1 it is
guaranteed that we can extract at least one pure block.

• Now leverage this building block PurifyHalf such that we emit
√
n− 1 pure blocks and at most

1 unpure block. To achieve this, do the following steps. Let M = A1. For i = 2 to
√
n, let

(Pi−1,M)← PurifyHalf(M,Ai). At this point, all of P1, . . . , P√n − 1 are pure, and the M block
is the only unpure block.

• Since the
√
n − 1 blocks P1, . . . , P√n−1 are pure, we can write each of these pure blocks as the

row of a matrix. We now recursively call DeterministicPart itself to sort all rows of this matrix
— let the outcome of this step be A′.

• Finally, use an efficient procedure called PartBitonic to combine the sorted outcome with the
earlier outcome A′ into a single sorted array and output the result.

The PartBitonic algorithm realizes the following abstraction: given a bitonically partitioned (i.e.,
bitonically sorted) array, it outputs a fully partitioned (i.e., sorted) array. Here we say that an
array is bitonically partitioned iff either all the 0s are at the beginning or the end; or all the 1s
are at either the beginning or the end of the array.

To fully instantiate the above algorithm, we also need to instantiate the building blocks PurifyHalf
and PartBitonic. It turns out that it is not difficult to construct an IO-efficient algorithm for these
building blocks in the cache-agnostic model — and in fact in our instantiation later, PurifyHalf
in turn relies on PartBitonic as a building block. The details are described in the full algorithm
description in the next subsection.

B.2 Algorithm

We use capital letters A,B,C, . . . to denote arrays, subscripts Ai denote the i-th subarray of
arrayA, and A[i] denotes the i-th element of array A, where indexes start from 1. In addition, A||B
denotes the concatenation of two arrays A,B, and |A| denotes the number of elements in A. To
move elements, the following oblivious operations and their corresponding dummy operations have
identical memory-access pattern. Henceforth, we use them in if-else branches without specifically
stating their dummy counterparts.

48

• To (or not to) oblivious compare-and-swap two elements, take two elements as input, compare
two keys, and swap two elements if the first key is greater than the second one.

• To (or not to) oblivious swap two consecutive subarrays A1, A2 possibly of different lengths,
copy A2||A1 to a scratch array B and then copy B back and overwrites A1, A2. By copying,
the access pattern depends only on lengths of A1, A2.

• The standard array Reverse algorithm is oblivious.

We say an array A of n elements is partitioned if for all i < j ∈ [n], A[i] ≤ A[j]. Also, an
array A is pure if all elements A[i] ∈ A have the same key. We say an array A of n elements is
bitonically partitioned iff either all the 0s are at the beginning or the end; or all the 1s are at either
the beginning or the end of the array.

Our IO-efficient deterministic partitioning algorithm is described in Algorithms 7, 8, and 9.

B.3 Analysis

Correctness. We first argue that PartBitonic correctly outputs a partitioned array by induction.
Observe the for-loop at Line 6 yields two bitonically partitioned arrays A1 and A2. Afterwards,
either A1 is pure with all 0s or A2 is pure with all 1s, and we find it by the maximum and minimum
keys at Line 8. The correctness follows by the induction hypothesis that the impure subarray is
then sorted by PartBitonic recursively.

To see DeterministicPart is correct for all |A| = n, assume by induction that it is correct for all
A′ such that |A′| < n. Note that, after the loop at Line 6, each Bi is pure for all 1 ≤ i < p − 1
by induction hypothesis. Then, both C and Cp are also sorted by induction. It follows by the
correctness of PartBitonic and C||Reverse(Cp) is bitonically partitioned.

Running time. The running time of PartBitonic is O(n) as it performs linear operations and
recurses on the subproblem of half length. Then, denote the running time of DeterministicPart as
T (n). There are 2

√
n recursive calls with at most

√
n elements, and other procedures are linear

time. Hence, for recursion depth k, there are total 2kn1−2−k instances, and each instance costs
O(n2−k) time. The total cost is sum over all log log n depths,

T (n) =

log logn∑
k=0

2kn = O(n log n).

IO-cost. Recall that M is the cache size and B is the size of a cache line. Observe that PartBitonic
takes O(dn/Be) IO by the argument similar to the running time. The IO-cost of DeterministicPart
is O(d nB e logM n) by solving the summation

C(n) =

log logn−log logM∑
k=0

2kd n
B
e = O(d n

B
e logM n).

Lemma 20. DeterministicPart is a cache-agnostic and oblivious algorithm such that correctly sorts
1-bit keys in time O(n log n) and IO-cost O(d nB e logM n).

49

Algorithm 7 Deterministic Partition

1: procedure DeterministicPart(A) // The input A is an array of n elements

2: if n ≤ 2 then
3: If n = 1, return A. Else, return the result of oblivious compare-and-swap A[0], A[1].

4: Parse A as subarrays of size q, denoted as A1, . . . Ap, where q = b
√
nc and p = bn/qc.

Parse the remainder as Ap+1.
5: T ← DeterministicPart(A1)
6: for i from 2 to p do
7: T ′ ← DeterministicPart(Ai)
8: (Bi−1, T)← PurifyHalf(T, T ′) // Put majority to Bi−1 and the remaining to T

9: Let Bp+1 ← DeterministicPart(Ap+1). Let Cp ← PartBitonic(Bp||Reverse(Bp+1)).
10: Let ki be the key of the pieces Bi. Transpose the memory layout of {Bi}i∈[p−1] such that

for every j ∈ [q], the elements {Bi[j]}i∈[p−1] are packed contiguously in memory.
11: Sort each pack {Bi[j]}i∈[p−1] by {ki}i∈[p−1] using DeterministicPart.
12: Transpose back the memory layout, let the result be C.
13: return PartBitonic(C||Reverse(Cp)).

Algorithm 8 Purify Half

1: procedure PurifyHalf(A,B) // A,B are arrays such that |A| = |B| = n and both A,B are sorted.

2: Count the number of 0 and 1 keys in all elements of A||B. Let b be the majority.
3: if b is 1 then oblivious Reverse both A,B.

4: Parse A as A1||A2, B as B1||B2, where |Ai| = |Bi| = n/2. Let C ← A1||B1.
5: return (C,PartBitonic(A2||Reverse(B2))).

Algorithm 9 Partition a Bitionically Partitioned Array

1: procedure PartBitonic(A) // A is a bitonically partitioned array of n elements.

2: if n = 1 then return A.
3: if n is odd then let n′ be n− 1, A′ be the subarray of A with first n− 1 elements
4: else let n′ be n, A′ be A.

5: Parse A′ as A1||A2, where |A1| = |A2| = n′/2.
6: for i from 0 to n′/2− 1 do
7: Oblivious compare-and-swap A1[i], A2[i] iff k(A2[i]) < k(A1[i]).

8: Scan A1, get the maximum and minimum keys (m1, n1). Also get (m2, n2) from A2 similarly.
9: if m1 − n1 < m2 − n2 then

10: Oblivious swap A1, A2, A1 ← PartBitonic(A1), oblivious swap A1, A2.
11: else A1 ← PartBitonic(A1) // Perform dummy swap before and after this operation

12: Let B be A1||A2.
13: if n is odd then insert A[n] to B by oblivious compare-and-swap all elements in B.

14: return B.

50

C Counting Few Number of Distinct Keys

If an input array contains only polylogarithmically many distinct keys, we can count the number of
distinct keys in O(n log log λ) time as described in the following algorithm. The idea is to maintain
a working buffer whose size bucketSize is polylogarithmic. Each time we read in the next batch of
polylogarithmically many elements, union it with the working buffer, and obliviously sort to move
elements of the same key together. Then in one linear scan, for each unique key, we mark only the
first occurrence as distinguished and the remaining as dummy. With another oblivious sort, we
can extract the first up to bucketSize elements with distinct keys (and if there are not enough the
result is padded to bucketSize with dummies).

Finally, the algorithm either outputs FAIL if the working buffer is full or it outputs the number
of distinct, non-dummy elements in the working buffer.

Algorithm 10 Cardinality estimation for small cardinality

1: procedure FewDistinct[bucketSize](A) // Input A is an array. This procedure outputs the

number of distinct keys of A correctly if A contains less than bucketSize elements. Otherwise it outputs

FAIL.

2: Initialize two empty arrays B,C of length bucketSize elements.
3: for i from 1 to d |A|

bucketSizee do
4: Copy from A to C the i-th sub-array of length bucketSize.
5: Concatenate arrays B and C, eliminate duplicate elements by sorting, output smallest

distinct elements to B. (Both B and C are padded with dummy elements to achieve
obliviousness).

6: Let count be the number of distinct elements in B.
7: if count = bucketSize then return FAIL else return count

We mainly use FewDistinct with BucketSize = log5 λ. When instantiating FewDistinct[log5 λ]
using ZigZagSort, it runs in time O(n log log λ). To be IO-efficient, FewDistinct[log5 λ] is instantiated

with FunnelOSort, which runs in IO-cost O(d nB e logM/B
log5 λ
B) but time O(n log2 log λ).

51

	Introduction
	Main Results
	IO Efficiency on Oblivious RAMs and Applications to Open Problems

	Technical Roadmap
	Partition 1-Bit Keys
	Sorting Longer Keys: A Simple Algorithm
	A Better Recurrence
	Extension: Large Key Space but Few Distinct Keys
	IO Efficiency in the Cache-Agnostic Model
	Related Work

	Definitions and Preliminaries
	Oblivious Algorithms on a RAM
	Probabilistic Circuits for Sorting in the Balls-and-Bins Model
	External-Memory and Cache-Agnostic Algorithms
	Building Blocks
	Cache-Agnostic Algorithms
	Oblivious Sorting

	Oblivious Sorting Lower Bounds in the Balls-and-Bins Model
	Preliminaries on Routing Graph Complexity
	Limits of Oblivious Sorting in the Balls-and-Bins Model
	Limits of Stability
	Implications for Probabilistic Sorting Circuits in the Balls-and-Bins Model

	Partitioning 1-Bit Keys
	Intuition
	New Building Blocks
	Algorithm for Partitioning 1-Bit Keys
	Analysis

	Sorting Short Keys
	Intuition
	Warmup Scheme
	Improved Recurrence

	Sorting Arbitrary-Length but Few Distinct Keys
	Counting Distinct Keys
	Preliminaries
	Algorithm for Estimating Number of Distinct Keys
	Analysis

	Sorting Arbitrary-Length but Few Distinct Keys

	Applications to Other Open Problems
	Tight Compaction
	Selection
	Additional Applications

	Conclusion and Open Questions
	Additional Preliminaries for the External-Memory Model
	Deterministic Partitioning
	Intuition
	Algorithm
	Analysis

	Counting Few Number of Distinct Keys

