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Abstract. While non-interactive zero-knowledge (NIZK) proofs require trusted parameters, Groth,

Ostrovsky and Sahai constructed non-interactive witness-indistinguishable (NIWI) proofs with-

out any setup; they called their scheme a non-interactive zap. More recently, Bellare, Fuchsbauer

and Scafuro investigated the security of NIZK in the face of parameter subversion and observe

that NI zaps provide subversion-resistant soundness and WI.
Arguments of knowledge prove that not only the statement is true, but also that the prover

knows a witness for it, which is essential for anonymous identification. We present the first NIWI

argument of knowledge without parameters, i.e., a NI zap of knowledge. Consequently, our scheme

is also the first subversion-resistant knowledge-sound proof system, a notion recently proposed by

Fuchsbauer.
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1 Introduction

The concept of zero-knowledge proof systems, first proposed by Goldwasser, Micali and Rackoff
[GMR89], is a central tool in modern cryptography. Consider an NP relation R which defines
the language of all statements x for which there exists a witness w so that R(x,w) = true. In
a zero-knowledge proof for R a prover, knowing a witness, wants to convince a verifier that x
is in the language. The protocol must be complete, that is, if the prover knows a witness for x
then it can convince the verifier; it should be sound, in that no malicious prover can convince
the verifier of a false statement, and zero-knowledge: the execution of the protocol reveals no
information to the verifier (beyond the fact that x is in the language).

Feige and Shamir [FS90] proposed a relaxation of zero-knowledge called witness indistin-
guishability, which only requires that it is indistinguishable which witness was used to compute
a proof. This notion turns to be sufficient in many contexts. Non-interactive zero-knowledge
proofs (NIZK) [BFM88] allow the prover to convince the verifier by only sending a single mes-
sage. However, they rely on the existence of a common-reference string (CRS) to which prover
and verifier have access. The CRS is assumed to have been set up by some trusted party, which
represents a serious limitation for all applications of NIZK in scenarios where parties mutually
distrust each other.

Dwork and Naor [DN00] constructed a two-round witness-indistinguishable proof system for
NP in the plain model, that is, where no trusted CRS is assumed. In their protocol the first
message (sent from the verifier to the prover) can be fixed once and for all, and the second one
provides the actual proof. They called such protocols zaps. Groth, Ostrovsky and Sahai [GOS06a]
showed the existence of non-interactive zaps, where the prover sends a single message to deliver
the proof. Non-interactive zaps are thus non-interactive proof systems without a CRS. Since
in this scenario it is impossible to achieve zero-knowledge [GO94], witness indistinguishability
(WI) is the best one can hope for. Following [GOS06a], there have been many works extending
this line of research [BW06, BW07, Gro06].



All aforementioned schemes guarantee that proofs can only be computed for valid statements.
Arguments of knowledge are proof systems that satisfy a stronger notion of soundness. They
require the prover to know a witness for the proved statement. This is formalized via the notion
of knowledge soundness that demands that for each prover there exists an efficient extractor
which can extract a witness from the prover whenever it makes a valid proof. (When this holds
for computationally bounded provers, we speak of arguments rather than proofs.) Since, by
definition, false statements have no witnesses, knowledge soundness implies the standard notion
of (computational) soundness.

Succinct non-interactive arguments of knowledge (SNARKs) are non-interactive proof sys-
tems with short (that is, independent of the size of the statement or the witness) efficiently
verifiable proofs that satisfy knowledge soundness. SNARKs were initially introduced for ver-
ifiable computation and are now the most widely deployed proof systems in the real world.
They are used in cryptocurrencies such as Zcash [BCG+14], which guarantees anonymity via
zero-knowledge SNARKs. As for all NIZK systems, a drawback of SNARKs is that they require
a CRS, that is, they require a one-time trusted setup of public parameters. Since for SNARKs
every CRS has a simulation trapdoor, subversion of these parameters leads to full compromise
of soundness.

Subversion resistance. Motivated by the subversion of trusted public parameters in stan-
dardized cryptographic protocols led by mass-surveillance activities, Bellare, Fuchsbauer and
Scafuro [BFS16] investigate what security properties can be maintained for NIZK when its
trusted parameters are subverted. CRS’s for NIZK are especially easy to subvert, since they
must be subvertible by design: zero knowledge requires that an honest CRS must be indistin-
guishable from a backdoored one, where the backdoor is the trapdoor used to simulate proofs.

Bellare et al. defined multiple security properties that protect against parameter subversion:
subversion soundness (S-SND) means that no adversary can generate a malicious CRS together
with a valid proof for a false statement; subversion zero knowledge (S-ZK) requires that even
if the adversary sets up the CRS, there exists a simulator able to produce its full view; and
subversion witness indistinguishability (S-WI) formalizes that even for proofs that were made
under a subverted CRS, it is still infeasible to tell which of two witnesses was used.

Following Goldreich and Oren [GO94], Bellare et al. [BFS16] also showed that it is impossible
to achieve subversion soundness and (standard) zero-knowledge simultaneously. For subversion-
sound proof systems, subversion witness indistinguishability is thus the best one can hope for.
The authors [BFS16] observe that since proof systems that do not rely on a CRS cannot succumb
to CRS-subversion attacks, non-interactive zaps [GOS06a] achieve both S-SND and S-WI.

Bellare et al. did not consider the stronger notion of knowledge soundness, which is the
notion achieved by SNARKs, and which in many applications is the required notion for the used
proof systems. For example, for all kinds of anonymous authentication, users prove knowledge
of signatures (often called certificates or credentials, depending on the context); in this case
soundness is not sufficient, as signatures always exist, but in the security proof they must actually
be extracted in order to rely on their unforgeability. Fuchsbauer [Fuc18] has recently defined
a subversion-resistant notion of knowledge soundness but left it as an open problem to give a
scheme that achieves it. Such a scheme would protect against possible parameter subversion in
any context where proving knowledge of a witness is required.

Our contribution. Our result can be summarized as follows:

(i) We provide the first non-interactive zap with knowledge soundness; that is, a witness-
indistinguishable proof system without parameters for which there exists an extractor that
recovers a witness from every valid proof.
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(ii) Our construction is also the first fully subversion-resistant WI argument-of-knowledge sys-
tem. In particular, it satisfies the recently defined notion of subversion knowledge soundness
[Fuc18], as well as subversion witness indistinguishability [BFS16] (the strongest notion com-
patible with S-SND).

Bellare et al. [BFS16] introduce a new type of knowledge-of-exponent assumption, which
they call DH-KE. They prove (standard) soundness and subversion zero knowledge of their
main construction under DH-KE and the decision linear assumption (DLin) [BBS04].

Our construction builds on the original non-interactive zap [GOS06a], whose soundness we
upgrade to knowledge soundness. As for zaps, the language of our proof system is circuit satisfia-
bility and thus universal. Groth, Ostrovsky and Sahai’s [GOS06a] starting point is a “dual-mode”
[GOS06b, PVW08] non-interactive proof system, for which there are two indistinguishable types
of CRS: one leading to proofs that are perfectly sound and the other leading to proofs that are
perfectly WI. To construct a non-interactive zap, they let the prover choose the CRS. As the
prover could choose a CRS that leads to “unsound” proofs, the prover must actually choose two
CRS’s that are related in a way that guarantees that at least one of them is of the “sound” type.
It must then provide a proof of the statement under both of them. The authors [GOS06a] then
show that this protocol still achieves computational WI.

We turn their construction into a proof of knowledge by again doubling the proof, thereby
forcing the prover to prove knowledge of a trapdoor which allows to extract the witness from
one of the sound proofs. We prove our non-interactive zap of knowledge secure under the same
assumptions as Bellare et al.’s S-ZK+SND scheme. Our result is summarized in the following
theorem.

Theorem 1. Assuming DLin and DH-KE, there exists a non-interactive zap for circuit sat-
isfiability that satisfies knowledge soundness. The proof size is O(λk), where λ is the security
parameter and k is the size of the circuit.

Let us finally note that our system also implies a proof system which achieves (standard)
knowledge soundness, (standard) zero knowledge and subversion witness indistinguishability.
This is obtained by plugging our zap of knowledge into the construction by Bellare et al. [BFS16]
that achieves SND, ZK and S-WI.

Their scheme uses a length-doubling pseudorandom generator (PRG) and a CRS contains a
random bit string σ of length 2λ (where λ is the security parameter). A proof for statement x is
a zap for the following statement: either x is a valid statement or σ is in the range of the PRG.
Using a zap of knowledge (ZaK), knowledge soundness follows from knowledge soundness of the
ZaK since with overwhelming probability σ is not in the range of the PRG. (The extractor must
thus extract a witness for x.) Zero knowledge follows from WI of the zap, as after replacing
σ with an image under the PRG, proofs can be simulated using the preimage. Finally, S-WI
follows from S-WI of the zap.

Related work. Since the introduction of non-interactive zaps in [GOS06a], a number of papers
have studied and provided different (and more efficient) implementations of zaps. Groth and
Sahai [GS08] provided a more general framework for NIWI and NIZK proofs, which leads to
more efficient proofs for concrete languages (instead of circuit satisfiability). Furthermore, their
proof system can also be based on other assumptions apart from DLin, such as SXDH, allowing
for shorter proofs.

Bitanski and Paneth [BP15] presented a different approach to constructing zaps and WI
proofs based on indistinguishability obfuscation (iO), but constructions using iO are only of
theoretical interest. Ràfols [Ràf15] showed how to base non-interactive zaps on Groth-Sahai
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Table 1. Efficiency and security of the original zaps and our constructions of zaps of knowledge, where w is the
number of wires, g the number of gates and |G| is the size of an element of a group G.

Protocol Efficiency Assumptions

Zap [GOS06a] (18w + 12g + 5) |G| DLin

Zap of knowledge, Section 5 (36w + 24g + 14) |G| DLin, DH-KE

Zap (of knowledge; Appendix B) (12w + 8g + 3) (|G1|+|G2|) SXDH (ADH-KE)

proofs, which achieves an improvement in efficiency (by a constant factor) over the original
construction [GOS06a]. Her construction can be implemented in asymmetric (“Type-1”) pairing
groups.

Her scheme can also serve as the starting point for a scheme achieving knowledge soundness
and we explore this in Appendix B. (See Table 1 for an overview of efficiency.) Although this
scheme is more efficient, we decided to concentrate on building a scheme from [GOS06a], as we
can prove it secure under the same assumptions that underly Bellare et al.’s [BFS16] SND+S-ZK
scheme; in contrast, a scheme based on an asymmetric bilinear group would require to make
the DH-KE assumption in such groups (we refer to it as ADH-KE in Appendix B). This is a
qualitatively different assumption, as without a symmetric pairing it cannot be checked whether
the triple returned by the adversary is of the right form (see Fig. 3); it would thus not be a
falsifiable assumption, as it is not efficiently decidable whether an adversary has broken the
assumption. Finally, our main scheme achieves tight security, whereas our proof of knowledge
soundness in Appendix B has a security loss that is linear in the circuit size.

2 Preliminaries

Notation. Let λ be the security parameter. We let M.rl(λ) be a length function (i.e. a function
N → N polynomially bounded) in λ defining the length of the randomness for a probabilistic
machine M. When sampling the value a uniformly at random from the set S, we write a←$S.
When sampling the value a from the probabilistic algorithm M, we write a ← M. We use :=
to denote assignment. Elements of Zp are denoted in lower case, group elements are denoted
with capital letters. Vectors are denoted in bold. We employ additive notation for groups. For
a vector ~a we use the subscript notation ai to indicate the i-th component of a. Let R be a
relation between statements denoted by φ and witnesses denoted by w. By R(φ) we denote the
set of possible witnesses for the statement φ in R. We let L(R) := {φ : R(φ) 6= ∅} be the language
associated to R. A proof that w ∈ R(φ) is denoted with π.

In this work, we consider the language of circuit satisfiability, which is NP-complete. For a
binary circuit C, which we always assume of size O(λ), the set R(C) is the set of inputs w that
satisfy C(w) = 1. Without loss of generality, we assume that circuits consist solely of NAND
gates. Unless otherwise specified, all following algorithms are assumed to be randomized and to
run in time poly(λ). As Bellare et al. [BFS16], who follow [Gol93], we only consider uniform
machines to model the adversary A and the extractor Ext. (See [BFS16, Fuc18] for discussions
on how this choice affects the hardness assumptions and security guarantees.)

Bilinear groups. Throughout this work, we make use of prime-order abelian groups equipped
with a (symmetric) bilinear map. Concretely, we assume the existence of groups G,GT of odd
prime order p of length λ and an efficiently computable non-degenerate bilinear map e : G×G→
GT . That is, the map e is such that ∀ U, V ∈ G and a, b ∈ Zp : e(aU, bV ) = ab · e(U, V ), and if U
is a generator of G, then e(U,U) is a generator of GT . We say that a bilinear group is verifiable if
there exists an efficient verification algorithm that outputs true if and only if Γ = (p,G,GT , e)
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is the description of a bilinear group. For instance, the elliptic-curve group of [BBS04] equipped
with the Weil pairing is publicly verifiable. In most practical scenarios, the group description
is embedded as a part of the protocol specification and agreed upon in advance; in these cases
there is no need for verification.

Throughout this paper, we assume the existence of a deterministic algorithm G that, given
as input the security parameter in unary 1λ, outputs a bilinear group description Γ . The same
assumption was already employed by Bellare et al. [BFS16]. The main advantage in choosing
G to be deterministic is that every entity in the scheme can (re)compute the group from the
security parameter, and no party must be trusted with generating the group. Moreover, real-
world pairing schemes are defined for groups that are fixed for some λ. For the sake of simplicity,
we define all our schemes w.r.t. a group description Γ and assume that the security parameter
(λ ∈ N such that Γ := G(1λ)) can be derived from Γ .

Extractable commitment schemes. A commitment scheme Com consists of the following
three algorithms:

– (σ, τ)← Com.K(Γ ), the key generation algorithm, outputs a CRS σ together with the trap-
door information τ .

– (C, r) ← Com.C(σ, v), the commitment algorithm, outputs a commitment C to the given
value v together with the opening information r.

– bool ← Com.O(σ,C, v, r), the opening algorithm, outputs true if C is a commitment to v
witnessed by r, and false otherwise.

In our case, Com.C returns the used randomness and Com.O simply recomputes the commit-
ment and checks that C = Com.C(V ; r). Consequently, correctness of the scheme is trivial. To
ease notation for commitments and openings, we will always assume that the group description
Γ can be deduced from σ, and omit the opening information from the returned value.

Generally, we require commitment schemes to be hiding and binding. Loosely speaking, a
scheme is hiding if the commitment C reveals no information about v. A scheme is binding if
a cheating committer cannot change its mind about the value it committed to. Formally, it is
hard to find C, v, r, v′ and r′ such that Com.O(σ,C, v, r) = true = Com.O(σ,C, v′, r′).

Throughout this work, we also require a perfectly binding commitment scheme to be ex-
tractable, that is, Com is equipped with an efficient extraction algorithm Com.E that, given as
input the trapdoor information τ , recovers the value v to which C is bound.

Proof systems. A non-interactive proof system Π for a relation R consists of the following
three algorithms:

– (σ, τ) ← Π.K(Γ ), the CRS generation algorithm that outputs a CRS σ (and possibly some
trapdoor information τ). Since we are dealing with publicly verifiable protocols, the trapdoor
information τ will be omitted in most cases and used solely for clarity in the proofs or when
combining protocols.

– π ← Π.P(σ, φ, w), a prover which takes as input some (φ,w) ∈ R and a CRS σ, and outputs
a proof π.

– bool ← Π.V(σ, φ, π) a verifier that, given as input a statement φ together with a proof π
outputs true or false, indicating acceptance of the proof.

To ease notation for prover and verifier, we will assume that the group description Γ can be
inferred from the CRS σ. A proof is complete if every correctly generated proof verifies. If the
CRS is clear from the context, we omit σ from the arguments of Π.P or Π.V.
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Game WIΠ,R,A(λ)

b←$ {0, 1} ; Γ := G(1λ)

(σ, τ)← Π.K(Γ )

b′ ← AProve(σ)

return (b = b′)

Oracle Prove(φ,w0, w1)

if R(φ,w0) = false ∨ R(φ,w1) = false

return ⊥
π ← Π.P(σ, φ,wb)

return π

Fig. 1. Witness indistinguishability (WI) game.

Zaps. A zap is a two-round, witness-indistinguishable proof system where the first-round mes-
sage is fixed “once and for all” [DN00] for all future instances of the protocol. The notion of
witness-indistinguishability [FLS90] informally states that no PPT adversary can tell which of
any two possible witnesses has been used to construct a proof.

Definition 2. A proof system Π is witness-indistinguishable (WI) for the relation R if, for any
PPT adversary A, Advwi

Π,R,A(λ) is negligible in λ, where

Advwi
Π,R,A(λ) := Pr

[
WIΠ,R,A(λ)

]
− 1/2 = negl(λ)

and WIΠ,R,A(λ) is the game depicted in Fig. 1.

A zap is non-interactive if there is no first-round message from the verifier to the prover: the
prover simply sends a single message. The proof system thus reduces to a pair (P,V) or can be
considered as defined above, but with a CRS generation algorithm that always outputs ⊥. We
next define the soundness notion for non-interactive arguments of knowledge.

Knowledge soundness [BG93] means that for any prover able to produce a valid proof, there
exists an efficient algorithm which has access to the prover’s random coins capable of extracting
a witness for the given statement.

Definition 3. A proof system Π is knowledge-sound for R if for any PPT adversary A there
exists an extractor Ext such that AdvksndA,Ext,R,Π(λ) is negligible in λ, where:

AdvksndΠ,R,A,Ext(λ) := Pr
[
KSNDΠ,R,A,Ext(λ)

]
= negl(λ) .

and KSNDA,Ext,R,Π(λ) is defined in Fig. 2. An argument of knowledge is a knowledge-sound
proof.

Variations of this argument are often found in the literature. Most of them allow the extractor
to rewind the adversary for interactive proof systems in addition to black-box access, most
notably for Σ-protocols. In case of non-interactive provers the extractor is provided with the
adversary’s random coins.

Game KSNDΠ,R,A,Ext(λ)

Γ := G(1λ); (σ, τ)← Π.K(Γ )

r←$ {0, 1}A.rl(λ); (φ, π) := A(σ; r)

w ← Ext(σ, r)

return (Π.V(σ, φ, π) and R(φ,w) = false)

Fig. 2. Game for knowledge soundness.
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Game DLinG,A(λ)

b←$ {0, 1} ; Γ := (p,G,GT , e, G) := G(1λ)

u, v, r, s←$Zp
if b = 1 then H := (r + s)G

else H ←$G
b′ ← A(Γ, uG, vG, urG, vsG,H)

return (b = b′)

Game DH-KEG,A,Ext(λ)

Γ := (p,G,GT , e, G) := G(1λ)

r←$ {0, 1}A.rl(λ)

(X,Y, Z) := A(Γ ; r)

s← Ext(Γ, r)

if sG = X ∨ sG = Y then return 0

return (e(X,Y ) = e(Z,G))

Fig. 3. Games for Assumptions 1 (DLin) and 2 (DH-KE).

Assumptions. Our protocol is based on the DH-KE assumption and the existence of a ho-
momorphic extractable commitment scheme. Such schemes have been widely studied and there
are constructions from standard assumptions such as the subgroup decision assumption or the
decisional linear (DLin) assumption [BBS04]. For this work, we rely on the latter, which is also
used in [GOS06a].

The DLin assumption [BBS04] for an abelian group G = 〈G〉 of order p states that it is
computationally difficult to distinguish (uG, vG, urG, vsG, (r+ s)G) with u, v, r, s←$Zp from a
uniformly random 5-tuple in G.

Assumption 1 (DLin) We say that the Decisional Linear Diffie-Hellman assumption holds
for the group generator G if for all PPT adversaries A it holds:

AdvdlinG,A(λ) := Pr
[
DLinG,A(λ)

]
− 1/2 = negl(λ)

where the game DLinG,A(λ) is defined in Fig. 3.

The intuition behind DH-KE [BFS16] is that it is difficult for some machine to produce a DH
triple (xG, yG, xyG) in G without knowing at least x or y. The assumption is in the same spirit
of earlier knowledge-of-exponent assumptions [Gro10, BCI+10], whose simplest form states that
given (G, xG) ∈ G2 it is hard to return (yG, xyG) without knowing y.

Assumption 2 (DH-KE) The Diffie-Hellman Knowledge of Exponent assumption holds for
the bilinear group generator G if for any PPT adversary A there exists a PPT extractor Ext such
that:

AdvdhkeG,A,Ext(λ) := Pr
[
DH-KEG,A,Ext(λ)

]
= negl(λ)

where the game DH-KEG,A,Ext(λ) is defined in Fig. 3.

In other variants of knowledge of exponent assumptions the adversary is provided with some
auxiliary information, which amounts to a stronger assumption. This is typically required as in
the security proofs the reduction obtains a challenge which it needs to embed somewhere. In our
specific case, all the proof material is generated by the prover itself, including the CRS. Conse-
quently, the game DH-KE presents an adversary that simply takes as input a group description,
without any auxiliary information. Compared to [BFS16], where the adversary is provided with
additional information, our variant is thus weaker.

3 An extractable commitment scheme from DLin

We recall the homomorphic commitment scheme based on linear encryption [BBS04] by Groth
Ostrovsky and Sahai [GOS06a]. It defines two types of key generation: a perfectly hiding and
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perfectly binding one. Given a bilinear group Γ := (p,G,GT , e,G), it defines two key generation
algorithms Com.K(b) and Com.K(h) producing binding and hiding keys, respectively:

Com.K(h)

τ := (ru, sv)←$ (Z∗p)2; (x, y)←$ (Z∗p)2

F := xG, H := yG

(U, V,W ) := (ruF, svH, (ru + sv)G)

σ := (F,H,U, V,W )

return (σ, τ)

Com.K(b)

τ := (x, y, z)←$ (Z∗p)3; (ru, sv)←$ (Z∗p)2

F := xG, H := yG

(U, V,W ) := (ruF, svH, (ru + sv + z)G)

σ := (F,H,U, V,W )

return (σ, τ)

In order to commit to a value m ∈ Zp, one samples r, s←$Zp and returns:

C = Com.C(m; r, s) =
(
mU + rF,mV + sH,mW + (r + s)G

)
.

Since Com.C(m0; r0, s0) + Com.C(m1; r1, s1) = Com.C(m0 + m1; r0 + r1, s0 + s1), commitments
are additively homomorphic. A committed value is opened by providing the randomness (r, s).
Under a perfectly hiding key, a commitment to m can be opened to any value m′, given trapdoor
information τ = (ru, sv):

Com.C(m; r, s) =
(
(mru + r)F, (msv + s)V, (mru + r +msv + s)G

)
= Com.C

(
m′; r − (m′ −m)ru, s− (m′ −m)sv)

)
.

(1)

Under the DLin assumption, keys output by the perfectly hiding setup are computationally
indistinguishable from ones output by the perfectly binding setup. For this reason, a the perfectly
hiding setup leads to computationally binding commitments and vice-versa.

We say that a commitment tuple is linear w.r.t. (F,H,G) if it is of the form (rF, sH, (r+s)G)
for some r, s ∈ Zp. Commitments to 0 are linear tuples and all commitment under a hiding key
is also a linear. Under a binding key we have:

Com.C(m; r, s) =
(
(mru + r)F, (msv + s)H, mzG+ (mru + r +msv + s)G

)
.

A commitment to m is thus a linear encryption [BBS04] of mzG ∈ G1 under randomness
(mru + r,msv + s). Given a commitment C and the trapdoor information τ = (x, y, z), one can
extract the committed message. We denote by Com.E the extraction algorithm, which computes:

Com.E
(
τ, (C0, C1, C2)

)
:= dLog

(
z−1(C2 − x−1C0 − y−1C1)

)
, (2)

where dLog can be efficiently computed if the message space is of logarithmic size; for instance
assuming m ∈ {0, 1}, we define Com.E to return 0 if (C2−x−1C0−y−1C1) is the identity element,
and 1 otherwise.

Theorem 4 ([GOS06a]). Assuming DLin, Com, as defined above, is an extractable homomor-
phic commitment scheme that is:

– perfectly binding, computationally hiding when instantiated with Com.K(b);
– computationally binding, perfectly hiding when instantiated with Com.K(h).

The “parameter switching” technique, which defines different types of keys that are com-
putationally indistinguishable, has proved very useful and also applies to encryption schemes.
The idea has been defined (and renamed) several times. What in [GOS06a] is called “parameter
switching” is called “meaningful/meaningless encryption” in [KN08], “dual-mode encryption”
in [PVW08] and “lossy encryption” in [BHY09].
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ZAP.P(1λ, φ, w)

Γ := G(1λ) ; (σ0, τ)← Circ.K(Γ )

σ1 := σ0 + (0, 0, 0, 0, G)

π0 ← Circ.P(σ0, φ, w); π1 ← Circ.P(σ1, φ, w)

return (σ0, π0, π1)

ZAP.V(φ, (σ0, π0, π1))

σ1 := σ0 + (0, 0, 0, 0, G)

return
(∧

i∈{0,1} Circ.V(σi, φ,Πi)
)

Fig. 4. The (non-interactive) ZAP protocol of [GOS06a].

Proofs of binarity. As a building block for their zaps Groth, Ostrovsky and Sahai [GOS06a]
first construct a witness-indistinguishable non-interactive proof system Bin. Given a commitment
key σ = (F,H,U, V,W ) and a commitment C ∈ G3, it allows to prove that C commits to a
value in {0, 1} under σ. We detail their scheme in Appendix A.

4 Non-interactive zaps

To construct a non-interactive zap (i.e., a WI proof system without a CRS), Groth, Ostrovsky
and Sahai [GOS06a] first construct a proof system for circuit satisfiability with a CRS, based
on the commitment scheme from Section 3 and their proof of binarity. Then, in order to make
their scheme CRS-less, they define the prover to to pick two CRS’s that are correlated in a way
that makes it impossible for the adversary to cheat under both of them.

As the commitment scheme described in Section 3 is homomorphic, it is possible to perform
linear operations on commitments, and in particular prove logical relations between them.

First, proving that either C or C ′ := C − (U, V,W ) is linear proves that C is a commitment
to a bit. In order to prove that committed values satisfy wire assignments of a NAND gate Groth
et al. [GOS06b] observe that if a, b ∈ {0, 1} then c := ¬(a ∧ b) iff t := a + b + 2c − 2 ∈ {0, 1}.
Reasoning with homomorphic commitments, we have that three commitments A := (A0, A1, A2),
B := (B0, B1, B2), and C := (C0, C1, C2) are bound respectively to the values a, b, c, such that
c = ¬(a ∧ b), if and only if T is a commitment to either 0 or 1, where:

T := A+B + 2 · C − 2 · (U, V,W ) (3)

Thus, to prove that A,B,C are commitments to values in {0, 1} and that C is a commitment
to the NAND of the values in A and B, it is sufficient to prove that A, B, C and T are all bit
commitments. With these observations, GOS construct a perfectly witness-indistinguishable
proof system Circ for circuit satisfiability as follows:

The key generation algorithm Circ.K simply emulates Com.K(h), that is, it generates a hiding
commitment key. The prover Circ.P(σ, C, w) takes as input a circuit C and a witness w satisfying
C(w) = 1, and does the following: represent the circuit evaluation C(w) in such a way that wk is
the value running in the k-th wire. For each wk, produce a commitment Ck ← Com.C(σ,wk) to
wk and prove it is to a bit under σ using proof system Bin. For each gate, construct T from the
commitments corresponding to the ingoing and outgoing wires as above and prove that it too
is a commitment to 0 or 1. For the output commitment, create a commitment Cout to 1 that
can be easily reproduced and checked by the verifier: Cout := Com.C(σ, 1; (0, 0)). Let Π be the
collection of all other commitments together with the respective proofs of binarity generated.
Return Π.

The verifier Circ.V(σ, C, Π), computes Cout := Com.C(σ, 1; (0, 0)) and for every gate the value
T as in Eq. (3); using Bin.V, it checks that all the wire commitments are to values in {0, 1} and
respect the gates (by checking the values T ); if all verifications succeed, return true. Otherwise,
return false.

9



Theorem 5 ([GOS06a]). Assuming DLin, Circ is a non-interactive, perfectly sound computa-
tionally witness-indistinguishable proof system.

The reason why we cannot let the prover choose the CRS in Circ is that it could chose it
as a perfectly hiding CRS and then simulate proofs. However, if the prover must construct two
proofs under two different CRS’s which are related in such a way that at least one of them is not
linear (and thus binding), then the prover cannot cheat. In particular, note that given a 5-tuple
σ0 ∈ G5, and defining σ1 := σ0 + (0, 0, 0, 0, G) then at most one of σ0, σ1 is linear. At the same
time, both of them are valid CRSs. With this last trick, it is straightforward to construct the
zap scheme ZAP, as illustrated in Fig. 4.

Theorem 6 ([GOS06a]). Assuming DLin, ZAP is a non-interactive zap with perfect soundness
and computational witness indistinguishability.

Remark 7. We note that soundness of the system ZAP relies only on the fact that Γ is a bilinear
group. In [GOS06a] the prover is allowed to generate Γ and it is required that Γ is verifiable. We
presented a zap for deterministically generated groups, as considered by Bellare et al. [BFS16],
which is also required for our construction of non-interactive zaps of knowledge in the next
section.

5 ZAK: a non-interactive zap of knowledge

We present our NIWI argument of knowledge for circuit satisfiability.
The high-level idea of our protocol is to double the ZAP proof of [GOS06a] and link the

two CRS’s. Whereas ZAP used two Circ proofs to construct a zap from a proof that requires a
CRS, we will use two zap proofs not only to prove circuit satisfiability, but to prove knowledge
of a satisfying assignment. More specifically, knowledge soundness is obtained by generating
two independent zap proofs, and then linking the two with 4 group elements in a matrix ∆.
This additional matrix ∆, that we call linking element, guarantees the existence of an extractor
that can recover the trapdoor from one of the CRS’s contained in the two zap proofs, and
use it to extract the witness from the commitments contained in a valid zap proof. Witness
indistinguishability of the single proofs follows immediately from [GOS06a], but our proofs also
contain the linking element ∆, which depend on the randomness of the CRS’s. We thus need to
argue that these addition elements do not harm witness indistinguishability.

Using an extractor to recover the trapdoor hidden in an adversarially generated CRS was
also done by Bellare et al. [BFS16] to construct a scheme satisfying subversion-zero knowledge.
Our protocol is detailed in Fig. 5, where by DH we denote the algorithm that checks that δi,j is
the CDH of (σ0,0)i and (σ1,0)j (see below).

The trapdoor information τ0 = (x0, y0) and τ1 = (x1, y1) is correlated in ∆ to form the
following products:

∆ := [δi,j ]i,j∈{0,1} =

[
x0x1G x0y1G

y0x1G y0y1G

]
(4)

Correctness of ∆ can be checked by the verification algorithm using the bilinear map. For
i = 0, 1, let the CRS be σi = (Fi, Hi, Ui, Vi,Wi), and let xi, yi be such that:

Fi := xiG, Hi := yiG,

in which case ∆ is constructed as in Eq. (4). The verifier checks that the following holds:

e(δ0,0, G) = e(F0, F1), e(δ0,1, G) = e(F0, H1),

e(δ1,0, G) = e(H0, F1), e(δ1,1, G) = e(H0, H1).
(5)
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ZAK.P(1λ, φ, w)

Γ := G(1λ)

for i = 0, 1 do

(σi,0, τi)← Circ.K(Γ )

σi,1 := σi,0 + (0, 0, 0, 0, G)

πi,0 ← Circ.P(σi,0, φ, w)

πi,1 ← Circ.P(σi,1, φ, w)

Compute ∆ from τ0, τ1 as in Eq. (4).

Σ := [σi,0]i∈{0,1}, Π = [πi,j ]i,j∈{0,1}

return (Σ,∆,Π)

ZAK.V(φ, (Σ,∆,Π))

// Check if ∆ is consistent with Σ

if not DH(∆,Σ) return false

for i in {0, 1} do
σi,1 := σ0 + (0, 0, 0, 0, G)

return
( ∧

i,j∈{0,1} Circ.V(σi,j , φ, πi,j)
)

Fig. 5. The ZAK protocol.

Let us denote by DH the algorithm that, given as input Σ and ∆ returns true if all equalities
of Eq. (5) are satisfied, false otherwise. This procedure is used by the verification equation, as
detailed in Fig. 5.

We now proceed with the proof of our main result, Theorem 1, which we rephrase here for
completeness:

Theorem 1. Assume that DLin and DH-KE hold for G. Then, ZAK as defined in Fig. 5 is a
non-interactive zap that satisfies knowledge soundness and witness indistinguishability. In par-
ticular, we have

AdvksndZAK(λ) ≤ 4 · Advdh-ke(λ) and Advwi
ZAK(λ) ≤ 8 · Advdlin(λ).

Completeness of the protocol is trivial: the prover (respectively, the verifier) simply performs
4 iterations of Circ proofs (respectively, verifications), and therefore correctness is implied by
Theorem 5 and the fact that ∆ as in Eq. (4) satisfies Eq. (5). We now prove knowledge soundness
and witness indistinguishability.

Proof (of computational knowledge soundness). We show that for any adversary able to produce
a valid proof we can construct a PPT extractor that can extract a witness from such a proof
with overwhelming probability.

Let A be an adversarial prover in game KSND(λ) (Fig. 2, with Π.K void). On input 1λ, A
returns a proof consisting of σi,0 = (Fi, Hi, Ui, Vi,Wi) for i ∈ {0, 1}, of ∆ = [δi,j ]i,j∈{0,1} and
Π = [πi,j ]i,j∈{0,1}. The game KSNDZAK,CIRC-SAT(λ) is given in Fig. 6. From A we construct
four adversaries Ai,j (for i, j ∈ {0, 1}) that execute A and output some components of the proof

Game KSNDZAK,CIRC-SAT,A,ExtA
(λ)

Γ := G(1λ) ; r←$ {0, 1}A.rl(λ)

(C, (Σ,∆,Π)) := A(1λ; r)

w ← Ext(1λ, r)

return ZAK.V(C, (Σ,∆,Π)) and C(w) 6= 1

Fig. 6. Knowledge soundness game for the ZAK protocol.
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produced by A, namely

(F0, F1, δ0,0) = (x0G, x1G, x0x1G), (for A0,0)

(F0, H1, δ0,1) = (x0G, y1G, x0y1G), (for A0,1)

(H0, F1, δ1,0) = (y0G, x1G, y0x1G), (for A1,0)

(H0, H1, δ0,1) = (y0G, y1G, y0y1G), (for A1,1)

where xi, yi are such that Fi = xiG,Hi = yiG, and the four equations hold if ZAK.V(C, (Σ,∆,Π))
returns true. By the DH-KE assumption there exist extractors Exti,j for each of the adversaries
Ai,j that given its coins outputs:

x0 or x1, x0 or y1, (for Ext0,0, Ext0,1)

y0 or x1, y0 or y1 (for Ext1,0, Ext1,1)

if the above equations hold. The statement (x0 ∨x1)∧ (y0 ∨x1)∧ (x0 ∨ y1)∧ (y0 ∨ y1) is logically
equivalent to (x0∧y0)∨(x1∧y1). This means that together, these four extractors allow to recover
either (x0, y0) or (x1, y1), that is, the extraction trapdoor for one of the CRS’s. Let i∗ be such
that (xi∗ , yi∗) is the extracted pair.

For j ∈ {0, 1}, denote with σi∗,j the CRS (Fi∗ , Hi∗ , Ui∗ , Vi∗ ,Wi∗+jG), where Fi∗ , Hi∗ , Ui∗ , Vi∗ ,
Wi∗ ∈ G. Let j∗ ∈ {0, 1} be the smallest integer satisfying:

x−1i∗ Ui∗ + y−1i∗ Vi∗ − (Wi∗ + j∗G) 6= 0G.

The above implies that σi∗,j∗ is not a linear tuple, which means that it is a binding CRS.
Let C(i∗,j∗),k denote the commitment to the k-th wire contained in πi∗,j∗ . Using the extraction
algorithm described in Eq. (2) we can recover this witness:

wk = Com.E
(
(xi∗ , yi∗), C(i∗,j∗),k

)
.

It remains to prove that the extracted witness is indeed correct. Upon receiving a valid
proof from adversary A, we know from the verification equation (the subroutine DH) that each
Ai,j will output a valid DH triple. Therefore, extractors Exti,j together recover τi∗ = (xi∗ , yj∗)
with probability at least 1−

∑
i,j∈{0,1} AdvdhkeG,Ai,j ,Exti,j

(λ), that is, by DH-KE, with overwhelming
probability. Since the commitment scheme Com is perfectly binding if the CRS is not a linear
tuple (Theorem 4), a message wk is always successfully extracted. Correctness of wk follows from
the underlying proof system: by perfect soundness of Bin (Theorem 2) we are guaranteed that
wk ∈ {0, 1}; by perfect soundness of Circ (Theorem 5) that each gate evaluation is correct. The
bound in the construction of the extractor is tight: we have Advksnd(λ) ≤ 4 · Advdhke(λ). ut

Proof (of computational witness indistinguishability). Consider an adversary in the WI game
(Fig. 1, where Π.K is void) and making q = q(λ) queries to the Prove oracle, each of the
form (C(k), w(k)

0 , w(k)

1 ), for 0 ≤ k < q. Consider the following sequence of hybrid games where
H0 corresponds to WIZAK,CIRC-SAT,A(λ) with b = 0 and H12 corresponds to WIZAK,CIRC-SAT,A(λ)
with b = 1. The games differ in how the Prove oracle is implemented, which is specified in
Fig. 7 for the first half of the hybrids (the second half is analogous). We give an overview of all
hybrids in Table 2 below.

H0 The challenger simulates an honest Prove oracle, using (for every k < q) the first witness
w(k)

0 supplied by the adversary. It outputs (Σ(k), ∆(k), Π(k)), where in particular we recall:

Σ(k) =

[
σ
(k)
0,0 = (F (k)

0 , H(k)

0 , U (k)

0 , V (k)

0 , W (k)

0 )

σ
(k)
1,0 = (F (k)

1 , H(k)

1 , U (k)

1 , V (k)

1 , W (k)

1 )

]
and Π(k) =

[
π
(k)
0,0 π

(k)
0,1

π
(k)
1,0 π

(k)
1,1

]
.
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Oracle Prove in H1, H2 , and H3

Γ := G(1λ)

(σ0,0, τi)← Circ.K(Γ )

(σ0,0, τi)← Com.K(b)(Γ )

σ0,1 := σ0,0 + (0, 0, 0, 0, G)

(σ0,1, τi)← Circ.K(Γ )

σ0,0 := σ0,1 − (0, 0, 0, 0, G)

π0,0 ← Circ.P(σ0,0, C, w1)

π0,1 ← Circ.P(σ0,1, C, w0)

// The second zap is as in ZAK.P using w0.

(σ1,0, π1,0, π1,1)← ZAP.P(1λ, C, w0)

Compute ∆ as in Eq. (4).

return (Σ,∆,Π)

Oracle Prove in H4 and H5

Γ := G(1λ)

(σ0,1, τi)← Circ.K(Γ )

σ0,0 := σ0,1 − (0, 0, 0, 0, G)

(σ0,1, τi)← Com.K(b)(Γ )

π0,0 ← Circ.P(σ0,0, C, w1)

π0,1 ← Circ.P(σ0,1, C, w1)

// The second zap is as in ZAK.P using w0.

(σ1,0, π1,0, π1,1)← ZAP.P(1λ, C, w0)

Compute ∆ as in Eq. (4).

return (Σ,∆,Π)

Fig. 7. Overview of the simulations of the prove oracle in the first hybrid games for the proof of WI. Hybrids H1

and H4 are defined by ignoring all boxes (the light gray highlights the differences with respect to the previous

hybrids), whereas H2 and H5 include the light boxes but not the gray one and H3 includes all boxes.

Recall that the two rows of [Σ(k)|Π(k)] are independent zaps and that σ(k)

0,0 and σ(k)

1,0 are chosen

to be hiding. The Prove oracle computes σ(k)

i,j which are of the form σ(k)

i,j =
(
F (k)

i , H (k)

i , U (k)

i ,

V (k)

i , W (k)

i + jG
)
, for i, j ∈ {0, 1}. Furthermore, π(k)

i,j is a Circ proof using w(k)

0 under the CRS

σ(k)

i,j .

H1 For every Prove query, the simulator uses witness w(k)

1 (instead of w(k)

0 ) to produce π(k)

0,0. As

the respective CRS σ(k)

0,0 was generated using the perfectly hiding commitment setup Circ.K,
the two hybrids are distributed equivalently (any commitment under a hiding key is a random
linear triple; cf. Eq. (1)).

H2 For every Prove query, the simulator now generates CRS σ(k)

0,0 as a binding key via Com.K(b);

σ(k)

0,1 is generated as before (adding (0, 0, 0, 0, G)), and so are all proofs. Note that the linking

elements ∆(k) can be constructed knowing only the trapdoor (x(k)

1 , y(k)

1 ) of the CRS σ(k)

1,0,
which remained unchanged:

∆(k) =

[
y
(k)
1 H

(k)
0 y

(k)
1 F

(k)
0

x
(k)
1 H

(k)
0 x

(k)
1 F

(k)
0

]
. (6)

H1 and H2 are computationally indistinguishable under the DLin assumption: given a DLin
challenge (F,H,U, V,W ), the reduction can exploit the random self-reducibility property of
DLin to construct q instances of the DLin challenge: ∀k < q select x̄(k), ȳ(k), r̄(k), s̄(k), z̄(k)←$Zp
and compute σ(k)

0,0 as(
x̄(k)F, ȳ(k)H, r̄(k)x̄(k)F+z̄(k)x̄(k)U, s̄(k)ȳ(k)H+z̄(k)ȳ(k)V, (r̄(k)+s̄(k))G+z̄(k)W

)
.

Each σ(k)

0,0 is a random linear tuple if and only if the DLin challenge is, and it is a uniformly

random tuple if the DLin challenge is, as shown in [BFS16]. Computing σ(k)

1,0 as in H1 (hiding)
and defining ∆ as in Eq. (6), the simulator generates the rest of the game as defined. It returns
the adversary’s guess and thus breaks DLin whenever the adversary distinguishes H1 and H2.
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Table 2. Overview of changes throughout the hybrids: (h) denotes hiding setup; (b) denotes binding setup; wb
identifies the witness used to produce the proof.

Hybrid σ
(k)
0,0 π

(k)
0,0 σ

(k)
0,1 π

(k)
0,1 σ

(k)
1,0 π

(k)
1,0 σ

(k)
1,1 π

(k)
1,1

H0 (h) w0 (b) w0 (h) w0 (b) w0

H1 w1

H2 (b)

H3 (h)

H4 w1

H5 (b)

H6 (h)

H7 w1

H8 (b)

H9 (h)

H10 w1

H11 (b)

H12 (h) w1 (b) w1 (h) w1 (b) w1

H3 The simulator replaces each CRS σ(k)

0,1 for all k < q with a hiding commitment and defines

σ(k)

0,0 := σ(k)

0,1 − (0, 0, 0, 0, G), which is therefore (once again) binding. More specifically, the
simulator creates a linear tuple invoking Circ.K:

σ(k)

0,1 =
(
x(k)

0 G, y(k)

0 G, x(k)

0 r(k)G, y(k)

0 s(k)G, (r(k) + s(k))G
)

where x(k)

0 , y(k)

0 , r(k), s(k)←$Zp.
The two distributions are proven computationally indistinguishable under DLin by an argu-
ment analogous to the one for H1 → H2. This time the challenger constructs all the various
instances of the DLin challenge for σ(k)

0,1, while σ(k)

0,0 is derived. From there, the proof proceeds
identically.

H4 The simulator replaces each proof π(k)

0,1 by using w(k)

1 instead of w(k)

0 (∀k < q).

This hybrid is equivalently distributed as the previous one; this is proved via the same
argument as for H0 → H1.

H5 The simulator switches σ(k)

0,1 from a hiding to a binding key. This game hop is analogous to

the hop H1 → H2 (which switched σ(k)

0,0 from hiding to binding).

H6 The simulator switches σ(k)

0,0 from binding to hiding. Indistinguishability from the previous
hybrid is shown analogously to the hop H2 → H3. Note that in this hybrid the first zap
(σ(k)

0,0, π
(k)

0,0, π
(k)

0,1) is distributed according to the protocol specification, but using witness w(k)

1 .

Hybrids H7 to H12 are now defined analogously to hybrids H1 to H6, except for applying all
changes to σ(k)

1 and π(k)

1,0 and π(k)

1,1. In hybrid H12 the adversary is then given arguments of
knowledge for witness w1.

As the difference between hybrids H1 and H12 is bounded by 8 times the advantage of a DLin
distinguisher, the adversary has total advantage

Advwi
ZAK,C,A(λ) ≤ 8 · AdvdlinZAK,C,A(λ) = negl(λ) .

The bound is thus tight. ut
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A GOS’s proof of binarity

Consider the CRS σ := (F,H,U, V,W ) and Γ := (p,G,GT , e,G) resulting from the execution
of (one of the two types of) the key generation algorithm Com.K. Note that F,H are two
generators of G and (U, V,W ) is a linear tuple w.r.t. (F,H,G) iff the key generation algorithm
is chosen hiding. Groth, Ostrovsky and Sahai [GOS06a] presented a witness-indistinguishable
non-interactive proof system Bin for proving that C ∈ G3 is a commitment to {0, 1} under σ.
The intuition behind this construction is that, by the homomorphic property of Com, proving
that C commits to a bit is equivalent to showing that either C = (C0, C1, C2) or C ′ := C −
Com.C(1; (0, 0)) = C − (U, V,W ) is a linear tuple with respect to (F,H,G). If we consider the
discrete logarithms w.r.t (F,H,G) of the above commitments, i.e. letting C = (r0F, s0H, t0G)
and C ′ = (r1F, s1H, t1G), we have that:

C or C ′ is a linear tuple

⇐⇒ t0 = r0 + s0 or t1 = r1 + s1

⇐⇒ (r0 + s0 − t0)(r1 + s1 − t1) = 0

⇐⇒ r0r1 + r0s1 + s0r1 + s0s1 + t0t1 − (r0t1 + t0r1 + s0t1 + t0s1) = 0.

(7)

Consider a prover Bin.P holding the witness (b, r, s) ∈ {0, 1} × Zp × Zp for (C,C ′), where b
indicates which tuple is linear and r, s are its contained randomness. In order to convince a
verifier, it proceeds as follows: choose t←$Zp and let Π = [πi,j ]i∈{0,1},j∈{0,1,2}, where:

π0,0 := r(2b− 1)U + r2F π1,0 := s(2b− 1)U + (rs+ t)F

π0,1 := r(2b− 1)V + (rs− t)H π1,1 := s(2b− 1)V + s2H

π0,2 := r(2b− 1)W + (r2 + rs+ t)G π1,2 := s(2b− 1)W + (s2 + rs− t)G
(8)

A verifier Bin.V, on input the CRS σ, the statement C and Π, computes π2,j := π1,j + π0,j for
j = 0, 1, 3 and returns true if all the following equations are satisfied:

e(F, π0,0) = e(C0, C0 − U),

e(F, π0,1) + e(H,π1,0) = e(C0, C1 − V ) + e(C1, C0 − U)

e(H,π1,1) = e(C1, C1 − V ),

e(F, π0,2) + e(G, π2,0) = e(C0, C2 −W ) + e(C2, C0 − U)

e(G, π2,2) = e(C2, C2 −W ),

e(H,π1,2) + e(G, π2,1) = e(C1, C2 −W ) + e(C2, C1 − V ).

(9)

If we consider, as we did for the commitments, the discrete logarithms of the proof matrix w.r.t.
(F,H,G), i.e. we put

mi,0 := logF (πi,0), mi,1 := logH(πi,1), mi,2 := logG(πi,2),
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Bin.P(σ,C, (b, r, s))

Construct Π as per Eq. (8)

return Π

Bin.V(σ,C,Π)

[πi,j ]i∈{0,1},j∈{0,1,2} = Π

for j = 0, 1, 2 do π2,j := π1,j + π0,j

return (Eq. (9))

Fig. 8. The Bin protocol.

for i = 0, 1, then we observe that the verification equation sets: m2,i := m0,i + m1,i, and then
checks the following:

m0,0 = r0r1 m0,1 +m1,0 = r0s1 + s0r1

m1,1 = s0s1 m0,2 +m2,0 = r0t1 + t0r1

m2,2 = t0t1 m1,2 +m2,1 = s0t1 + t0s1

(10)

By substitution, this is exactly what Eq. (7) affirms.
As previously mentioned, the key generation algorithm is identical to Com.K. If the setup is

perfectly binding, perfect completeness and perfect soundness follow immediately from Eq. (10).
Perfect witness indistinguishability follows from the observation that a proof with a witness
(0, r0, s0) gives the same proof as using witness (1, r1, s1) with randomness t′ = t+ r0s1 − s0r1.
On the other hand, on a perfectly hiding key generation every commitment is a linear tuple,
and thus there is nothing to prove.

Theorem 2 ([GOS06a]). The protocol Bin is a non-interactive proof system with perfect com-
pleteness, perfect soundness, and perfect witness indistinguishability.

B Non-interactive zaps of knowledge in asymmetric groups

In this section we show an alternative and more efficient approach to constructing non-interactive
zaps of knowledge for circuit satisfiability. In contrast to symmetric bilinear groups used in
Section 2, we will work with asymmetric pairings, that is, bilinear maps e : G1 × G2 → GT

(where G1 = 〈G1〉, G2 = 〈G2〉 and GT are abelian additive groups of prime order p). We
assume a deterministic algorithm G that outputs an (asymmetric) group description Γ :=
(p,G1,G2,GT , e,G1, G2).

By extending GOS proofs [GOS06b], Goth and Sahai [GS08] provide a general framework
for non-interactive witness-indistinguishable (NIWI) proof systems, which can be based (among
other computational assumptions) on SXDH. The SXDH assumption for an asymmetric pairing
group generator G informally states that the decisional Diffie-Hellman assumption holds in both
G1 and G2.

Assumption 3 (SXDH) We say that the Symmetric External Diffie-Hellman assumption holds
for the asymmetric bilinear group generator G if for all PPT adversaries A we have:

Advxdh1G,A (λ) := Pr
[
XDH1

G,A(λ)
]
− 1/2 = negl(λ) and

Advxdh2G,A (λ) := Pr
[
XDH2

G,A(λ)
]
− 1/2 = negl(λ) ,

where XDHI
G,A(λ) (for I = 1, 2) is defined in Fig. 9.

In order to construct zaps of knowledge over asymmetric bilinear groups, we require the
analogue of DH-KE for such groups, in particular for their first base group G1. We give a formal
definition.
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Game XDHI
G,A(λ)

Γ := (p,G1,G2,GT , e, G1, G2) := G(1λ)

b←$ {0, 1}
x, y ← Z∗p
if b = 1 then H := xyGI

else H ←$GI
b′ ← A(Γ, xGI , yGI , H)

return (b = b′)

Game ADH-KEG,A,Ext(λ)

Γ := (p,G1,G2,GT , e, G1, G2) := G(1λ)

r←$ {0, 1}A.rl(λ)

(X,Y, Z) := A(Γ ; r)

s← Ext(Γ, r)

if sG1 = X ∨ sG1 = Y then return 0

return (Z = logG1
(X) · Y )

Fig. 9. Games for Assumptions 3 (SXDH) and 4 (ADH-KE).

Assumption 4 (ADH-KE) The Asymmetric Diffie-Hellman Knowledge of Exponent assump-
tion holds for (the first base group of) the asymmetric group generator G if for any PPT adver-
sary A there exists a PPT extractor Ext such that:

Advadh-keG,A,Ext(λ) := Pr
[
ADH-KEG,A,Ext(λ)

]
= negl(λ) ,

where the game ADH-KEG,A,Ext(λ) is defined in Fig. 9.

Groth-Sahai (GS) proofs [GS08] achieve improved efficiency by working for group-dependent
languages, in contrast to the more elementary proof system Bin of “bit commitment” (given in
Appendix A) used for circuit satisfiability. More recently, Ràfols [Ràf15] gave a construction of
non-interactive zaps from GS proofs, which leads to more efficient non-interactive zaps (by a
constant factor). Relying on the asymmetric variant of the DH-KE assumption, we show how to
achieve knowledge soundness also for GS zaps. Interestingly, the scheme does not require any
alteration to the protocol, that is, under ADH-KE we can show that a GS zap is already a GS
zap of knowledge.

B.1 GS zaps

We first describe the GS-based zap and then argue that it satisfies knowledge soundness under
ADH-KE.

SXDH commitments and proofs of binarity. The SXDH commitment scheme of Groth
and Sahai [GS08] allows to commit to values in Zp both in G1 and in G2 (here we parametrize
the algorithm with I ∈ {1, 2} for compactness). The properties of the scheme are very similar to
those of GOS’s [GOS06a] DLin-based commitments (Section 3). Again, commitment keys can
be generated in one of two possible “modes”, one perfectly hiding and one perfectly binding.

Com.K
(h)
I

τ := (x, y)←$ (Z∗p)2

~V := (xGI , GI)
>

~W := (xyGI , yGI)
>

σ := (~V , ~W )

return (σ, τ)

Com.K
(b)
I

τ := (x, z)←$ (Z∗p)2; y←$Z∗p
~V := (xGI , GI)

>

~W := (xyGI , (y + z)GI)
>

σ := (~V , ~W )

return (σ, τ)
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The commitment key thus consists of vectors ~V , ~W ∈ G2
I , for I = 1, 2. Committing to a value

m ∈ Zp is performed by sampling r←$Zp and computing:

Com.CI(m; r) := m ~W + r~V .

The commitment scheme is additively homomorphic, since Com.CI(m0; r0)+Com.CI(m1; r1) =

Com.CI(m0 + m1; r0 + r1). The two setups Com.K
(h)
I and Com.K

(b)
I are computationally indis-

tinguishable under DDH in GI : hiding setup returns a DH triple (V0,W1,W0) with respect to
V1 = GI , whereas binding setup returns random values (V0,W1,W0).

If ~V , ~W are linearly dependent, which is the case when generated by Com.K
(h)
I , then the

commitment is perfectly hiding; a commitment ~C to a value m can be opened to any value
m′ ∈ Zp given the trapdoor information τ = (x, y):

Com.CI(m; r) =

(
x(my + r)GI

(my + r)GI

)
= Com.CI

(
m′; r + (m−m′)y

)
.

If ~V , ~W are linearly independent then the commitment is perfectly binding and for message
spaces of logarithmic size the committed value can be extracted using the trapdoor information

τ = (x, z) generated by Com.K
(b)
I :

m = Com.EI
(
τ, ~C

)
:= dLog

(
z−1(C1 − x−1C0)

)
.

A commitment in GI can be shown to be bound to a bit via two quadratic equations in
Zp, as introduced by Groth and Sahai [GS08]. To do so, we require another commitment in the
opposite source group G3−I . Let b1 be the value committed over G1 and b2 the value committed
over G2. Our goal is to prove that b1 ∈ {0, 1}; at the same time we prove b1 = b2. This can be
done by proving that the commitments satisfy the following two equations:

b1(b2 − 1) = 0 and b2(b1 − 1) = 0 . (11)

We refer the reader to [GS08, §9 pp. 28] for how to construct proofs for the above equations
being satisfied by the committed values.3 A proof for one such equation consists of one element
from each source group. We can thus define a proof system Bin, which, given a commitment in
G1 and another one in G2, proves that the committed values are bits using 2(|G1|+ |G2|) group

elements. The key generation algorithm Bin.K simply executes Com.K
(b)
1 and Com.K

(b)
2 .

Proofs of circuit satisfiability. Now that we have a witness-indistinguishable system for
proving that a commitment is bound to a bit b ∈ {0, 1} over asymmetric bilinear groups under the
SXDH assumption, we can construct a protocol Circ for proving circuit satisfiability analogously
to scheme by GOS [GOS06b] given in Section 4: The prover commits to each wire in the circuit
twice (once in G1 and once in G2), proves that the committed values are to either 0 or 1,
and for each NAND gate with input wire values a, b and output wire value c it proves that
(a + b + 2c − 2) ∈ {0, 1}. The output commitment is fixed again to Com.C(1; 0). This defines
Circ.P((σ1, σ2), φ, w) where σI is a CRS in group GI , φ is the statement, i.e., a circuit description
and w is the witness, a satisfying assignment. A proof π consists thus of commitments C1,k ∈ G2

1

and C2,k ∈ G2
2 and proofs of binarity πk for every wire wk, and moreover proofs πi for every gate

gi.

3 In GS notation, the equations are defined by setting the parameters ~a := (0), ~b := (−1), Γ := [1], and t := 0

for the first equation and ~a := (−1), ~b := (0), Γ := [1], t := 0 for the second.
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ZAP.P(1λ, φ, w)

Γ = (p,G1,G2,GT , e, G1, G2) := G(1λ)

for I = 1, 2 do

σI,0 ← Com.K
(h)
I (Γ )

σI,1 := σI,0 − ((0, 0)>, (0, GI)
>)

Compute ( ~CI,j,k)I,j,k as per Eq. (14)

for i, j ∈ {0, 1} do
πi,j ← Circ.P((σ1,i, σ2,j), φ, w)

return
(
σ1,0, σ2,0, (~CI,j,k)I,j,k, [πi,j ]i,j

)

Procedure Test-DH(A,B,C, s)

Γ = (p,G1,G2,GT , e, G1, G2) := G(1λ)

if sG1 = A and sB = C

return true

if sG1 = B and sA = C

return true

else

return false

Fig. 10. The non-interactive zap scheme based on SXDH and the procedure for testing DH triples used in the
proof.

A zap from SXDH. Again, a ZAP is constructed from Circ analogously to the GOS zap
[GOS06a] given in Section 4. There, a zap consisted of 2 Circ-proofs for two related CRS’s of
which one was guaranteed to be binding and thus lead to sound proofs. For SXDH we now create
two related CRS’s in each group G1 and G2, so we are guaranteed that for each group one of
them is binding. Intuitively, we need to construct 4 Circ proofs, one for each combination of a
CRS in G1 with one from G2. We are then guaranteed that one of the four proofs is under two
binding CRS, which asserts that the prover cannot cheat. (Note that we do not actually need
four full Circ proofs, as they can share the commitments.)

More specifically, the prover constructs two CRS σI,0, for I = 1, 2, for perfectly hiding SXDH
commitments in G1 and G2. Then, it computes (again for I = 1, 2):

σI,1 := σI,0 −
(
(0, 0)>, (0, GI)

>). (12)

As for the zap described in Section 4, σI,1 is deterministically generated from σI,0 and at least
one of the two CRS leads to perfectly binding commitments. For simplicity, we will refer to the
following matrix of CRS in order to perform Circ proofs:

Σ := [(σ1,i, σ2,j)]0≤i,j≤1 :=

[
(σ1,0, σ2,0) (σ1,0, σ2,1)

(σ1,1, σ2,0) (σ1,1, σ2,1)

]
. (13)

Then, the prover commits to every wire value wk computing:

~CI,j,k ← Com.CI(σI,j , wk), (14)

for each I ∈ {1, 2} and each j ∈ {0, 1}. Reusing these commitments, the prover now computes
four Circ proofs πi,j (with i, j ∈ {0, 1})). This boils down to computing, for all i ∈ {0, 1} and all
wire indices k:

πi,j,k ←Bin.P
(
(σ1,i, σ2,j), (~C1,i,k, ~C2,j,k), wk

)
, (15)

and proceeding in the same way for all gates. With a slight abuse of notation, in the explicit
construction of Figure 10 we denote this whole process with:

πi,j ←Circ.P
(
(σ1,i, σ2,j), φ, w

)
,

keeping in mind that the commitments are not recomputed for each proof, and that instead we
are using the commitments ~CI,i,k in GI to to wire wk under the CRS σI,i.
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The construction of ZAP.V(φ, π) is straightforward: Upon receiving a proof(
σ1,0, σ2,0, (~C1,j,k, ~C2,j,k)i,j∈{0,1}, [πi,j ]i,j∈{0,1}

)
the verifier computes the correlated CRS’s σ1,1, σ2,1 according to Eq. (12) and verifies each of the
proofs πi,j for i, j ∈ {0, 1} using Circ.V((σ1,i, σ2,j), φ, πi,j) (using the respective commitments,
as we described above). It returns true if all proofs verified.

Theorem 3. Assume SXDH and ADH-KE holds for the asymmetric group generation G. Then
ZAP as defined in Fig. 10 is a non-interactive zap that satisfies knowledge soundness and witness
indistinguishability.

Witness indistinguishability of the ZAP proof follows from an hybrid argument analogous
to the proof of witness-indistinguishability of [GOS06a]. We now prove that the scheme also
satisfies computational knowledge soundness.

Proof (of computational knowledge soundness). Let A be the PPT adversary in the game KSNDA,ZAP(λ)
able to produce a proof for which ZAP.V returned true. The proof is of the form:(

σ1,0, σ2,0, (~C1,j,k, ~C2,j,k)i,j∈{0,1}, [πi,j ]i,j)
)

where πi,j is a valid Circ proof under the CRS (σ1,i, σ2,j) - with σ1,1 and σ2,1 derived from σ1,0
and σ2,0 as per Equation (12).

First, we claim that the extractor is able to find the index i∗ ∈ {0, 1} of the perfectly binding
CRS for G1. Consider the adversary A1,0 (A1,1, resp.) that behaves as A, but simply outputs the
elements (V0,W1,W0) contained in CRS σ1,0 (σ1,1, resp.). By ADH-KE there exists an extractor
Ext1,0 (Ext1,1, resp.) that outputs a value s0 (s1, resp.) in Zp. If the triple the adversary outputs
is a DH triple (which is the case for a perfectly hiding setup), the respective extractor will output
the discrete logarithm of one of the first two elements (except with negligible probability). This
can be efficiently tested: for a value s output by the extractor, either

sG1 = V0 and sW1 = W0 , or

sG1 = W1 and sV0 = W0 , (16)

hold. Thus, let i∗ ∈ {0, 1} be the first value si∗ for which Eq. (16) does not hold. There exists
such an i∗ because at most one of σ1,0 and σ1,1 = σ1,0 − ((0, 0)>, (0, G1)

>) can be a DH triple
and thus a hiding commitment key. In G2 can can also be at most one hiding commitment key;
let j∗ be the smallest index such that σ2,j∗ is binding. Note that our extractor will not know the
value of j∗. The CRS (σ1,i∗ , σ2,j∗) is thus of type “perfectly binding”.

By soundness of the Bin proof associated to every pair (~C1,i∗,k, ~C2,j∗k), the committed values
b1,k and b2,k satisfy b1,k = b2,k and b1,k, b2,k ∈ {0, 1}. It now remains to show that these values
contained in the commitments corresponding to input wires (which by perfect soundness of Circ
constitute a satisfying assignment) can be extracted; in particular, we extract the value from
~C1,i∗,k (note that the extractor knows i∗).

Using (once again) the initial adversary A, we can construct multiple adversaries A
(b)
k , one

for each commitment ~C1,i∗,k = (C1,i∗,k,0, C1,i∗,k,1) to an input wire, and each possible wire value

b = 0, 1. The adversary A
(b)
k runs A and outputs:

(V0, C1,i∗,k,1, C1,i∗,k,0), (for A
(0)
k )

(V0, C1,i∗,k,1 −W1, C1,i∗,k,0 −W0) (for A
(1)
k )

21



where σ1,i∗ = (V0, V1,W0,W1). Note that if ~C1,i∗,k is a commitment to 0 then (V0, ~C1,i∗,k) it is

of the form (xG1, rG1, rxG1) for some x, r ∈ Zp, and thus a DH triple. If ~Ck is a commitment

to one, then ~C − ~W is a commitment to 0 and thus (V0, ~C1,i∗,k − ~W ) is a DH triple as above.

By ADH-KE for each adversary A
(b)
k there exists an extractor Ext

(b)
k that outputs some value

s
(b)
k (with b = 0, 1), if A

(b)
k output a DH triple. Using the same reasoning of Eq. (16), we can

test which of the two triples is a valid DH triple. To do so, we use the procedure Test-DH
depicted in Fig. 10. For each commitment ~C1,i∗,k, there exists a single index bk for which the
sub-procedure Test-DH returned true: if there were more than one we would be violating the
perfect binding property of the commitment scheme, if there were none we would be violating
the perfect soundness of Bin (as the commitment would be bound to a value different from 0, 1).

At this point, we are done: the extractor for knowledge soundness runs all above extractors
and recovers the bit bk from every commitment, which is the correct wire value because of
soundness of the Circ protocol under a perfectly binding key generation.

As we needed to construct as many extractors as there are input wires in the circuit, the
security loss depends on the size of the circuit. ut
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