
A New Constant-size Accountable Ring
Signature Scheme Without Random Oracles

Sudhakar Kumawat1 and Souradyuti Paul2

1 Indian Institute of Technology Gandhinagar
2 Indian Institute of Technology Bhilai

{sudhakar.bm07,souradyuti.paul}@gmail.com

Abstract. Accountable ring signature (ARS), introduced by Xu and
Yung (CARDIS 2004), combines many useful properties of ring and group
signatures. In particular, the signer in an ARS scheme has the flexibility
of choosing an ad hoc group of users, and signing on their behalf (like
a ring signature). Furthermore, the signer can designate an opener who
may later reveal his identity, if required (like a group signature). In 2015,
Bootle et al. (ESORICS 2015) formalized the notion and gave an efficient
construction for ARS with signature-size logarithmic in the size of the
ring. Their scheme is proven to be secure in the random oracle model.
Recently, Russell et al. (ESORICS 2016) gave a construction with con-
stant signature-size that is secure in the standard model. Their scheme
is based on q-type assumptions (q-SDH).
In this paper, we give a new construction for ARS having the following
properties: signature is constant-sized, secure in the standard model, and
based on indistinguishability obfuscation (iO) and one-way functions. To
the best of our knowledge, this is the first iO-based ARS scheme. Inde-
pendent of this, our work can be viewed as a new application of punc-
turable programming and hidden sparse trigger techniques introduced by
Sahai and Waters (STOC 2014) to design iO-based deniable encryption.

Keywords: Accountable ring signatures, indistinguishability obfusca-
tion, puncturable PRFs.

1 Introduction

The notion of group signature, introduced by Chaum and Van Heyst [9], allows
a user to sign anonymously on behalf of a group of users without revealing his
identity. Here, the membership of the group is controlled exclusively by the group
manager, that is, he can include as well as expel users in the group. Moreover,
the group manager can revoke the anonymity of the signer using a secret tracing
key. Unlike a group signature, a ring signature, introduced by Rivest et al. [18],
allows a signer to choose an ad hoc group of users (called the ring) and to sign
on their behalf. Also, there is no group manager in a ring signature that con-
trols the group and traces the signer. The notion of accountable ring signature
(ARS) [20] was borne out of the above two notions. It provides the flexibility of

choosing a group of users, and ensures accountability by allowing an opener –
designated by the signer – to later reveal the signer’s identity. An ARS scheme
must be unforgeable, anonymous, traceable and traceably sound. Applications
of accountable ring signature include anonymous e-cash schemes [?], anonymous
forums and auction systems [4].

Related Work In 2004, Xu and Yung [20] introduced the notion of accountable
ring signature (ARS). Their construction relies on the existence of a trapdoor
permutation and uses a threshold decryption scheme to reveal the signer’s iden-
tity. Their main trick lies in the use of tamper-resistant smart cards to retain
some footprint of the identity of the signer in the signature. The size of the
signature in their scheme grows linearly with that of the ring. In 2015, Boo-
tle et al.[4] formalized the notion of ARS, and gave an efficient construction
secure in the random oracle model by combining Camenisch’s group signature
scheme [8] with a generalized version of Groth and Kohlweiss’s one-out-of-many
proofs of knowledge [15]. Their construction relies on the hardness of Decision
Diffie-Hellman (DDH) problem. The signature-size of their scheme grows loga-
rithmically with the ring-size. Recently, Lai et al. [17] gave the first constant-size
ARS scheme in standard model by combining the ring signature scheme of [5],
with the structure-preserving encryption scheme of [7]. Their construction relies
on q-type assumptions, in particular the q-SDH assumption.

et al.
Paper Signature Security Unforgeability Anonymity Hardness

size model assumption

[20] O(|R|) RO Fully adaptive Fully adaptive Trapdoor permutations
[4] O(log |R|) RO Fully adaptive Fully adaptive DDH
[17] O(1) Standard q-Adaptive q-Adaptive q-type

This paper O(1) Standard Selective Selective iO+OWF

Table 1: Comparison between several accountable ring signature schemes. The
symbol R denotes the ring.

Our Contribution We propose a new constant-size accountable ring signature
scheme. Our scheme relies on the security of indistinguishability obfuscation
(iO) and one-way functions. Our approach is inspired by the puncturable pro-
gramming and hidden sparse trigger techniques introduced, and used by Sahai
and Waters [19] to construct deniable encryption schemes. Two important fea-
tures of our scheme are as follows: Unlike the schemes in [20] and [4], (1) our
scheme is proven secure in the standard model, and (2) the signature-size of our
scheme is constant, and does not increase with the ring-size. While the scheme
in [17] achieves stronger security guarantees with respect to unforgeability and
anonymity, it does not achieve full adaptiveness (i.e. q-adaptive). This is be-
cause, its security proof relies on q-type assumption (q-SDH) that restricts the
number of queries made to the signing oracle to a fixed parameter q (determined

in the setup phase). However, this does not work in the real world as an adver-
sary can always get more than q valid signatures. Note that setting q to a very
large number makes the assumption stronger and, also, drastically degrades the
practical efficiency of the scheme. In contrast, our scheme is secure against ar-
bitrary number (polynomial) of signing queries. One major disadvantage of our
scheme is that it is selective secure. Thus, constructing a fully unforgeable and
anonymous, and constant-size ARS scheme in the standard model still remains
an interesting open problem. In Table. 1, we compare our scheme with previous
ones.

In this paper, we stress that, due to the low efficiency of the existing iO
candidates, our focus is mainly on the existence of a constant signature-size
ARS scheme (secure without random oracles) based on iO, but not on their
practicability. However, note that, with the recent publication of results on effi-
cient implementation of iO-based cryptographic primitives [2], we hope that our
scheme may be close to being practical.

Technical Overview First, a trusted authority runs the setup algorithm once
that gives two obfuscated programs Sign and Verify. Two random keys K1 and K2

are hardwired into these programs, and are known only to the trusted authority.
It is important for any ARS scheme that the footprint of the signer be retained
in the signature so that the signer’s identity could be revealed by a designated
party, if required. To achieve this, we use the hidden sparse trigger technique
introduced by Sahai and Waters [19], and briefly describe it in the Sign and
Verify programs below.

– Sign: This program takes as input a message m, a signing-verification key
pair (sk, vk), a ring R (a set of verification keys arranged in a specified order),
a public key ek of an opener and some randomness r. Then, it checks if vk =
f(sk) and vk ∈ R. If so, it sets α = F1(K1, (m‖vk‖Hash(R)‖ek‖PRG(r)))
and β = F2(K2, α) ⊕ (m‖vk‖Hash(R)‖ek‖PRG(r)); and outputs σ = (α, β)
as a signature of (m, sk,R, ek, r). The security relies on the following as-
sumptions: (1) F1(K1, ·) is injective pucturable PRF ; F2(K2, ·) is pucturable
PRF; Hash(·) is collision-resistant; and f(·) is one-way. (These are discussed
in detail in Sect. 5).

– Verify: This program takes as input a message m, signature σ = (α, β),
a ring R and the encryption key ek of an opener. Then it checks if the
claimed signature σ is a valid encoding of these inputs under the encoding
scheme as described in the Sign program above. More concretely, it checks
if F2(K2, α)⊕ β = (m′‖vk′‖h′‖ek′‖r′), m = m′, Hash(R) = h′, ek = ek′ and
f1(α) = f1(F1(K1, (m

′‖vk′‖h′‖ek′‖r′))). If so, it outputs verification key vk′

of the signer encrypted under the public key ek′. Otherwise it outputs ⊥.
Here f2(·) is a one-way function.

In addition, we require two more functionalities, namely Open and Judge, to
reveal and prove the signer’s identity. Open works as follows: it invokes Verify to
obtain the encrypted verification key. Next, it decrypts it. Finally, it produces a

NIZK proof of correct decryption. Judge verifies if the proof returned by Open
is correct.

Notation We use x ← S to denote that x is sampled uniformly from the set
S; y := A(x) denotes that A is a deterministic algorithm whose output is as-
signed to y; when A is randomized, the process is denoted by y ← A(x) (or
y = A(x; r)). “PPT” stands for probabilistic polynomial time.

Paper Organization The rest of the paper is organized as follows. In Sect. 2,
we recall the definition and security model of ARS scheme from [?]. In Sect. 3, we
recall the definitions of various cryptographic primitives used in our construction.
In Sect. 4, we present our iO-based ARS scheme. In Sect. 4, we give a proof of
security of our construction. Finally, we conclude in Sect. 6 giving some open
problems in the area.

2 Accountable Ring Signature Scheme

2.1 Syntax

Assume that each user in the system is uniquely identified by an index i ∈
[n], n ∈ N. In addition, imagine that the PKI maintains a public registry reg of
the registered users.

Definition 1 (Accountable Ring Signature (ARS)[4]). An ARS scheme
ARS=(ARS.UKGen,ARS.OKGen,ARS.Sign,ARS.Verify,ARS.Open,ARS.Judge) over
a PPT setup ARS.Setup is a 6-tuple of algorithms.

– ARS.Setup(1λ) : On input the security parameter 1λ, ARS.Setup outputs a
list of public parameters params consisting of a class {SK,VK, EK,DK} –
denoting key spaces for signing, verification, encryption and decryption –
along with poly-time algorithms for sampling and deciding memberships.

– ARS.UKGen(params) : On input params, the PPT algorithm ARS.UKGen
outputs a signing key sk and corresponding verification key vk for a user.

– ARS.OKGen(params) : On input params, the PPT algorithm ARS.OKGen
outputs an encryption/ decryption key pair (ek, dk) for an opener.

– ARS.Sign(params,m, sk,R, ek) : On input params, message m, signer’s se-
cret key sk, a ring R – which is a set of verification keys – and an opener’s
public key ek, the PPT algorithm ARS.Sign outputs the ring signature σ.

– ARS.Verify(params,m, σ,R, ek) : On input params, message m, signature
σ, a ring R and a public key ek, ARS.Verify outputs 1/0.

– ARS.Open(params,m, σ,R, dk) : On input params, message m, signature σ,
a ring R and the opener’s secret key dk, ARS.Open outputs the verification
key vk of signer and a proof φ that the owner of vk generated σ.

– ARS.Judge(params,m, σ,R, ek, vk, φ) : On input params, message m, sig-
nature σ, a ring R, the opener’s public key ek, the verification key vk and
the proof φ, ARS.Judge outputs 1 if the proof is correct and 0 otherwise.

Correctness An ARS scheme is correct if for any PPT adversary A :

Pr

params← ARS.Setup(1λ); (vk, sk)← ARS.UKGen(params);
(m,R, ek)← A(params, sk); σ ← ARS.Sign(m, sk,R, ek)

: vk ∈ R ∧ ARS.Verify(m,σ,R, ek) = 1

 ≈ 1

2.2 Security Model

Unforgeability Unforgeability requires that an adversary cannot falsely accuse
an honest user of creating a ring signature even if some of the members of the
ring are corrupt and that the adversary controls the opener. More concretely,
consider the following game between a PPT adversary A and a challenger C.
1. Setup Phase: C runs the algorithms ARS.Setup to generate public param-

eters params. Then, it chooses a set S ⊂ [n] of signers, runs ARS.UKGen
to generate key-pairs {(ski, vki)}i∈S and registers them with the PKI, and
sends params, {vki}i∈S to A.

2. Query Phase: A can make the following three types of queries to C. C
answers these queries via oracles OReg, OCor and OSig.
– Registration query: A runs the algorithm ARS.UKGen to generate

a signing-verification key pair (ski, vki), i /∈ [n] \ S and interacts with
the oracle OReg to register vki with the PKI. Let QReg be the set of
verification keys registered by A.

– Corruption query: A queries a verification key vki, i ∈ S to the oracle
OCor. The oracle returns the corresponding signing key ski. Let QCor
be the set of verification keys vki for which the corresponding signing
keys has been revealed.

– Signing query: A queries (m, vki, R, ek, r) to the oracle OSign. The
oracle returns a signature σi = Sign(m, vki, R, ek, r) if vki /∈ QReg∪QCor.
Let QSign be the set of queries and their responses (m, vk,R, ek, r, σ).

3. Forgery Phase: A outputs a signature σ∗ w.r.t some (m∗, vk∗, R∗, ek∗, r∗).

A wins the above game if ARS.Verify outputs 1 on input (m∗, σ∗, R∗, ek∗).

Definition 2. We say that the ARS scheme is unforgeable, if for any PPT
adversary A, its advantage in the game above is negligible i.e. AdvUnforgeA =
Pr[Awins] ≤ negl(λ).

Remark 1. In our scheme we consider a selective variant of the above definition
where adversary A is required to commit to a forgery input (m∗, vk∗, R∗, ek∗, r∗)
in the setup phase. Then A cannot make signing query (m∗, vk∗, R∗, ek∗, r∗) to
the oracle OSign.

Anonymity Anonymity requires that the signature keeps the identity of signer
(who is a ring member) anonymous unless the opener explicitly want to open
the signature and reveal the signer’s identity. Our definition also captures un-
linkability (i.e. anonymity breaks if an adversary can link signatures from same
signer) and anonymity against full key exposure attacks (i.e. the signatures re-
main anonymous even if the secret signing keys were revealed). More concretely,
consider the following game between a PPT adversary A and a challenger C.

1. Setup Phase: C runs the algorithm ARS.Setup to generate public param-
eters params. Then, C runs the algorithm ARS.KGen to generate signing-
verification key pairs {(ski, vki)}i∈[n] for the users and registers them with
the PKI. In addition, it also generates a private-public key pair (dk∗, ek∗) of
an opener. Then, it sends params, ek∗, {(ski, vki)}i∈[n] to A.

2. Challenge Phase: A submits a message m∗, a ring R∗ ⊆ {vki}i∈[n] and two
secret signing keys sk∗i0 , sk

∗
i1
∈ {ski}i∈[n], i0 6= i1, such that vk∗i0 , vk

∗
i1
∈ R∗.

Next, C chooses b ← {0, 1} and produces an accountable ring signature
σ∗ib = ARS.Sign(m∗, sk∗ib , R

∗, ek∗; r) and returns σ∗ib to A.
3. Guess Phase: A guesses b and outputs b′ ∈ {0, 1}.

Definition 3. We say that the ARS scheme is anonymous, if for any PPT
adversary A, its advantage in the game above is negligible i.e. AdvAnonyA =
|Pr[b = b′]− 1

2 | ≤ negl(λ).

Remark 2. In our scheme we consider a selective variant of the above definition
where adversaryA is required to commit to a target input (m∗, sk∗i0 , sk

∗
i1
, R∗, ek∗)

in the setup phase.

Traceability Traceability requires that the specified opener is always able to
identify the signer in the ring and produce a valid proof that the signer actually
produced that particular signature; i.e. for any PPT adversary A :

Pr

 params← ARS.Setup(1λ); (m,σ,R, ek, dk)← A(params);
(vk, φ)← ARS.Open(m,σ,R, dk)

: ARS.Verify(m,σ,R, ek) = 1 ∧ ARS.Judge(m,σ,R, ek, vk, φ) = 0

 ≤ negl(λ)

Tracing Soundness Tracing soundness requires that a signature can be traced
to only one user; even when all users as well as the opener are corrupt; i.e. for
any PPT adversary A :

Pr

 params← ARS.Setup(1λ); (m,σ,R, ek, vk1, vk2, φ1, φ2)←
A(params) : ∀i ∈ {1, 2},ARS.Judge(m,σ,R, ek, vki, φi) = 1

∧vk1 6= vk2

 ≤ negl(λ)

3 Preliminaries

3.1 Indistinguishability Obfuscation

Definition 4 (Indistinguishability Obfuscator (iO)[1]). A PPT algorithm
iO is said to be an indistinguishability obfuscator for a collection of circuits {Cλ}
(λ is the security parameter), if it satisfies the following two conditions:

1. Functionality: ∀λ ∈ N and ∀C ∈ Cλ, Pr[∀x : iO(1λ, C)(x) = C(x)] = 1

2. Indistinguishability: For all PPT distinguisher D, there exists a negligible
function negl, such that for all λ ∈ N and for all pairs of circuits C1, C2 ∈ Cλ,
if Pr[∀x : C1(x) = C2(x)] = 1, then we have AdvObfD ≤ negl(λ) i.e.

|Pr[D(iO(1λ, C1)) = 1]− Pr[D(iO(1λ, C2)) = 1]| ≤ negl(λ)

Here, we will consider polynomial-size circuits only. In 2013, Garg et al.
[11] proposed the first candidate construction of an efficient indistinguishability
obfuscator for any general purpose boolean circuit. Their construction is based
on the multilinear map candidates of [11] and [10].

3.2 Puncturable Pseudorandom Functions

Definition 5 (Puncturable Pseudorandom Functions (PPRFs)[19]). Let
`(·) and m(·) be two polynomially bounded length functions. Let F = {FK :
{0, 1}`(λ) → {0, 1}m(λ)|K ← {0, 1}λ, λ ∈ N}. F is called a family of puncturable
PRFs if it is associated with two turing machines KF and PF , such that PF
takes as input a key K ← {0, 1}λ and a point u∗ ∈ {0, 1}`(λ), and outputs a
punctured key Ku∗ , so that the following two conditions are satisfied:

1. Functionality preserved under puncturing: For every u∗ ∈ {0, 1}`(λ),

Pr
[
K ← KF (1λ); Ku∗ = PF (K,u∗) : ∀u 6= u∗,FK(u) = FKu∗ (u)

]
= 1

2. Indistinguishability at punctured points: ∀ PPT distinguisher D, below
ensembles are computationally indistinguishable i.e. AdvPPRFD ≤ negl(λ):
– {u∗,Ku∗ ,FK(u∗) : K ← KF (1λ);Ku∗ = PF (K,u∗)}
– {u∗,Ku∗ , x : K ← KF (1λ);Ku∗ = PF (K,u∗);x← {0, 1}`(λ)}

Recently, [3, 16, 6] observed that puncturable PRFs can easily be constructed
from GGM’s PRFs [13] which are based on one-way functions. We will use the
following lemma on statistical injective PPRF in our construction.

Lemma 1 ([19]). If one-way functions exist, then for all efficiently computable
functions `(λ), m(λ), and e(λ) such that m(λ) ≥ 2`(λ) + e(λ), there exists a
statistically injective PPRF family with failure probability 2−e(λ) that maps `(λ)
bits to m(λ) bits.

3.3 IND-CPA Secure Public Key Encryption Scheme

Definition 6 (Public Key Encryption Scheme (PKE)). A public key en-
cryption scheme PKE=(PKE.KGen,PKE.Encrypt,PKE.Decrypt) over a PPT setup
PKE.Setup is a 3-tuple of algorithms.

– PKE.Setup(1λ) : On input the security parameter 1λ, PKE.Setup outputs a
list of public parameters params as follows: key spaces (EK,DK); plaintext
and ciphertext spaces P and C.

– PKE.KGen(params) : On input params, the PPT algorithm PKE.KGen out-
puts a pair of public and private keys (ek, dk).

– PKE.Encrypt(ek,m ∈M) : On input public key ek and message m, the PPT
algorithm PKE.Encrypt outputs a ciphertext c ∈ C.

– PKE.Decrypt(dk, c) : On input secret key dk and ciphertext c, PKE.Decrypt
outputs a message m ∈M.

Correctness For all key pairs (ek, dk)← PKE.KGen(params), and for all mes-
sages m ∈M: Pr[PKE.Decrypt(dk,PKE.Encrypt(ek,m)) = m] = 1.

Security. For all PPT adversaries A:

Pr

params← PKE.Setup(1λ); (ek, dk)← PKE.KGen(params);
(m0,m1)← A(ek, params); b← {0, 1};
c← PKE.Encrypt(ek,mb) : A(c) = mb

 ≤ 1

2
+ negl(λ)

3.4 One-way Function

Definition 7 (One-way Function (OWF)[12]). A function f : X → Y (over
PPT setup OWF.Setup, which defines f,X ,Y is one-way if f is polynomial-time
computable and is hard to invert, i.e. for all PPT adversaries A, AdvOWF

A ≤
negl(λ) i.e. Pr

[
x← X ; y := f(x) : A(y) = x

]
≤ negl(λ)

3.5 Pseudorandom Generator

Definition 8 (Pseudorandom Generator (PRG)[14]). A function PRG :
{0, 1}λ → {0, 1}p(λ) (over a setup PRG.Setup, which defines the function PRG, its
domain and range) is PRG if it is polynomial-time computable, length expanding
and is pseudorandom, i.e. for all PPT adversaries A, AdvPRGA ≤ negl(λ) i.e.∣∣∣Pr[A(PRG(s)) = 1 : s← {0, 1}λ]− Pr[A(r) = 1 : r ← {0, 1}p(λ)]

∣∣∣ ≤ negl(λ)

3.6 Collision Resistant Hash Function

Definition 9 (Collision Resistant Hash Function (CRHF)). A family H
of collection of functions Hash : {0, 1}∗ → {0, 1}`h (over PPT setup CRHF.Setup,
which defines the function Hash, its domain and range) is called a family of
collision resistant hash functions if Hash is polynomial-time computable, length
compressing and it is hard to find collisions in Hash, i.e. for all PPT adversaries
A, AdvCRHFA ≤ negl(λ) i.e.

Pr
Hash←H

[
params← CRHF.Setup(1λ); (x0, x1)← A(params,Hash)

: x0 6= x1 ∧ Hash(x0) = Hash(x1)

]
≤ negl(λ)

4 A New Accountable Ring Signature Scheme

We now present the details of our construction. We assume that each user in the
system is uniquely identified by an index i ∈ [n], n ∈ N. Let M = {0, 1}`m be
our message space. Let SK = {0, 1}`s , VK = {0, 1}`v , EK = {0, 1}`e and DK =
{0, 1}`d respectively be our signing, verification, encryption and decryption key
spaces. Here `m, `s, `v, `e and `d are polynomials in security parameter λ. We
assume that the set of verification keys in the ring R are always arranged in
increasing order of their indexes, in order to enable the hash function to compute
on R. We will use following primitives in our construction:

– Pseudo-random generator PRG : {0, 1}λ → {0, 1}`p with `p ≥ 2λ.

– One-way function f : {0, 1}`s → {0, 1}`v .

– IND-CPA secure PKE scheme as defined in Sect. 3.3.

– Collision resistant hash function Hash : {0, 1}n·`v → {0, 1}`h . Here n is size
of the ring and n · `v > `h.

– A statistically injective PPRF F1(K1, ·) that accepts inputs of length `m +
`s + `h + `e + `p, and outputs strings of length `1. Note that this type of
PPRF exists, and is easy to construct from Lemma. 1.

– A PPRF F2(K2, ·) that accepts inputs of length `1, and outputs strings of
length `2 such that `2 = `m + `s + `h + `e + `p.

– One-way function f1 : {0, 1}`1 → {0, 1}`3 .

– A PPRF F3(K3, ·) that accepts inputs of length `e + `c + `v, and outputs
strings of length `φ. Here `c is the length of ciphertext as output by the PKE
scheme and `φ is the length of NIZK proof.

– One-way function f2 : {0, 1}`φ → {0, 1}`4 .

– An indistinguishability obfuscator iO as defined in Sect. 3.1.

Construction of our ARS scheme from iO.

– ARS.Setup(1λ): A trusted authority runs this algorithm for once. It takes se-
curity parameter 1λ as input and generates key spaces as defined above. Next,
it chooses keys K1,K2,K3 for PPRFs F1, F2, F3 respectively, and creates ob-
fuscated programs Sign = iO(PS),Verify = iO(PV),NIZKprove = iO(PNP)
and NIZKverify = iO(PNV) (shown in Figs. 1,2,3,4). Finally, it outputs public
parameters params = (SK,VK,DK, EK,Sign,Verify, NIZKprove,NIZKverify).

– ARS.UKGen(params): This algorithm takes params as input, chooses a se-
cret signing key sk ← SK and computes verification key as vk = f(sk) ∈ VK.

– ARS.OKGen(params): This algorithm takes params as input and outputs a
key pair (ek, dk) for the PKE scheme. This algorithm is same as PKE.KGen.

– ARS.Sign(params,m, sk, vk,R, ek, r): This algorithm takes params, message
m, a key pair (sk, vk), a ring R, an opener’s public key ek and randomness
r as input, runs Sign on these inputs and returns ring signature σ.

PS
Hardwired: Keys K1,K2

Input: Message m, key pair (sk, vk) , ring R, key ek and randomness r
1 if (f(sk) = vk ∧ vk ∈ R) then
2 Set α := F1(K1, (m‖vk‖Hash(R)‖ek‖PRG(r)))
3 Set β := F2(K2, α)⊕ (m‖vk‖Hash(R)‖ek‖PRG(r))
4 return (σ := (α, β))

5 else
6 return ⊥

Figure 1: The circuit Sign

– ARS.Verify(params,m, σ,R, ek): This algorithm takes params, message m,
signature σ, a ring R and an opener’s public key ek as input, runs Verify on
these inputs and returns a verification key of the signer encrypted under the
public key ek of the opener if the signature is accepted, else it returns ⊥.

PV
Hardwired: Keys K1,K2

Input: Message m, signature σ = (α, β), ring R and opener’s public key ek
1 Compute F2(K2, α)⊕ β = (m′‖vk′‖h′‖ek′‖r′)
2 if

(
m = m′ ∧ Hash(R) = h′ ∧ ek = ek′ ∧ f1(α) =

f1(F1(K1, (m
′‖vk′‖h′‖ek′‖r′)))

)
then

3 return (c := PKE.Encrypt(ek, vk′; r′))
4 else
5 return ⊥

Figure 2: The circuit Verify

– ARS.Open(params,m, σ,R, ek, dk): This algorithm takes params, message
m, signature σ, a ring R and an opener’s PKE key pair (ek, dk) as input,
runs Verify on these inputs to retrieve c. Next, it decrypts c using secret key
dk to output verification key vk of the signer. In addition, it also outputs a
proof φ of correct decryption using the program NIZKprove.

PNP
Hardwired: Keys K3

Input: Statement x = (ek‖c‖vk) and witness dk

1 if
((
ek = PKE.KGen(params, dk) ∈ EK

)
∧
(
vk =

PKE.Decrypt(dk, c)
)
∧
(
vk ∈ VK

))
= 1 then

2 return φ := F3(K3, x)
3 else
4 return ⊥

Figure 3: The circuit NIZKprove

– ARS.Judge(params,m, σ,R, ek, vk, φ): This algorithm takes params, mes-
sage m, signature σ, a ring R and an opener’s public key ek, verification key
vk, proof φ as input, runs Verify on these inputs to retrieve c and outputs 1
if NIZKverify((ek‖c‖vk), φ) = 1 else 0.

PNV
Hardwired: Keys K3

Input: Statement x = (ek‖c‖vk) and proof φ
1 if f2(φ) = f2(F3(K3, x)) then
2 return 1
3 else
4 return ⊥

Figure 4: The circuit NIZKverify

5 Proof of Security

We will use the following lemma in our security proofs.

Lemma 2. For any fixed input (m, sk,R, ek, r) to the Sign program, there can
exist at most one valid signature string σ = (α, β). This happens with high
probability if K1 is chosen such that the F1(K1, ·) is statistically injective and
Hash is a collision resistant hash function.

Proof. Since F1(K1, ·) is injective over the choice of K1 and Hash is collision
resistant therefore, there can exist at most one string α (which implies unique
(α, β)) when F1(K1, ·) is applied to a unique string (m, vk,Hash(R),PRG(r)).
Furthermore, if σ = (α, β) is choses at random then there can exists at most
2`m+`v+`h+`e+`p valid values of σ. (This lemma is adapted from a similar lemma
of [?] to include an additional hash function.)

Theorem 1. The ARS scheme of Sect. 4 is selectively unforgeable if the prim-
itives of Sect. 3 satisfy their respective security properties.

Proof. We prove the security by a sequence of hybrid experiments and show that
if there exists a PPT adversary A that can break the selective unforgeability of
our ARS scheme, then we can construct a challenger B who can break the secu-
rity of one-way function.

Hybrid 0. This hybrid is same as the unforgeability game of Sect. 2.

1. Setup Phase:
(a) C chooses a set S ⊂ [n] and runs the algorithm ARS.UKGen to generate

signing-verification key pairs {(ski, vki)}i∈S for the users and registers
them with the PKI. Finally, it sends {vki}i∈S to the adversary A.

(b) A sends a message m∗, a ring R∗ ⊆ {vki}i∈S , a verification key vk∗ ∈ R∗,
an opener’s public key ek∗ and randomness r∗ to challenger C, claiming
it can forge an accountable ring signature σ∗ w.r.t (m∗, vk∗, R∗, ek∗, r∗).

(c) The challenger C first chooses keys K1,K2 for PPRFs F1, F2 respectively,
and produces two obfuscated programs Sign = iO(PS) and Verify =
iO(PV) (Figs. 1,2). Then, it sends these programs to the adversary A.

2. Query Phase: A can make the following three types of queries to C. C
answers these queries via oracles OReg, OCor and OSig.
– Registration query: A runs the algorithm ARS.UKGen to generate

a signing-verification key pair (ski, vki), i /∈ [n] \ S and interacts with
the oracle OReg to register vki with the PKI. Let QReg be the set of
verification keys registered by A.

– Corruption query: A queries a verification key vki, i ∈ S such that
vki 6= vk∗ to the oracle OCor. The oracle returns the corresponding
signing key ski. Let QCor be the set of verification keys vki for which
the corresponding signing keys has been revealed.

– Signing query: A queries (m, vki, R, ek, r) to the oracle OSign. The
oracle returns a signature σi = Sign(m, vki, R, ek, r) if vki 6= vk∗ and
vki /∈ QReg ∪ QCor. Let QSign be the set of queries and their responses
(m, vk,R, ek, r, σ).

3. Forgery Phase: A outputs a signature σ∗ w.r.t (m∗, vk∗, R∗, ek∗, r∗).

A wins the above game if ARS.Verify(m,σ,R, ek) = 1. Let AdvHyb 0A denote the
advantage of A in this hybrid.

Hybrid 1. This hybrid is identical to Hybrid 0 with the exception that C
gives out the two obfuscated programs as Sign = iO(P∗S) and Verify = iO(P∗V)
(Figs. 5,6). The details of the modifications are as follows: C punctures the
key K2 at the point α∗ = F1(K1, (m

∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗)) and hard-
wires this punctured key K2({α∗}) along with message m∗, verification key vk∗,
ring R∗, public key ek∗ and randomness r∗ in programs P∗S and P∗V . In addi-
tion, it hardwires value β∗ = F2(K2, α

∗) ⊕ (m∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗))
in program P∗S . Furthermore, a “if” condition is added at line 1 in program
P∗S to check (m, vk,R, ek, r) = (m∗, vk∗, R∗, ek∗, r∗). If so, output the signa-
ture as σ∗ = (α∗, β∗). Similarly, P∗V is modified to output c∗ if (m,σ,R, ek) =

(m∗, σ∗, R∗, ek∗). Let AdvHyb 1A denote the advantage of A in this hybrid.

P∗S
Hardwired: Keys K1,K2({α∗}) and values m∗, vk∗, R∗, ek∗, r∗, β∗

Input: Message m, key pair (sk, vk), ring R, key ek and randomness r
1 if (m = m∗ ∧ f(sk) = vk∗ ∧ f(sk) ∈ R∗ ∧R = R∗ ∧ ek = ek∗ ∧ r = r∗)

then
2 Set α∗ := F1(K1, (m

∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗)))
3 return (σ∗ := (α∗, β∗))

4 else if (f(sk) = vk ∧ f(sk) ∈ R) then
5 Set α := F1(K1, (m‖vk‖Hash(R)‖ek‖PRG(r)))
6 Set β := F2(K2, α)⊕ (m‖vk‖Hash(R)‖ek‖PRG(r))
7 return (σ := (α, β))

8 else
9 return ⊥

Figure 5: The circuit Sign

P∗V
Hardwired: Keys K1,K2({α∗}) and values m∗, vk∗, R∗, ek∗, r∗

Input: Message m, signature σ = (α, β), ring R and opener’s public key ek
1 if

(
m = m∗ ∧R = R∗ ∧ ek = ek∗ ∧ f1(α) =

f1(F1(K1, (m
∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗))))

)
then

2 return (c∗ := PKE.Encrypt(ek, vk∗; r∗))

3 else if
(
F2(K2, α)⊕ β = (m′‖vk′‖h′‖ek′‖r′) ∧m = m′ ∧ Hash(R) =

h′ ∧ ek = ek′ ∧ f1(α) = f1(F1(K1, (m
′‖vk′‖h′‖ek′‖r′)))

)
then

4 return (c := PKE.Encrypt(ek, vk′; r′))
5 return ⊥

Figure 6: The circuit Verify

Hybrid 2. This hybrid is identical to Hybrid 1 with the exception that β∗ is
chosen uniformly at random from the set {0, 1}`2 . Let AdvHyb 2A denote the ad-
vantage of A in this hybrid.

Hybrid 3. This hybrid is identical to Hybrid 2 with the exception that C gives
out the two obfuscated programs as Sign = iO(P∗∗S) and Verify = iO(P∗∗V)
(Figs. 7,8). The details of the modifications are as follows: C punctures the key
K1 at the point (m∗‖vk∗‖Hash(R)‖ek∗‖PRG(r∗)) and hardwires this punctured
key K1({(m∗‖vk∗‖Hash(R)‖ek∗‖PRG(r∗))}) in programs P∗∗S and P∗∗V . Finally,
it hardwires values α∗ = F1(K1, (m

∗‖vk∗‖Hash(R)‖ek∗‖PRG(r∗))) and u∗ =

f1(α∗) in programs P∗∗S and P∗∗V respectively. Let AdvHyb 3A denote the advantage
of A in this hybrid.

P∗∗S
Hardwired: Keys K1({m∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗)}),K2({α∗}) and

values m∗, vk∗, R∗, ek∗, r∗, α∗, β∗

Input: Message m, key pair (sk, vk) , ring R, key ek and randomness r
1 if (m = m∗ ∧ f(sk) = vk∗ ∧ f(sk) ∈ R∗ ∧R = R∗ ∧ ek = ek∗ ∧ r = r∗)

then
2 return (σ∗ := (α∗, β∗))
3 else if (f(sk) = vk ∧ f(sk) ∈ R) then
4 Set α := F1(K1, (m‖vk‖Hash(R)‖ek‖PRG(r)))
5 Set β := F2(K2, α)⊕ (m‖vk‖Hash(R)‖ek‖PRG(r))
6 return (σ := (α, β))

7 else
8 return ⊥

Figure 7: The circuit Sign

P∗∗V
Hardwired: Keys K1,K2({α∗}) and values m∗, vk∗, R∗, ek∗, r∗, u∗

Input: Message m, signature σ = (α, β), ring R and opener’s public key ek
1 if

(
m = m∗ ∧R = R∗ ∧ ek = ek∗ ∧ f1(α) = u∗

)
then

2 return (c∗ := PKE.Encrypt(ek, vk∗; r∗))

3 else if
(
F2(K2, α)⊕ β = (m′‖vk′‖h′‖ek′‖r′) ∧m = m′ ∧ Hash(R) =

h′ ∧ ek = ek′ ∧ f1(α) = f1(F1(K1, (m
′‖vk′‖h′‖ek′‖r′)))

)
then

4 return (c := PKE.Encrypt(ek, vk′; r′))
5 return ⊥

Figure 8: The circuit Verify

Hybrid 4. This hybrid is identical to Hybrid 3 with the exception that α∗ is
chosen uniformly at random from the set {0, 1}`1 . Let AdvHyb 4A denote the ad-
vantage of A in this hybrid.

The indistinguishability of successive hybrid games (discussed above) is shown
in Lemmas. 3, 4, 5, 6, 7.

Lemma 3. If A can distinguish Hybrid 0 from Hybrid 1 in the unforgeability
game, i.e. AdvHyb 0A −AdvHyb 1A is non-negligible then there exists an adversary
B who can break the security of iO.

Proof. We argue that if there is a non-negligible difference in advantages of A
in hybrids Hybrid 0 and Hybrid 1 then we can construct an adversary B that
breaks the security of iO. Firstly, observe that the programs PS and P∗S as
well as the programs PV and P∗V , are functionally equivalent. Now, consider
a scenario where the attacker B interacts with an iO challenger while acting
as a challenger for A. B submits the program pairs P0 = (PS ,PV) and P1 =
(P∗S ,P∗V) to the iO challenger. The iO challenger chooses b← {0, 1} at random,

obfuscates the programs in Pb , and returns the output to B. B plugs in these
obfuscated programs in Hybrid 0 and plays the rest of the game. Note that if the
iO challenger chooses P0 then we are in Hybrid 0. If it chooses P1 then we are in
Hybrid 1. B will output 1 if A successfully forges. Therefore, if A have different
advantages in hybrids Hybrid 0 and Hybrid 1 then B can attack iO security with
high probability i.e. AdvHyb 0A −AdvHyb 1A = AdviOB ≤ negl(λ) (Sect. 3.1). ut

Lemma 4. If A can distinguish Hybrid 1 from Hybrid 2 in the unforgeability
game, i.e. AdvHyb 1A −AdvHyb 2A is non-negligible then there exists an adversary
B who can break the security of PPRF F2.

Proof. We argue that if there is a non-negligible difference in advantages of A
in hybrids Hybrid 1 and Hybrid 2 then we can construct an adversary B who
can break the security of PPRF F2. Consider a scenario where the attacker
B interacts with a PPRF challenger while acting as a challenger for A. First,
B receives (m∗, vk∗, R∗, ek∗, r∗) from A. Then, it chooses b ← {0, 1},K1 ←
{0, 1}λ, computes α∗ = F1(K1, (m

∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗))), and submits
α∗ to the PPRF challenger. Next, the PPRF challenger choses K2 ← {0, 1}λ,
punctures K2 at point α∗, and sends this punctured PRF key K2({α∗}) along
with a challenge w∗ ∈ {0, 1}`2 to B. Then, B continues to run the game in Hybrid
1 except that it plugs in β∗ as β∗ = w∗ ⊕ (m∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗)).
Note that if the PPRF challenger outputs w∗ as w∗ = F2(K2, α

∗) then we are
in Hybrid 1. If it outputs w∗ as w∗ ← {0, 1}`2 then we are in Hybrid 2. B will
output 1 if A successfully forges. Therefore, if A have different advantages in
hybrids Hybrid 1 and Hybrid 3 then B can attack the PPRF security with high
probability i.e. AdvHyb 1A −AdvHyb 2A = AdvPPRFB ≤ negl(λ) (Sect. 3.2). ut

Lemma 5. If A can distinguish Hybrid 2 from Hybrid 3 in the unforgeability
game, i.e. AdvHyb 2A −AdvHyb 3A is non-negligible then there exists an adversary
B who can break the security of iO.

Proof. We argue that if there is a non-negligible difference in advantages of A
in hybrids Hybrid 2 and Hybrid 3 then we can construct an adversary B that
breaks the security of iO. Firstly, observe that the programs P∗S and P∗∗S as
well as the programs P∗V and P∗∗V , are functionally equivalent. Now, consider
a scenario where the attacker B interacts with an iO challenger while acting
as a challenger for A. B submits the program pairs P0 = (P∗S ,P∗V) and P1 =
(P∗∗S ,P∗∗V) to the iO challenger. The iO challenger chooses b← {0, 1} at random,
obfuscates the programs in Pb , and returns the output to B. B plugs in these
obfuscated programs in Hybrid 2 and plays the rest of the game. Note that if the
iO challenger chooses P0 then we are in Hybrid 2. If it chooses P1 then we are in
Hybrid 3. B will output 1 if A successfully forges. Therefore, if A have different
advantages in hybrids Hybrid 2 and Hybrid 3 then B can attack iO security with
high probability i.e. AdvHyb 2A −AdvHyb 3A = AdviOB ≤ negl(λ) (Sect. 3.1). ut

Lemma 6. If A can distinguish Hybrid 3 from Hybrid 4 in the unforgeability
game, i.e. AdvHyb 3A −AdvHyb 4A is non-negligible then there exists an adversary
B who can break the security of PPRF F1.

Proof. We argue that if there is a non-negligible difference in advantages of A
in hybrids Hybrid 1 and Hybrid 2 then we can construct an adversary B who
can break the security of PPRF F1. Consider a scenario where the attacker B
interacts with a PPRF challenger while acting as a challenger for A. First, B
receives (m∗, vk∗, R∗, ek∗, r∗) from A and submits it to the PPRF challenger.
Next,the PPRF challenger chooses a PPRF key K1 ← {0, 1}λ and punctures
K1 at point (m∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗)) and sends this punctured key
K1({(m∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗))}) and a challenge z∗ to B. Then, B con-
tinues to run the game in Hybrid 3 except it plugs in α∗ = z∗. Note that if the
PPRF challenger outputs z∗ as z∗ = F1(K1, (m

∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗)))
then we are in Hybrid 3. If it outputs z∗ as z∗ ← {0, 1}`1 then we are in Hybrid 2.
B will output 1 if A successfully forges. Therefore, if A have different advantages
in hybrids Hybrid 3 and Hybrid 4 then B can attack the PPRF security with
high probability i.e. AdvHyb 3A −AdvHyb 4A = AdvPPRFB ≤ negl(λ) (Sect. 3.2). ut

Lemma 7. If A’s advantage AdvHyb 4A in Hybrid 4 is non-negligible, then there
exists an adversary B who can break the security of one-way function f1.

Proof. We argue that if A successfully forges an ARS signature in Hybrid 4
then we can construct an adversary B who can break the security of OWF f1.
Consider a scenario where the attacker B interacts with a OWF challenger while
acting as a challenger for A. First, B receives (m∗, vk∗, R∗, ek∗, r∗) from A and
submits it to the OWF challenger. Next, B receives a OWF challenge y∗ and sets
u∗ as u∗ = y∗ and continues to run the game in Hybrid 4. Now, if A successfully
forges a signature on (m∗‖vk∗‖Hash(R∗)‖ek∗‖PRG(r∗)), then by definition it
has computed a σ∗ such that f1(σ∗) = u∗. Therefore, if f1 is secure, then A
cannot forge with non-negligible advantage i.e. AdvHyb 4A = AdvOWF

B ≤ negl(λ)
(Sect. 3.4). ut

Hence, AdvUnforgeA = AdvHyb 0A −AdvHyb 4A ≤ negl(λ).

Theorem 2. The ARS scheme of Sect. 4 is anonymous if the primitives of
Sect. 3 satisfy their respective security properties.

Proof. Our proof proceeds through a sequence of hybrids. The hybrids are cho-
sen such that each successive hybrid game is indistinguishable from each other.

Hybrid 0. This hybrid is the selective variant of the anonymity game of Sect. 2.

1. Setup Phase: C runs the algorithm ARS.UKGen to generate signing- veri-
fication key pairs {(ski, vki)}i∈[n] for the users and registers them with the
PKI. In addition, it also generates a private-public key pair (dk∗, ek∗) of an
opener. Then, it sends ek∗, {(ski, vki)}i∈[n] to A.

2. Challenge Phase: A submits a message m∗, a ring R∗ ⊆ {vki}i∈[n] and two
secret signing keys sk∗i0 , sk

∗
i1
∈ {ski}i∈[n], i0 6= i1, such that vk∗i0 , vk

∗
i1
∈ R∗.

Next, C chooses b← {0, 1} and produces an ARS signature σib as follows:
(a) Choose r∗ ← {0, 1}λ and let t∗ := PRG(r∗) where t∗ ∈ {0, 1}`p .

(b) Set αib := F1(K1, (m
∗‖vkib‖Hash(R∗)‖ek∗‖t∗))

(c) Set βib := F2(K2, αib)⊕ (m∗‖vkib‖Hash(R∗)‖ek∗‖t∗)

(d) Let σib := (αib , βib)

Finally, C chooses keys K1,K2 for PPRFs F1, F2 respectively, and produces
two obfuscated programs Sign = iO(PS) and Verify = iO(PV) (Figs. 1,2).
Then, it sends these programs with the signature σib = (αib , βib) to A.

3. Guess Phase: A guesses b and outputs b′ ∈ {0, 1}. Let AdvHyb 0A denote
the advantage of A in this hybrid.

Hybrid 1. This hybrid is identical to Hybrid 0 with the exception that in the
challenge phase t∗ is chosen at random from {0, 1}`p . Let AdvHyb 1A denote the
advantage of A in this hybrid.

Hybrid 2. This hybrid is identical to Hybrid 1 with the exception that, in the
challenge phase, C gives out the two obfuscated programs as Sign = iO(P†S)

and Verify = iO(P†V) (Figs. 9,10). The details of the modifications are as fol-
lows: C punctures the key K2 at the point α∗ib = F1(K1, (m

∗‖vk∗ib‖R
∗‖ek∗‖t∗)),

and hardwires this punctured key K2({α∗ib}) in P†S and P†V . In addition, it also
hardwires message m∗, verification key vk∗ib , ring R∗, public key ek∗ and ran-

domness t∗ in P†V . Furthermore, P†V is modified to output c∗b if (m,σ,R, ek) =

(m∗, σ∗b , R
∗, ek∗). Let AdvHyb 1A denote the advantage of A in this hybrid.

P†S
Hardwired: Keys K1,K2({α∗ib})
Input: Message m, key pair (sk, vk), ring R, key ek and randomness r
1 if (f(sk) = vk ∧ f(sk) ∈ R) then
2 Set α := F1(K1, (m‖vk‖Hash(R)‖ek‖PRG(r)))
3 Set β := F2(K2, α)⊕ (m‖vk‖Hash(R)‖ek‖PRG(r))
4 return (σ := (α, β))

5 else
6 return ⊥

Figure 9: The circuit Sign

P†V
Hardwired: Keys K1,K2({α∗ib}) and values m∗, vk∗ib , R

∗, ek∗, t∗

Input: Message m, signature σ = (α, β), ring R and opener’s public key ek

1 if
(
m = m∗ ∧R = R∗ ∧ ek = ek∗ ∧ f1(α) =

f1(F1(K1, (m
∗‖vk∗ib‖Hash(R∗)‖ek∗‖t∗)))

)
then

2 return (c∗b := PKE.Encrypt(ek, vk∗ib ; t
∗))

3 else if
(
F2(K2, α)⊕ β = (m′‖vk′‖h′‖ek′‖r′) ∧m = m′ ∧ Hash(R) =

h′ ∧ ek = ek′ ∧ f1(α) = f1(F1(K1, (m
′‖vk′‖h′‖ek′‖r′)))

)
then

4 return (c := PKE.Encrypt(ek, vk′; r′))
5 return ⊥

Figure 10: The circuit Verify

Hybrid 3. This hybrid is identical to Hybrid 2 with the exception that in the
challenge phase β∗ib is chosen uniformly at random from the set {0, 1}`2 . Let

AdvHyb 3A denote the advantage of A in this hybrid.

Hybrid 4. This hybrid is identical to Hybrid 3 with the exception that in the
challenge phase, C gives out the two obfuscated programs as Sign = iO(P‡S) and

Verify = iO(P‡V) (Figs. 11,12). The details of the modifications are as follows: C
punctures the key K1 at point (m∗‖vk∗ib‖Hash(R)‖ek∗‖t∗), and hardwires this

punctured key K1({(m∗‖vk∗ib‖Hash(R)‖ek∗‖t∗)}) in programs P‡S and P‡V . In
addition, it also hardwires message m∗, ring R∗, public key ek∗, and value α∗ib =

F1(K1, (m
∗‖vk∗ib‖Hash(R)‖ek∗‖t∗)) in program P‡V . Let AdvHyb 4A denote the

advantage of A in this hybrid.

P‡S
Hardwired: Keys K1({(m∗‖vk∗b‖Hash(R∗)‖ek∗‖t∗)}),K2({α∗ib})
Input: Message m, key pair (sk, vk), ring R, key ek and randomness r
1 if (f(sk) = vk ∧ f(sk) ∈ R) then
2 Set α := F1(K1, (m‖vk‖Hash(R)‖ek‖PRG(r)))
3 Set β := F2(K2, α)⊕ (m‖vk‖Hash(R)‖ek‖PRG(r))
4 return (σ := (α, β))

5 else
6 return ⊥

Figure 11: The circuit Sign

P‡V
Hardwired: Keys K1({(m∗‖vk∗b‖Hash(R∗)‖ek∗‖t∗)}),K2({α∗ib}) and values

m∗, R∗, ek∗, t∗, α∗ib
Input: Message m, signature σ = (α, β), ring R and opener’s public key ek

1 if
(
m = m∗ ∧R = R∗ ∧ ek = ek∗ ∧ f1(α) = f1(α∗ib)

)
then

2 return (c∗b := PKE.Encrypt(ek, vk∗ib ; t
∗))

3 else if
(
F2(K2, α)⊕ β = (m′‖vk′‖h′‖ek′‖r′) ∧m = m′ ∧ Hash(R) =

h′ ∧ ek = ek′ ∧ f1(α) = f1(F1(K1, (m
′‖vk′‖h′‖ek′‖r′)))

)
then

4 return (c := PKE.Encrypt(ek, vk′; r′))
5 return ⊥

Figure 12: The circuit Verify

Hybrid 5. This hybrid is identical to Hybrid 4 with the exception that in the
challenge phase, α∗ib is chosen at random from {0, 1}`1 instead of computing

them using PPRF. Let AdvHyb 5A denote the advantage of A in this hybrid.

The indistinguishability of successive hybrid games (discussed above) is shown
in Lemmas. 8, 9, 10, 11, 12, 13.

Lemma 8. If A can distinguish Hybrid 0 from Hybrid 1 in the anonymity
game, i.e. AdvHyb 0A −AdvHyb 1A is non-negligible then there exists an adversary
B who can break the security of pseudo-random generator PRG.

Proof. We argue that if there is a non-negligible difference in advantages of A in
hybrids Hybrid 0 and Hybrid 1 then we can construct an adversary B that breaks
the security of PRG. Now, consider a scenario where the attacker B interacts
with PRG challenger while acting as a challenger for A. B receives a challenge
y∗ from the PRG challenger, plugs in t∗ = y∗ in Hybrid 0 and plays the rest of
the game. Note that if the PRG challenger computes t∗ = PRG(r∗), r∗ ← {0, 1}λ
then we are in Hybrid 0. If it chooses t∗ ← {0, 1}`p then we are in Hybrid 1. B
will output 1 if A successfully guesses. Therefore, if A have different advantages
in hybrids Hybrid 0 and Hybrid 1 then B can attack iO security with high
probability i.e. AdvHyb 0A −AdvHyb 1A = AdvPRGB ≤ negl(λ) (Sect. 3.5). ut

Lemma 9. If A can distinguish Hybrid 1 from Hybrid 2 in the anonymity
game, i.e. AdvHyb 1A −AdvHyb 2A is non-negligible then there exists an adversary
B who can break the security of iO.

Proof. We argue that if there is a non-negligible difference in advantages of A
in hybrids Hybrid 1 and Hybrid 2 then we can construct an adversary B that
breaks the security of iO. Firstly, observe that the programs PS and P†S as

well as the programs PV and P†V , are functionally equivalent. This is because
when t∗ is chosen at random, with probability 1 − 1

2λ
, t∗ is not in the image

of the PRG. Therefore neither program will evaluate. Thus, puncturing excising
t∗ out from the key will not make a difference in input/ output behavior. Now,

consider a scenario where the attacker B interacts with an iO challenger while
acting as a challenger for A. B submits the program pairs P0 = (PS ,PV) and

P1 = (P†S ,P
†
V) to the iO challenger. The iO challenger chooses b ← {0, 1} at

random, obfuscates the programs in Pb , and returns the output to B. B plugs
in these obfuscated programs in Hybrid 0 and plays the rest of the game. Note
that if the iO challenger chooses P0 then we are in Hybrid 1. If it chooses P1

then we are in Hybrid 2. B will output 1 if A successfully guesses. Hence, if A
have different advantages in hybrids Hybrid 1 and Hybrid 2 then B can attack
iO security with high probability i.e. AdvHyb 1A −AdvHyb 2A = AdviOB ≤ negl(λ)
(Sect. 3.1). ut

Lemma 10. If A can distinguish Hybrid 2 from Hybrid 3 in the anonymity
game, i.e. AdvHyb 2A −AdvHyb 3A is non-negligible then there exists an adversary
B who can break the security of PPRF F2.

Proof. We argue that if there is a non-negligible difference in advantages of A in
hybrids Hybrid 2 and Hybrid 3 then we can construct an adversary B who can
break the security of PPRF F2. Consider a scenario where the attacker B inter-
acts with a PPRF challenger while acting as a challenger for A. First, B receives
(m∗, R∗, sk∗i0 , sk

∗
i1

) from A. Then, it chooses b ← {0, 1},K1 ← {0, 1}λ, t∗ ←
{0, 1}`p , computes α∗ib = F1(K1, (m

∗‖vk∗ib‖R
∗‖ek∗‖t∗)), and submits α∗ib to the

PPRF challenger. Next, the PPRF challenger choses K2 ← {0, 1}λ, punctures
K2 at point α∗ib , and sends this punctured PRF key K2({α∗ib}) along with a

challenge w∗ ∈ {0, 1}`2 to B. Then, B continues to run the game in Hybrid 2
except that it plugs in β∗ib as β∗ib = z∗ib ⊕ (m∗‖vk∗ib‖R

∗‖ek∗‖t∗). Note that if the
PPRF challenger outputs z∗ib as z∗ib = F2(K2, α

∗
ib

) then we are in Hybrid 2. If

it outputs z∗ as z∗ib ← {0, 1}
`2 then we are in Hybrid 3. B will output 1 if A

successfully guesses. Therefore, if A have different advantages in hybrids Hybrid
2 and Hybrid 3 then B can attack the PPRF security with high probability i.e.
AdvHyb 2A −AdvHyb 3A = AdvPPRFB ≤ negl(λ) (Sect. 3.2). ut

Lemma 11. If A can distinguish Hybrid 3 from Hybrid 4 in the anonymity
game, i.e. AdvHyb 3A −AdvHyb 4A is non-negligible then there exists an adversary
B who can break the security of iO.

Proof. We argue that if there is a non-negligible difference in advantages of A
in hybrids Hybrid 3 and Hybrid 4 then we can construct an adversary B that
breaks the security of iO. Firstly, observe that the programs P†S and P‡S as

well as the programs P†V and P‡V , are functionally equivalent. Now, consider
a scenario where the attacker B interacts with an iO challenger while acting
as a challenger for A. B submits the program pairs P0 = (P†S ,P

†
V) and P1 =

(P‡S ,P
‡
V) to the iO challenger. The iO challenger chooses b← {0, 1} at random,

obfuscates the programs in Pb , and returns the output to B. B plugs in these
obfuscated programs in Hybrid 3 and plays the rest of the game. Note that if the
iO challenger chooses P0 then we are in Hybrid 3. If it chooses P1 then we are in
Hybrid 4. B will output 1 if A successfully guesses. Therefore, if A have different

advantages in hybrids Hybrid 3 and Hybrid 4 then B can attack iO security with
high probability i.e. AdvHyb 3A −AdvHyb 4A = AdviOB ≤ negl(λ) (Sect. 3.1). ut

Lemma 12. If A can distinguish Hybrid 4 from Hybrid 5 in the anonymity
game, i.e. AdvHyb 4A −AdvHyb 5A is non-negligible then there exists an adversary
B who can break the security of PPRF F1.

Proof. We argue that if there is a non-negligible difference in advantages of A
in hybrids Hybrid 4 and Hybrid 5 then we can construct an adversary B who
can break the security of PPRF F1. Consider a scenario where the attacker B
interacts with a PPRF challenger while acting as a challenger for A. First, B
receives (m∗, R∗, sk∗i0 , sk

∗
i1

) from A. Then, it chooses b← {0, 1}, t← {0, 1}`p and
submits (m∗, R∗, vk∗ib , t

∗) to the PPRF challenger. The PPRF challenger chooses
a PPRF key K1 at random and punctures K1 at point (m∗‖vk∗ib‖R

∗‖ek∗‖t∗) and
sends this punctured key K1({(m∗‖vk∗ib‖R

∗‖ek∗‖t∗)}) and a challenge z∗ to B.
Then, B continues to run the game in Hybrid 4 except it plugs in α∗ib = z∗. Note
that if the PPRF challenger outputs z∗ as z∗ = F1(K1, (m

∗‖vk∗ib‖R
∗‖ek∗‖t∗))

then we are in Hybrid 4. If it outputs z∗ as z∗ ← {0, 1}`1 then we are in Hybrid 5.
B will output 1 if A successfully guesses. Therefore, if A has different advantages
in hybrids Hybrid 4 and Hybrid 5 then B can attack the PPRF security with
high probability i.e. AdvHyb 4A −AdvHyb 5A = AdvPPRFB ≤ negl(λ) (Sect. 3.2). ut

Lemma 13. A’s advantage in Hybrid 5 is zero.

Proof. We observe that the variables α∗ib and β∗ib in Hybrid 5 are both indepen-
dently and uniformly chosen random strings. Thus, the distributions output by
this hybrid for b = 0 and b = 1 are identical, and therefore even an unbounded
adversary could have no advantage in distinguishing them i.e. AdvHyb 5A = 0. ut

Hence, AdvAnonyA = AdvHyb 0A −AdvHyb 5A ≤ negl(λ). ut

Theorem 3. The ARS scheme of Sect. 4 is traceable and traceably sound if the
primitives of Sect. 3 satisfy their respective security properties.

Proof. In order to prove this theorem it is enough to prove that the proof sys-
tem between the opener (prover) and the judge (verifier) is a non-interactive
zero knowledge (NIZK) proof system where traceability and tracing soundness
respectively correspond to completeness and soundness properties of NIZK.

Lemma 14 ([19]). The NIZK proof system between ARS.Open and ARS.Judge
with common reference string crs = (NIZKprove, NIZKverify) is secure if iO is
secure, F3 is a secure PPRF, and f2 is a secure one-way function.

6 Conclusion

In this paper we proposed a new construction for accountable ring signature
(ARS). This is the first indistinguishability obfuscation-based ARS scheme. Also,

the signature-size of our scheme is constant, and does not vary with the size of the
ring. We have provided proof of security in the standard model. Our construc-
tion can be viewed as a new application of puncturable programming and hidden
sparse trigger techniques introduced by Sahai and Waters. We leave the issue
of constructing fully unforgeable, fully anonymous, constant size ARS scheme in
standard model as an open problem.

Acknowledgement First author is supported by Tata Consultancy Services
(TCS) research fellowship. We thank anonymous reviewers for their constructive
comments.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im) possibility of obfuscating programs. In: Annual International Cryp-
tology Conference. pp. 1–18. Springer (2001)

2. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based snargs and their application
to more efficient obfuscation. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 247–277. Springer (2017)

3. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: International Conference on the Theory and Application of Cryptology
and Information Security. pp. 280–300. Springer (2013)

4. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short ac-
countable ring signatures based on ddh. In: European Symposium on Research in
Computer Security. pp. 243–265. Springer (2015)

5. Bose, P., Das, D., Rangan, C.P.: Constant size ring signature without random
oracle. In: Australasian Conference on Information Security and Privacy. pp. 230–
247. Springer (2015)

6. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom
functions. In: Proceedings of the 17th International Conference on Public-Key
Cryptography—PKC 2014-Volume 8383. pp. 501–519. Springer-Verlag New York,
Inc. (2014)

7. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
preserving cca secure encryption and applications. In: Asiacrypt. vol. 7073, pp. 89–
106. Springer (2011)

8. Camenisch, J., et al.: Efficient and generalized group signatures. In: Eurocrypt.
vol. 97, pp. 465–479. Springer (1997)

9. Chaum, D., Van Heyst, E.: Group signatures. In: Proceedings of the 10th Annual
International Conference on Theory and Application of Cryptographic Techniques.
pp. 257–265. Springer-Verlag (1991)

10. Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: Advances in Cryptology–CRYPTO 2013, pp. 476–493. Springer (2013)

11. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Foun-
dations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on. pp.
40–49. IEEE (2013)

12. Goldreich, O.: Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press (2009)

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM (JACM) 33(4), 792–807 (1986)

14. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Proceedings of the fourteenth annual
ACM symposium on Theory of computing. pp. 365–377. ACM (1982)

15. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 253–280. Springer (2015)

16. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. pp. 669–684. ACM (2013)

17. Lai, R.W., Zhang, T., Chow, S.S., Schröder, D.: Efficient sanitizable signatures
without random oracles. In: European Symposium on Research in Computer Se-
curity. pp. 363–380. Springer (2016)

18. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Proceedings of
the 7th International Conference on the Theory and Application of Cryptology
and Information Security: Advances in Cryptology. pp. 552–565. Springer-Verlag
(2001)

19. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Proceedings of the forty-sixth annual ACM symposium on
Theory of computing. pp. 475–484. ACM (2014)

20. Xu, S., Yung, M.: Accountable ring signatures: A smart card approach. Smart Card
Research and Advanced Applications VI pp. 271–286 (2004)

