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ABSTRACT
While businesses shift their databases to the cloud, they con-
tinue to depend on them to operate correctly. Alarmingly,
cloud services constantly face threats from exploits in the priv-
ileged computing layers (e.g. OS, Hypervisor) and attacks
from rogue datacenter administrators, which tamper with the
database’s storage and cause it to produce incorrect results.
Although integrity verification of outsourced storage and file
systems is a well-studied problem, prior techniques impose
prohibitive overheads (up to 30x in throughput) and place
additional responsibility on clients.

We present VeritasDB, a key-value store that guarantees
data integrity to the client in the presence of exploits or im-
plementation bugs in the database server. VeritasDB is imple-
mented as a network proxy that mediates communication be-
tween the unmodified client(s) and the unmodified database
server, which can be any off-the-shelf database engine (e.g.,
Redis, RocksDB, Apache Cassandra). The proxy transforms
each client request before forwarding it to the server and
checks the correctness of the server’s response before forward-
ing it to the client.

To ensure the proxy is trusted, we use the protections of
modern trusted hardware platforms, such as Intel SGX, to
host the proxy’s code and trusted state, thus completely elim-
inating trust on the cloud provider. To maintain high perfor-
mance in VeritasDB while scaling to large databases, we design
an authenticated Merkle B+-tree that leverages features of
SGX (modest amount of protected RAM, direct access to large
unprotected RAM, and CPU parallelism) to implement sev-
eral novel optimizations based on caching, concurrency, and
compression. On standard YCSB and Visa transaction work-
loads, we observe an average overhead of 2.8x in throughput
and 2.5x in latency, compared to the (insecure) system with
no integrity checks — using CPU parallelism, we bring the
throughput overhead down to 1.05x.

1. INTRODUCTION
While cost-efficiency and availability requirements drive busi-

nesses to deploy their databases in the cloud, it also requires
them to blindly trust the cloud provider with their data. The
possibility of one rogue administrator accessing and tamper-
ing sensitive data poses significant threat, one that cannot
be fully mitigated by encrypting and/or signing data at rest.
Moreover, remote attackers constantly try to exploit the in-
frastructure software layers of the cloud platform, including
the privileged OS and hypervisor, to gain privileged access to
the victim’s databases. A cloud user (or database client) de-
sires the security guarantee that queries return values that are

consistent with the history of interaction between that client
and the database server.

To that end, there is a large volume of work on database
integrity verification [9, 10, 28, 18, 19, 27], mostly relying
on authenticated data structures such as a Merkle hash tree
(MHT). The main idea is to store a cryptographic hash digest
of the database in trusted storage—the hashes of individual
database records (key-value pairs) are arranged in a tree struc-
ture, where the hash of the root node forms a concise summary
of the entire database. Integrity is verified on each query by a
computing a hash of the result (along with auxiliary informa-
tion from the MHT) and comparing with the trusted digest.
Security is reduced to the collision resistance property of the
hash function. We refer the reader to Mykleton et al. [24] for
a concise introduction to MHT, though § 4.2 of this paper
is a standalone account of how the MHT (B+-tree variant)
enables verifying integrity of key-value stores.

Not only does this approach force redesign of the client and
server, it incurs significant performance overheads. First, the
MHT structure requires a logarithmic (in the size of database)
number of hash computations for each read, with writes in-
curring an additional logarithmic number of hash computa-
tions and updates to the MHT. Furthermore, since each write
modifies the trusted digest, it incurs data conflicts at the root
node of the MHT, and at several other nodes depending on
which paths of the MHT are accessed. This limits concur-
rency, which is problematic for a compute-heavy task. Our
initial experiments and work by Arasu et al [9] measured over-
heads of up to 30x in throughput, which is steadily worsening
as mainstream databases get faster.

We present VeritasDB, a key-value store with formal in-
tegrity guarantees, high performance, and a tiny trusted com-
puting base (TCB). VeritasDB leverages modern trusted hard-
ware platforms to achieve an order of magnitude improve-
ment in throughput while also removing large parts of the
system from the trusted computing base. Recognizing the
problem of infrastructure attacks, processor vendors are now
shipping CPUs with hardware primitives, such as Intel SGX
enclaves [22], for isolating sensitive code and data within pro-
tected memory regions (current hardware limits to 96 MB)
which are inaccessible to all other software running on the
machine. In this new paradigm, enclaves are the only trusted
components of a system. Furthermore, being an instruction
set extension to x86 rather than a co-processor, SGX provides
enclaves with native processor execution speeds, direct access
to non-enclave memory in larger DRAM (albeit unprotected),
and multicore parallelism — these features are an ideal fit for
integrity verification.

Keeping the MHT (we use a B+-tree variant, hereon called
MB-tree) in unprotected memory, VeritasDB uses an enclave
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to host the integrity checking code and necessary trusted state,
which at the least includes the MB-tree’s root node hash (di-
gest). Since the enclave can directly access DRAM memory
that hosts the MB-tree, we immediately observe an average
3x improvement in throughput over prior work, which requires
the integrity proof to be sent via network to the client. While
this improvement is attributed entirely to hardware advances,
we implement additional optimizations based on caching, con-
currency, and compression. First, we leverage the remaining
protected memory (96 MB) to cache commonly accessed parts
of the MB-tree, by developing novel caching algorithms based
on finding heavy hitters (count-min-sketch [14]) and cuckoo
hashing [17]. Second, we compress parts of the MB-tree, al-
lowing VeritasDB to scale to larger databases. These opti-
mizations allow VeritasDB to shave the overhead down to an
average 2.8x in throughput and 2.5x in latency across standard
YCSB benchmarks and Visa transaction workloads. This is
already an order of magnitude improvement over prior work,
which have overheads close to 30x in throughput. Finally,
to avail hardware parallelism, we use sharding of the MB-
tree and associated trusted state, which reduces contention
and increases throughput. Not surprisingly, since integrity
verification is compute-bound, SGX-enabled CPU parallelism
helps VeritasDB close the throughput gap to within 5% of the
baseline (insecure) system with no integrity checks.
VeritasDB is implemented as a network proxy (implement-

ing a standard key-value store protocol) that mediates all
communication between the client(s) and the server, which
is any off-the-shelf NoSQL database (Redis [7], Cassandra [3],
etc.)—therefore, VeritasDB incurs no modification to either
the client or the server. Since the server is untrusted, Veri-
tasDB also protects against implementation bugs in the server,
allowing developers additional freedom in selecting the NoSQL
database server — it is important to note that while integrity
verification detects incorrect results, it cannot correct them
(this would fall under fault tolerance). The proxy can be de-
ployed either in the cloud or on a client machine, as long as
SGX is available, making deployment flexible.

In summary, this paper makes the following contributions:

• We present a design and implementation (based on Merkle
B+-trees) for checking integrity of key-value stores, with-
out incurring any modification to the client or the server.
VeritasDB is released open source at [TBD].

• We improve throughput of integrity verification by lever-
aging features of SGX processors to implement novel
optimizations based on caching, concurrency, and com-
pression.

• We evaluate VeritasDB on standard YCSB benchmarks
and Visa transaction workloads, and present the impact
of these optimizations.

2. OVERVIEW
VeritasDB’s architecture (Figure 1) consists of a proxy and

an unmodified NoSQL server (e.g. Redis); i.e., it extends the
client–server architecture with a trusted proxy (protected us-
ing Intel SGX) that intercepts all of the client’s requests and
the server’s responses in order to provide integrity. By medi-
ating all interaction, the proxy is able to perform necessary
book-keeping to track versions of objects written per key and
to enforce freshness on all results sent back to the client. The
server can be hosted on any untrusted machine, and the proxy
must be hosted within a SGX process on the server machine.
The proxy consists of the following components: enclave code

Figure 1: Architecture and Threat Model.

for performing the integrity checks, unprotected memory (con-
taining a Merkle B+-tree), and enclave-resident state (for au-
thenticating the Merkle-tree and other bookkeeping). The
unprotected part of the proxy performs untrusted tasks, such
as socket communication with the server and buffering of re-
quests from multiple clients—the bulk of this code is imple-
mented as a database driver (e.g., the hiredis library [4] for
communicating with Redis [7], etc.).

VeritasDB’s API provides the standard operations of a key-
value store: get(k), put(k, v), insert(k, v), and delete(k). While
the proxy exposes these operations, it does not implement
them entirely but rather piggy-backs on the server (any main-
stream off-the-shelf key-value store). This allows us to lever-
age modern advances in NoSQL databases with negligible ef-
fort, as nearly all of them (e.g. Redis, RocksDB, DynamoDB,
etc.) support a superset of VeritasDB’s API. Instead, the
contribution of VeritasDB is the trusted proxy that efficiently
checks integrity of all responses from the server, using the def-
inition of integrity in § 3—henceforth we refer to VeritasDB
and the proxy interchangeably.

The client establishes a secure TLS channel with the proxy
to protect data in transit — the client uses SGX’s remote
attestation primitive [12] to ensure that the TLS session end-
point resides in a genuine VeritasDB proxy. The client is un-
modified, and is only responsible for generating API requests,
which require the protection of TLS to avoid tampering of
API arguments. When using VeritasDB with multiple clients,
the proxy orders all the requests, thus enforcing a sequential
consistency property in addition to integrity (more on this
in § 3).

2.1 Background on Intel SGX Enclaves
Hardware support for isolated execution enables develop-

ment of applications that protect their code and data even
while running on a compromised host. Recently, processor
vendors have started shipping CPUs with hardware primi-
tives, such as Intel SGX1 [22] and RISC-V Sanctum [15], to
create memory regions that are isolated from all other software
in the system. These protected memory regions are called
enclaves, and they contain code and data that can only be
accessed by code running within the enclave, i.e., the CPU
monitors all memory accesses to ensure that no other soft-
ware (including privileged OS and Hypervisor layers) can ac-
cess the enclave’s memory. A SGX enclave is launched by its
host application, occupying a contiguous range of the host ap-
plication’s virtual address space and running with user-level
privileges (ring 3 in x86). The host application can invoke
code inside an enclave via statically defined entry-point, and

1SGX is currently available on all Intel client-grade CPUs of
6th generation and above.
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the enclave code can transfer control back via an exit instruc-
tion in SGX. Additionally, the CPU implements instructions
for performing hash-based measurement and attestation of the
enclave’s initial memory, thereby enabling the user to detect
malicious modifications to the enclave’s code or initial state.
VeritasDB uses SGX enclaves to protect the trusted proxy’s
code and state.

Since the OS cannot be trusted to access enclave’s memory
safely, the CPU prevents enclave code from issuing system
calls. However, the enclave can directly access the host appli-
cation’s memory (but not the other way around), which en-
ables efficient I/O between the enclave and the external world
— system calls must effectively be proxied by the hosting
application. In VeritasDB, we demonstrate that direct low-
latency access to untrusted memory (which stores the Merkle
B+-tree) from enclave code enables efficient integrity check-
ing. That being said, current generation of SGX processors
only provide 96 MB of protected memory (in comparison to
several GBs of RAM required for the Merkle B+-tree), and
this paper demonstrates an efficient design and optimizations
to overcome this limitation.

2.2 Threat Model
VeritasDB places no trust in the backend server. Since the

clients are only generating requests, no trust is placed on them
either. The only trusted component in VeritasDB is the proxy,
which we harden using Intel SGX. Figure 1 illustrates all sys-
tem components that are under the attacker’s control.

Except the SGX CPU that runs the enclave program, the
adversary may fully control all hardware in the host computer,
including I/O peripherals such as the disk and network. We
assume that the attacker is unable to physically open and
manipulate the SGX CPU, and assume that SGX provides
integrity guarantees to the protected enclave memory. The
adversary may also control privileged system software, includ-
ing the OS, hypervisor, and BIOS layers, that the database
server depends on. This capability can be realized by a rogue
datacenter administrator with root access to the servers, or a
remote attacker that has exploited a vulnerability in any part
of the software stack. Such a powerful attacker can snapshot
or tamper the state of the database in memory and/or disk,
from underneath the server’s software; the attacker may also
tamper the server’s code. The attacker also controls all I/O:
it can create, modify, drop, and reorder any message between
between the client, server, and the proxy. We do not defend
against denial of service attacks — the server may choose to
ignore all requests, and the attacker can destroy the entire
database.

3. PROBLEM FORMULATION
VeritasDB provides the standard operations of a key-value

store: get(k), put(k, v), insert(k, v), and delete(k). A get(k)
operation outputs the value associated with key k; put(k, v)
updates the internal state to associate key k with value v;
insert(k, v) is used to create a new association for key k, and
it fails if k already exists in the database; delete(k) removes
any associations for the key k. VeritasDB outputs one of the
following results for each operation: (1) success, along with
a value in the case of get operations; (2) integrity violation;
(3) application error (indicating incorrect use of API, such as
calling get on non-existent key); (4) failure (due to benign
reasons, such as insufficient memory).

Though we don’t list it as a contribution (since the integrity
property is well-understood), we define integrity using formal

logic to avoid ambiguities — we are unaware of any formaliza-
tion of integrity for key-value stores. The following definitions
are required to state the property.

Definition 1. An interaction is a tuple 〈op, res〉, where op
∈ { get(k), put(k,v), insert(k,v), delete(k) } is the requested
operation and res is the result sent back to the client.

Definition 2. A session π between a client and VeritasDB
is a sequence of interactions [〈op0, res0〉, . . .], in the order in
which the operations were issued by the client. We let π[i] =
〈opi, resi〉 denote the i-th interaction within the session, where
π[i].op denotes opi and π[i].res denotes resi. Furthermore, |π|
denotes the number of interactions in π.

We say that a session π satisfies integrity if the proper-
ties listed in Table 1 hold for each interaction π[i], where
i ∈ {0, . . . , |π|−1}. A key-value store must provide integrity in
all sessions during its lifetime. One can observe from the def-
inition in Table 1 that integrity has two main sub-properties:
authenticity and freshness. Authenticity implies that a get
operation returns a value that was previously written by the
client, and not fabricated by the attacker. Authenticity is
stated implicitly because all properties in Table 1 refer to prior
interactions in the session, and integrity requires that the re-
sults are a deterministic function of those previous interactions
(and nothing else). Freshness implies that a get operation re-
turns the latest value written by the client (thus preventing
rollback attacks), and that the set of keys in the database at
any time is a deterministic function of the most up-to-date
history of client’s operations (i.e., the attacker does not insert
or delete keys). Freshness is stated explicitly in the property
for get in Table 1, which stipulates that the returned value
must equal the most-recent put, and that the results of insert
and delete operations are consistent with the latest account
of interactions in that session — for instance, an insert(k, v)
only succeeds if that the key k does not exist. Further ob-
serve that error results also have authenticity and freshness
requirements (see Table 1).

Since integrity is a safety property, it ensures that when a
result is produced, it is a correct one. Therefore, only suc-
cessful results and application errors are assigned a property
in Table 1. On the other hand, no guarantee is given when
the server fails to perform the operation, which would violate
availability2 but not integrity — VeritasDB’s proxy cannot ver-
ify error messages such as insufficient memory. In such cases,
the client could retry the operation in future.

VeritasDB enforces these properties for each interaction, even
in the presence of a buggy or compromised back-end database
server. However, it is important to note that VeritasDB cannot
fix an incorrect response, and therefore cannot ensure avail-
ability during an attack — in other words, a misbehaving
server causes denial of service to the clients. When it detects
an integrity violation (e.g. tampering to the database), the
proxy stops accepting new requests and terminates the ses-
sion. Therefore, integrity forms a safety property: VeritasDB
never returns an incorrect result to the client, but the system
may fail to make progress (i.e., liveness is not guaranteed).
Our logical formalization of integrity is aligned with the defi-
nitions in prior work [21]. While our definition is tailored for
the single client setting, it can be easily extended to multiple
clients since the proxy’s operation is agnostic to the number
of clients that it serves — in that case, the ordering is de-
fined by the order in which operations arrive in the proxy’s

2We note that payment incentivizes cloud to provide avail-
ability, which we consider outside the scope of this study.
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API π[z].op Result π[z].res Property

insert(k, v)
ok ¬(∃x. x < z ∧ π[x] = 〈insert(k, v), ok〉 ∧ ∀y. x < y < z ⇒ π[y] 6= 〈delete(k), ok〉)

key present error ∃x. x < z ∧ π[x] = 〈insert(k, v), ok〉 ∧ ∀y. x < y < z ⇒ π[y] 6= 〈delete(k), ok〉

get(k)
(ok,v) ∃x. x < z ∧ (π[x] = 〈put(k, v), ok〉 ∨ π[x] = 〈insert(k, v), ok 〉) ∧

(∀y, v′. x < y < z ⇒ π[y] 6= 〈delete(k), ok 〉 ∧ π[y] 6= 〈put(k, v′), ok〉)

key missing error ¬(∃x. x < z ∧ π[x] = 〈insert(k, v), ok〉 ∧ ∀y. x < y < z ⇒ π[y] 6= 〈delete(k), ok〉)

put(k, v)
ok ∃x. x < z ∧ π[x] = 〈insert(k, v), ok〉 ∧ ∀y. x < y < z ⇒ π[y] 6= 〈delete(k), ok〉

key missing error ¬(∃x. x < z ∧ π[x] = 〈insert(k, v), ok〉 ∧ ∀y. x < y < z ⇒ π[y] 6= 〈delete(k), ok〉)

delete(k)
ok ∃x. x < z ∧ π[x] = 〈insert(k, v), ok〉 ∧ ∀y. x < y < z ⇒ π[y] 6= 〈delete(k), ok〉

key missing error ¬(∃x. x < z ∧ π[x] = 〈insert(k, v), ok〉 ∧ ∀y. x < y < z ⇒ π[y] 6= 〈delete(k), ok〉)

Table 1: Integrity property of VeritasDB, based on result types. The property guaranteed by an interaction is
defined with respect to its position z in the session π. Unspecified result types have no guarantees.

message queue, and the clients enjoy a sequential consistency
property [20, 9].

4. INTEGRITY VERIFICATION
This section describes VeritasDB’s core mechanism (built

on SGX protections) and justifies its design decisions; while it
lays the groundwork for describing our contributions (§ 5 and
beyond), this section combines existing ideas and is not en-
tirely novel by itself. As stated in § 3, integrity is composed of
authenticity and freshness guarantees, and VeritasDB uses the
proxy to enforce both. We enforce authenticity using a cryp-
tographic MAC, and freshness using enclave-resident state for
keeping track of the latest version of each key-value binding
— this is the focus of § 4.1). Furthermore, since the proxy en-
clave’s state grows linearly with the size of the database size
(specifically, the number of keys), and current SGX CPUs
only provide bounded protected memory, § 4.2 describes an
authenticated Merkle B+-tree data structure for protected ac-
cess to this state.

4.1 Basic Design
To commence a session with the proxy, the client first estab-

lishes a TLS channel whose remote endpoint terminates within
the proxy enclave, i.e., the interactions are secure against at-
tacks on the network or the host OS. The channel establish-
ment protocol uses an authenticated Diffie-Hellman key ex-
change, where the proxy’s messages are signed using the SGX
CPU’s attestation primitive — the CPU computes a hash-
based measurement of the proxy enclave’s initial state (as it
is being loaded into memory), and this hash is included in
the signature, thus allowing the client to verify the genuine-
ness of the proxy enclave. The client issues get, put, insert,
and delete operations over this TLS channel, by serializing the
API opcode and operands, and then encrypting them using
the AES-GCM cipher. VeritasDB piggybacks on the server,
which is assumed to support these operations as well (true for
Redis [7], RocksDB [8], Cassandra [3], etc.).

To perform the integrity checks, the proxy maintains the fol-
lowing state: 1) 128-bit AES-GCM key for encrypting commu-
nication with the client; 2) 128-bit HMAC key (called hmac key)
for authenticating server-bound values; 3) a map (called version)
from keys to 64-bit counters for tracking latest version for each

key; 4) a map (called present) from keys to boolean values
for tracking deleted keys (needed to prevent a subtle attack
explained later).

For the purpose of § 4.1, the reader can assume that all of
the proxy’s code and is stored within enclave memory (alter-
native discussed in § 4.2). Storing 64-bit version counters in
version leads to constant space overhead for each key in the
database. Alternatives for ensuring freshness include storing
a pre-image resistant digest, such as a cryptographic hash,
of the stored value (which would require at least 256 bits for
sufficient security), or storing the entire value itself (which is
clearly wasteful duplication). We use the present map, in lieu
of simply adding / removing entries from the version map,
to avoid an attack explained below in the section explaining
insert operations. We now describe the integrity checks and
the proxy-server interaction below.

Put Operations. The proxy performs some book-keeping and
transforms the arguments to a put(k, v) request before for-
warding the request to the server. First, the proxy throws
a key missing error if the proxy does not maintain a binding
for key k. Otherwise, it computes an HMAC to authenticate
the payload, where the HMAC binds the payload (containing
value v and incremented version) to the key k. The binding
of payload to k ensures that an attacker cannot swap the pay-
loads associated with any two different keys. The server may
choose to deny the put request, in which case the failure mes-
sage is propagated to the client; else, the proxy acknowledges
the successful operation by incrementing version[k].

if (present[k]) {
tag := HMAC(hmac_key, k || version[k] + 1 || v);
res := server.put(k, version[k] + 1 || v || tag);
if (res == ok) { version[k] := version[k] + 1; }
return res;

}
else {

return key_missing_error;
}

Get Operations. The logic for get operations is effectively
the dual of put. The proxy forwards the get(k) request to the

4



backend server if it finds a binding for key k; else, it throws
a key missing error to the client. The payload returned by the
server is checked3 for authenticity using an HMAC, which is
computed over the requested key k, version counter ctr, and
the value v. Once the payload is deemed authentic (proving
that it was previously emitted by the proxy), the proxy pro-
ceeds to check that the counter ctr matches the value in the
local state version, thus guaranteeing freshness.

if (present[k]) {
res := server.get(k);
if (res == fail) { return fail; }
ctr || v || tag <- res; /* deconstruct payload */
/* failure of following assertions causes halt */
assert tag == HMAC(hmac_key, k || ctr || v);
assert ctr == version[k];
return (ok, v);

} else {
return key_missing_error;

}

Insert Operations. An insert(k, v) operation is handled sim-
ilarly to put(k, v), except the proxy creates a binding for key k
in the version and present maps. While one might expect that
a new binding should initialize with the version counter 0,
this approach would not defend against the following attack.
Consider a session where the client deletes a key and later in-
serts it again, i.e., a session of the form [. . ., insert(k, v), . . .,
delete(k), . . ., insert(k, v′), . . . ]. If the version were to reset to
0 on insert(k, v′), then the attacker can start supplying older
values from the session on get requests but still satisfy the in-
tegrity checks. To prevent this attack, we check whether the
key k was previously inserted, and resume the counter; this is
ascertained by checking membership of k in version, but with
present[k] set to false.

if (present[k]) {
return key_present_error;

} else {
ctr := k in version ? version[k] + 1 : 0;
tag := HMAC(hmac_key, k || ctr || v);
res := server.insert(k, ctr || v || tag);
if (res == ok) {

version[k], present[k] := ctr, true;
}
return res;

}

Delete Operations. The proxy simply forwards the delete
command to the server. If the server deletes successfully, we
remove the binding by setting present[k] to false, yet retaining
the counter version[k] for the reason explained above.

if (present[k]) {
res := server.delete(k);
if (res == ok) { present[k] := false; }
return res;

} else {
return key_missing_error;

}

3A failed assert halts the proxy and denies future requests.

Figure 2: Merkle B+-Tree for authenticating version
and present. Hash of root node is stored in enclave.

4.2 Merkle B+-Tree and Operations
The security of VeritasDB rests on being able to perform the

integrity checks securely, which necessitates protected mem-
ory to store the proxy’s code and data. As described in § 4.1,
the proxy’s state includes the version and present maps, which
requires 65 bits for each key: 1 bit for the present flag, and
64 bits for the counter, though its bitwidth may be adjusted.
Hence, the proxy’s state grows with the database size (more
accurately, the number of keys), while SGX CPUs only offer
fixed size enclave memory — 96 MB for current generation
CPUs. For any database of reasonable size, we would quickly
exhaust the enclave’s memory.

A strawman solution is to piggy-back on SGX’s secure pag-
ing which allows for larger than 96 MB enclaves, relying on
the OS and CPU to co-operate together on page-level man-
agement of enclave memory. Here, on accessing an unmapped
page, the CPU automatically encrypts (using AES-GCM au-
thenticated encryption) a 4KB page from enclave memory,
swaps it out to non-enclave memory, and decrypts the re-
quested page before loading into the enclave — note that this
is orthogonal to the virtual memory paging between DRAM
and persistent storage. This preserves both integrity and au-
thenticity of the proxy’s state because the adversarial OS is
unable to observe or tamper the plaintext contents of those
pages. However, this approach has two notable drawbacks.
First, paging incurs significant overhead as accessing even 1
bit incurs encryption and copying out of 4 KB, followed by
decryption and copying another 4 KB — this problem is ex-
acerbated on uniform workloads which don’t exhibit temporal
locality of access patterns. Second, while we can instantiate
larger enclaves, this approach requires us to commit to the
maximum size of the enclave statically, which would cause
the proxy to crash once the database reaches a certain size.

Instead, a more practical solution is to employ an authen-
ticated data structure, such as a Merkle-tree [23, 21], which
stores a tiny digest in trusted memory and uses an untrusted
medium (non-enclave memory) to hold the proxy’s state —
we refer the reader to [24] for an introduction to using Merkle
Hash Trees for providing integrity in outsourced databases.
VeritasDB employs a Merkle B+-tree (MB-tree from here on),
which offers logarithmic time update and retrieval operations,
and implements novel performance optimizations that take
advantage of Intel SGX features. Before diving into those op-
timizations (focus of § 5), we use this section to discuss the
specific application of a MB-tree in VeritasDB.

Figure 2 illustrates the MB-tree structure for a sample database.
Each intermediate node contains several keys (depending on
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the configured branching factor), a version counter and present
bit per key, pointers to child nodes, and a hash of each child
node. As per the properties of a B+-tree, the left (right)
child relative to any key k holds those keys that are strictly
less (greater) than k. A leaf node does not contain any child
pointers or hashes. The entire tree is stored in unprotected
memory, while the enclave stores the hash of the root node.
A node’s hash is computed using a SHA-256 function applied
to the concatenation of the following values: keys, version and
present bits, and hashes of child nodes. Note that we do not
include the child pointers while computing the hash; the rea-
son is that we intend the hash to be a concise digest of the
contents of the subtree, independent of its physical location
— we may even relocate parts of the tree for better memory
allocation, but this should not affect the hash.

Integrity of any node’s contents can be established by ei-
ther storing that node’s hash in trusted storage (as we do for
the root node), or authentically deriving that node’s expected
hash by recursively computing child hashes along the path
from the root node — see algorithm for get operations below.
Each update to the tree (put, insert, and delete operations)
forces modifications of child hashes along one or more paths
in the tree, including an update to the root node hash stored
in enclave memory. With the introduction of the MB-tree, we
modify the integrity checks as follows.

Get. The algorithms presented in § 4.1 assume trusted access
to version[k] and present[k]. Since this state is stored in the
MB-tree in unprotected memory, we prepend the algorithm
for get(k) in § 4.1 with the following steps to ensure authentic
reads of that state.

trusted_hash := H(n_root) /* stored in enclave */
path := search(n_root, k) /* root to node with k */
for (i = 0; i < path.size() - 1; i++) {
cp(n_local, path[i]) /* memcpy node to enclave */
assert H(n_local) == trusted_hash /*authenticate*/
j := find(path[i+1], n_local) /* index of child */
trusted_hash := n_local.child_hash[j]

}
j := find(k, n_local) /* index of k in keys */
version[k] := n_local.version[j] /* authenticated */
present[k] := n_local.present[j] /* authenticated */
...

We iterate from the root node down to the node containing
k, while authenticating each node to determine the trusted
hash of the next child node — the trusted root node hash
H(nroot) bootstraps this process. While this is mostly stan-
dard procedure for Merkle Trees, note that for each node along
the path from the root node to the node containing k, this
process copies the node’s contents to enclave memory and
computes its SHA-256 hash; this path is logarithmic in the
database size. This path verification adds significant over-
head, which we measured to be roughly 10x in throughput
for a modest size database holding 10 million keys. A key
contribution of this paper is a set of optimizations (presented
in § 5) for bridging this gap to roughly 2.8x on average, and
1.05x with the parallel implementation.

Put, Insert, and Delete. Updates to the tree cause the up-
dated hashes to propagate all the way to the root, modifying
each node along the path. A put(k, v) operation increments
version[k] while a delete(k) operation updates present[k]. For
both these operations, we first search for the node contain-
ing k, and use the same logic as get (shown above) to attain

authentic contents of that node — this is a prerequisite to re-
computing the hash, as several fields within that node retain
their values. Next, we update the node, which necessitates
updating the hash of that node (in the parent), and recur-
sively, the hashes of all nodes in the path to the root. Hence,
for any given key, update operations require at least twice as
much computation as get operations. We omit pseudocode
due to space constraints.

An insert(k, v) operation creates a new entry in the MB-
tree, which is either placed in an empty slot in an existing
node or placed in a newly allocated node — the latter causes
a change in the structure of the tree. In either case, we must
authenticate a path in the tree to derive authentic contents
of one or more nodes, and update the hashes after the insert
(similar to put and delete operations).

5. OPTIMIZATIONS
VeritasDB witnesses a significant performance improvement

by using the SGX architecture, which provides direct access to
untrusted memory (for storing the MB-tree) from the integrity-
verifying enclave code. Prior systems that sent all nodes along
a path in the MB-tree from the untrusted server to the ver-
ifying client over the network had upwards of 30x overhead
for modest-size databases [9]. In contrast, on a direct imple-
mentation of our scheme from § 4.2, we measure an average
10x overhead in throughput (see “no caching” in Figure 10),
which is already a 3x reduction in overhead compared to past
systems.

We present three optimizations, caching, concurrency, and
compression, which provide overhead reductions in addition
to the gains from using SGX. Note that while these opti-
mizations provide an order-of-magnitude speedup in practi-
cal workloads, they do not improve the worst case. Dwork et
al. [16] proved that integrity verification (in an online setting)
with bounded trusted state requires logarithmic amount of
computation. VeritasDB has the same asymptotic complexity,
because SGX protects fixed size memory (96 MB on current
Intel CPUs).

5.1 Caching
Since SGX offers significantly more protected memory than

what we need for storing code pages of VeritasDB, we reserve a
portion of enclave memory to cache a subset of the MB-tree’s
state, in addition to the mandatory storage of the root node’s
hash H(nroot). By caching these bits from the MB-tree, we
avoid computing hashes to authenticate reads of that state.
VeritasDB employs two caches: 1) hash-cache for caching child
hashes of MB-tree nodes, and 2) value-cache for caching ver-
sion and present bits. The rationale for having two caches is
that they are suited to different types of workloads, and to-
gether enable VeritasDB to perform well on a wider variety
of workloads — we observe empirically (§ 7.3) that skewed
workloads benefit more from the value-cache, while the hash-
cache benefits workloads with higher entropy distributions.
We leave it to future work to tune the size of the two caches
based on runtime monitoring of the access patterns. Figure 3
illustrates these two cache structures.

5.1.1 Hash Cache
The hash-cache caches hashes of a subset of nodes within

the MB-tree, and it is indexed by the memory address of a
MB-tree node. Since the cache is located within the enclave,
a cached node’s hash is authentic, which obviates computing
hashes of its predecessors in order to authenticate that node’s
contents — experiments confirm that the hash-cache speeds
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Figure 3: Caches optimize reads of MB-tree’s state.

up read operations significantly (§ 7.3). However, update op-
erations force recomputations of hashes recursively along the
path from the deepest modified node up to the root node,
so they benefit less from caching; should any node along this
path exist in the hash-cache, its hash must also be updated to
ensure correctness. VeritasDB’s implementation of hash-cache
adopts cuckoo hashing for desirable attributes such as effi-
cient, constant-time lookups and updates (we fix maximum
20 cuckoo relocations), and constant space requirements (we
disable resizing). This section develops a novel caching algo-
rithm to manage the hash-cache, though we contend that it
can be improved in future work.

Counting Accesses. Assuming that past behavior is an in-
dication of future (which no cache can predict), an ideal cache
of size n stores the top n most-frequently accessed items, ag-
gregated over a sliding time window to ensure adaptability
to recent access patterns. Not surprisingly, an impossibility
result stipulates that no algorithm can solve this problem in
an online setting using sub-linear space, thereby urging us to
introduce approximation — this is acceptable in VeritasDB’s
setting because caching can withstand inclusion of a few light
hitters. VeritasDB implements an algorithm based on count-
min-sketch [14] (CMS), where we modify the vanilla algorithm
to find approximate heavy hitters within a sliding time win-
dow, while achieving constant space, predictable timing, and
high performance. It works as follows.

To count accesses to nodes of the MB-tree, VeritasDB allo-
cates a CMS table, which is a 2-D array of cells. CMS provides
a space-accuracy tradeoff, and we find that, for reasonable
expected error, we need a CMS table with 16,000 columns
and 5 rows (corresponding to pairwise independent uniform
hash functions), which requires approximately 3 MB. Due to
hash collisions in mapping a large universe of MB-tree nodes
(several millions) to a smaller CMS table, the CMS scheme
necessarily over-approximates; hence, we inherit its trait of
admitting a few light hitters within the cache. VeritasDB in-
troduces a simple modification: each cell in the CMS table
stores not a single counter but a vector of N counters, used as
follows. The desired sliding window (say 10,000 operations) is
divided up into N (say 10) equi-width epochs, where an epoch
denotes a contiguous subsequence of interactions in a session.
Each counter in the vector maintains the access count for the
duration of an epoch, as in vanilla CMS. Epoch transitions
move over to the next counter in the vector, whose value is
initialized to 0 — since a sliding window has N epochs, an
epoch transition at position N-1 wraps around to the counter
at position 0.

To determine whether a node at address a should be in-
cluded in the cache, we compute a point query on the sketch:

count(a)
.
= min

0≤j<5

N−1∑
n=0

CMS[j][hj(a)][n]

Should count(a) be larger than a threshold, the hash of node
a is deemed worthy of inclusion in the hash-cache — we will
shortly discuss how to set this threshold. Updates to the CMS
table occur on each get(k) operation, where for each node
on the path to the node containing k, we 1) compute the 5
hashes of k, each mapping to one of the 16,000 columns, and
2) increment the counter corresponding to the current epoch
in each of those 5 cells. The update to the CMS table uses
the following logic, which is prepended to the algorithm for
get operations detailed in § 4.2.

trusted_hash := H(n_root) /* stored in enclave */
path := search(n_root, k)
for (i = path.size() - 1; i >= 0; i--) {

if (hash_cache.has(path[i])) { /* optimization */
trusted_hash := hash_cache.get(path[i])

}
for (j = 0; j < 5; j++) { /* i = dist from root */
CMS[j][h_j(path[i])][clock % N] += i

}
if (count(path[i]) >= threshold) {
hash_cache.insert(path[i])

}
}
...

Here, clock refers to the global clock incremented by 1 on
each interaction in the session; hj denotes one of 5 uniform
hash functions; each CMS cell is a vector indexed using the
ring counter (clock modulo N). Contrary to vanilla CMS, which
increments each count by 1 for each hit, we increment the
counter by weight i, which is the distance of the node path[i]
from the root node. This has a simple explanation: on ac-
cessing that path in a future operation, caching the hash of
a node at distance i from the root saves i hash computations,
and therefore must be prioritized over nodes with depth less
than i. In other words, there is no benefit from caching a
parent node when all of its children are cached, and hence we
need a mechanism to prioritize the children nodes over the
parent node. Note that this does not imply that we only end
up caching leaf nodes in the MB-tree, since a parent node
accrues hits from all paths originating from that node — as
expected, in a workload with uniform distribution of keys, we
find that this scheme converges to (i.e., has maximum likeli-
hood of) a state where the hash-cache contains all nodes at a
median height of the MB-tree.

While a proposed extension to CMS, namely the ECM-
sketch [26], also provides a sliding-window count-min-sketch
with provable error guarantees, it has higher expected error
and incurs a wider distribution of running times for queries
and updates. Not only is our algorithm simpler to implement,
but it also achieves a tighter error bound by allowing for vari-
ations in the length of the sliding window, which we argue to
be acceptable for our setting — we solve a slightly different
problem because our point query computes an aggregate over
a sliding window whose length is somewhere between N-1 and
N epochs, based on the duration of the current epoch. This
is acceptable because we are not necessarily interested in es-
timating the count over a fixed sliding window. Rather, we
wish to rank nodes in order of frequency, or more specifically,
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Figure 4: Threshold tuning during a run of YCSB-C

determine whether a node’s frequency is above a threshold —
despite a varying-length time window, we provide fairness to
all MB-tree nodes when we compute point queries. Note that
our scheme achieves the same error bound as vanilla CMS ap-
plied over an input stream of events containing the previous
N - 1 epochs followed by the requests in the current epoch.
Meanwhile ECM’s probabilistic error guarantee is for a fixed
window of size N, where in addition to the over-approximation
from hash collisions, ECM incurs error from the sliding win-
dow counter estimation, where the weight of the oldest bucket
(or epoch) is halved to minimize the expected error.

Setting Threshold. Computing the sketch synopsis is only
half the battle; a caching algorithm must also determine an ap-
propriate threshold for deciding inclusion, i.e., for evaluating
the check count(path[i]) ≥ threshold. We implement a heuris-
tic scheme that dynamically tunes the threshold based on the
load factor (i.e., cache occupancy in percentage), best de-
scribed with the help of a sample execution illustrated in Fig-
ure 4. Every few epochs (say 10), we re-tune the threshold as
follows:

• if load factor is below a certain fraction (say 90%), we reduce
the threshold using a multiplicative factor (say 5/6);

• if load factor is above 97%, we increase the threshold by
a multiplicative factor (say 4/3), and also flush half of the
occupants with below-average count.

If the cache is too vacant, it indicates that our threshold
is too high, so we correct course by decreasing it by a multi-
plicative factor. On the other hand, we increase the threshold
when the cache is highly occupied; while we prefer our cache
to be occupied completely at all times, the intention here is to
ensure that heavy hitters are the chosen occupants, which is
why we also flush the lighter half of the hitters to make room.
We choose 97%, as opposed to 100%, because cuckoo hashing
(with 4 hash functions and 1 cell per hash bucket) reaches 97%
achievable load before the probability of irresolvable collisions
(which cause unsuccessful insertions) rises dramatically — us-
ing graph theory, one derives that for a cuckoo hash table of
size 64K cells, at 97% load factor, we have successful insertions
(with fixed amount of work) with 99% probability [17]. We
can also use finer grained adjustments at smaller occupancy
increments, but we defer this exploration to future work.

5.1.2 Value Cache
We also reserve some protected enclave memory to cache

entries in the version and present maps, which obviates com-
puting any hashes to authenticate their values — we call this
the value-cache, and it is indexed by the key. Since the hash-
cache converges to near-optimal caching strategy on uniform
workloads, we design the value-cache to exploit more skewed
workloads, where a larger fraction of the operations target

fewer set of keys. To that end, we employ the LRU cache re-
placement policy, where the cache is built using a cuckoo hash
table with the following configuration: 4 hash functions, bins
of size 1, maximum of 20 cuckoo relocations, and at least
64K cells (fixed throughout runtime). Cuckoo hashing al-
lows for constant lookup time in the worst case, and using
4 (pairwise-independent, uniform, and efficient) hash func-
tions enable higher achievable loads (fewer irresolvable con-
flicts) without computing too many extra hashes — note that
each hash computation is followed a comparison of the stored
key with the search key, which is the more significant cost.
We modify the vanilla cuckoo hashing to use an approximate
LRU replacement policy in lieu of periodically resizing the
table, which is not viable for fixed size enclaves.

Each cache entry stores the key k, version[k] and present[k]
bits, and the timestamp of last access. On each get(k) op-
eration, we first check if the value-cache already contains k
by searching within the 4 potential slots, as is standard for
cuckoo hashing. If found, we update the timestamp (of last
access) on that cache entry; otherwise, we insert k (and ver-
sion[k] and present[k]) by relocating existing elements to make
room (up to a maximum of 20 relocations). If an empty slot
is not found within 20 cuckoo relocations, then the LRU en-
try is vacated to make room for k. Since the LRU entry may
be any of the 20 relocated entries, we first simulate the 20
relocations before actually performing them — simulation is
cheap as computing the uniform hash function is inexpensive;
we use SpookyHash [1] which uses 2 cycles / byte on x86-64.
Once the LRU item (entry with lowest timestamp) is iden-
tified, the relocations are performed until we reach the LRU
item to be evicted — we call our scheme approximate LRU
since the LRU item is chosen from a subset of the entire cache.
To track time, we use the global clock mentioned previously.
VeritasDB flushes the cache when this counter overflows, which
is expected to occur every 12 hours approximately (at 100K
operations per second). While storing a 32 bit timestamp for
each cache entry may seem wasteful, the dominating consumer
of space in the cache is the indexing key k, which can be up
to 64 bytes in VeritasDB.

Depending on the benchmark, we find that the value-cache
can provide up to 5x increase in throughput.

5.2 Concurrency
The integrity verification logic in VeritasDB is CPU bound,

as it computes a sequence of hashes in addition to an HMAC.
Fortunately, SGX enables hardware parallelism by allowing
multiple CPU threads within an enclave, and this section de-
scribes their use in VeritasDB.

As a potential solution, we could instantiate a message
queue to accept API requests from the clients, and launch
multiple threads that concurrently process requests from the
queue. Since there is a read-write and write-write conflict at
the root of the MB-tree — update operations modify the root
and all operations read the root — we can introduce locking
on MB-tree nodes to avoid data races. However, we forego this
approach due to the performance impact of locking, and the
complexity of dealing with structural changes in the MB-tree
during insert and delete operations.

Instead, we adopt the simpler approach of sharding the ver-
sion and present maps into separate maps, and build a sep-
arate MB-tree for each shard. VeritasDB uses a dedicated
integrity verification thread for each shard. Assignment of
keys to shards is done using a fast hash function (e.g. crc32).
This design effectively produces in a Merkle forest, i.e., a set
of disjoint trees. More importantly, there is no shared state
across threads, removing the need for any form of locking.
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Figure 5: Proxy architecture for concurrent query processing.

VeritasDB implements asynchronous I/O mechanism within
the enclave to allow the threads to operate without context
switching from enclave mode to untrusted code. We illustrate
this design in Figure 5.
VeritasDB uses a message queue in untrusted memory for ac-

cepting encrypted client requests — this is typically managed
by a distributed messaging library such as zeromq [2]. Within
the proxy enclave, we launch a dedicated I/O thread (marked
io in Figure 5) to handle all I/O to/from the enclave, and a
set of worker threads (marked t1, . . . , tn in Figure 5, one for
each shard) to perform integrity checks and issue commands
to the server. Recall that the client establishes a TLS channel
with the proxy enclave, and uses the session key to encrypt all
interactions. The I/O thread fetches encrypted requests from
untrusted memory, decrypts them using the TLS session key,
and copies them into the in-enclave input buffer of one of the
worker threads (based on the output of crc32 function applied
to the key being operated on). Each worker thread ti fetches
the next request from its dedicated buffer, processes it, and
optionally interacts with the untrusted server as follows. The
worker thread serializes the operands to non-enclave mem-
ory and busy-waits for the server’s response to be populated
at a designated location in non-enclave memory; a dedicated
thread in the untrusted host application interacts with the
server (using a standard client library such as hiredis [4] for
Redis [7]). We do not implement asynchronous buffered I/O
for worker-server interaction because the worker’s computa-
tion depends on the response from the server, and the MB-tree
state produced at the completion of this request affects future
requests. In addition to exploiting hardware parallelism, our
use of asynchronous I/O between client and worker threads
avoids context switches across the enclave boundary — [30]
shows that these context switches can take upto 7000 cycles
(about 35x slower than a system call).

It is important to note that sharding does not suppress the
caching optimization discussed earlier, as each shard receives
an equal share of the hash-cache and the value-cache. While
Concerto briefly mentions sharding as a potential method for
concurrency, they do not pursue it because skewed workloads
(where a few keys account for most of the operations) can
create a load imbalance. While this is a valid concern in Con-
certo’s design, we find that our caches overcome this potential
problem from skewed workloads.

We observe in practice that sharding (with other optimiza-
tions also enabled) achieves significant improvements in all
workloads, especially since integrity verification in VeritasDB
is compute bound. By availing enough CPU threads (typi-
cally 2-4), we can reduce the overhead to within 5% of the

insecure system with no integrity (see § 7.4).

5.3 Compression
B+-trees require that keys are stored in order within a node.

This creates an empirical phenomenon where keys within a
MB-tree node have several bits in common, starting from the
most significant bit. For instance, the keys in the root node
in Figure 2 share all but the lowest 8 bits. Instead of duplicat-
ing the other 248 bits (where maximum key length is set to 64
bytes) 3 times, VeritasDB stores these common bits once. This
form of compression reduces memory footprint by an average
of 30% across our benchmarks.

6. IMPLEMENTATION
VeritasDB can be deployed on any machine with an SGX

CPU, and can be co-located with the client or the server. The
proxy’s code consists of an untrusted component (that inter-
acts with the clients and the database server) and a trusted
component (that implements the integrity checks).

The trusted enclave implements the integrity verification
logic described in § 4 and § 5, and a minimal TLS layer to
establish a secure channel with the client. The integrity veri-
fication logic is implemented using 4000 lines of C code, which
we plan to formally verify. The TLS channel is established us-
ing a Diffie-Hellman key exchange that is authenticated using
Intel SGX’s remote attestation primitive [12], which produces
a hardware-signed quote containing the enclave’s identity, that
the clients can verify to ensure the genuineness of the proxy
enclave. The TLS layer is implemented using 300 lines of C
code and linked with the Intel SGX SDK [6].

The untrusted component (also called the host application)
implements I/O between the clients and the proxy enclave,
and between the proxy enclave and the database server. The
client-proxy I/O is implemented entirely using ZeroMQ [2],
a mainstream asynchronous messaging library. The proxy-
server I/O is implemented using a thin wrapper (roughly 100
lines of code) over a database client library — we use hire-
dis [4] for interacting with Redis [7], DataStax driver [5] for
interacting with Cassandra [3], etc. Not only does running the
untrusted component outside of an enclave reduce the TCB,
but we are also forced to do so because socket-based commu-
nication invokes system calls, and the OS cannot be trusted
to modify enclave memory.

7. EVALUATION
Using Visa transaction workloads and standard benchmarks,

we evaluate VeritasDB by studying these questions:
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• How much overhead in space (i.e., memory footprint)
and time (i.e., throughput and latency) does integrity
checking add, in comparison to a mainstream, off-the-
shelf system with no integrity checking?

• How does overhead vary with the size of the database?

• How much improvement do the caching and concurrency
optimizations provide? How does performance vary with
the size of the caches and number of threads?

Experiment Setup. VeritasDB is implemented as a network
proxy on the path between the client and the untrusted server.
Since including network latencies while measuring VeritasDB’s
latency can suppress the measured overhead, we run the client,
proxy, and server on the same machine (with sufficient hard-
ware parallelism). Furthermore, while measuring throughput,
we use a multiple clients to flood the proxy with requests so
as to prevent the proxy from stalling — each client is syn-
chronous, i.e., it waits for the response from the proxy before
issuing the next operation.

We evaluate VeritasDB using the YCSB benchmarks [13]
and Visa transaction workloads. We test with the follow-
ing YCSB workloads: A (50% gets and 50% puts), B (95%
gets and 5% puts), and C (100% gets), and D (95% gets and
5% inserts). For each workload, we first run a a setup phase
where we insert between 5 million and 50 million keys into the
database. During measurement, each operation accesses one
of these keys, where the keys are generated using either the
scrambled Zipfian distribution (α = 0.99) or Uniform distribu-
tion; for workload D, the insert operations generate new keys
that do not exist in the database. The Visa workload cap-
tures access patterns encountered while processing payment
transactions during a period of several weeks, amassing over
two billion transactions — each transaction incurs one get op-
eration to a NoSQL store. All experiments are performed 10
times and then averaged.

All experiments are performed on a machine with Ubuntu
16.04 LTS, running on Intel E3-1240 v5 CPU @ 3.50GHz (with
4 physical, 8 logical cores), 32 GB DDR3 RAM, and 240 GB
SSD. We anticipate even better performance from VeritasDB
once SGX is available in server-grade hardware.

7.1 Measuring Space and Time Overhead
We first study the question of how much overhead in time

(throughput, latency) and space (memory footprint) VeritasDB
adds compared to an off-the-shelf key-value store. For this
experiment, we use a setup that enables all optimizations
except concurrency, i.e., we use single CPU thread and en-
able compression and caching optimizations. This is because
integrity verification is compute-bound, and adding threads
trivially helps VeritasDB close the throughput performance
gap (see § 7.4); instead, disabling concurrency helps us study
the performance overheads in fair light, showcasing both our
algorithmic improvements and advantages of SGX hardware
to the problem of integrity verification.

Throughput and Latency. Figure 6 illustrates the through-
put measurements across all YCSB and Visa workloads, and
Figure 7 illustrates the latency overheads on micro-benchmarks.
For each YCSB workload, we experiment with both the scram-
bled Zipfian distribution (suffix Zipf in Figure 6) and the Uni-
form distribution (suffix Unif). We fix the database size to
5 million keys, where each key is 64 bytes and each value is
of length between 16 bytes and 256 bytes (chosen randomly).

Figure 6: Throughput on YCSB benchmarks, using 1
thread, RocksDB backend server, 5 million keys.

Figure 7: Latency on micro-benchmarks, using 1
thread, RocksDB backend server, and 5 million keys.

While VeritasDB can work with any NoSQL server, we use
RocksDB [8] in these experiments.

Not surprisingly, we find that get operations execute signif-
icantly faster than others, leading to lower latency and higher
throughputs — recall that hash computations are only re-
quired to ensure the integrity of the read nodes along the
path from the deepest cached node to the node holding the
requested key. All other operations modify the contents of
one or more nodes in the MB-tree, forcing an additional se-
quence of hash computations from the deepest modified node
back up the path to the root node. This phenomena is evi-
dent in Figure 6, where, as the proportion of get operations
increases from 50% in YCSB-A to 100% YCSB-C, so does
the throughput; Figure 7 also supports this phenomena as get
operations have significantly lower latency.

Not surprisingly, VeritasDB provides significantly higher through-
put with Zipfian workloads because a tiny set of keys account
for a large fraction of the accesses, which lends well to caching.
Since 50 keys account for over 99% cumulative probability in
this distribution, we find that either (even a tiny) value-cache
stores the state for requested key (requiring no hash), or the
hash-cache stores the hash of an immediate node (requiring 1
hash). Since the effect of caching is suppressed in update oper-
ations — update requires logarithmic number of hash compu-
tations, regardless of caching — this phenomenon is especially
visible in YCSB-C-Zipf.
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Figure 8: Proxy memory usage by number of keys.

Figure 9: Throughput with 1 thread for varying num-
ber of keys, using a RocksDB backend server.

Memory Footprint. Characterizing the memory requirements
is crucial because VeritasDB’s throughput drops sharply (on
uniform workloads) once the footprint exceeds available DRAM,
most likely due to page thrashing. The MB-tree stores a 64-
bit counter for each key in the database, along with a linear
number of SHA-256 hashes and pointers to various MB-tree
nodes. Therefore, the size of the MB-tree grows linearly with
the number of keys in the database, which we measure empir-
ically in Figure 8. Note that the memory footprint here only
captures the size of untrusted memory, which holds the entire
MB-tree. The space allocated to trusted memory is constant
(at most 96 MB in modern SGX processors), and is dwarfed
by the size of untrusted memory. We find that the footprint is
lowered by 30%, across all database sizes and workloads, due
to the compression optimization (§ 5.3).

7.2 Throughput with Varying Database Size
Since the size of the MB-tree grows with the database size,

we study its negative impact on VeritasDB’s throughput and
illustrate our findings in Figure 9. We find that the decline in
throughput from 5 to 50 million keys is only about 7% on av-
erage across all benchmarks, mainly owing to the slow growth
of the B+-tree structure — the rate of increase in height is
exponentially lower at larger database size. For instance, with
maximum branching factor of 9, we find that the MB-tree only
grows in height by 4 when growing from 5 to 50 million keys,
which results in only a few extra hash computations. While
this may seem to be a small branching factor compared to a
typical B+-tree data structure, recall that VeritasDB stores
this B+-tree in memory as opposed to disk, and therefore is
not incentivized by hardware to have larger branching fac-
tors; Furthermore, we empirically discover that while larger

Figure 10: Throughput with various cache sizes, using
1 thread, RocksDB server, and 5 million keys.

branching factors lead to a shorter tree, each node becomes
wider, causing the hash computations to do a lot more wasted
computation per operation — maximum branching factor of 9
was a sweet spot across each workload, but we omit this plot
for space reasons.

As mentioned in § 7.1, once the MB-tree exceeds the DRAM
size (128 GB RAM stores MB-tree for over 500 million keys),
performance drops to about 100 operations per second on uni-
form workloads; meanwhile Zipfian workloads remains unaf-
fected, likely due to OS’ caching of pages. We leave it to
future work to explore sharding across machines.

7.3 Measuring Impact of Caching
We measure the impact of caching by selectively disabling

the hash-cache, the value-cache, or both, while enabling all
other optimizations (except concurrency, for the same reason
as § 7.1). We also experiment with two different cache sizes:
10 MB vs. 20 MB per cache. Figure Figure 10 illustrates
our findings on YCSB-A (update-heavy) and YCSB-C (read-
heavy) benchmarks. As mentioned in § 5.1, update operations
have two phases: the first recovers authentic contents of MB-
tree nodes and is similar to a get, while the latter modifies
the MB-tree — this latter phase performs roughly equivalent
work with or without caching, hence, get operations benefit
more compared to put. This is observable in YCSB-C. In gen-
eral, Zipfian workloads benefit more from caching; however,
even uniform workloads show increase of 50% in throughput,
especially due to the hash-cache.

7.4 Measuring Impact of Concurrency
Since integrity verification is compute-bound, we can close

the performance gap with hardware parallelism. SGX allows
all CPU cores on the processor to operate in enclave mode, and
we leverage this feature in our concurrent design from § 5.2.
Figure 11 illustrates how we achieve nearly the same perfor-
mance as the baseline system (without integrity verification)
by throwing enough CPU cores (worker threads) at the prob-
lem. Beyond a certain number of cores, the throughput be-
comes bound by the backend server, rather than the integrity
checks. Furthermore, Figure 11 illustrates minor overhead
from multi-threaded scheduling, as throughput isn’t multi-
plied by the same factor as the ratio of number of threads
— this overhead would have been even more severe had our
experimental setup run out of hardware parallelism. Overall,
we find that the parallel implementation of VeritasDB has a
5% overhead over the insecure system.
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Figure 11: Throughput varying number of threads,
using RocksDB backend server and 5 million keys.

8. RELATED WORK
There is a large body of literature and systems built for

verifying integrity of an outsourced database [19, 21], most
of which use authenticated data structures. While several
of these designs rely on variants of Merkle trees, the focus
was either on security or on asymptotic costs, rather than
empirical performance on practical workloads—papers with
implementation reported at most a few thousand operations
per second, which is orders of magnitude lower than modern
NoSQL databases. Additionally, many prior systems also re-
quired changes to both the client and the server, as the server
produces a proof of correctness (e.g., hashes along a path of
the MB-tree) which the client verifies; instead VeritasDB in-
curs no change to either.

The literature of authenticated data structures can be roughly
organized along three dimensions. First, the types of data
supported determine the integrity verification logic, where
the data type ranges from large objects (files) to individual
items in a data store. Second, the types of queries supported
can range from key–value (point) queries, to partial, and to
full SQL queries. Third, the integrity-verification mechanism
can vary from purely cryptographic approaches to trusted-
hardware approaches.

Our work is inspired by Concerto [9], which addressed the
concurrency limitations and computational cost of using Merkle
trees by proposing deferred (batched) verification based on
verified memory [11]. While this amortized costs (allowing
them to achieve close to 500K operations per second on some
workloads), we find that several classes of applications (espe-
cially payment transactions, where tampering poses high risk)
require online verification.

Outsourced File vs Outsourced Database Integrity. A re-
cent authenticated file system called Iris [28] reported through-
put of 260 MB/sec with integrity of both file contents and
metadata and with dynamic proofs of retrievability. Athos [18]
authenticated an outsourced file system—not only the con-
tents of each file, but also the directory structure—using au-
thenticated skip lists and trees as building blocks, while re-
porting a modest overhead of 1.2x for writes and 2x for reads.
We observe that the challenges with integrity verification of
NoSQL stores are vastly different than file systems—Athos
experimented with a file system with nearly 80K files of size
1.22 MB on average, and while this is acceptable for file sys-
tems, typical key-value stores host a much larger set of keys
(in the order of hundreds of millions) with smaller sized values,

which leads to larger overheads in checking integrity. When
applying techniques from these papers on NoSQL stores (with
YCSB benchmarks), we observed a low average throughput of
5000 operations per second (30x overhead) on a moderately
sized database with 50 million keys.

Digital-signature aggregation has also been used, but while
they guarantee authenticity, freshness was either not addressed
or challenging to achieve without adding significant co-ordination
between the clients and the servers. File integrity has also
been addressed using other space-efficient techniques, such as
entropy based integrity [25], but with the drawback of requir-
ing linear time updates.

Key–Value vs SQL Integrity. Zhang et al.’s IntegriDB [29]
showed how a subset of SQL could support integrity verifica-
tion with a limited throughput of 0.1 operations per second. A
separate definition of integrity, transactional integrity, was ad-
dressed by Jain et al. [19], where the server has to prove that
each transaction runs in a database state that is consistent
with all transactions preceeding it. While they demonstrated
maximum performance of few thousand operations (tuples)
per second for a commercial database (Oracle), we note that
their approach to integrity was optimized for writes and of-
fered no speedups to (and potentially even slows down) reads.

Cryptographic vs Trusted-Hardware Integrity. Merkle trees
are a popular mechanism for data integrity. Alternatively,
cryptographic signatures attached to individual data items
were also proposed as building blocks for authenticated data
structures. Li et al. [21] constructed a variant of Merkle hash
tree over the data and used digital signature to add authen-
tication. Our MB-tree is based on their approach, and we
extend it by adding the version counters (which saves space)
and present bits (to prevent rollback attacks).

VeritasDB avails several features offered by Intel SGX to
achieve high throughput, but is not the first database system
to leverage trusted hardware. CorrectDB [10] used an IBM
4764 co-processor as a hardware root of trust to provide au-
thentication for SQL queries. While they also used authenti-
cated data structures based on Merkle B+-trees, performance
was limited owing to practical limitations of the co-processor
(high latency link with DRAM) and the complexity of han-
dling SQL queries.

9. CONCLUSION
We designed a trustworthy proxy (called VeritasDB) to a

key-value store server that guarantees integrity to the clients,
even in the presence of exploits or bugs in the server. The
key takeaway is that while the standard approach of authen-
ticating data from the untrusted server using a Merkle hash
tree results in orders of magnitude reduction in throughput,
recently developed trusted execution environments (such as
Intel SGX) provide larger amounts of protected memory and
hardware parallelism, which benefits verification using Merkle
hash trees without loss of security. We implement several op-
timizations (based on caching, compression, and concurrency)
to achieve 10x improvement in throughput over past work.
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APPENDIX
A. EXTENSIONS

Key Rotation. VeritasDB uses 64 bits for the counter for each
key in the version map, although this configuration can be al-
tered. After some duration, this counter is bound to overflow
(back to 0), which would allow the attacker to supply stale
values, with the same counter as the current value within
the version map, and yet pass the integrity checks. Never-
theless, we may never encounter this situation in practice —
even in the pathological case where all operations target the
same key, at a hypothetical throughput of 1 million opera-
tions per second, an overflow occurs once every 584942 years.
Despite the unlikelihood of this attack, for provable correct-
ness of VeritasDB, we implement a simple key rotation scheme
that pauses operation on encountering an overflow, chooses a
new HMAC key hmac key at random, and re-populates the
database server with values that are authenticated under the
new key. We measured this process to incur approximately 10
minutes of downtime for a database of 50 million keys, at a
throughput of 100,000 operations per second.

Fault Tolerance. The proxy instance is a single point of fail-
ure in the design. Not only does the proxy’s failure make
the database unavailable to the client (until it restarts), but
it also prevents integrity checks on future operations because
its entire state is stored in volatile memory. Here, we discuss
standard techniques for improving availability of VeritasDB,
though we leave their implementation to future work.

First, replication offers a standard approach for fault toler-
ance, where the proxy service is distributed onto a cluster of
nodes in a primary-replica (leader-follower) setup. Here, the
clients connect to a primary node, which propagates all up-
date operations (put, insert and delete) to the replica nodes
so that they can update their local state. In the event of
failure of the primary node, the client (or some intermediate
hop) establishes the connection with a replica node, which
becomes the new primary node. To avoid round-trip commu-
nication between the primary and replica nodes, we can use
a distributed messaging system (such as Kafka) to allow the
primary node to “fire and forget”, and also allow the replica
nodes to recover from their failures. As a next line of defense,
we can periodically back up the proxy’s state to persistent
storage, much like the backend NoSQL store is wont to do.
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