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Abstract

Quantum Key Recycling aims to re-use the keys employed in quantum encryption and
quantum authentication schemes. We consider QKR protocols where classical information
is embedded in qubit states. A partial security analysis for such protocols was done in [1].
In the current paper we introduce a number of small protocol modifications and provide
a security proof. Our proof is based on a computation of the statistical distance between
the real quantum state of the system and a state in which the keys are completely secure.
This is a non-asymptotic result. It also determines how much privacy amplification is
needed as a function of the bit error rate. It turns out that less privacy amplification is
needed than suggested by the min-entropy analysis in [1].

1 Introduction

1.1 Quantum Key Recycling

Quantum cryptography uses the properties of quantum physics to achieve security feats that
are impossible with classical communication. Best known is Quantum Key Distribution
(QKD), first described in the famous BB84 paper [2]. QKD establishes a random secret
key known only to Alice and Bob, and uses the no-cloning theorem for unknown quantum
states [3] to detect any manipulation of the quantum states. Already two years before the
invention of QKD, the possibility of Quantum Key Recycling (QKR) was considered [4]. Let
Alice and Bob encrypt classical data as quantum states, using a classical key to determine the
basis in which the data is encoded. If they do not detect any manipulation of the quantum
states, then Eve has learned almost nothing about the encryption key, and hence it is safe for
Alice and Bob to re-use the key. After the discovery of QKD, interest in QKR was practically
nonexistent for a long time, despite the benefits that QKR can offer for communication effi-
ciency. It received some attention again in 2003 when Gottesman [5] proposed an Unclonable
Encryption scheme with partially re-usable keys. In 2005 Damg̊ard, Pedersen and Salvail in-
troduced a scheme that allows for complete key recycling, based on mutually unbiased bases
in a high-dimensional Hilbert space [6, 7]. Though elegant, their scheme unfortunately needs
a quantum computer for encryption and decryption. In 2017 Fehr and Salvail [8] introduced
a qubit-based QKR scheme (similar to [4]) that does not need a quantum computer, and
they were able to prove its security in the regime of extremely low noise. Škorić and de Vries
[9] proposed a variant with 8-state encoding, which drastically reduces the need for privacy
amplification. It is meant to operate at the same noise levels as QKD, but the security was
not proven. In [1] we studied attacks on the qubit-based QKR schemes of [8, 9], but that did
not produce a full security proof.
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1.2 Contributions and outline

We investigate qubit-based Quantum Key Recycling, taking an ‘engineering’ point of view:
we do not aim for complete key re-use, but rather for a high ratio of message length versus
expended key bits.

• We introduce a number of small modifications in the QKR protocol of Škorić and de
Vries [9]. In particular, our extractor function is a 2N -wise independent hash function, and
we refresh keys after at most N + 1 rounds.

• We give a security proof for the new scheme. Our main result is an upper bound on the
amount of coupling between the keys and Eve’s (quantum and classical) side information.
This result is formulated in terms of trace distance between quantum states, and hence is
Universally Composable. We use our bound in a round-by-round argument to prove the
security of the plaintext as well as the keys.

• The required amount of privacy amplification depends on the bit error rate β. When n

qubits are sent, the privacy leakage in the case of 8-state encoding is 2n log[
√

(1− β)(1− 3
2β)+√

1
2β(1− β) + β

√
2] bits. This number is more favourable than the min-entropy analysis

in [1].

The outline of the paper is as follows. In the preliminaries section we introduce notation,
we briefly review methods for embedding classical bits in qubits, and we summarise known
results regarding Eve’s optimal extraction of information from a qubit into a four-dimensional
ancilla state. In Section 3 we introduce the modified QKR protocol. Section 4 explains our
approach and states the main theorem, i.e. the distance bound. The proof of this theorem
is given in Section 7. In Section 5 we use the distance bound to prove the security of the
QKR protocol. Section 6 contains a discussion of parameter choices, rates, comparison to the
literature, handling of erasures, and suggestions for future work.

2 Preliminaries

2.1 Notation and terminology

Classical Random Variables (RVs) are denoted with capital letters, and their realisations
with lowercase letters. The probability that a RV X takes value x is written as Pr[X = x].
The expectation with respect to RV X is denoted as Exf(x) =

∑
x∈X Pr[X = x]f(x). The

Shannon entropy of an RV X is written as H(X). Sets are denoted in calligraphic font. We
write [n] for the set {1, . . . , n}. For a string x and a set of indices I the notation xI means the
restriction of x to the indices in I. The notation ‘log’ stands for the logarithm with base 2.
The notation h stands for the binary entropy function h(p) = p log 1

p +(1−p) log 1
1−p . Bitwise

XOR of binary strings is written as ‘⊕’. The Kronecker delta is denoted as δab. The inverse of
a bit b ∈ {0, 1} is written as b̄ = 1− b. We will speak about ‘the bit error rate β of a quantum
channel’. This is defined as the probability that a classical bit g, sent by Alice embedded in
a qubit, arrives at Bob’s side as ḡ.
For quantum states we use Dirac notation, with the standard qubit basis states |0〉 and |1〉
represented as

(
1
0

)
and

(
0
1

)
respectively. The Pauli matrices are denoted as σx, σy, σz, and we

write σ = (σx, σy, σz). The standard basis is the eigenbasis of σz, with |0〉 in the positive
z-direction. We write 1 for the identity matrix. The notation ‘tr’ stands for trace. The
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Hermitian conjugate of an operator A is written as A†. The complex conjugate of z is denoted
as z∗. Let A have eigenvalues λi. The 1-norm of A is written as ‖A‖1 = tr

√
A†A =

∑
i |λi|.

The trace distance between matrices ρ and σ is denoted as δ(ρ;σ) = 1
2 ||ρ − σ||1. It is a

generalisation of the statistical distance and represents the maximum possible advantage one
can have in distinguishing ρ from σ.
Consider a uniform classical variable X and a mixed state ρX that depends on X. The
combined classical-quantum state is Ex|x〉〈x| ⊗ ρx. The statistical distance between X and a
uniform variable given ρX (for unknown X) is a measure of the security of X given ρ. This
distance is defined as [10]

d(X|ρX)
def
= δ

(
Ex|x〉〈x| ⊗ ρx ; Ex|x〉〈x| ⊗ Ex′ρx′

)
(1)

i.e. the distance between the true classical-quantum state and a state in which the quantum
state is decoupled from X. X is said to be ε-secure with respect to ρ if d(X|ρ) ≤ ε. When this
is the case, it can be considered that X is ‘ideal’ except with probability ε. Such a statement
is very useful for Universally Composable security.
A family of hash functions H = {h : X → T } is called k-independent [11] (or k-wise indepen-
dent) if it holds for all distinct k-tuples x1, . . . , xk ∈ X and all k-tuples y1, . . . , yk ∈ T that
Prh∈H [h(x1) = y1 ∧ · · · ∧ h(xk) = yk] = |T |−k. Here the probability is over random h ∈ H.
k-independence can be achieved with a hash family of size log |H| = O(k log log |X |) [12] or
log |H| = O(k log k) [13].

2.2 Encoding a classical bit in a qubit

We briefly review methods for embedding a classical bit g ∈ {0, 1} into a qubit state. The
standard basis is |0〉, |1〉 with |0〉 the positive z-direction on the Bloch sphere. The set of
bases used is denoted as B, and a basis choice as b ∈ B. The encoding of bit value g in basis
b is written as |ψbg〉. In BB84 encoding we write B = {0, 1}, with |ψ00〉 = |0〉, |ψ01〉 = |1〉,
|ψ10〉 = |0〉+|1〉√

2
, |ψ11〉 = |0〉−|1〉√

2
. In six-state encoding [14] the vectors are ±x, ±y, ±z on the

Bloch sphere. We have B = {0, 1, 2} and

|ψ00〉 = |0〉 ; |ψ01〉 = |1〉 ; |ψ10〉 =
|0〉+ |1〉√

2
; |ψ11〉 =

|0〉 − |1〉√
2

|ψ20〉 =
|0〉+ i|1〉√

2
; |ψ21〉 =

|0〉 − i|1〉√
2

(2)

For 8-state encoding [9] we have B = {0, 1, 2, 3} and the eight states are the corner points of
a cube on the Bloch sphere. We write b = 2u+ w, with u,w ∈ {0, 1}. The states are

|ψuwg〉 = (−1)gu
[
(−
√
i)g cos α2 |g ⊕ w〉+ (−1)u(

√
i)1−g sin α

2 |g ⊕ w〉
]
. (3)

The angle α is defined as cosα = 1/
√

3. For given g, the four states |ψuwg〉 are the Quantum
One-Time Pad (QOTP) encryptions [15, 16, 17] of |ψ00g〉. The ‘plaintext’ states |ψ000〉, |ψ001〉
correspond to the vectors ±(1, 1, 1)/

√
3 on the Bloch sphere.

2.3 Eve’s ancilla state

Attacks on QKR were studied in some detail in [1]. They formulated an EPR version of
qubit-based QKR protocol. Instead of creating |ψbixi〉 and sending it to Bob, Alice performs
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a measurement on one half an EPR singlet state (using basis bi) while the other half goes
to Bob. Eve may manipulate the EPR state. Any manipulation turns the pure EPR state
into a mixed state. The noise symmetrisation technique of [18] was applied to simplify the
state. If Eve’s actions induce bit error probability β (defined as a bit mismatch in xi between
Alice and Bob), then this corresponds to a state of the AB subsystem of the form ρ̃AB =

(1− 3
2β)|Ψ−〉〈Ψ−|+ β

2

(
|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Φ+〉〈Φ+|

)
, where |Ψ±〉 = |01〉±|10〉√

2
and |Φ±〉 =

|00〉±|11〉√
2

denote the Bell basis states.1 Eve’s state is obtained by purifying ρ̃AB. The pure

state is |ΨABE〉 =
√

1− 3
2β|Ψ−〉⊗ |m0〉+

√
β
2

(
−|Φ−〉 ⊗ |m1〉+ i|Ψ+〉 ⊗ |m2〉+ |Φ+〉 ⊗ |m3〉

)
,

where |mi〉 is some orthonormal basis in Eve’s four-dimensional ancilla space. Let v be a
3-component vector on the Bloch sphere describing the ‘0’ bit value in a certain basis. Let x
be the bit value that Alice measures, and y Bob’s bit value. (In the noiseless case we have
y = x̄ because of the anti-correlation in the singlet state.) One of the results of [1] was an
expression for Eve’s mixed ancilla state when v, x, y are fixed,

σvxy
def
= |Ev

xy〉〈Ev
xy|. (4)

|Ev
01〉 =

1√
1− β

[√
1− 3

2β|m0〉+

√
β
2 (vx|m1〉+ vy|m2〉+ vz|m3〉)

]
|Ev

10〉 =
1√

1− β

[√
1− 3

2β|m0〉 −
√

β
2 (vx|m1〉+ vy|m2〉+ vz|m3〉)

]
(5)

|Ev
00〉 =

1√
2(1− v2

z)

[
(−vxvz − ivy)|m1〉+ (−vyvz + ivx)|m2〉+ (1− v2

z)|m3〉
]

|Ev
11〉 =

1√
2(1− v2

z)

[
(−vxvz + ivy)|m1〉+ (−vyvz − ivx)|m2〉+ (1− v2

z)|m3〉
]
.

The E-vectors are not all orthogonal. We have 〈Ev
01|Ev

10〉 = 1−2β
1−β . (The rest of the inner

products are zero.) It holds that |−vxvz−ivy√
1−v2z

|2 = 1 − v2
x and |−vyvz+ivx√

1−v2z
|2 = 1 − v2

y . We have

|Ev
10〉 = |E−v01 〉 and |Ev

11〉 = |E−v00 〉.
Eve is primarily interested in learning x. At given b, x Eve’s state (averaged over y) is

ωbx(β)
def
= (1− β)σ

v(b)
xx̄ + βσv(b)

xx = (1− β)|Ev(b)
xx̄ 〉〈Ev(b)

xx̄ |+ β|Ev(b)
xx 〉〈Ev(b)

xx |. (6)

3 The QKR protocol

In this paper we consider the QKR scheme #2 proposed in [9], which is a slightly modified
version of the QEMC∗ scheme of Fehr and Salvail [8]. This protocol can be executed with
4-state, 6-state or 8-state encoding, where 8-state has the advantage that it needs less Privacy
Amplification [1].
We introduce two changes in the protocol:

1For 4-state QKR an extra ingredient is needed to arrive at this expression: the use of decoy/test states so
as to probe more than a circle on the Bloch sphere. This allows us to treat 4, 6 and 8-state encoding on an
equal footing; the main theorem of this paper then also applies to 4-state encoding. (If the decoy/test states
are not used in 4-state QKR, Eve has a more powerful attack and the ancilla states ωb

x are modified.)
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1. We introduce an additional one-time-pad that protects the message authentication tag.
This change induces a penalty in the amount of key material that is spent by Alice and
Bob. However, the size of the tag is constant, so the penalty is of little consequence.

2. We demand that the extractor function is 2N -wise independent, for some integer N . After
N + 1 rounds most of the key material is refreshed.

The key material shared between Alice and Bob consists of five parts: a basis sequence b ∈ Bn,
a MAC key kMAC ∈ K, an extractor key2 u ∈ U , a classical OTP kSS ∈ {0, 1}a for protecting
the secure sketch, and a classical OTP ktag ∈ {0, 1}λ for protecting the message authentication
tag. The plaintext is µ ∈ {0, 1}`.
Alice and Bob have agreed on a 2N -wise independent extractor function Ext : U × {0, 1}n →
{0, 1}`, a MAC function M : K × {0, 1}n+`+a → {0, 1}λ, a linear error-correcting code with
syndrome function S : {0, 1}n → {0, 1}a, and a Secure Sketch that uses this error-correcting
code. The basis set B, the functions Ext,M, S, and the Secure Sketch algorithm are publicly
known.
Encryption
Alice performs the following steps. Generate random x ∈ {0, 1}n. Compute s = kSS ⊕ S(x)
and z = Ext(u, x). Compute the ciphertext c = µ ⊕ z and encrypted authentication tag
t = ktag ⊕ M(kMAC, x||c||s). Prepare the quantum state |Ψ〉 =

⊗n
i=1 |ψbixi〉 according to

section 2.2. Send |Ψ〉, s, c, t to Bob.
Decryption
Bob receives |Ψ′〉, s′, c′, t′. He performs the following steps. Measure |Ψ′〉 in the b-basis.
This yields x′ ∈ {0, 1}n. Recover x̂ from x′ and kSS ⊕ s′ (by the reconstruction procedure
of the Secure Sketch). Compute ẑ = Ext(u, x̂) and µ̂ = c′ ⊕ ẑ. Accept the message µ̂ if
the Secure Sketch reconstruction succeeded and ktag ⊕ t′ = M(kMAC, x̂||c′||s′). Communicate
Accept/Reject to Alice.
Key update
Alice and Bob perform the following actions. If Bob Accepts, replace kSS and ktag. If Bob
Rejects, replace kSS, ktag, b, u. After N + 1 ‘Accept’ rounds Alice and Bob refresh b and u.

See Section 6.1 for a discussion of the balance between message length and key expenditure.

4 Main result

4.1 Our approach: N rounds

In QKR two things have to be protected: the messages and the re-used keys. In the protocol
of Section 3 that means protecting the message µ in every round, as well as protecting the
keys U and B until they are refreshed, i.e. until a Reject occurs or N +1 consecutive Accepts.
(Note that kMAC is already perfectly protected by the ktag at the cost of sacrificing λ bits of
key material in every round.)
The worst case scenario is as follows. During a number of successive rounds Bob Accepts,
while Eve knows the plaintext in these rounds; then in the next round Eve does not know
the plaintext and attacks the message µ, which typically causes a Reject. In the first rounds
Eve has an opportunity to obtain information about B and U , which are constantly being
re-used; in the final round she may use that information to learn something about the data
content of the qubits and hence about the OTP z in the final round. The amount of privacy

2The extractor key was not mentioned explicitly in [9].
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amplification in the protocol must be sufficient to reduce Eve’s useful knowledge to practically
zero.
We take the following approach to prove the security of the QKR protocol of Section 3.
Consider the parameter N in the 2N -wise independent hash function Ext. We look at a
succession of N rounds in which Bob Accepts and Eve knows the plaintext. We show that
after these N rounds, the keys U and B are close to ‘perfect’, in the sense of statistical distance
from uniformity, given all the classical and quantum side information available to Eve. For
the quantum side information we have a per-round argument that precisely determines the
optimal ancilla states that Eve can obtain: after every round the situation is ‘perfect’ except
with some small probability. In the perfect case Eve has no better option than to couple
an ancilla to the AB system exactly as described in Section 2.3. This carries us to the next
round, etc., and in this way the non-perfection probability grows linearly with the number of
rounds.
Finally, the amount of Privacy Amplification needed to protect the message is obtained from
[1], in particular the min-entropy expressions.3 For 8-state encoding no such PA is needed.
At every stage of the proof we are helped by the fact that we express security in terms of trace
distance, which allows us to compose pieces and to simply add up non-perfection probabilities.
In round N + 1 the attack on the plaintext is just as if Eve is fresh in round 1.
We do not aim for full key recycling. We are already happy if the number of key bits spent
is much smaller than the message size.

4.2 The result

Alice and Bob’s shared key material consists of kSS, ktag, kMAC, b and u. The only keys open
to attack are b and u, since kMAC is protected by ktag, and kSS and ktag get discarded after
each round. Eve’s classical side information consists of s (OTP’ed syndrome), t (OTP’ed
authentication tag), and the ciphertext c = z ⊕ µ. The s and t carry no information about
b and u. We assume that Eve knows the plaintext µ in rounds 1 . . . N ; this implies that
she knows z. We use the notation xr ∈ {0, 1}n, zr ∈ {0, 1}` for the strings in round r ∈
{1, . . . , N + 1}, and we introduce shorthand notation x = (x1, . . . , xN ), z = (z1, . . . , zN ).
Eve’s quantum side information from the first N rounds consists of her ancilla particles
which have interacted with the EPR pairs. We denote the mixed state of all these particles
collectively as ρ. This state depends on x and b. Since zr = Ext(u, xr) and we are interested
only in the coupling between the state and the keys u, b, we will consider the mixed quantum-
classical state Eub|ub〉〈ub| ⊗ ρ(zub), where the states |ub〉 form an orthonormal basis for the
classical variables u, b. Our main result puts an upper bound on the nonuniformity of U,B
given Z and ρ(ZUB).

Theorem 4.1 Let f(β) =
√

(1− β)(1− 3
2β) +

√
1
2β(1− β) + β

√
2. Let Eve create ancilla

states for each EPR pair individually, as specified in Section 2.3, under the constraint that
the average bit error rate in every round remains below a parameter β ∈ [0, 1

2). Then it holds
that

d
(
UB|Zρ(ZUB)

)
≤ 3

2`+1

(
N

2

)
+

1

2

(
1 +

√
2`−n+2n log f(β)

)N
− 1

2
. (7)

This result tells us that the statistical distance can be made exponentially small by setting `
smaller than approximately n[1−2 log f(β)]. Asymptotically (for N � 1 and n� logN) this

3The min-entropy loss gives a conservative (and possibly too pessimistic) bound which holds even if some
bits of the plaintext are known.
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yields a balance of {message length minus key expenditure} that scales as n[1− 2 log f(β)−
h(β)]. See Section 6.1. This balance is positive up to β ≈ 0.09, i.e. up to this noise level it
makes sense to use the QKR protocol.
The proof of Theorem 4.1 is given in Section 7. The full security proof for the protocol is
given in Section 5.

5 Security of the protocol

From Theorem 4.1 we construct a security proof for the QKR protocol. We define

αn`β
def
=
√

2`−n+2n log f(β) ; εn`βr
def
=

3

2`+1

(
r

2

)
+

(1 + αn`β)r − 1

2
(8)

and

1− Ωn`β
N

def
=

N∏
r=1

(1− εn`βr − 2−λ). (9)

Consider the worst case scenario: Eve knows the plaintext in rounds 1 . . . N and wants to
learn the plaintext in round N + 1.

• In round 1, Eve starts without (quantum or classical) side information from previous rounds.
Since she already knows the plaintext in this round, the best she can do is extract informa-
tion into ancilla states without causing a Reject. As she has no side information yet, the
only way to create her ancilla states is according to Section 2.3, possibly with i-dependent
bit error probability.

• At the beginning of round 2, the security of the keys U,B is perfect except with probability
less than εn`β1 + 2−λ. The εn`β1 follows from Theorem 4.1 and represents the probability
that Eve can learn something from the ancillas. The 2−λ is the probability that the MAC
verification accidentally fails to notice a problem. With probability higher than 1− εn`β1 −
2−λ, Eve is in a situation where she has no side information that could help her to mount
a better ancilla strategy than the one of Section 2.3.

• At the beginning of round 3, the security of the keys U,B is perfect with probability larger
than (1− εn`β1 − 2−λ)(1− εn`β2 − 2−λ). Etcetera.

• After round N , the keys U,B are perfectly secure with probability larger than
∏N
r=1(1 −

εn`βr − 2−λ) = 1− Ωn`β
N .

For 8-state encoding the analysis ends here. With probability larger than 1 − Ωn`β
N Eve has

no way to attack the plaintext, since the plaintext xN+1 is random and the 8-state encoding
is essentially Quantum-One-Time-Padding with a perfectly random key. Hence xN+1 is Ωn`β

N -
secure.
For 4-state and 6-state encoding Eve has a second attack method. In any of the rounds
(say round r) she may steal all the qubits (causing a Reject) and extract partial information
about xr from the stolen qubits. This is called the ‘M1 attack’ in [1]. This attack has to
be countered by applying a proper amount of Privacy Amplification, i.e. choosing the correct
value for the message length `. Expressed in terms of min-entropy loss, 4-state encoding leaks
1 − log(cos π8 )−2 ≈ 0.77 bits per qubit; 6-state encoding leaks 1 − log(cos α2 )−2 ≈ 0.66 bits
per qubit, with α as defined in Section 2.2. This leakage does not depend on β. It exists
already at β = 0. The length parameter ` must satisfy two requirements: (i) the amount of
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privacy amplification (n−`) must be sufficiently large to compensate for the above-mentioned

leakage; (ii) the Ωn`β
N must be small.

Let αn`β <
1
N . Then we can bound Ωn`β

N as

Ωn`β
N <

N

2λ
+

N∑
r=1

εn`βr =
N

2λ
+

3

2`+1

(
N + 1

3

)
+

(1 + αn`β)N+1 − 1− (N + 1)αn`β
2αn`β

(10)

≤ N

2λ
+

3

2`+1

(
N + 1

3

)
+

3

4

(
N + 1

2

)
αn`β. (11)

6 Discussion

6.1 Choosing the parameter values

Consider 8-state encoding, and the case that Bob Accepts N + 1 consecutive rounds. The
total message size is (N + 1)`. The total key expenditure consists of N + 1 λ-bit OTPs that
protect the authentication tags, N+1 a-bit OTPs that protect the syndromes (asymptotically
a ≈ nh(β)), 2n bits of basis key b, and O(N logN) bits of extractor key. We look at the QKR
‘rate’, which we express as the message length minus the key expenditure, per round and
per qubit. For the message length we set ` = n − 2n log f(β) − 2 log 3N2

8Ω in order to obtain

Ωn`β
N ≈ Ω for some small constant Ω.

|total msg| − |total key|
(N + 1)n

= 1− a

n
− 2 log f(β)− λ

n
− 2

N + 1
− O(logN)

n
− 2 log 3N2

8Ω

n
. (12)

Note that λ is a constant w.r.t.n but has to grow as logN . We see that the highest rate is
obtained by setting N � 1, n � logN . The asymptotic rate is 1 − h(β) − 2 log f(β). See
Fig. 1. The asymptotic rate is positive up to β ≈ 0.09. Up to this noise level using QKR
makes sense.
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Figure 1: Bladiebla.

QKR ‘rate’, which we express as the message length minus the key expenditure, per round
and per qubit. For the message length we set ` = n�2n log f(�)�2 log N2

4⌦ in order to obtain

⌦n`�
N ⇡ ⌦ for some small constant ⌦.

|total msg| � |total key|
(N + 1)n

= 1� 2 log f(�)� �

n
�h(�)� 2

N + 1
� O(log N)

n
� 2 log N2

4⌦

(N + 1)n
. (42)

We see that the highest rate is obtained by setting N � 1, n � log N . Note that � is
constant. The asymptotic rate is 1 � h(�) � 2 log f(�).
@ plotje
@@ “Scheme #3” in [8] greatly reduces the key material spent on protecting the syndrome,
but it increases the number of qubits needed to convey the message. It does not modify the
rate (42).
@ plot the asymptotic rate and M2 in the same graph?

7.2 Comparison to existing results

@ Vergelijken met Fehr+Salvail
@ Vergelijken met Optimal Attacks paper. K2 min-entropie is te pessimistisch.

7.3 Erasures

7.4 Future work

@ betere e�cientie, bijv scheme3 gebruiken, of de MAC afleiden uit een stuk van z.
@ Scherpere afschattingen. Misschien von Neumann QKD PA.
h(3

2�) + 3�
2 log 3

Intuitief argument geven.
@ QOTP met halve sleutel
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Figure 1: The asymptotic rate 1− h(β)− 2 log f(β).

It is possible to reduce the key expenditure. “Scheme #3” in [9] greatly reduces the key
material spent on protecting the syndrome, but it increases the number of qubits needed to
convey the message. It does not modify the rate (12).

6.2 Comparison to existing results

The proof technique of Fehr and Salvail [8] requires a special property (‘key privacy’) of
the MAC function, and they have to keep track of the security of the MAC key. We avoid
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this complication at the cost of spending λ additional bits of key material per round. An
interesting difference with respect to [8] is that we capture the security of the basis key B and
the extractor key U in a single quantity d(UB|Zρ(ZUB)), whereas [8] uses a min-entropy
result for the basis key and a trace distance for the extractor key. In terms of QKR scheme
construction, the main differences are of course (i) that [8] tolerates practically no noise, and
(ii) that the use of 8-state encoding [9] as compared to 4-state (or 6-state) massively reduces
the need for privacy amplification at low β. These differences were already noted in [9, 1].

The min-entropy analysis of attacks in [1] has turned out to be too pessimistic in cer-
tain respects. For the ‘K2 attack’ (a known-plaintext attack on b) a min-entropy loss of

log(
√

6β(1− 3
2β) + 1) bits per qubit was found for 8-state encoding; that is considerably

more than our leakage result 2 log f(β) in Theorem 4.1. Clearly min-entropy is too pes-
simistic as a measure of security in this context. Note that in [8] all security bounds are
expressed in terms of min-entropy.

6.3 Dealing with erasures

Our analysis has not taken into account quantum channels with erasures. (Particles failing
to arrive.) Consider a channel with erasure rate η and bit error rate β for the non-erased
states. The Alice-to-Bob channel capacity is (1 − η)(1 − h(β)). A capacity-achieving linear
error-correcting code that is able to deal with such a channel has a syndrome of size nh(β) +
nη[1 − h(β)]. Imagine the QKR scheme of Section 3 employing such an error-correcting
code. On the one hand, the key expenditure increases from nh(β) to nh(β) + nη[1 − h(β)].
On the other hand, the leakage increases. Every qubit not arriving at Bob’s side must
be considered to be in Eve’s possession; since an erasure can be parametrised as a qubit
with β = 1

2 , the leakage is 1 bit per erased qubit. Hence the leakage term n · 2 log f(β) in
Theorem 4.1 changes to n(1 − η)2 log f(β) + nη. The combined effect of the syndrome size
and the leakage increase has a serious effect on the QKR rate. The asymptotic rate becomes
1 − h(β) − η[1 − h(β)] − (1 − η)2 log f(β) − η. For β = 0 this is 1 − 2η; at zero bit error
rate no more than 50% erasures can be accommodated by the scheme. In long fiber optic
cables the erasure rate can be larger than 90%. Under such circumstances the QKR scheme
of Section 3 simply does not work. (Note that continuous-variable schemes have much lower
erasure rates.)
One can think of a number of straightforward ways to make the QKR protocol erasure-
resistant. Below we sketch a protocol variant in which Alice sends qubits, and Bob returns
an authenticated and encrypted message.

1. Alice sends a random string x ∈ {0, 1}m encoded in m qubits, with m(1− η) > n.

2. Bob receives qubits in positions i ∈ I, I ⊆ [m] and measures x′i in those positions. He
aborts the protocol if |I| < n. Bob selects a random subset J ′ ⊂ I, with |J ′| = n. He
constructs a string y′ = x′J ′ . He computes s′ = kSS ⊕ S(y′), z′ = Ext(u, y′), c′ = µ ⊕ z′,
t′ = ktag ⊕M(kMAC,J ′||y′||c′||s′). He sends J ′, s′, c′, t′.

3. Alice receives this data as J , s, c, t. She computes y by running the Secure Sketch’s recon-
struction algorithm on xJ and the syndrome kSS ⊕ s. Then she computes z = Ext(u, y),
µ̂ = z ⊕ c and τ = ktag ⊕M(kMAC,J ||y||c||s). Alice Accepts the message µ̂ if τ = t and
Rejects otherwise.

The security is not negatively affected by the existence of erasures. Assume that Eve holds
all the qubits that have not reached Bob. Since the data in the qubits is random, and does
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not contribute to the computation of z′, it holds that (i) it is not important if Eve learns the
content of these bits, (ii) known plaintext does not translate to partial knowledge of the data
content of these qubits, which would endanger the basis key b and the extractor key u.

Many protocol modifications are possible. For instance, if Alice sends the qubits and the
message, then Bob needs to tell Alice where the erasures are before she can construct the
ciphertext.

6.4 Future work

It is interesting to note that QKR protocols which first send a random string z and then use
z for OTP encryption look a lot like Quantum Key Distribution, but with reduced commu-
nication complexity. This changes when the message is put directly into the qubits, e.g. as is
done in Gottesman’s Unclonable Encryption [5]. It remains a topic for future work to prove
security of such a QKR scheme.
The QKR scheme of Section 3 can be improved and embellished in various ways. For instance,
the λ-bit key expenditure for protecting the MAC-key may not be necessary if the MAC
function is properly chosen. The authentication tag may simply be generated as part of the
Ext function’s output, and then the security of the MAC key can be proven just by proving
the security of the extractor key u (similar to what is done in [8]).
Furthermore, as mentioned in Section 6.1, one may use ‘scheme #3’ of [9] which protects the
syndrome by sending it through the quantum channel instead of classically OTP-ing it. This
reduces the key expenditure but does not affect the rate.
Another interesting option is to deploy the Quantum One Time Pad with approximately half
the key length, which still yields information-theoretic security. This would improve the rate
(12) by reducing the term 2

N+1 to approximately 1
N+1 .

Instead of 2N -wise independent hashing one may use ‘almost 2N -wise independence’ [12]. A
small security penalty is incurred, but the size of the extractor key u is reduced.
We suspect that the inequality in (7) is not tight. Given the similarities between QKR
and QKD we would intuitively expect that the required amount of privacy amplification is
the same as for QKD. A known result for QKD, based on von Neumann entropy, is −(1 −
3
2β) log(1− 3

2β)− 3
2β log β

2 − h(β), which is less than the 2n log f(β) of (7) for all β. Perhaps
an improved proof technique can get closer to the QKD result.

7 Proof of Theorem 4.1

7.1 Rewriting the statistical distance

We allow Eve to cause different bit error probabilities βri ∈ [0, 1
2) in each round r and qubit

position i individually. The combined quantum-classical state of all Eve’s ancillas, together
with the classical variables of interest, is given by Eub|ub〉〈ub| ⊗ ρ(zub), with

ρ(zub) =
N⊗
r=1

Exr:zr=Ext(u,xr)

n⊗
i=1

ωbixri
(βri )

=

N⊗
r=1

2`
∑

xr∈{0,1}n
δzr,Ext(u,xr)

n⊗
i=1

1
2ω

bi
xri

(βri ), (13)

10



where ωbixri
is defined as in (6). For notational convenience we introduce two averaged quanti-

ties, χz
def
= Eubρ(zub) and ρav

def
= Ezρ(zub). The ρav is easy to compute by summing over the

Kronecker deltas in (13),

ρav =
N⊗
r=1

n⊗
i=1

ωbi0 (βri ) + ωbi1 (βri )

2
. (14)

Note that ρav does not actually depend on b, since from (6) it follows that

ωb0(β) + ωb1(β)

2
= (1− 3

2β)|m0〉〈m0|+ β
2 (1− |m0〉〈m0|). (15)

We define D
def
= d(UB|Zρ(ZUB)). We have

D = Ezd(UB|ρ(zUB))

= Ezδ
(

Eub|ub〉〈ub| ⊗ ρ(zub); Eub|ub〉〈ub| ⊗ Eu′b′ρ(zu′b′)
)

= 1
2Ezub

∥∥ρ(zub)− χz
∥∥

1
. (16)

In the last line we have used the block structure of Eub|ub〉〈ub| ⊗ (· · · ) to move the Eub out of
the trace norm. Next we apply the triangle inequality.

D ≤ 1
2Ezub‖ρ(zub)− ρav‖1 + 1

2Ezub‖ρav − χz‖1
= 1

2Ezub‖ρ(zub)− ρav‖1 + 1
2Ez‖ρav − χz‖1

def
= D1 +D2. (17)

In the next two subsections we upper bound D1 and D2.

7.2 Bounding the D2 term

Case 1: the z1 · · · zN are mutually distinct.
By the defining property of N -wise independent hashing, taking the expectation Eu over the
product

∏N
r=1 δzr,Ext(u,xr) simply yields a factor 2−`N and generates the constraint that the

strings x1, . . . , xN are mutually distinct. Thus we get

χz = Eb 2−nN
∑

xdistinct

N⊗
r=1

n⊗
i=1

ωbixri
(βri ). (18)

On the other hand, ρav can be expressed in a similar way but without the constraint, namely
ρav = Eb2−nN

∑
x

⊗N
r=1

⊗n
i=1 ω

bi
xri

(βri ). Taking the difference yields

‖ρav − χz‖1 =
∥∥∥2−nN Eb

∑
x1···xN

not distinct

N⊗
r=1

n⊗
i=1

ωbixri
(βri )

∥∥∥
1
. (19)
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This expression can be bounded by counting terms in the x-summation.

‖ρav − χz‖1 = 2−nN#{not distinctx}
∥∥∥EbE x1···xN

not distinct

N⊗
r=1

n⊗
i=1

ωbixri
(βri )

∥∥∥
1

= 2−nN#{not distinctx}‖normalised mixed state‖1
= 2−nN#{not distinctx}

= 2−nN
[
2nN −

N−1∏
a=0

(2n − a)
]

= 1−
N−1∏
a=0

(1− a

2n
)

≤
N−1∑
a=0

a

2n
=

1

2n

(
N

2

)
. (20)

Case 2: more than 0 collisions exist in z1 · · · zN . In this case we use ‖ρav − χz‖1 ≤ 2.
Combining the two cases, we derive a bound on D2 as follows,

D2 = 1
2Ez‖ρav − χz‖1 =

1

2#z

∑
z dist

‖ρav − χz‖1 +
1

2#z

∑
z not dist

‖ρav − χz‖1

≤ 1

2

#{distinct z}
#z

2−n
(
N

2

)
+

#{not distinct z}
#z

< 1
2 · 2−n

(
N

2

)
+ 2−`

(
N

2

)
< 3

2 · 2−`
(
N

2

)
. (21)

7.3 Bounding the D1 term

We start from D1
def
= 1

2Ezub‖ρ(zub) − ρav‖1 = 1
2Ezubtr

√
[ρ(zub)− ρav]2. We apply Jensen’s

matrix inequality under the trace in order to move Ezu into the square root, and then use the
fact that ρav = Ezuρ.

D1 ≤ 1
2Ebtr

√
Ezu[ρ− ρav]2 = 1

2Ebtr
√

Ezuρ2 − ρ2
av. (22)

Next we expand ρ twice and write

Ezuρ
2 = Ezu

N⊗
r=1

22`
∑
xryr

δzr,Ext(u,xr)δzr,Ext(u,yr)

n⊗
i=1

1
4ω

bi
xri

(βri )ω
bi
yri

(βri ) (23)

= Eu

N⊗
r=1

2`
∑
xryr

δExt(u,xr),Ext(u,yr)

n⊗
i=1

1
4ω

bi
xri

(βri )ω
bi
yri

(βri ) (24)

=
∑
xy

[
Eu

N∏
r=1

δExt(u,xr),Ext(u,yr)

] N⊗
r=1

2`
n⊗
i=1

1
4ω

bi
xri

(βri )ω
bi
yri

(βri ) (25)
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The Euδ · · · δ is evaluated using the properties of 2N -wise independent hash functions. Every
occurrence xr 6= yr gives rise to a factor 2−`, whereas xr = yr yields a factor 1.

Euzρ
2 =

N⊗
r=1

∑
xryr

[2`δxryr + (1− δxryr)]
n⊗
i=1

1
4ω

bi
xri

(βri )ω
bi
yri

(βri ) (26)

=

N⊗
r=1

∑
xryr

[(2` − 1)δxryr + 1]

n⊗
i=1

1
4ω

bi
xri

(βri )ω
bi
yri

(βri ) (27)

=
N⊗
r=1

[
(2` − 1)

n⊗
i=1

[ωbi0 (βri )]
2 + [ωbi1 (βri )]

2

4
+

n⊗
i=1

(ωbi0 (βri ) + ωbi1 (βri )

2

)2]
. (28)

7.3.1 Diagonalisation

We define shorthand notation |v ·m〉 def
= vx|m1〉+ vy|m2〉+ vz|m3〉. Then

|Ev
01〉 =

√
1− 3

2β

1− β |m0〉+

√
1
2β

1− β |v ·m〉. (29)

Note that |m0〉, |v ·m〉, |Ev
00〉, |Ev

11〉 form an orthonormal basis. We have

[ωbx(β)]2 = (1− β)2σ
v(b)
xx̄ + β2σv(b)

xx (30)

[ωb0(β)]2 + [ωb1(β)]2 = (1− β)2[σ
v(b)
01 + σ

v(b)
10 ] + β2[σ

v(b)
00 + σ

v(b)
11 ]

= 2(1− β)2
[1− 3

2β

1− β |m0〉〈m0|+
1
2β

1− β |v(b) ·m〉〈v(b) ·m|
]

+β2[σ
v(b)
00 + σ

v(b)
11 ]. (31)

Furthermore

[ωb0(β) + ωb1(β)]2 = (1− β)2[σ
v(b)
01 + σ

v(b)
10 ]2 + β2[σ

v(b)
00 + σ

v(b)
11 ]

= 4(1− β)2
[(1− 3

2β)2

(1− β)2
|m0〉〈m0|+

(1
2β)2

(1− β)2
|v(b) ·m〉〈v(b) ·m|

]
+β2[σ

v(b)
00 + σ

v(b)
11 ] (32)

We see that the matrices (ωb0)2 +(ωb1)2 and (ωb0 +ωb1)2 are simultaneously diagonal in the basis
|m0〉, |v ·m〉, |Ev

00〉, |Ev
11〉. Note that ωb0 + ωb1 does not actually depend on b; see (15). The

eigenvalues of (ωb0)2 + (ωb1)2 are

λ[1]
def
= 2(1− β)(1− 3

2β); λ[2]
def
= β(1− β); λ[3]

def
= β2; λ[4]

def
= β2. (33)

The eigenvalues of (ωb0 + ωb1)2 are

µ[1]
def
= 4(1− 3

2β)2; µ[2]
def
= β2; µ[3]

def
= β2; µ[4]

def
= β2. (34)

7.3.2 Finalising the bound on D1

We label an eigenvector by N strings: Ar ∈ {1, 2, 3, 4}n, r ∈ {1, . . . , N}. The index
Ari ∈ {1, 2, 3, 4} indicates which eigenvector is selected in round r and position i. The to-
tal eigenstate is composed by taking the tensor product of all the single-ancilla eigenstates.

13



We introduce the notation vrA = (2` − 1)
∏
i

1
4λ[Ari ] and wrA =

∏
i

1
4µ[Ari ]. Given label A,

the eigenvalue of Ezuρ2 is ΛA =
∏N
r=1(vrA + wrA). The corresponding eigenvalue of ρ2

av is

MA =
∏N
r=1w

r
A. Now we can write

tr
√

Ezuρ2 − ρ2
av =

∑
A

√
ΛA −MA =

∑
A

√√√√ N∏
r=1

(vrA + wrA)−
N∏
r=1

wrA (35)

=
∑
A

√ ∑
G⊆[N ]:G6=∅

(∏
r∈G

vrA

)( ∏
a∈[N ]\G

waA

)
(36)

≤
∑
A

∑
G⊆[N ]:G6=∅

(∏
r∈G

√
vrA

)( ∏
a∈[N ]\G

√
waA

)
(37)

=
∑

G⊆[N ]:G6=∅

(∏
r∈G

√
2` − 1

∏
i

1
2

∑
Ar

i

√
λ[Ari ]

)( ∏
a∈[N ]\G

∏
i

1
2

∑
Aa

i

√
µ[Aai ]

)
. (38)

To arrive at (37) we used the inequality
√
q1 + · · ·+ qN ≤

√
q1 + · · ·+√qN , which holds for

q1, . . . , qN ≥ 0. From the definition of the λ and µ eigenvalues (33,34) we have
∑4

x=1

√
µ[x] =

2 and
∑4

x=1

√
λ[x] = f(β)

√
2, with f(β) as defined in Theorem 4.1. Thus we can write

tr
√

Ezuρ2 − ρ2
av ≤

∑
G⊆[N ]:G6=∅

(∏
r∈G

√
2` − 1

n∏
i=1

1√
2
f(βri )

)
· 1 (39)

<
N∏
r=1

[
1 +
√

2`−n
n∏
i=1

f(βri )
]
− 1 (40)

=

N∏
r=1

[
1 +

√
2`−n+2

∑n
i=1 log f(βr

i )
]
− 1. (41)

Eve is allowed to choose the error probability βri as a function of the round r and the qubit
position i. However, the average noise in every round must not exceed a fixed parameter β.
Since the function log f is concave, it is optimal for Eve to set βri = β for all r, i. This yields

2D1 <
[
1 +

√
2`−n+2n log f(β)

]N
− 1. (42)

Together with (21) this finalizes the proof of Theorem 4.1.
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