
Multi-Theorem Preprocessing NIZKs from Lattices

Sam Kim
Stanford University

skim13@cs.stanford.edu

David J. Wu
Stanford University

dwu4@cs.stanford.edu

Abstract

Non-interactive zero-knowledge (NIZK) proofs are fundamental to modern cryptography.
Numerous NIZK constructions are known in both the random oracle and the common reference
string (CRS) models. In the CRS model, there exist constructions from several classes of
cryptographic assumptions such as trapdoor permutations, pairings, and indistinguishability
obfuscation. Notably absent from this list, however, are constructions from standard lattice
assumptions. While there has been partial progress in realizing NIZKs from lattices for specific
languages, constructing NIZK proofs (and arguments) for all of NP from standard lattice
assumptions remains open.

In this work, we make progress on this problem by giving the first construction of a multi-
theorem NIZK argument for NP from standard lattice assumptions in the preprocessing model. In
the preprocessing model, a (trusted) setup algorithm generates proving and verification keys. The
proving key is needed to construct proofs and the verification key is needed to check proofs. In
the multi-theorem setting, the proving and verification keys should be reusable for an unbounded
number of theorems without compromising soundness or zero-knowledge. Existing constructions
of NIZKs in the preprocessing model (or even the designated-verifier model) that rely on weaker
assumptions like one-way functions or oblivious transfer are only secure in a single-theorem
setting. Thus, constructing multi-theorem NIZKs in the preprocessing model does not seem to
be inherently easier than constructing them in the CRS model.

We begin by constructing a multi-theorem preprocessing NIZK directly from context-hiding
homomorphic signatures. Then, we show how to efficiently implement the preprocessing step
using a new cryptographic primitive called blind homomorphic signatures. This primitive may
be of independent interest. Finally, we show how to leverage our new lattice-based preprocessing
NIZKs to obtain new malicious-secure MPC protocols purely from standard lattice assumptions.

1 Introduction

The concept of zero-knowledge is fundamental to theoretical computer science. Introduced in the
seminal work of Goldwasser, Micali, and Rackoff [GMR85], a zero-knowledge proof system enables
a prover to convince a verifier that some statement is true without revealing anything more than
the truth of the statement. Traditionally, zero-knowledge proof systems for NP are interactive, and
in fact, interaction is essential for realizing zero-knowledge (for NP) in the standard model [GO94].

Non-interactive zero-knowledge. Nonetheless, Blum, Feldman, and Micali [BFM88] showed that
meaningful notions of zero-knowledge are still realizable in the non-interactive setting, where the proof
consists of just a single message from the prover to the verifier. In the last three decades, a beautiful
line of works has established the existence of NIZK proof (and argument) systems for all of NP in the
random oracle model [FS86, PS96] or the common reference string (CRS) model [FLS90, DDO+01,

1

GOS06, Gro10, SW14], where the prover and the verifier are assumed to have access to a common
string chosen by a trusted third party. Today, we have NIZK candidates in the CRS model from
several classes of cryptographic assumptions:1 (doubly-enhanced) trapdoor permutations [FLS90,
DDO+01, Gro10], pairings [GOS06], and indistinguishability obfuscation [SW14]. Notably absent
from this list are constructions from lattice assumptions [Ajt96, Reg05]. While some partial progress
has been made in the case of specific languages [PV08, APSD18], the general case of constructing
NIZK proofs (or even arguments) for all of NP from standard lattice assumptions remains a
longstanding open problem.

NIZKs in a preprocessing model. In this work, we make progress on this problem by giving the
first multi-theorem NIZK argument for NP from standard lattice assumptions in the preprocessing
model. In the NIZK with preprocessing model [DMP88], there is an initial (trusted) setup phase
that generates a proving key kP and a verification key kV . The proving key is needed to construct
proofs while the verification key is needed to check proofs. In addition, the setup phase is run
before any statements are proven (and thus, must be statement-independent). In the multi-theorem
setting, we require that soundness holds against a prover who has oracle access to the verifier (but
does not see kV), and that zero-knowledge holds against a verifier who has oracle access to the
prover (but does not see kP). The NIZK with preprocessing model generalizes the more traditional
settings under which NIZKs have been studied. For instance, the case where kP is public (but kV is
secret) corresponds to designated-verifier NIZKs [CD04, DFN06, CG15], while the case where both
kP and kV are public corresponds to the traditional CRS setting, where the CRS is taken to be the
pair (kP , kV).

Why study the preprocessing model? While the preprocessing model is weaker than the more
traditional CRS model, constructing multi-theorem NIZK arguments (and proofs) in this model
does not appear to be any easier than constructing them in the CRS model. Existing constructions
of NIZKs in the preprocessing model from weaker assumptions such as one-way functions [DMP88,
LS90, Dam92, IKOS09] or oblivious transfer [KMO89] are only secure in the single-theorem setting.
As we discuss in greater detail in Remark 4.9, the constructions from [DMP88, LS90, Dam92] only
provide single-theorem zero-knowledge, while the constructions in [KMO89, IKOS09] only provide
single-theorem soundness. Even in the designated-verifier setting [CD04, DFN06, CG15] (where
only the holder of a verification key can verify the proofs), the existing constructions of NIZKs for
NP based on linearly-homomorphic encryption suffer from the so-called “verifier-rejection” problem
where soundness holds only against a logarithmically-bounded number of statements. Thus, the only
candidates of multi-theorem NIZKs where soundness and zero-knowledge hold for an unbounded
number of theorems are the constructions in the CRS model, which all rely on trapdoor permutations,
pairings, or obfuscation. Thus, it remains an interesting problem to realize multi-theorem NIZKs
from lattice assumptions even in the preprocessing model.

Moreover, as we show in Section 6.1, multi-theorem NIZKs in the preprocessing model suffice
to instantiate many of the classic applications of NIZKs for boosting the security of multiparty
computation (MPC) protocols. Thus, our new constructions of reusable NIZK arguments from
standard lattice assumptions imply new constructions of round-optimal, near-optimal-communication
MPC protocols purely from lattice assumptions. Our work also implies a succinct version of the
classic Goldreich-Micali-Wigderson compiler [GMW86, GMW87] for boosting semi-honest security

1There are also NIZK candidates based on number-theoretic assumptions [BFM88, DMP87, BDMP91] which satisfy
weaker properties. We discuss these in greater detail in Section 1.2 and Remark 4.9.

2

to malicious security, again purely from standard lattice assumptions. Furthermore, studying NIZKs
in the preprocessing model may also serve as a stepping stone towards realizing NIZKs in the CRS
model from standard lattice assumptions. For example, the starting point of the first multi-theorem
NIZK construction by Feige, Lapidot, and Shamir [FLS90] was a NIZK proof for graph Hamiltonicity
in the preprocessing model.

1.1 Multi-Theorem Preprocessing NIZKs from Lattices

The focus of this work is on constructing NIZKs in the preprocessing model (which we will often
refer to as a “preprocessing NIZK”) from standard lattice assumptions. As we discuss in Section 1.2
and in Remark 4.9, this is the first candidate of reusable (i.e., multi-theorem) NIZK arguments from
a standard lattice assumption. Below, we provide a high-level overview of our main construction.

Homomorphic signatures. A homomorphic signature scheme [BF11a, BF11b, GVW15, ABC+15]
enables computations on signed data. Specifically, a user can sign a message x using her private
signing key to obtain a signature σ. Later on, she can delegate the pair (x, σ) to an untrusted data
processor. The data processor can then compute an arbitrary function g on the signed data to
obtain a value y = g(x) along with a signature σg,y. The computed signature σg,y should certify
that the value y corresponds to a correct evaluation of the function g on the original input x. In
a context-hiding homomorphic signature scheme [BFF+09, BF11a], the computed signature σg,y
also hides the input message x. Namely, the pair (y, σg,y) reveals no information about x other
than what could be inferred from the output y = g(x). Gorbunov et al. [GVW15] gave the first
construction of a context-hiding homomorphic signature scheme for general Boolean circuits (with
bounded depth) from standard lattice assumptions.

From homomorphic signatures to zero-knowledge. The notion of context-hiding in a ho-
momorphic signature scheme already bears a strong resemblance to zero-knowledge. Namely, a
context-hiding homomorphic signature scheme allows a user (e.g., a prover) to certify the result of a
computation (e.g., the output of an NP relation) without revealing any additional information about
the input (e.g., the NP witness) to the computation. Consider the following scenario. Suppose the
prover has a statement-witness pair (x,w) for some NP relation R and wants to convince the verifier
that R(x,w) = 1 without revealing w. For sake of argument, suppose the prover has obtained
a signature σw on the witness w (but does not have the signing key for the signature scheme),
and the verifier holds the verification key for the signature scheme. In this case, the prover can
construct a zero-knowledge proof for x by evaluating the relation Rx(w) := R(x,w) on (w, σw). If
R(x,w) = 1, then this yields a new signature σR,x on the bit 1. The proof for x is just the signature
σR,x. Context-hiding of the homomorphic signature scheme says that the signature σR,x reveals no
information about the input to the computation (the witness w) other than what is revealed by
the output of the computation (namely, that R(x,w) = 1). This is precisely the zero-knowledge
property. Soundness of the proof system follows by unforgeability of the homomorphic signature
scheme (if there is no w such that Rx(w) = 1, the prover would not be able to produce a signature
on the value 1 that verifies according to the function Rx).

While this basic observation suggests a connection between homomorphic signatures and zero-
knowledge, it does not directly give a NIZK argument. A key problem is that to construct the
proof, the prover must already possess a signature on its witness w. But since the prover does not
have the signing key (if it did, then the proof system is no longer sound), it is unclear how the
prover obtains this signature on w without interacting with the verifier (who could hold the signing

3

key). This is the case even in the preprocessing model, because we require that the preprocessing
be statement-independent (and in fact, reusable for arbitrarily many adaptively-chosen statements).

Preprocessing NIZKs from homomorphic signatures. Nonetheless, the basic observation
shows that if we knew ahead of time which witness w the prover would use to construct its proofs,
then the setup algorithm can simply give the prover a homomorphic signature σw on w. To support
this, we add a layer of indirection. Instead of proving that it knows a witness w where R(x,w) = 1,
the prover instead demonstrates that it has an encryption ctw of w (under some key sk), and
that it knows some secret key sk such that ct decrypts to a valid witness w where R(x,w) = 1.2

A proof of the statement x then consists of the encrypted witness ctw and a proof πR,x,ctw that
ctw is an encryption of a satisfying witness (under some key). First, if the encryption scheme
is semantically-secure and the proof is zero-knowledge, then the resulting construction satisfies
(computational) zero-knowledge. Moreover, the witness the prover uses to construct πR,x,ctw is
always the same: the secret key sk. Notably, the witness is statement-independent and can be
reused to prove arbitrarily many statements (provided the encryption scheme is CPA-secure).

This means we can combine context-hiding homomorphic signatures (for general circuits) with
any CPA-secure symmetric encryption scheme to obtain NIZKs in the preprocessing model as
follows:

• Setup: The setup algorithm generates a secret key sk for the encryption scheme as well as
parameters for a homomorphic signature scheme. Both the proving and verification keys
include the public parameters for the signature scheme. The proving key kP additionally
contains the secret key sk and a signature σsk on sk.

• Prove: To generate a proof that an NP statement x is true, the prover takes a witness w
where R(x,w) = 1 and encrypts w under sk to obtain a ciphertext ctw. Next, we define
the witness-checking function CheckWitness[R, x, ctw] (parameterized by R, x, and ctw) that
takes as input a secret key sk and outputs 1 if R(x,Decrypt(sk, ctw)) = 1, and 0 otherwise.
The prover homomorphically evaluates CheckWitness[R, x, ctw] on (sk, σsk) to obtain a new
signature σ∗ on the value 1. The proof consists of the ciphertext ctw and the signature σ∗.

• Verify: Given a statement x for an NP relation R and a proof π = (ct, σ∗), the verifier
checks that σ∗ is a valid signature on the bit 1 according to the function CheckWitness[R, x, ct].
Notice that the description on the function only depends on the relation R, the statement x,
and the ciphertext ct, all of which are known to the verifier.

Since the homomorphic signature scheme is context-hiding, the signature σ∗ hides the input to
CheckWitness[R, x, ctw], which in this case, is the secret key sk. By CPA-security of the encryption
scheme, the ciphertext hides the witness w, so the scheme provides zero-knowledge. Soundness
again follows from unforgeability of the signature scheme. Thus, by combining a lattice-based
homomorphic signature scheme for general circuits [GVW15] with any lattice-based CPA-secure
symmetric encryption scheme, we obtain a (multi-theorem) preprocessing NIZK from lattices.

An appealing property of our preprocessing NIZKs is that the proofs are short: the length
of a NIZK argument for an NP relation R is |w| + poly(λ, d) bits, where |w| is the length of a
witness for R and d is the depth of the circuit computing R. The proof size in NIZK constructions

2This is a classic technique in the construction of non-interactive proof systems and has featured in many contexts
(e.g., [SP92, GGI+15]).

4

from trapdoor permutations or pairings [FLS90, DDO+01, GOS06, Gro10] typically scale with
the size of the circuit computing R and multiplicatively with the security parameter. Previously,
Gentry et al. [GGI+15] gave a generic approach using fully homomorphic encryption (FHE) to reduce
the proof size in any NIZK construction. The advantage of our approach is that we naturally satisfy
this succinctness property, and the entire construction can be based only on lattice assumptions
(without needing to mix assumptions). We discuss this in greater detail in Remark 4.7. We also
give the complete description of our preprocessing NIZK and security analysis in Section 4.

Blind homomorphic signatures for efficient preprocessing. A limitation of preprocessing
NIZKs is we require a trusted setup to generate the proving and verification keys. One solution is to
have the prover and verifier run a (malicious-secure) two-party computation protocol (e.g., [LP07])
to generate the proving and verification keys. However, generic MPC protocols are often costly and
require making non-black-box use of the underlying homomorphic signature scheme.

In this work, we describe a conceptually simpler and more efficient way of implementing the
preprocessing without relying on general MPC. We do so by introducing a new cryptographic notion
called blind homomorphic signatures. First, we observe that we can view the two-party computation
of the setup phase as essentially implementing a “blind signing” protocol where the verifier holds the
signing key for the homomorphic signature scheme and the prover holds the secret key sk. At the end
of the blind signing protocol, the prover should learn σsk while the verifier should not learn anything
about sk. This is precisely the properties guaranteed by a blind signature protocol [Cha82, Fis06].
In this work, we introduce the notion of a blind homomorphic signature scheme which combines
the blind signing protocol of traditional blind signature schemes while retaining the ability to
homomorphically operate on ciphertexts. Since the notion of a blind homomorphic signatures is
inherently a two-party functionality, we formalize it in the model of universal composability [Can01].
We provide the formal definition of the ideal blind homomorphic signature functionality in Section 5.

In Section 5.1, we show how to securely realize our ideal blind homomorphic signature functionality
in the presence of malicious adversaries by combining homomorphic signatures with any UC-secure
oblivious transfer (OT) protocol [CLOS02]. Note that security against malicious adversaries is
critical for our primary application of leveraging blind homomorphic signatures to implement the
setup algorithm of our preprocessing NIZK candidate. At a high-level, we show how to construct a
blind homomorphic signature scheme from any “bitwise” homomorphic signature scheme—namely,
a homomorphic signature scheme where the signature on an `-bit message consists of ` signatures,
one for each bit of the message. Moreover, we assume that the signature on each bit position
only depends on the value of that particular bit (and not the value of any of the other bits of the
message); of course, the ` signatures can still be generated using common or correlated randomness.
Given a bitwise homomorphic signature scheme, we can implement the blind signing protocol (on
`-bit messages) using ` independent 1-out-of-2 OTs. Specifically, the signer plays the role of the
sender in the OT protocol and for each index i ∈ [`], the signer signs both the bit 0 as well as
the bit 1. Then, to obtain a signature on an `-bit message, the receiver requests the signatures
corresponding to the bits of its message.

While the high-level schema is simple, there are a few additional details that we have to handle
to achieve robustness against a malicious signer. For instance, a malicious signer can craft the
parameters of the homomorphic signature scheme so that when an evaluator computes on a signature,
the resulting signatures no longer provide context-hiding. Alternatively, a malicious signer might
mount a “selective-failure” attack during the blind-signing protocol to learn information about
the receiver’s message. We discuss how to address these problems by giving strong definitions of

5

malicious context-hiding for homomorphic signatures in Section 3, and give the full construction of
blind homomorphic signatures from oblivious transfer in Section 5.1. In particular, we show that
the Gorbunov et al. [GVW15] homomorphic signature construction satisfies our stronger security
notions, and so coupled with the UC-secure lattice-based OT protocol of Peikert et al. [PVW08],
we obtain a UC-secure blind homomorphic signature scheme from standard lattice assumptions.
Moreover, the blind signing protocol is a two-round protocol, and only makes black-box use of the
underlying homomorphic signature scheme.

UC-secure preprocessing NIZKs. Finally, we show that using our UC-secure blind homomorphic
signature candidate, we can in fact realize the stronger notion of UC-secure NIZK arguments in
a preprocessing model from standard lattice assumptions. This means that our NIZKs can be
arbitrarily composed with other cryptographic protocols. Our new candidates are thus suitable
to instantiate many of the classic applications of NIZKs for boosting the security of general MPC
protocols. As we show in Section 6, combining our preprocessing UC-NIZKs with existing lattice-
based semi-malicious MPC protocols such as [MW16] yields malicious-secure protocols purely
from standard lattice assumptions (in a reusable preprocessing model). We also show that our
constructions imply a succinct version of the classic GMW [GMW86, GMW87] protocol compiler
(where the total communication overhead of the compiled protocol depends only on the depth, rather
than the size of the computation).

Towards NIZKs in the CRS model. In this paper, we construct the first multi-theorem
preprocessing NIZK arguments from standard lattice assumptions. However, our techniques do
not directly generalize to the CRS setting. While it is possible to obtain a publicly-verifiable
preprocessing NIZK (i.e., make the verification key kV public), our construction critically relies
on the prover state being hidden. This is because the prover state contains the secret key the
prover uses to encrypt its witness in the proofs, so publishing this compromises zero-knowledge.
Nonetheless, we believe that having a better understanding of NIZKs in the preprocessing model
provides a useful stepping stone towards the goal of building NIZKs from lattices in the CRS model,
and we leave this as an exciting open problem.

1.2 Additional Related Work

In this section, we survey some additional related work on NIZK constructions, blind signatures,
and homomorphic signatures.

Other NIZK proof systems. In the CRS model, there are several NIZK constructions based on
specific number-theoretic assumptions such as quadratic residuosity [BFM88, DMP87, BDMP91].
These candidates are also secure in the bounded-theorem setting where the CRS can only be used
for an a priori bounded number of proofs. Exceeding this bound compromises soundness or zero-
knowledge. In the preprocessing model, Kalai and Raz [KR06] gave a single-theorem succinct NIZK
proof system for the class LOGSNP from polylogarithmic private information retrieval (PIR) and
exponentially-hard OT. In this work, we focus on constructing multi-theorem NIZKs, where an
arbitrary number of proofs can be constructed after an initial setup phase.

NIZKs have also been constructed for specific algebraic languages in both the publicly-verifiable
setting [Gro06, GS08] as well as the designated-verifier setting [CC17]. In the specific case of
lattice-based constructions, there are several works on building hash-proof systems, (also known as
smooth projective hash functions [CS02]) [KV09, ZY17, BBDQ18], which are designated-verifier
NIZK proofs for a specific language (typically, this is the language of ciphertexts associated with a

6

particular message). In the random oracle model, there are also constructions of lattice-based NIZK
arguments from Σ-protocols [LNSW13, XXW13]. Recently, there has also been work on instantiating
the random oracle in Σ-protocols with lattice-based correlation-intractable hash functions [CCRR18].
However, realizing the necessary correlation-intractable hash functions from lattices requires making
the non-standard assumption that Regev’s encryption scheme [Reg05] is exponentially KDM-secure
against all polynomial-time adversaries. In our work, we focus on NIZK constructions for general
NP languages in the plain model (without random oracles) from the standard LWE assumption (i.e.,
polynomial hardness of LWE with a subexponential approximation factor).

Very recently, Rothblum et al. [RSS18] showed that a NIZK proof system for a decisional variant
of the bounded distance decoding (BDD) problem suffices for building NIZK proof system for NP.

Blind signatures. The notion of blind signatures was first introduced by Chaum [Cha82]. There
are many constructions of blind signatures from a wide range of assumptions in the random oracle
model [Sch89, Bra00, PS00, Abe01, Bol03, BNPS03, Rüc10, BL13], the CRS model [CKW04, KZ06,
Fis06, AO09, Fuc09, AFG+10, AHO10, GS12], as well as the standard model [GRS+11, FHS15,
FHKS16, HK16].

Homomorphic signatures. There are many constructions of linearly homomorphic signa-
tures [ABC+07, SW08, DVW09, AKK09, BFKW09, GKKR10, BF11a, AL11, BF11b, CFW12,
Fre12, ABC+15]. Beyond linear homomorphisms, a number of works [BF11b, BFR13, CFW14]
have constructed homomorphic signatures for polynomial functions from lattices or multilinear
maps. For general circuits, Gorbunov et al. [GVW15] gave the first homomorphic signature scheme
from lattices, and Fiore et al. [FMNP16] gave the first “multi-key” homomorphic signature scheme
from lattices (where homomorphic operations can be performed on signatures signed under different
keys).

2 Preliminaries

We begin by introducing the basic notation that we use in this work. For an integer n ≥ 1, we
write [n] to denote the set of integers {1, . . . , n}. For a positive integer q > 1, we write Zq to denote
the ring of integers modulo q. For a finite set S, we write x ←R S to denote that x is sampled
uniformly at random from S. For a distribution D, we write x← D to denote that x is sampled
from D. Throughout this work, we use λ to denote a security parameter.

We say that a function f is negligible in λ, denoted negl(λ), if f(λ) = o(1/λc) for all constants
c ∈ N. We say that an event happens with negligible probability if the probability of the event
occurring is bounded by a negligible function, and we say that an event happens with overwhelming
probability if its complement occurs with negligible probability. We say an algorithm is efficient if it
runs in probabilistic polynomial time in the length of its input. We write poly(λ) to denote a quantity
whose value is upper-bounded by a fixed polynomial in λ. We say that two families of distributions
D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally indistinguishable if no efficient algorithm
can distinguish samples from either D1 or D2, except with negligible probability. We denote this by

writing D1
c
≈ D2. We write D1

s
≈ D2 to denote that D1 and D2 are statistically indistinguishable

(i.e., the statistical distance between D1 and D2 is bounded by a negligible function). We now review
the definition of a CPA-secure encryption scheme.

Definition 2.1 (CPA-Secure Encryption). An encryption scheme with message space M is a tuple
of efficient algorithms ΠSE = (KeyGen,Encrypt,Decrypt) with the following properties:

7

• KeyGen(1λ)→ sk: On input the security parameter λ, the key-generation algorithm outputs a
secret key sk.

• Encrypt(sk,m)→ ct: On input a secret key sk and a message m ∈M, the encryption algorithm
outputs a ciphertext ct.

• Decrypt(sk, ct)→ m: On input a secret key sk and a ciphertext ct, the decryption algorithm
either outputs a message m ∈M or a special symbol ⊥ (to denote that decryption failed).

A CPA-secure encryption scheme should satisfy the following properties:

• Correctness: For all messages m ∈M, if we take sk← KeyGen(1λ), then

Pr[Decrypt(sk,Encrypt(sk,m)) = m] = 1.

• CPA-Security: For all efficient adversaries A, if we take sk← KeyGen(1λ), then∣∣∣Pr
[
AO0(sk,·,·)(1λ) = 1

]
− Pr

[
AO1(sk,·,·)(1λ) = 1

]∣∣∣ = negl(λ),

where Ob(sk,m0,m1) outputs Encrypt(sk,mb) for b ∈ {0, 1}.

CPA-secure encryption can be built from any one-way function. Here, we state one candidate that
follows from any lattice-based PRF that can be computed by a circuit of depth independent of its
output length (c.f., [GGM84, Ajt96]).

Fact 2.2 (CPA-Secure Encryption from LWE). Let λ be a security parameter. Under the LWE
assumption (see Section 2.1), there exists a CPA-secure encryption scheme ΠSE = (KeyGen,Encrypt,
Decrypt) over a message space M with the following properties:

• For all m ∈M, sk← KeyGen(1λ), and ct← Encrypt(sk,m), we have that |ct| = |m|+ poly(λ).

• The decryption algorithm Decrypt can be computed by a circuit of depth poly(λ).

2.1 Lattice Preliminaries

In this section, we describe known results for lattice-based cryptography that we use throughout
the paper.

Norms for vectors and matrices. Throughout this work, we will always use the infinity norm
for vectors and matrices. This means that for a vector x, the norm ‖x‖ is the maximal absolute
value of an element in x. Similarly, for a matrix A, ‖A‖ is the maximal absolute value of any of its
entries. If x ∈ Znq and A ∈ Zn×mq , then ‖xTA‖ ≤ n · ‖x‖ · ‖A‖.

Learning with errors. We first review the learning with errors (LWE) assumption [Reg05]. Let
n,m, q ∈ N be positive integers and χ be a noise distribution over Zq. In the LWE(n,m, q, χ)
problem, the adversary’s goal is to distinguish between the two distributions

(A,AT s + e) and (A,u)

where A←R Zn×mq , s←R Znq , e← χm, and u←R Zmq .

8

When the error distribution χ is β-bounded3, and under mild assumptions on the modulus q,
the LWE(n,m, q, χ) problem is as hard as approximating certain worst-case lattice problems such as
GapSVP and SIVP on n-dimensional lattices to within a Õ(n · q/β) factor [Reg05, Pei09, ACPS09,
MM11, MP12, BLP+13].

Short integer solutions. We also review the short integers solution (SIS) assumption [Ajt96]. Let
n,m, q, β ∈ N be positive integers. In the SIS(n,m, q, β) problem, the adversary is given a uniformly
random matrix A ∈ Zn×mq and its goal is to find a vector u ∈ Zmq with u 6= 0 and ‖u‖ ≤ β such
that Au = 0.

For any m = poly(n), β > 0, and any sufficiently large q ≥ β · poly(n), solving the SIS(n,m, q, β)
problem is as hard as approximating certain worst-case lattice problems such as GapSVP and SIVP
on n-dimensional lattices to within a β · poly(n) factor [Ajt96, Mic04, MR07, MP13]. It is also
implied by the hardness of the LWE problem.

The gadget matrix. We define the “gadget matrix” G = g ⊗ In ∈ Zn×n·dlog qe
q where g =

(1, 2, 4, . . . , 2dlog qe−1). We define the inverse function G−1 : Zn×mq → Zndlog qe×m
q which expands

each entry x ∈ Zq in the input matrix into a column of size dlog qe consisting of the bits of the
binary representation of x. To simplify the notation, we always assume that G has width m (in
our construction, m = Θ(n log q)). Note that this is without loss of generality since we can always
extend G by appending zero columns. For any matrix A ∈ Zn×mq , we have that G ·G−1(A) = A.

Lattice trapdoors. Although solving the SIS problem for a uniformly random matrix A is believed
to be hard, with some auxiliary trapdoor information (e.g., a set of short generating vectors for
the lattice induced by A), the problem becomes easy. Lattice trapdoors have featured in many
applications and have been extensively studied [Ajt99, GPV08, AP09, MP12, LW15]. Since the
specific details of the constructions are not essential for understanding this work, we just recall the
main properties that we require in the following theorem.

Theorem 2.3 (Lattice Trapdoors [Ajt99, GPV08, AP09, MP12, LW15]). Fix a security parameter
λ and lattice parameters n, q,m and a norm bound β where m = O(n log q) and β = O(n

√
log q).

Then, there exists a tuple of efficient algorithms (TrapGen, Sample, SamplePre) with the following
properties:

• TrapGen(1λ)→ (A, td): On input the security parameter λ, the trapdoor generation algorithm
outputs a rank-n matrix A ∈ Zn×mq and a trapdoor td.

• Sample(A) → U: On input a matrix A ∈ Zn×mq , the sampling algorithm returns a matrix
U ∈ Zm×mq .

• SamplePre(A,V, td)→ U: On input a matrix A ∈ Zn×mq , a target matrix V ∈ Zn×mq , and a
trapdoor td, the preimage-sampling algorithm outputs a matrix U ∈ Zm×mq .

• The above algorithms satisfy the following properties. Take (A, td)← TrapGen(1λ). Then,

1. For U← Sample(A), we have ‖U‖ ≤ β.

2. For any V ∈ Zn×mq and U← SamplePre(A,V, td), we have AU = V and ‖U‖ ≤ β.

3We say that a distribution D is β-bounded if the support of D is {−β, . . . , β − 1, β} with probability 1.

9

3. For (A, td)← TrapGen(1λ), A′ ←R Zn×mq , U← Sample(A), V = AU, V′ ←R Zn×mq , and
U′ ← SamplePre(A,V′, td), we have

A
s
≈ A′ and (A, td,U,V)

s
≈ (A, td,U′,V′).

Traditionally, lattice trapdoors consist of a set of short generating vectors of the lattice that is
induced by a public SIS matrix A. In this work, we make use of an alternative form of lattice
trapdoors called a G-trapdoor formalized in [MP12]. A G-trapdoor of a matrix A ∈ Zn×mq consists
of a full-rank, low-norm matrix R ∈ Zm×mq satisfying the relation AR = G. These types of trapdoor
matrices have additional statistical properties that we use in our blind homomorphic signature
constructions in Sections 3 and 5. We summarize these properties in the following theorem.

Theorem 2.4 (Lattice Sampling [CHKP10, ABB10, MP12, BGG+14, LW15]). Fix a security
parameter λ and lattice parameters n, q,m, and a norm bound β, where m = O(n log q) and β =
O(n
√

log q). Then, in addition to the algorithms (TrapGen, Sample, SamplePre) from Theorem 2.3,
there exists a pair of algorithms (SampleLeft,SampleRight) with the following properties:

• SampleLeft(A,B,R,v, β∗) → u: On input matrices A,B ∈ Zn×mq , a matrix R ∈ Zm×mq

(trapdoor of A), a target vector v ∈ Znq , and a norm bound β∗, SampleLeft returns a vector
u ∈ Z2m

q .

• SampleRight(A,B,U,v, β∗)→ u: On input matrices A,B ∈ Zn×mq , a matrix U ∈ Zm×mq , a
target vector v ∈ Znq , and a norm bound β∗, SampleRight returns a vector u ∈ Z2m

q .

• The algorithms above satisfies the following properties. For any rank-n matrices A,B ∈ Zn×mq

and a target vector v ∈ Znq , we have:

1. Let R ∈ Zm×mq be any matrix satisfying AR = G and ‖R‖ · ω(m
√

logm) ≤ β∗ ≤ q.
Then, for u0 ← SampleLeft(A,B,R,v, β∗), we have that [A | B] ·u0 = v and ‖u0‖ ≤ β∗.

2. Let U ∈ Zm×mq be any matrix satisfying AU + yG = B for some y 6= 0 where y ∈ Zq
and ‖U‖ · ω(m

√
logm) ≤ β∗ ≤ q. Then, for u1 ← SampleRight(A,B,U,v, β∗), we have

that [A | B] · u1 = v and ‖u1‖ ≤ β∗.
3. The distributions of u0,u1 above are statistically indistinguishable.

GSW homomorphic operations. In this work, we use the homomorphic structure from the fully
homomorphic encryption (FHE) scheme by Gentry et al. [GSW13]. Since we do not require the
specific details of the homomorphic operations, we summarize the properties we need in the theorem
below. In the language of FHE, the algorithm EvalPK corresponds to homomorphic evaluation over
ciphertexts, while EvalU corresponds to homomorphic evaluation over the encryption randomness.

Theorem 2.5 (GSW Homomorphic Operations [GSW13, BV14, AP14, GV15]). Fix a security
parameter λ, lattice parameters n, q, m, a norm bound β, a depth bound d, and a message length `,
where m = O(n log q) and β ·2Õ(d) < q. Then, there exists a pair of efficient deterministic algorithms
(EvalPK,EvalU) with the following properties:

• EvalPK(V1, . . . ,V`, C)→ VC : On input matrices V1, . . . ,V` ∈ Zn×mq and a circuit C : {0, 1}` →
{0, 1} of depth at most d, EvalPK returns an evaluated matrix VC ∈ Zn×mq .

10

• EvalU
(
(V1, x1,U1), . . . , (V`, x`,U`), C

)
→ UC : On input tuples (Vi, xi,Ui), where Vi ∈

Zn×mq , xi ∈ {0, 1}, and Ui ∈ Zm×mq for all i ∈ [`], and a circuit C : {0, 1}` → {0, 1}, EvalU
returns an evaluated matrix UC ∈ Zm×mq .

• For all circuits C : {0, 1}` → {0, 1} of depth at most d, and all matrices A,V1, . . . ,V` ∈ Zn×mq ,
inputs x1, . . . , x` ∈ {0, 1}, and matrices U1, . . . ,U` ∈ Zm×mq where

AUi + xi ·G = Vi ∀i ∈ [`],

and ‖Ui‖ ≤ β, the EvalPK and EvalU algorithms satisfy the following property. For VC ←
EvalPK(V1, . . . ,V`, C), and UC ← EvalU((V1, x1,U1), . . . , (V`, x`,U`), C), we have that

AUC + C(x) ·G = VC and ‖UC‖ ≤ β · 2Õ(d) < q.

3 Homomorphic Signatures

A homomorphic signature scheme enables computations on signed data. Given a function C (modeled
as a Boolean circuit) and a signature σx that certifies a message x, one can homomorphic derive a
signature σC(x) that certifies the value C(x) with respect to the function C. The two main security
notions that we are interested in are unforgeability and context-hiding. We first provide a high-level
description of the properties:

• Unforgeability: We say a signature scheme is unforgeable if an adversary who has a signature
σx on a message x cannot produce a valid signature on any message y 6= C(x) that verifies
with respect to the function C.

• Context-hiding: Context-hiding says that when one evaluates a function C on a message-
signature pair (x, σx), the resulting signature σC(x) on C(x) should not reveal any information
about the original message x other than the circuit C and the value C(x). In our definition,
the homomorphic signature scheme contains an explicit “hide” function that implements this
transformation.

Syntax and notation. Our construction of blind homomorphic signatures from standard ho-
momorphic signatures (Section 5.1) will impose some additional structural requirements on the
underlying scheme. Suppose the message space for the homomorphic signature scheme consists of
`-tuples of elements over a set X (e.g., the case where X = {0, 1} corresponds to the setting where
the message space consists of `-bit strings). Then, we require that the public parameters

—

pk of the
scheme can be split into a vector of public keys

—

pk = (pk1, . . . , pk`). In addition, a (fresh) signature
on a vector ~x ∈ X ` can also be written as a tuple of ` signatures ~σ = (σ1, . . . , σ`) where σi can
be verified with respect to the verification key vk and the ith public key pki for all i ∈ [`]. In our
description below, we often use vector notation to simplify the presentation.

Definition 3.1 (Homomorphic Signatures [BF11b, GVW15]). A homomorphic signature scheme
with message space X , message length ` ∈ N, and function class C = {Cλ}λ∈N, where each Cλ is a
collection of functions from X ` to X , is defined by a tuple of algorithms ΠHS = (PrmsGen,KeyGen,
Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) with the following properties:

11

• PrmsGen(1λ, 1`)→ # —

pk: On input the security parameter λ and message length `, the parameter-
generation algorithm returns a set of ` public keys

—

pk = (pk1, . . . , pk`).

• KeyGen(1λ) → (vk, sk): On input the security parameter λ, the key-generation algorithm
returns a verification key vk, and a signing key sk.

• Sign(pki, sk, xi)→ σi: On input a public key pki, a signing key sk, and a message xi ∈ X , the
signing algorithm returns a signature σi.

Vector variant: For
—

pk = (pk1, . . . , pk`), and ~x = (x1, . . . , x`) ∈ X `, we write Sign(
—

pk, sk, ~x) to
denote component-wise signing of each message. Namely, Sign(

—

pk, sk, ~x) outputs signatures
~σ = (σ1, . . . , σ`) where σi ← Sign(pki, sk, xi) for all i ∈ [`].

• PrmsEval(C,
—

pk′) → pkC : On input a function C : X ` → X and a collection of public keys
—

pk′ = (pk′1, . . . , pk′`), the parameter-evaluation algorithm returns an evaluated public key pkC .

Vector variant: For a circuit C : X ` → X k, we write PrmsEval(C,
—

pk′) to denote component-
wise parameter evaluation. Namely, let C1, . . . , Ck be functions such that C(x1, . . . , x`) =(
C1(x1, . . . , x`), . . . , Ck(x1, . . . , x`)

)
. Then, PrmsEval(C,

—

pk′) evaluates pkCi ← PrmsEval(Ci,
—

pk′)
for i ∈ [k], and outputs pkC = (pkC1

, . . . , pkCk).

• SigEval(C,
—

pk′, ~x, ~σ) → σ: On input a function C : X ` → X , public keys
—

pk′ = (pk′1, . . . , pk′`),
messages ~x ∈ X `, and signatures ~σ = (σ1, . . . , σ`), the signature-evaluation algorithm returns
an evaluated signature σ.

Vector variant: We can define a vector variant of SigEval analogously to that of PrmsEval.

• Hide(vk, x, σ)→ σ∗: On input a verification key vk, a message x ∈ X , and a signature σ, the
hide algorithm returns a signature σ∗.

Vector variant: For ~x = (x1, . . . , xk) and ~σ = (σ1, . . . , σk), we write Hide(vk, ~x, ~σ) to denote
component-wise evaluation of the hide algorithm. Namely, Hide(vk, ~x, ~σ) returns (σ∗1, . . . , σ

∗
k)

where σ∗i ← Hide(vk, xi, σi) for all i ∈ [k].

• Verify(pk, vk, x, σ)→ {0, 1}: On input a public key pk, a verification key vk, a message x ∈ X ,
and a signature σ, the verification algorithm either accepts (returns 1) or rejects (returns 0).

Vector variant: For a collection of public keys
—

pk′ = (pk′1, . . . , pk′k), messages ~x = (x1, . . . , xk),
and signatures ~σ = (σ1, . . . , σk), we write Verify(

—

pk′, vk, ~x, ~σ) to denote applying the verification
algorithm to each signature component-wise. In other words, Verify(

—

pk′, vk, ~x, ~σ) accepts if
and only if Verify(pk′i, vk, xi, σi) accepts for all i ∈ [k].

• VerifyFresh(pk, vk, x, σ)→ {0, 1}: On input a public key pk, a verification key vk, a message
x ∈ X , and a signature σ, the fresh verification algorithm either accepts (returns 1) or rejects
(returns 0).

Vector variant: We can define a vector variant of VerifyFresh analogously to that of Verify.

• VerifyHide(pk, vk, x, σ∗)→ {0, 1}: On input a public key pk, a verification key vk, a message
x ∈ X , and a signature σ∗, the hide verification algorithm either accepts (returns 1) or rejects
(returns 0).

Vector variant: We can define a vector variant of VerifyHide analogously to that of Verify.

12

Correctness. We now state the correctness requirements for a homomorphic signature scheme.
Our definitions are adapted from the corresponding ones in [GVW15]. Our homomorphic signature
syntax has three different verification algorithms. The standard verification algorithm Verify can be
used to verify fresh signatures (output by Sign) as well as homomorphically-evaluated signatures
(output by SigEval). The hide verification algorithm VerifyHide is used for verifying signatures output
by the context-hiding transformation Hide, which may be structurally different from the signatures
output by Sign or SigEval. Finally, we have a special verification algorithm VerifyFresh that can
be used to verify signatures output by Sign (before any homomorphic evaluation has taken place).
While Verify subsumes VerifyFresh, having a separate VerifyFresh algorithm is useful for formulating
a strong version of evaluation correctness. We now state our correctness definitions. First, we have
the standard correctness requirement of any signature scheme. Specifically, signatures output by
the honest signing algorithm should verify according to both Verify and VerifyFresh.

Definition 3.2 (Signing Correctness). A homomorphic signature scheme ΠHS = (PrmsGen,KeyGen,
Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) with message space X , message length
`, and function class C satisfies signing correctness if for all λ ∈ N, messages ~x ∈ X `, and setting
—

pk← PrmsGen(1λ, 1`), (vk, sk)← KeyGen(1λ), ~σ ← Sign(
—

pk, sk, ~x), we have

Pr[Verify(
—

pk, vk, ~x, ~σ) = 1] = 1 and Pr[VerifyFresh(
—

pk, vk, ~x, ~σ) = 1] = 1.

Evaluation correctness. Next, we require that if one applies the honest signature-evaluation
algorithm SigEval to valid fresh signatures (namely, signatures that are accepted by VerifyFresh), then
the resulting signature verifies according to Verify (with respect to the corresponding evaluated public
key). This is a stronger definition than the usual notion of evaluation correctness from [GVW15],
which only requires correctness to holds when SigEval is applied to signatures output by the honest
signing algorithm Sign. In our definition, correctness must hold against all signatures deemed valid
by VerifyFresh (with respect to an arbitrary public key pk and verification key vk), which may be a
larger set of signatures than those that could be output by Sign. This notion of correctness will be
useful in our construction of (malicious-secure) blind homomorphic signatures in Section 5.

Definition 3.3 (Evaluation Correctness). A homomorphic signature scheme ΠHS = (PrmsGen,
KeyGen, Sign,PrmsEval, SigEval,Hide,Verify,VerifyFresh,VerifyHide) with message space X , message
length `, and function class C = {Cλ}λ∈N (where each Cλ is a collection of functions from X ` to X)
satisfies evaluation correctness if for all λ ∈ N, all public keys

—

pk, all verification keys vk, and all
messages ~x ∈ X `, the following properties hold:

• Single-Hop Correctness: For all C ∈ Cλ and all signatures ~σ where VerifyFresh(
—

pk, vk, ~x, ~σ) =
1, if we set pkC ← PrmsEval(C,

—

pk) and σ ← SigEval(C,
—

pk, ~x, ~σ), then

Pr[Verify(pkC , vk, C(~x), σ) = 1] = 1.

• Multi-Hop Correctness: For any collection of functions C1, . . . , C` ∈ Cλ and C ′ : X ` → X ,
define the composition (C ′ ◦ ~C) : X ` → X to be the mapping ~x 7→ C ′(C1(~x), . . . , C`(~x)). If
(C ′ ◦ ~C) ∈ Cλ, then for any set of signatures ~σ = (σ1, . . . , σ`) where Verify(pkCi , vk, xi, σi) = 1

and pkCi ← PrmsEval(Ci,
—

pk) for all i ∈ [`], we have that

Pr[Verify(PrmsEval(C ′, (pkC1
, . . . , pkC`)), vk, ~x,SigEval(C ′, (pkC1

, . . . , pkC`), ~x, ~σ)) = 1] = 1.

13

Hiding correctness. Finally, we require that the hide algorithm also produces valid signatures.
Similar to the case of evaluation correctness, we require that correctness holds whenever Hide is
applied to any valid signature accepted by Verify (which need not coincide with the set of signatures
output by an honest execution of Sign or SigEval). This is essentially the definition in [GVW15].

Definition 3.4 (Hiding Correctness). A homomorphic signature scheme ΠHS = (PrmsGen,KeyGen,
Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) with message space X , message length `,
and function class C satisfies hiding correctness if for all λ ∈ N, all verification keys vk, messages
x ∈ X , and all signatures σ where Verify(pk, vk, x, σ) = 1, we have that

Pr[VerifyHide
(
pk, vk, x,Hide(vk, x, σ)

)
= 1] = 1.

Unforgeability. We now formally define unforgeability for a homomorphic signature scheme.
Intuitively, a homomorphic signature scheme is unforgeable if no efficient adversary who only
possesses signatures σ1, . . . , σ` on messages x1, . . . , x` can produce a signature σy that is valid with
respect to a function C where y 6= C(x1, . . . , x`).

Definition 3.5 (Unforgeability). Fix a security parameter λ. Let ΠHS = (PrmsGen,KeyGen,
Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a homomorphic signature scheme with
message space X , message length `, and function class C = {Cλ}λ∈N, where each Cλ is a collection
of functions on X `. Then, for an adversary A, we define the unforgeability security experiment
ExptufA,ΠHS

(λ, `) as follows:

1. The challenger begins by generating public keys
—

pk ← PrmsGen(1λ, 1`), and a signing-
verification key (vk, sk)← KeyGen(1λ). It gives

—

pk and vk to A.
2. The adversary A submits a set of messages ~x ∈ X ` to be signed.
3. The challenger signs the messages ~σ ← Sign(

—

pk, sk, ~x) and sends the signatures ~σ to A.
4. The adversary A outputs a circuit C, a message ~x∗, and a signature ~σ∗.
5. The output of the experiment is 1 if C ∈ Cλ, ~x∗ 6= C(~x), and VerifyHide(pkC , vk, ~x∗, ~σ∗) = 1,

where pkC ← PrmsEval(C,
—

pk). Otherwise, the output of the experiment is 0.

We say that a homomorphic signature scheme ΠHS satisfies unforgeability if for all efficient adver-
saries A,

Pr[ExptufA,ΠHS
(λ, `) = 1] = negl(λ).

Remark 3.6 (Selective Unforgeability). We can also define a weaker notion of unforgeability
called selective unforgeability where the adversary commits to the messages ~x ∈ X ` at the start
of the experiment before it sees the public keys

—

pk and the verification key vk. In Section 3.1,
we describe a simplified variant of the [GVW15] construction that satisfies this weaker notion of
selective unforgeability. In Appendix B, we give the full construction from [GVW15] that satisfies
the definition of adaptive unforgeability from Definition 3.5.

Context-hiding. The second security requirement on a homomorphic signature scheme is context-
hiding, which roughly says that if a user evaluates a function C on a message-signature pair (~x, ~σ) to
obtain a signature σC(~x), and then runs the hide algorithm on σC(~x), the resulting signature σ∗C(~x)

does not contain any information about ~x other than what is revealed by C and C(~x). Previous
works such as [GVW15] captured this notion by requiring that there exists an efficient simulator

14

that can simulate the signature σ∗C(~x) given just the signing key sk,4 the function C, and the value

C(~x). Notably, the simulator does not see the original message ~x or the signature σC(~x)

While this is a very natural notion of context-hiding, it can be difficult to satisfy. The homomor-
phic signature candidate by Gorbunov et al. [GVW15] satisfies selective unforgeability (Remark 3.6)
and context-hiding. Gorbunov et al. also give a variant of their construction that achieves adaptive
unforgeability; however, this scheme does not simultaneously satisfy the notion of context-hiding.
Nonetheless, the adaptively-secure scheme from [GVW15] can be shown to satisfy a weaker notion
of context-hiding that suffices for all of our applications (and still captures all of the intuitive
properties we expect from context-hiding). Specifically, in our weaker notion of context-hiding, we
allow the simulator to also take in some components of the original signatures σC(~x), provided that
those components are independent of the value that is signed.5

To formalize this notion, we first define the notion of a decomposable homomorphic signature
scheme. In a decomposable homomorphic signature scheme, any valid signature σ = (σpk, σm) can
be decomposed into a message-independent component σpk that contains no information about the
signed message, and a message-dependent component σm.

Definition 3.7 (Decomposable Homomorphic Signatures). Let ΠHS = (PrmsGen,KeyGen,Sign,
PrmsEval, SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a homomorphic signature scheme with mes-
sage space X , message length `, and function class C = {Cλ}λ∈N. We say that ΠHS is decomposable
if the signing and evaluation algorithms can be decomposed into a message-independent and a
message-dependent algorithm as follows:

• The signing algorithm Sign splits into a pair of algorithms (SignPK,SignM):

– SignPK(pki, sk) → σpki : On input a public key pki and a signing key sk, the SignPK

algorithm outputs a message-independent component σpki .

– SignM(pki, sk, xi, σ
pk
i) → σmi : On input a public key pki, a signing key sk, a message

xi ∈ X , and a message-independent component σpki , the SignM algorithm outputs a
message-dependent component σmi .

The actual signing algorithm Sign(pki, sk, xi) then computes σpki ← SignPK(pki, sk) and σmi ←
SignM(pki, sk, xi, σ

pk
i). The final signature is the pair σi = (σpki , σ

m
i).

• The evaluation algorithm SigEval splits into a pair of algorithms: (SigEvalPK, SigEvalM):

– SigEvalPK(C,
—

pk′, ~σpk)→ σpk: On input a circuit C ∈ Cλ, public keys
—

pk′ = (pk′1, . . . , pk′`),

and message-independent signature components ~σpk = (σpk1 , . . . , σ
pk
`), the SigEvalPK

algorithm outputs a message-independent component σpk.

– SigEvalM(C,
—

pk′, ~x, ~σ)→ σm: On input a circuit C ∈ Cλ, public keys
—

pk′ = (pk′1, . . . , pk′`),
messages ~x ∈ X `, and signatures ~σ, the SigEvalM algorithm outputs a message-dependent
component σm.

4Note that the simulator must take in some secret value (not known to the evaluator). Otherwise, the existence of
such a simulator breaks unforgeability of the signature scheme.

5The construction in Appendix B combines the homomorphic signature scheme that satisfies (full) unforgeability
but not context-hiding and the selectively unforgeable homomorphic signature scheme that satisfies context-hiding
in [GVW15].

15

The signature evaluation algorithm SigEval(C,
—

pk′, ~x, ~σ) first parses ~σ = (~σpk, ~σm), computes
σpk ← SigEvalPK(C,

—

pk′, ~σpk), σm ← SigEvalM(C,
—

pk′, ~x, ~σ), and returns σ = (σpk, σm).

To formalize context-hiding, we require that there exists a simulator that can simulate the output
of the hide algorithm given only the secret signing key sk, the function C, the output C(~x), and the

message-independent component of the signature σpkC(~x). We give the formal definition below:

Definition 3.8 (Context-Hiding Against Honest Signers). Fix a security parameter λ. Let
ΠHS = (PrmsGen,KeyGen, Sign,PrmsEval, SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a decom-
posable homomorphic signature scheme (Definition 3.7) with message space X , message length `,
and function class C = {Cλ}λ∈N, where each Cλ is a collection of functions from X ` to X . For a bit
b ∈ {0, 1}, a simulator S and an adversary A, we define the weak context-hiding security experiment
against an honest signer Exptch-honestA,S,ΠHS

(λ, b) as follows:

1. The challenger begins by generating a signing and verification key (vk, sk)← KeyGen(1λ) and
sends (vk, sk) to A.

2. The adversary A can then submit (adaptive) queries to the challenger where each query
consists of a public key pk, a message x ∈ X , and a signature σ = (σpk, σm). On each
query, the challenger first checks that Verify(pk, vk, x, σ) = 1. If this is not the case, then the
challenger ignores the query and replies with ⊥. Otherwise, the challenger proceeds as follows:

• If b = 0, the challenger evaluates σ∗ ← Hide(vk, x, σ), and sends σ∗ to A.

• If b = 1, the challenger computes σ∗ ← S(pk, vk, sk, x, σpk). It sends σ∗ to A.

3. Finally, A outputs a bit b′ ∈ {0, 1}, which is also the output of the experiment.

We say that a homomorphic signature scheme ΠHS satisfies statistical context-hiding against an
honest signer if there exists an efficient simulator S such that for all (computationally-unbounded)
adversaries A, ∣∣Pr[Exptch-honestA,S,ΠHS

(λ, 0) = 1]− Pr[Exptch-honestA,S,ΠHS
(λ, 1) = 1]

∣∣ = negl(λ).

Context-hiding against malicious signers. Typically, context-hiding is defined with respect to
an honest signer that generates the signing and verification keys using the honest key-generation
algorithm KeyGen. However, when constructing blind homomorphic signatures (Section 5) with
security against malicious signers, the assumption that the keys are correctly generated no longer
makes sense. Hence, we need a stronger security property that context-hiding holds even if the
signing and verification keys for the homomorphic signature scheme are maliciously constructed.

Definition 3.8 does not satisfy this stronger notion of context-hiding because the challenger
samples (vk, sk) using the honest KeyGen algorithm, and the simulator is provided the (honestly-
generated) signing key sk. The natural way to extend Definition 3.8 to achieve security against
malicious signers is to allow the adversary to choose the verification key vk and signing key sk.
However, this is too restrictive because the adversary could potentially cook up signatures that
verify under vk, and yet, there is no natural notion of a signing key. To circumvent this issue, we
introduce a stronger notion of context-hiding that holds against any party with the capability to sign
messages. More concretely, we require the existence of a simulator that can extract a simulation

16

trapdoor td from any admissible set of valid message-signature pairs. This trapdoor information td
replaces the signing key sk as input to the simulator.

In our construction of homomorphic signatures (Construction 3.11), we say that a pair of
messages (x̃0, σ̃0) and (x̃1, σ̃1) is admissible if x̃0 6= x̃1 and σ̃0 and σ̃1 are valid signatures of x̃0

and x̃1, respectively (with the same public components). Intuitively, our definition captures the
fact that context-hiding holds against any signer, as long as they are able to produce or forge valid
signatures on distinct messages x̃0 and x̃1 under some verification key vk. Note that this definition
subsumes Definition 3.8, since any signer with an honestly-generated signing key can sign arbitrary
messages of its choosing.

Definition 3.9 (Context-Hiding). Fix a security parameter λ. Let ΠHS = (PrmsGen,KeyGen,Sign,
PrmsEval, SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a decomposable homomorphic signature
scheme (Definition 3.7) with message space X , message length `, and function class C = {Cλ}λ∈N,
where each Cλ is a collection of functions from X ` to X . For a bit b ∈ {0, 1}, a simulator S =
(SExt,SGen), and an adversary A, we define the context-hiding security experiment ExptchA,S,ΠHS

(λ, b)
as follows:

1. At the start of the experiment, A submits a public key pk, a verification key vk, and two
message-signature pairs (x̃0, σ̃0), (x̃1, σ̃1) where x̃0, x̃1 ∈ X and x̃0 6= x̃1 to the challenger.

2. The challenger parses the signatures as σ̃0 = (σ̃pk0 , σ̃
m
0) and σ̃1 = (σ̃pk1 , σ̃

m
1), and checks that

x̃0 6= x̃1, σ̃pk0 = σ̃pk1 , and that Verify(pk, vk, x̃0, σ̃0) = 1 = Verify(pk, vk, x̃1, σ̃1). If this is not the
case, then the experiment halts with output 0. Otherwise, the challenger invokes the simulator
td← SExt(pk, vk, (x̃0, σ̃0), (x̃1, σ̃1)).

3. The adversary A can then submit (adaptive) queries to the challenger where each query
consists of a public key pk′, a message x ∈ X , and a signature σ = (σpk, σm). For each query,
the challenger checks that Verify(pk′, vk, x, σ) = 1. If this is not the case, then the challenger
ignores the query and replies with ⊥. Otherwise, it proceeds as follows:

• If b = 0, the challenger evaluates σ∗ ← Hide
(
vk, x, (σpk, σm)

)
, and sends σ∗ to A.

• If b = 1, the challenger computes σ∗ ← SGen(pk′, vk, td, x, σpk). It provides σ∗ to A.

4. Finally, A outputs a bit b′ ∈ {0, 1}, which is also the output of the experiment.

We say that a homomorphic signature scheme ΠHS satisfies statistical context-hiding if there exists
an efficient simulator S = (SExt,SGen) such that for all (computationally-unbounded) adversaries A,∣∣Pr[ExptchA,S,ΠHS

(λ, 0) = 1]− Pr[ExptchA,S,ΠHS
(λ, 1) = 1]

∣∣ = negl(λ).

Compactness. The final property that we require from a homomorphic signature scheme is
compactness. Roughly speaking, compactness requires that given a message-signature pair (~x, ~σ),
the size of the signature obtained from homomorphically evaluating a function C on ~σ depends only
on the size of the output message |C(~x)| (and the security parameter) and is independent of the size
of the original message |~x|.

Definition 3.10 (Compactness). Fix a security parameter λ. Let ΠHS = (PrmsGen,KeyGen,
Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a homomorphic signature scheme with

17

message space X , message length `, and function class C = {Cλ}λ∈N, where each Cλ is a collection
of Boolean circuits from X ` to X of depth at most d = d(λ). We say that ΠHS is compact
if there exists a universal polynomial poly(·) such that for all λ ∈ N, messages ~x ∈ X `, and
functions C ∈ Cλ, and setting

—

pk ← PrmsGen(1λ, 1`), (vk, sk) ← KeyGen(1λ), ~σ ← Sign(
—

pk, sk, ~x),
and σ ← SigEval(C,

—

pk, ~x, ~σ), we have that |σ| ≤ poly(λ, d). In particular, the size of the evaluated
signature |σ| depends only on the depth of the circuit C, and not on the message length `.

3.1 Homomorphic Signatures Construction

In this section, we show that the [GVW15] homomorphic signature construction is decomposable
in the sense of Definition 3.7 and in addition, satisfies our stronger notion of context-hiding
(Definition 3.9). We start with a description of a simpler variant of the [GVW15] construction that
satisfies selective unforgeability (Remark 3.6), and show that it satisfies context-hiding (against
malicious signers). Although it is possible to directly construct a homomorphic signature scheme
that satisfies adaptive security, the simpler variant better demonstrates the main ideas of the
construction. In Appendix B, we modify the construction and show that it satisfies both adaptive
unforgeability and strong context-hiding. (Corollary B.6).

Construction 3.11 (Selectively-Secure Homomorphic Signature [GVW15, adapted]). Fix a security
parameter λ and a message length ` = poly(λ). Let C = {Cλ}λ∈N be a function class where
each Cλ is a collection of Boolean circuits of depth at most d = d(λ) from {0, 1}` to {0, 1}. In
our description, we use lattice trapdoors and the GSW homomorphic operations described in
Section 2.1. For lattice parameters n, m, q, and norm bounds βini, βeval, βhide we construct a
decomposable homomorphic signature scheme ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,
Hide,Verify,VerifyFresh,VerifyHide) with message space X = {0, 1}, message length `, and function
class C as follows:

• PrmsGen(1λ, 1`) → # —

pk: On input the security parameter λ and the message length `, the
parameter-generation algorithm samples matrices V1, . . . ,V` ←R Zn×mq . It sets pki = Vi for

i ∈ [`] and returns the public keys
—

pk = (pk1, . . . , pk`).

• KeyGen(1λ) → (vk, sk): On input the security parameter λ, the key-generation algorithm
samples a lattice trapdoor (A, td)← TrapGen(1λ). It sets vk = A and sk = (A, td).

• Sign(pki, sk, xi) → σi: The signing algorithm computes σpki ← SignPK(pki, sk) and σmi ←
SignM(pki, sk, xi, σ

pk
i) where the algorithms SignPK and SignM are defined as follows:

– SignPK(pki, sk)→ σpki : The SignPK algorithm outputs the empty string σpki = ε.

– SignM(pki, sk, xi, σ
pk
i)→ σmi : On input a public key pki = Vi, a signing key sk = (A, td),

a message x ∈ {0, 1}, and the public signature component σpki , the SignM algorithm
samples a preimage Ui ← SamplePre(A,Vi − xi ·G, td) and outputs σmi = Ui.

Finally, the signing algorithm outputs the signature σi = (σpki , σ
m
i).

• PrmsEval(C,
—

pk′))→ pkC : On input a Boolean circuit C : {0, 1}` → {0, 1} and a collection of
public keys

—

pk′ = (pk′1, . . . , pk′i) where pk′i = V′i for i ∈ [`], the parameter-evaluation algorithm
outputs the evaluated public key pkC = VC ← EvalPK(V′1, . . . ,V

′
`, C).

18

• SigEval(C,
—

pk′, ~x, ~σ) → σ: The signature-evaluation algorithm first parses ~σ = (~σpk, ~σm).
Then, it computes σpk ← SigEvalPK(C,

—

pk′, ~σpk) and σm ← SigEvalM(C,
—

pk′, ~x, ~σ), where the
algorithms SigEvalPK and SigEvalM are defined as follows:

– SigEvalPK(C,
—

pk′, ~σpk)→ σpk: The SigEvalPK algorithm outputs the empty string σpk = ε.

– SigEvalM(C,
—

pk′, ~x, ~σ) → σm: On input a Boolean circuit C : {0, 1}` → {0, 1}, a set
of public keys

—

pk′ = (pk′1, . . . , pk′`), messages ~x = (x1, . . . , x`), and signatures ~σ =

(σ1, . . . , σ`), the SigEvalM algorithm first parses pk′i = V′i and σi = (σpki , σ
m
i) = (ε,Ui)

for all i ∈ [`]. Then, it outputs σm = UC ← EvalU
(
(V′1, x1,U1), . . . , (V′`, x`,U`), C

)
.

Finally, it outputs the signature σ = (σpk, σm).

• Hide(vk, x, σ)→ σ∗: On input a verification key vk = A, a message x ∈ {0, 1}, and a signature
σ = (ε,U), the hide algorithm samples and outputs a signature

σ∗ = u← SampleRight(A,AU + (2x− 1) ·G,U,0, βhide).

• Verify(pk, vk, x, σ) → {0, 1}: On input a public key pk = V, a verification key vk = A, a
message x ∈ X , and a signature σ = (ε,U), the verification algorithm first checks if A is
a rank-n matrix and outputs 0 if this is the case. Then, it outputs 1 if ‖U‖ ≤ βeval and
AU + x ·G = V and 0 otherwise.

• VerifyFresh(pk, vk, x, σ) → {0, 1}: On input a public key pk = V, a verification key vk = A,
a message x ∈ X and a signature σ = (ε,U), the fresh verification algorithm first checks if
A is a rank-n matrix and outputs 0 if this is the case. Then, it outputs 1 if ‖U‖ ≤ βini and
AU + x ·G = V and 0 otherwise.

• VerifyHide(pkC , vk, x, σ∗)→ {0, 1}: On input a public key pkC = V, a verification key vk = A,
a message x ∈ {0, 1}, and a signature σ∗ = u, the hide-verification algorithm first checks if A
is a rank-n matrix and outputs 0 if this is the case. Then, it checks that ‖u‖ ≤ βhide and that
[A | V + (x− 1) ·G] ·u = 0, and accepts if both of these conditions hold. Otherwise, it rejects.

We now state and prove the correctness and security theorems for Construction 3.11.

Theorem 3.12 (Correctness). Fix a security parameter λ, lattice parameters n,m, q, norm bounds

βini, βeval, βhide, and a depth bound d. Suppose m = O(n log q), βini ≥ O(n
√

log q), βeval ≥ βini · 2Õ(d),
βhide ≥ βeval · ω(m

√
logm), and q ≥ βhide. Then, ΠHS from Construction 3.11 satisfies sign-

ing correctness (Definition 3.2), evaluation correctness (Definition 3.3), and hiding correctness
(Definition 3.4).

Proof. Signing correctness follows from Theorem 2.3, evaluation correctness follows from Theorem 2.5,
and hiding correctness follows from Theorem 2.4.

Theorem 3.13 (Unforgeability). Fix a security parameter λ, lattice parameters n,m, q, norm bounds
βini, βeval, βhide, and a depth bound d. Suppose m = O(n log q). Then, under the SIS(n,m, q, βeval)
assumption, ΠHS in Construction 3.11 satisfies selective unforgeability (Definition 3.5, Remark 3.6).

Proof. Follows from [GVW15, §6].

19

Theorem 3.14 (Context-Hiding). Fix a security parameter λ, lattice parameters n,m, q, norm
bounds βini, βeval, βhide, and a depth bound d. Suppose m = O(n log q), βhide ≥ 2 · βeval · ω(m

√
logm),

and q ≥ βhide. Then, ΠHS in Construction 3.11 satisfies context-hiding security (Definition 3.9).

Proof of Theorem 3.14. We construct a simulator S = (SExt,SGen) as follows:

• SExt(pk, vk, (x̃0, σ̃0), (x̃1, σ̃1)): On input a public key pk, a verification key vk, and two message-
signature pairs (x̃0, σ̃0), (x̃1, σ̃1), the simulator first parses σ̃0 = (ε, Ũ0), σ̃1 = (ε, Ũ1), and
then outputs the simulation trapdoor td = Ũ0 − Ũ1.

• SGen(pk, vk, td, x, σpk): On input a public key pk = V, a verification key vk = A, a trapdoor
td = Ũ, a message x ∈ {0, 1}, and a message-independent component σpk, the simulator
computes u← SampleLeft(A,V + (x− 1) ·G, Ũ,0, β∗), and returns u.

We now show that for any adversary A, the experiments ExptchA,S,ΠHS
(λ, 0) and ExptchA,S,ΠHS

(λ, 1) are
statistically indistinguishable. Consider the context-hiding experiment:

• Let pk = V, vk = A, and (x̃0, σ̃0), (x̃1, σ̃1) be the values that A sends to the challenger. Write
σ̃0 = (ε, Ũ0) and σ̃1 = (ε, Ũ1). Without loss of generality, we can assume that A is a rank-n
matrix, x̃0 6= x̃1, and Verify(pk, vk, x̃0, σ̃0) = 1 = Verify(pk, vk, x̃1, σ̃1). Otherwise, the output
is always 0 in both experiments. Since x̃0, x̃1 ∈ {0, 1} and x̃0 6= x̃1, we can assume without
loss of generality that x̃0 = 0 and x̃1 = 1. Moreover, since σ̃0 and σ̃1 are valid signatures,
‖Ũ0‖, ‖Ũ1‖ ≤ βeval. This means that Ũ = Ũ0 − Ũ1 has bounded norm ‖Ũ‖ ≤ 2 · βeval, and
moreover, that AŨ = G, so td = Ũ is a G-trapdoor for A (Theorem 2.4).

• Let pk′ = V′, x ∈ {0, 1}, σ = (ε,U) be a query that A makes to the challenger. If
AU + x ·G 6= V′ or ‖U‖ > βeval, then the challenger ignores the query (and replies with ⊥)
in both experiments. Therefore, assume that AU + x ·G = V′ and ‖U‖ ≤ βeval. Then the
challenger proceeds as follows:

– In ExptchA,S,ΠHS
(λ, 0), the challenger’s response is u ← SampleRight(A,AU + (2x − 1) ·

G,U,0, βhide).

– In ExptchA,S,ΠHS
(λ, 1), the challenger responds with u← SGen(pk′, vk, td, x, σpk), which is

equivalent to u← SampleLeft(A,V′ + (x− 1) ·G, Ũ,0, βhide).

Since V′+(x−1)·G = AU+(2x−1)·G, by Theorem 2.4, as long as max(‖U‖, ‖Ũ‖)·ω(m
√

logm) ≤
βhide ≤ q the challenger’s responses to all of the queries in the two experiments are statistically
indistinguishable. From above, ‖Ũ‖ ≤ 2 · βeval and ‖U‖ ≤ βeval, and the claim follows.

Remark 3.15 (Weak Context-Hiding). Theorem 3.14 implies that the homomorphic signature
scheme ΠHS in Construction 3.11 also satisfies context-hiding security against honest signers
(Definition 3.8). Specifically, Theorem 3.14 guarantees the existence of a simulator S = (SExt,SGen)
that can be used to simulate the signatures generated by the Hide algorithm. In the context-hiding
security game against honest signers, the signing key sk and verification key vk are generated honestly,
and the context-hiding simulator Shon is given both vk and sk. Given sk, the simulator Shon can
choose an arbitrary public key pk = V←R Zn×mq , and construct honest signatures σ̃0 ← Sign(pk, sk, 0)

and σ̃1 ← Sign(pk, sk, 1). Simulator Shon can then invoke SExt on (pk, vk, (0, σ̃0), (1, σ̃1)) to obtain the
simulation trapdoor td, and then use SGen to simulate the Hide algorithm. Thus, we can construct
a simulator Shon for the weak context-hiding security game using the simulator S guaranteed by
Theorem 3.14.

20

Theorem 3.16 (Compactness). Fix a security parameter λ, lattice parameters n,m, q, norm bounds
βini, βeval, βhide, and a depth bound d. Suppose n = poly(λ), m = O(n log q), and q = 2poly(λ,d). Then,
ΠHS in Construction 3.11 satisfies compactness (Definition 3.10).

Proof. Follows from Theorem 2.5. Specifically, the signature output by SigEval is a matrix U ∈ Zm×mq

which has size m2 log q = poly(λ, d).

4 Preprocessing NIZKs from Homomorphic Signatures

In this section, we begin by formally defining the notion of a non-interactive zero-knowledge
argument in the preprocessing model (i.e., “preprocessing NIZKs”). This notion was first introduced
by De Santis et al. [DMP88], who also gave the first candidate construction of a preprocessing NIZK
from one-way functions. Multiple works have since proposed additional candidates of preprocessing
NIZKs from one-way functions [LS90, Dam92, IKOS09] or oblivious transfer [KMO89]. However,
all of these constructions are single-theorem: the proving or verification key cannot be reused for
multiple theorems without compromising either soundness or zero-knowledge. We provide a more
detailed discussion of existing preprocessing NIZK constructions in Remark 4.9.

Definition 4.1 (NIZK Arguments in the Preprocessing Model). Let R be an NP relation, and let
L be its corresponding language. A non-interactive zero-knowledge (NIZK) argument for L in the
preprocessing model consists of a tuple of three algorithms ΠPPNIZK = (Setup,Prove,Verify) with
the following properties:

• Setup(1λ)→ (kP , kV): On input the security parameter λ, the setup algorithm (implemented
in a “preprocessing” step) outputs a proving key kP and a verification key kV .

• Prove(kP , x, w) → π: On input the proving key kP , a statement x, and a witness w, the
prover’s algorithm outputs a proof π.

• Verify(kV , x, π)→ {0, 1}: On input the verification key kV , a statement x, and a proof π, the
verifier either accepts (with output 1) or rejects (with output 0).

Moreover, ΠPPNIZK should satisfy the following properties:

• Completeness: For all x,w where R(x,w) = 1, if we take (kP , kV)← Setup(1λ);

Pr[π ← Prove(kP , x, w) : Verify(kV , x, π) = 1] = 1.

• Soundness: For all efficient adversaries A, if we take (kP , kV)← Setup(1λ), then

Pr[(x, π)← AVerify(kV ,·,·)(kP) : x /∈ L ∧ Verify(kV , x, π) = 1] = negl(λ).

• Zero-Knowledge: For all efficient adversaries A, there exists an efficient simulator S =
(S1,S2) such that if we take (kP , kV)← Setup(1λ) and τV ← S1(1λ, kV), we have that∣∣∣Pr[AO0(kP ,·,·)(kV) = 1]− Pr[AO1(kV ,τV ,·,·)(kV) = 1]

∣∣∣ = negl(λ),

where the oracle O0(kP , x, w) outputs Prove(kP , x, w) if R(x,w) = 1 and ⊥ otherwise, and
the oracle O1(kV , τV , x, w) outputs S2(kV , τV , x) if R(x,w) = 1 and ⊥ otherwise.

21

Remark 4.2 (Comparison to NIZKs in the CRS Model). Our zero-knowledge definition in Defini-
tion 4.1 does not allow the simulator to choose the verification state kV . We can also consider a
slightly weaker notion of zero-knowledge where the simulator also chooses the verification state:

• Zero-Knowledge: For all efficient adversaries A, there exists an efficient simulator S =
(S1,S2) such that if we take (kP , kV)← Setup(1λ) and (k̃V , τ̃V)← S1(1λ), we have that∣∣∣Pr[AProve(kP ,·,·)(kV) = 1]− Pr[AO(k̃V ,τ̃V ,·,·)(k̃V) = 1]

∣∣∣ = negl(λ),

where the oracle O(k̃V , τ̃V , x, w) outputs S2(k̃V , τ̃V , x) if R(x,w) = 1 and ⊥ otherwise.

We note that this definition of zero-knowledge captures the standard notion of NIZK arguments in
the common reference string (CRS) model. Specifically, in the CRS model, the Setup algorithm
outputs a single CRS σ. The proving and verification keys are both defined to be σ.

Preprocessing NIZKs from homomorphic signatures. As described in Section 1.1, we can
combine a homomorphic signature scheme (for general circuits) with any CPA-secure symmetric
encryption scheme to obtain a preprocessing NIZK for general NP languages. We give our con-
struction and security analysis below. Combining the lattice-based construction of homomorphic
signatures (Construction 3.11) with Fact 2.2, we obtain the first multi-theorem preprocessing NIZK
from standard lattice assumptions (Corollary 4.5). In Remark 4.6, we note that a variant of
Construction 4.3 also gives a publicly-verifiable preprocessing NIZK.

Construction 4.3 (Preprocessing NIZKs from Homomorphic Signatures). Fix a security parameter
λ, and define the following quantities:

• Let R : {0, 1}n × {0, 1}m → {0, 1} be an NP relation and L be its corresponding language.

• Let ΠSE = (SE.KeyGen,SE.Encrypt,SE.Decrypt) be a symmetric encryption scheme with mes-
sage space {0, 1}m and secret-key space {0, 1}ρ.

• For a message x ∈ {0, 1}n and ciphertext ct from the ciphertext space of ΠSE, define the
function fx,ct(kSE) := R(x,SE.Decrypt(kSE, ct)).

• Let ΠHS = (PrmsGen,KeyGen, Sign,PrmsEval, SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a
homomorphic signature scheme with message space {0, 1}, message length ρ, and function
class C that includes all functions of the form fx,ct.

6

We construct a preprocessing NIZK argument ΠNIZK = (Setup,Prove,Verify) as follows:

• Setup(1λ) → (kP , kV): First, generate a secret key kSE ← SE.KeyGen(1λ). Next, generate
—

pkHS ← PrmsGen(1λ, 1ρ) and a signing-verification key-pair (vkHS, skHS)← KeyGen(1λ). Next,
sign the symmetric key ~σk ← Sign(

—

pkHS, skHS, kSE) and output

kP = (kSE,
—

pkHS, vkHS, ~σk) and kV = (
—

pkHS, vkHS, skHS).

6Since it is more natural to view x ∈ {0, 1}n as a string rather than a vector, we drop the vector notation ~x and
simply write x in this section.

22

• Prove(kP , x, w)→ π: If R(x,w) = 0, output ⊥. Otherwise, parse kP = (kSE,
—

pkHS, vkHS, ~σk).
Let ct ← SE.Encrypt(kSE, w), and Cx,ct be the circuit that computes the function fx,ct de-

fined above. Compute the signature σ′x,ct ← SigEval(Cx,ct,
—

pkHS, kSE, ~σk) and then σ∗x,ct ←
Hide(vkHS, 1, σ

′
x,ct). It outputs the proof π = (ct, σ∗x,ct).

• Verify(kV , x, π) → {0, 1}: Parse kV = (
—

pkHS, vkHS, skHS) and π = (ct, σ∗x,ct). Let Cx,ct be the

circuit that computes fx,ct defined above. Then, compute pkx,ct ← PrmsEval(Cx,ct,
—

pkHS), and
output VerifyHide(pkx,ct, vkHS, 1, σ

∗
x,ct).

Theorem 4.4 (Preprocessing NIZKs from Homomorphic Signatures). Let λ be a security parameter
and R be an NP relation (and let L be its corresponding language). Let ΠNIZK be the NIZK
argument in the preprocessing model from Construction 4.3 (instantiated with a symmetric encryption
scheme ΠSE and a homomorphic signature scheme ΠHS). If ΠSE is CPA-secure and ΠHS satisfies
evaluation correctness (Definition 3.3), hiding correctness (Definition 3.4), selective unforgeability
(Definition 3.5, Remark 3.6), and context-hiding against honest signers (Definition 3.8), then ΠNIZK

is a NIZK argument for R in the preprocessing model.

We give the proof of Theorem 4.4 in Appendix C. Combining Construction 4.3 with the homomorphic
signature construction ΠHS from Construction 3.11 and any LWE-based CPA-secure encryption
scheme (Fact 2.2), we have the following corollary.

Corollary 4.5 (Preprocessing NIZKs from Lattices). Under the LWE assumption, there exists a
multi-theorem preprocessing NIZK for NP.

Remark 4.6 (Publicly-Verifiable Preprocessing NIZK). Observe that the verification algorithm
in Construction 4.3 does not depend on the signing key skHS of the signature scheme. Thus, we
can consider a variant of Construction 4.3 where the verification key does not contain skHS, and
thus, the verification state can be made public. This does not compromise soundness because
the prover’s state already includes the other components of the verification key. However, this
publicly-verifiable version of the scheme does not satisfy zero-knowledge according to the strong
notion of zero-knowledge in Definition 4.1. This is because without the signing key, the simulator
is no longer able to simulate the signatures in the simulated proofs. However, if we consider the
weaker notion of zero-knowledge from Remark 4.2 where the simulator chooses the verification key
for the preprocessing NIZK, then the publicly-verifiable version of the scheme is provably secure.
Notably, when the simulator constructs the verification key, it also chooses (and stores) the signing
key for the homomorphic signature scheme. This enables the simulator to simulate signatures when
generating the proofs. The resulting construction is a publicly-verifiable preprocessing NIZK.

Remark 4.7 (Argument Length Approaching the Witness Size). The proofs in our preprocessing
NIZK argument from Construction 4.3 consists of an encryption ct of the witness and a homomorphic
signature σ with respect to a circuit C that implements the decryption function of the encryption
scheme and the NP relation R. Suppose the relation R can be implemented by a Boolean circuit of
depth d. Using CPA-secure encryption with additive overhead (Fact 2.2), |ct| = |w|+ poly(λ), where
|w| is the length of a witness to R. If the homomorphic signature is compact (Definition 3.10),
then |σ| = poly(λ, d′) where d′ is a bound on the depth of the circuit C. Since the decryption
function can be implemented by a circuit of depth poly(λ), we have that d′ = poly(d, λ). This means
that the overall size of the arguments in our candidate is |w|+ poly(λ, d). The overhead (on top

23

of the NP witness) is additive in the security parameter and the depth of the NP relation. This
is asymptotically shorter than the length of the proofs in NIZK constructions based on trapdoor
permutations or pairings [FLS90, DDO+01, GOS06, Gro10], where the dependence is on the size
of the circuit computing R, and the overhead is multiplicative in the security parameter. Thus,
our NIZK candidate gives a construction where the argument size approaches the witness length.
Previously, Gentry et al. [GGI+15] gave a generic way to achieve these asymptotics by combining
NIZKs with FHE. The advantage of our approach is that we only rely on lattice assumptions, while
the Gentry et al. [GGI+15] compiler additionally assumes the existence of a NIZK scheme (which
prior to this work, did not follow from standard lattice assumptions).

Remark 4.8 (Arguments with Common Witness). The proofs in our preprocessing NIZK arguments
from Construction 4.3 consists of an encryption of the witness together with a signature. This means
that if the prover uses the same witness to prove multiple (distinct) statements, then the prover does
not need to include a fresh encryption of its witness with every proof. It can send the encrypted
witness once and then give multiple signatures with respect to the same encrypted witness. In
particular, if a prover uses the same witness w to prove m statements, the total size of the proof is
|w|+m ·poly(λ, d), where d is a bound on the depth of the (possibly different) NP relation associated
with the m statements. Effectively, the additional overhead of proving multiple statements using a
common witness is independent of the witness size, and thus, the cost of transmitting the encrypted
witness can be amortized across multiple proofs. We leverage this observation to implement a succinct
version of the classic Goldreich-Micali-Wigderson compiler [GMW86, GMW87] in Section 6.1. We
note that this amortization is also possible if we first apply the FHE-based transformation of
Gentry et al. [GGI+15] to any NIZK construction. In our case, our NIZK candidate naturally
satisfies this property.

Remark 4.9 (Preprocessing NIZKs from Weaker Assumptions). By definition, any NIZK argument
(or proof) system in the CRS model is also a preprocessing NIZK (according to the notion of
zero-knowledge from Remark 4.2). In the CRS model (and without random oracles), there are
several main families of assumptions known to imply NIZKs: number-theoretic conjectures such
as quadratic residuosity [BFM88, DMP87, BDMP91],7 trapdoor permutations [FLS90, DDO+01,
Gro10], pairings [GOS06], or indistinguishability obfuscation [SW14]. In the designated-verifier
setting, constructions are also known from additively homomorphic encryption [CD04, DFN06,
CG15]. A number of works have also studied NIZKs in the preprocessing model, and several
constructions have been proposed from one-way functions [DMP88, LS90, Dam92, IKOS09] and
oblivious transfer [KMO89]. Since lattice-based assumptions imply one-way functions [Ajt96, Reg05],
oblivious transfer [PVW08], and homomorphic encryption [Reg05, Gen09], one might think that we
can already construct NIZKs in the preprocessing model from standard lattice assumptions. To our
knowledge, this is not the case:

• The NIZK constructions of [DMP88, LS90, Dam92] are single-theorem NIZKs, and in particular,
zero-knowledge does not hold if the prover uses the same proving key to prove multiple
statements. In these constructions, the proving key contains secret values, and each proof
reveals a subset of the prover’s secret values. As a result, the verifier can combine multiple
proofs together to learn additional information about each statement than it could have

7Some of these schemes [BFM88, DMP87] are “bounded” in the sense that the prover can only prove a small number
of theorems whose total size is bounded by the length of the CRS.

24

learned had it only seen a single proof. Thus, the constructions in [DMP88, LS90, Dam92] do
not directly give a multi-theorem NIZK.

A natural question to ask is whether we can use the transformation by Feige et al. [FLS90]
who showed how to generically boost a NIZK (in the CRS model) with single-theorem zero-
knowledge to obtain a NIZK with multi-theorem zero-knowledge. The answer turns out to be
negative: the [FLS90] transformation critically relies on the fact that the prover algorithm
is publicly computable, or equivalently, that the prover algorithm does not depend on any
secrets.8 This is the case in the CRS model, since the prover algorithm depends only on
the CRS, but in the preprocessing model, the prover’s algorithm can depend on a (secret)
proving key kP . In the case of [DMP88, LS90, Dam92], the proving key must be kept private
for zero-knowledge. Consequently, the preprocessing NIZKs of [DMP88, LS90, Dam92] do not
give a general multi-theorem NIZK in the preprocessing model.

• The (preprocessing) NIZK constructions based on oblivious transfer [KMO89], the “MPC-
in-the-head” paradigm [IKOS09], and the ones based on homomorphic encryption [CD04,
DFN06, CG15] are designated-verifier, and in particular, are vulnerable to the “verifier
rejection” problem. Specifically, soundness is compromised if the prover can learn the verifier’s
response to multiple adaptively-chosen statements and proofs. For instance, in the case
of [KMO89], an oblivious transfer protocol is used to hide the verifier’s challenge bits; namely,
the verifier’s challenge message is fixed during the preprocessing, which means the verifier
uses the same challenge to verify every proof. A prover that has access to a proof-verification
oracle is able to reconstruct the verifier’s challenge bit-by-bit and compromise soundness of
the resulting NIZK construction. A similar approach is taken in the preprocessing NIZK
construction of [IKOS09].

From the above discussion, the only candidates of general multi-theorem NIZKs in the preprocessing
model are the same as those in the CRS model. Thus, this work provides the first candidate
construction of a multi-theorem NIZK in the preprocessing model from standard lattice assumptions.
It remains an open problem to construct multi-theorem NIZKs from standard lattice assumptions
in the standard CRS model.

5 Blind Homomorphic Signatures

One limitation of preprocessing NIZKs is that we require a trusted setup to generate the proving and
verification keys. One solution is to have the prover and the verifier run a (malicious-secure) two-party
computation protocol (e.g., [LP07]) to generate the proving and verification keys. However, generic
MPC protocols are often costly and require making non-black-box use of the underlying homomorphic
signature scheme. In this section, we describe how this step can be efficiently implemented using
a new primitive called blind homomorphic signatures. We formalize our notion in the model of
universal composability [Can01]. This has the additional advantage of allowing us to realize the
stronger notion of a preprocessing universally-composable NIZK (UC-NIZK) from standard lattice

8At a high-level, the proof in [FLS90] proceeds in two steps: first show that single-theorem zero knowledge implies
single-theorem witness indistinguishability, and then that single-theorem witness indistinguishability implies multi-
theorem witness indistinguishability. The second step relies on a hybrid argument, which requires that it be possible
to publicly run the prover algorithm. This step does not go through if the prover algorithm takes in a secret state
unknown to the verifier.

25

assumptions. We give our UC-NIZK construction and then describe several applications to boosting
the security of MPC in Section 6. We refer to Appendix A for a review of the UC model.

We now define the ideal blind homomorphic signature functionality Fbhs. Our definition builds
upon existing definitions of the ideal signature functionality Fsig by Canetti [Can04] and the ideal
blind signature functionality Fblsig by Fischlin [Fis06]. To simplify the presentation, we define the
functionality in the two-party setting, where there is a special signing party (denoted S) and a single
receiver who obtains the signature (denoted R). While this is a simpler model than the multi-party
setting considered in [Can04, Fis06], it suffices for the applications we describe in this work.

Ideal signature functionalities. The Fsig functionality from [Can04] essentially provides a
“registry service” where a distinguished party (the signer) is able to register message-signature
pairs. Moreover, any party that possesses the verification key can check whether a particular
message-signature pair is registered (and thus, constitutes a valid signature). The ideal functionality
does not impose any restriction on the structure of the verification key or the legitimate signatures,
and allows the adversary to choose those values. In a blind signature scheme, the signing process is
replaced by an interactive protocol between the signer and the receiver, and the security requirement
is that the signer does not learn the message being signed. To model this, the Fblsig functionality
from [Fis06] asks the adversary to provide the description of a stateless algorithm IdealSign in
addition to the verification key to the ideal functionality Fblsig. For blind signing requests involving
an honest receiver, the ideal functionality uses IdealSign to generate the signatures. The message
that is signed (i.e., the input to IdealSign) is not disclosed to either the signer or the adversary. This
captures the intuitive requirement that the signer does not learn the message that is signed in a
blind signature scheme. Conversely, if a corrupt user makes a blind signing request, then the ideal
functionality asks the adversary to supply the signature that could result from such a request.

Capturing homomorphic operations. In a homomorphic signature scheme, a user possessing a
signature σ on a message x should be able to compute a function g on σ to obtain a new signature
σ∗ on the message g(x). In turn, the verification algorithm checks that σ∗ is a valid signature
on the value g(x) and importantly, that it is a valid signature with respect to the function g.
Namely, the signature is bound not only to the computed value g(x) but also to the function g.9 To
extend the ideal signature functionality to support homomorphic operations on signatures, we begin
by modifying the ideal functionality to maintain a mapping between function-message pairs and
signatures (rather than a mapping between messages and signatures). In this case, a fresh signature
σ (say, output by the blind signing protocol) on a message x would be viewed as a signature on
the function-message pair (fid, x), where fid here denotes the identity function. Then, if a user
subsequently computes a function g on σ, the resulting signature σ∗ should be viewed as a signature
on the new pair (g ◦ fid, g(x)) = (g, g(x)). In other words, in a homomorphic signature scheme,
signatures are bound to a function-message pair, rather than a single message.

Next, we introduce an additional signature-evaluation operation to the ideal functionality. There
are several properties we desire from our ideal functionality:

• The ideal signature functionality allows the adversary to decide the structure of the signatures,
so it is only natural that the adversary also decides the structure of the signatures output by
the signature evaluation procedure.

• Signature evaluation should be compatible with the blind signing process. Specifically,
the receiver should be able to compute on a signature it obtained from the blind signing

9If there is no binding between σ∗ and the function g, then we cannot define a meaningful notion of unforgeability.

26

functionality, and moreover, the computation (if requested by an honest receiver) should not
reveal to the adversary on which signature or message the computation was performed.

• The computed signature should also hide the input message. In particular, if the receiver
obtains a blind signature on a message x and later computes a signature σ∗ on g(x), the
signature σ∗ should not reveal the original (blind) message x.

To satisfy these properties, the ideal functionality asks the adversary to additionally provide the
description of a stateless signature evaluation algorithm IdealEval (in addition to IdealSign). The ideal
functionality uses IdealEval to generate the signatures when responding to evaluation queries. We
capture the third property (that the computed signatures hide the input message to the computation)
by setting the inputs to IdealEval to only include the function g that is computed and the output
value of the computation g(x). The input message x is not provided to IdealEval.

Under our definition, the signature evaluation functionality takes as input a function-message
pair (fid, x), a signature σ on (fid, x) (under the verification key vk of the signature scheme), and
a description of a function g (to compute on x). The output is a new signature σ∗ on the pair
(g, g(x)). That is, σ∗ is a signature on the value g(x) with respect to the function g. When the
evaluator is honest, the signature on (g, g(x)) is determined by IdealEval(g, g(x)) (without going
through the adversary). As discussed above, IdealEval only takes as input the function g and the
value g(x), and not the input; this means that the computed signature σ∗ hides all information
about x other than what is revealed by g(x). When the evaluator is corrupt, the adversary chooses
the signature on (g, g(x)), subject to basic consistency requirements.10 Once an evaluated signature
is generated, the functionality registers the new signature σ∗ on the pair (g, g(x)). Our definition
implicitly requires that homomorphic evaluation be non-interactive. Neither the adversary nor the
signer is notified or participates in the protocol.

Preventing selective failures. In our definition, the functionalities IdealSign and IdealEval must
either output ⊥ on all inputs, or output ⊥ on none of the inputs. This captures the property that
a malicious signer cannot mount a selective failure attack against an honest receiver, where the
function of whether the receiver obtains a signature or not in the blind signing protocol varies
depending on its input message. In the case of the blind signing protocol, we do allow a malicious
signer to cause the protocol to fail, but this failure event must be independent of the receiver’s
message. We capture this in the ideal functionality by allowing a corrupt signer to dictate whether
a blind signing execution completes successfully or not. However, the corrupt signer must decide
whether a given protocol invocation succeeds or fails independently of the receiver’s message.

Simplifications and generalizations. In defining our ideal blind homomorphic signature func-
tionality, we impose several restrictions to simplify the description and analysis. We describe these
briefly here, and note how we could extend the functionality to provide additional generality. Note
that all of the applications we consider (Section 6) only require the basic version of the functionality
(Figure 1), and not its generalized variants.

• One-time signatures. The ideal blind homomorphic signature functionality supports blind
signing of a single message. Namely, the ideal blind signing functionality only responds to
the first signing request from the receiver and ignores all subsequent requests. Moreover,
the ideal functionality only supports signature evaluation requests after a signature has been

10The adversary is not allowed to re-register a signature that was previously declared invalid (according to the
verification functionality) as a valid signature.

27

successfully issued by the ideal signing functionality. We capture this via a ready flag that is
only set at the conclusion of a successful signing operation. We can relax this single-signature
restriction, but at the cost of complicating the analysis.

• Single-hop evaluation. Our second restriction on the ideal blind homomorphic signature
functionality is we only consider “single-hop” homomorphic operations: that is, we only
allow homomorphic operations on fresh signatures. In the ideal functionality, we capture this
by having the signature evaluation functionality ignore all requests to compute on function-
message pairs (f, x) where f 6= fid is not the identity function. A more general definition would
also consider “multi-hop” evaluation where a party can perform arbitrarily many sequential
operations on a signature. The reason we present our definition in the simpler single-hop
setting is because existing constructions of homomorphic signatures [GVW15] (which we
leverage in our construction) do not support the multi-hop analog of our definition. This
is because under our definition, the ideal evaluation functionality essentially combines the
homomorphic evaluation with the context-hiding transformation in standard homomorphic
signature schemes. The current homomorphic signature candidate [GVW15] does not support
homomorphic computation after performing context-hiding, and so, cannot be used to realize
the more general “multi-hop” version of our functionality. For this reason, we give our
definition in the single-hop setting.

We give the formal specification of the ideal blind homomorphic signature functionality Fbhs in
Figure 1.

5.1 Constructing Blind Homomorphic Signatures

In Figure 2, we give the formal description of our blind homomorphic signature protocol Πbhs in the
F `,sot -hybrid model (Figure 6).11 Here, we provide a brief overview of the construction. As discussed
in Section 1.1, our construction combines homomorphic signatures with any UC-secure oblivious
transfer protocol [CLOS02]. The key-generation, signature-verification, and signature-evaluation
operations in Πbhs just correspond to running the underlying ΠHS algorithms.

The blind signing protocol is interactive and relies on OT. Since we use a bitwise homomorphic
signature scheme, a signature on an `-bit message consists of ` signatures, one for each bit of the
message. In the first step of the blind signing protocol, the signer constructs two signatures (one for
the bit 0 and one for the bit 1) for each bit position of the message. The receiver then requests
the signatures corresponding to the bits of its message using the OT protocol. Intuitively, the
OT protocol ensures that the signer does not learn which set of signatures the receiver requested
and the receiver only learns a single signature for each bit position. However, this basic scheme is
vulnerable to a “selective-failure” attack where the signer strategically generates invalid signatures
for certain bit positions of the message ~x. As a result, whether the receiver obtains a valid signature
on its entire message becomes correlated with its message itself. To prevent this selective-failure
attack, we use the standard technique of having the receiver first split its message ~x into a number
of random shares ~w1, . . . , ~wt where ~x =

⊕
i∈[t] ~wi. Instead of asking for a signature on ~x directly, it

instead asks for a signature on the shares ~w1, . . . , ~wt. Since the signatures on the shares ~w1, . . . , ~wt

11For the protocol description and its security proof, we use the vector notation ~x to represent the messages (in order
to be consistent with the homomorphic signature notation).

28

Functionality Fbhs

The ideal blind homomorphic signature functionality Fbhs runs with a signer S, a receiver R, and an
ideal adversary S. The functionality is parameterized by a message length ` and a function class H. We
write fid to denote the identity function.

Key Generation: Upon receiving a value (sid, keygen) from the signer S, send (sid, keygen) to the
adversary S. After receiving (sid, vkey, vk) from S, give (sid, vkey, vk) to S and record vk. Then, initialize
an empty list L, and a ready flag (initially unset).

Signature Generation: If a signature-generation request has already been processed, ignore the
request. Otherwise, upon receiving a value (sid, sign, vk, x) from the receiver R (for some message
x ∈ {0, 1}`), send (sid, signature) to S, and let (sid, IdealSign, IdealEval) be the response from S, where
IdealSign and IdealEval are functions that either output ⊥ on all inputs or on no inputs. Record the tuple
(IdealSign, IdealEval). If S is honest, send (sid, signature) to S to notify it that a signature request has
taken place. If S is corrupt, then send (sid, sig-success) to S and let (sid, b) be the response from S. If
b 6= 1, send (sid, signature, (fid, x),⊥) to R. Otherwise, proceed as follows:

• If R is honest, generate σ ← IdealSign(x), and send (sid, signature, (fid, x), σ) to R.

• If R is corrupt, send (sid, sign, x) to S to obtain (sid, signature, (fid, x), σ).

If (vk, (fid, x), σ, 0) ∈ L, abort. Otherwise, add (vk, (fid, x), σ, 1) to L, and if σ 6= ⊥, set the flag ready.

Signature Verification: Upon receiving an input (sid, verify, vk′, (f, x), σ) from a party P ∈ {S,R},
proceed as follows:

• Correctness: If f /∈ H, then set t = 0. If vk = vk′ and (vk, (f, x), σ, 1) ∈ L, then set t = 1.

• Unforgeability: Otherwise, if vk = vk′, the signer S has not been corrupted, and there does not exist
(vk, (fid, x

′), σ′, 1) ∈ L for some x′, σ′ where x = f(x′), then set t = 0, and add (vk, (f, x), σ, 0) to L.

• Consistency: Otherwise, if there is already an entry (vk′, (f, x), σ, t′) ∈ L for some t′, set t = t′.

• Otherwise, send (sid, verify, vk′, (f, x), σ) to the adversary S. After receiving (sid, verified, (f, x), σ, τ)
from S, set t = τ and add (vk′, (f, x), σ, τ) to L.

Send (sid, verified, (f, x), σ, t) to P. If t = 1, we say the signature successfully verified.

Signature Evaluation: If the ready flag has not been set, then ignore the request. Otherwise, upon
receiving an input (sid, eval, vk, g, (f, x), σ) from a party P ∈ {S,R}, ignore the request if f 6= fid. If
f = fid, then apply the signature verification procedure to (sid, verify, vk, (f, x), σ), but do not forward
the output to P. If the signature does not verify, then ignore the request. Otherwise, proceed as follows:

• If g /∈ H, then set σ∗ = ⊥.

• Otherwise, if P is honest, compute σ∗ ← IdealEval(g, g(x)).

• Otherwise, if P is corrupt, send (sid, eval, g, (f, x), σ) to S to obtain (sid, signature, (g, g(x)), σ∗).

Finally, send (sid, signature, (g, g(x)), σ∗) to P. If σ∗ 6= ⊥ and (vk, (g, g(x)), σ∗, 0) ∈ L, abort. If σ∗ 6= ⊥
and (vk, (g, g(x)), σ∗, 0) /∈ L, add (vk, (g, g(x)), σ∗, 1) to L.

Figure 1: The Fbhs functionality.

29

Protocol Πbhs in the F `,sot -Hybrid Model

Let λ be a security parameter and H be a class of functions from {0, 1}` to {0, 1}. For a parameter t ∈ N,
we define frecon : {0, 1}t` → {0, 1}` to be a share-reconstruction function (~w1, . . . , ~wt) 7→

⊕
i∈[t] ~wi. Let

ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,Hide,Verify,VerifyFresh,VerifyHide) be a decomposable
homomorphic signature scheme with message space {0, 1}, message length `, and function class H′ where
H′ contains all functions of the form f ◦ frecon where f ∈ H. We assume that the signer S and receiver R
has access to the ideal functionality F`,sot where s is the length of the signatures in ΠHS.

Key Generation: Upon receiving an input (sid, keygen), the signer S computes a set of public parameters
—

pk = {pki,j}i∈[t],j∈[`] ← PrmsGen(1λ, 1t`), and a pair of keys (vk′, sk) ← KeyGen(1λ). It stores (sid, sk),

sets vk = (
—

pk, vk′), and outputs (sid, vkey, vk). Finally, the signer initializes the ready flag (initially unset).

Signature Generation: If the signer or receiver has already processed a signature-generation request,
then they ignore the request. Otherwise, they proceed as follows:

• Receiver: On input (sid, sign, vk, ~x), where vk = (
—

pk, vk′) and ~x ∈ {0, 1}`, the receiver
chooses t shares ~w1, . . . , ~wt ←R {0, 1}` where

⊕
i∈[t] ~wi = ~x. Then, for each i ∈ [t], it sends(

(sid, i), receiver, ~wi
)

to F`,sot . It also initializes the ready flag (initially unset). Note that if vk is not

of the form (
—

pk, vk′) where pk′ = {pki,j}i∈[t],j∈[`], the receiver outputs (sid, signature, (fid, ~x),⊥).

• Signer: On input (sid, signature), the signer generates signatures σpk
i,j ← SignPK(pki,j , sk) and

σm
i,j,b ← SignM(pki,j , sk, b, σpk

i,j), and sets σi,j,b = (σpk
i,j , σ

m
i,j,b) for all i ∈ [t], j ∈ [`] and b ∈ {0, 1}.

The signer then sends
(
(sid, i), sender, {(σi,j,0, σi,j,1)}j∈[`]

)
to F`,sot . In addition, S sends the

message-independent components {σpk
i,j}i∈[t],j∈[`] to R, and sets the ready flag.

Let {σ̃pk
i,j}i∈[t],j∈[`] be the message-independent signatures that R receives from S, and {σ̃i,j}i∈[t],j∈[`] be

the signatures R receives from the different F`,sot invocations. For all i ∈ [t] and j ∈ [`], the receiver checks
that VerifyFresh(pki,j , vk′, wi,j , σ̃i,j) = 1, and moreover, that the message-independent component of σ̃i,j

matches σ̃pk
i,j it received from the signer. If any check fails, then R outputs (sid, signature, (fid, ~x),⊥).

Otherwise, it evaluates ~σ ← SigEval
(
frecon,

—

pk, (~w1, . . . , ~wt), (~σ1, . . . , ~σt)
)
, where ~σi = (σ̃i,1, . . . , σ̃i,`) for

all i ∈ [t]. The receiver also sets the ready flag and outputs
(
sid, signature, (fid, ~x), ~σ

)
.

Signature Verification: Upon receiving an input (sid, verify, vk, (f, ~x), ~σ) where vk = (
—

pk, vk′), party
P ∈ {S,R} first checks if f /∈ H and sets t = 0 if this is the case. Otherwise, it computes pkf ←
PrmsEval(f ◦ frecon,

—

pk). If f = fid, then it sets t ← Verify(pkf , vk′, ~x, ~σ), and if f 6= fid, it sets

t← VerifyHide(pkf , vk′, ~x, ~σ). It outputs (sid, verified, ~x, ~σ, t).

Signature Evaluation: If the ready flag has not been set, then ignore the request. Otherwise, upon
receiving an input (sid, eval, vk, g, (f, ~x), ~σ), party P ∈ {S,R} ignores the request if f 6= fid. If f = fid,
P runs the signature-verification procedure on input (sid, verify, vk, (f, ~x), ~σ) (but does not produce
an output). If the signature does not verify, then ignore the request. Otherwise, it parses vk =

(
—

pk, vk′), computes pkrecon ← PrmsEval(frecon,
—

pk) and computes σ′ ← SigEval(g, pkrecon, ~x, ~σ), and σ∗ ←
Hide(vk′, g(~x), σ′). It outputs (sid, signature, (g, g(~x)), σ∗).

Figure 2: The Πbhs protocol.

30

are homomorphic, the receiver can still compute a signature on the original message ~x and hence,
correctness of signing is preserved. Moreover, as we show in the proof of Theorem 5.1, unless the
malicious signer correctly guesses all of the shares of ~w1, . . . , ~wt the receiver chose, the probability
that the receiver aborts (due to receiving an invalid signature) is independent of ~x no matter how
the malicious signer generates the signatures. We formally summarize the security properties of
Πbhs in the following theorem, but defer its proof to Appendix D.

Theorem 5.1 (Blind Homomorphic Signatures). Fix a security parameter λ. Define parameters `,
t, and s as in Πbhs (Figure 2) where t = ω(log λ). Let H be a function class over {0, 1}` and let ΠHS

be a homomorphic signature scheme for the message space {0, 1} and function class H′ such that
for any function f ∈ H, we have f ◦ frecon ∈ H′, where frecon is the share-reconstruction function
from Figure 2. Suppose that ΠHS satisfies correctness (Definitions 3.2, 3.3, and 3.4), unforgeability
(Definition 3.5), and context-hiding (Definition 3.9). Then, the protocol Πbhs (when instantiated
with ΠHS) securely realizes the ideal functionality Fbhs (Figure 1) with respect to function class H
in the presence of (static) malicious adversaries in the F `,sot -hybrid model.

Blind homomorphic signatures from LWE. Combining the fully-secure homomorphic signature
scheme from Construction B.1 (based on [GVW15]) with the lattice-based UC-secure oblivious
transfer protocol from [PVW08], we obtain a blind homomorphic signature scheme from standard
lattice assumptions. We describe our instantiation below.

Fact 5.2 (Oblivious Transfer from LWE [PVW08]). Let λ be a security parameter and define
parameters `, s = poly(λ). Then, under the LWE assumption, there exists a protocol πot that

security realizes the ideal OT functionality F `,sot (Figure 6) in the presence of malicious adversaries
in the CRS model (and assuming static corruptions). Moreover, the protocol πot is round-optimal:
it consists of one message from the receiver to the signer and one from the receiver to the signer.

Corollary 5.3 (Blind Homomorphic Signatures from LWE). Let λ be a security parameter. Then,
under the LWE assumption, for all d = poly(λ), there exists a protocol πbhs that securely realizes Fbhs

for the class of depth-d Boolean circuits in the presence of malicious adversaries in the CRS model
(and assuming static corruptions). Moreover, the protocol πbhs satisfies the following properties:

• The key-generation, signature-verification, and signature-evaluation protocols are non-interactive.

• The signature-generation protocol (i.e., blind signing) is a two-round interactive protocol
between the signer and the receiver (one message each way).

• The length of a signature is poly(λ, d).

Proof. Let π′bhs be the protocol from Figure 2 instantiated with the homomorphic signature scheme
from Construction B.1. By Theorem 5.1 and Corollary B.6,12 protocol π′bhs securely realizes Fbhs in
the F `,sot -hybrid model, for some `, s = poly(λ). We let πbhs be the protocol obtained by instantiating

the functionality F `,sot in π′bhs with the protocol from Fact 5.2. Security of πbhs then follows from
the universal composition theorem (Theorem A.2) [Can01]. Key generation, signature verification,
and signature evaluation in π′bhs simply corresponds to invoking the associated functionalities of the
underlying homomorphic signature scheme, and thus, are non-interactive. The signature length is
also inherited from ΠHS. The blind signing protocol reduces to a single invocation of F `,sot , which by
Fact 5.2, can be implemented by just two rounds of interaction.
12Note that we are using the fact that hardness of LWE also implies hardness of SIS (with corresponding parameters).

31

Protocol ΠZK in the Fbhs-Hybrid Model

Let λ be a security parameter and ΠSE = (KeyGen,Encrypt,Decrypt) be a CPA-secure encryption scheme.
We assume that the prover P and the verifier V have access to the ideal functionality Fbhs, where P
is the receiver R and V is the signer S. For any NP relation R, define the Boolean-valued function
CheckWitnessR,ct,x, parameterized by R, a statement x, and a ciphertext ct as follows: on input a secret
key sk, CheckWitnessR,ct,x(sk) outputs 1 if and only if R(x,Decrypt(sk, ct)) = 1, and 0 otherwise. We
implicitly assume that CheckWitnessR,ct,x ∈ H, where H is the function class associated with Fbhs.

Preprocessing phase: In the preprocessing phase, the prover and verifier do the following:

1. The verifier sends (sid, keygen) to Fbhs and receives in response a verification key vk. The verifier
sends vk to the prover. Subsequently, when the verifier receives (sid, signature) from Fbhs, it sets
the ready flag.

2. The prover begins by sampling a secret key sk← KeyGen(1λ). Then, it requests a signature on
sk under vk by sending (sid, sign, vk, sk) to Fbhs. The prover receives a signature σsk from Fbhs. If
σsk = ⊥, then the prover aborts.

Prover: On input a tuple (sid, ssid, prove,R, x, w) where R(x,w) = 1, the prover proceeds as follows:

1. Encrypt the witness w to obtain a ciphertext ct← Encrypt(sk, w).

2. Submit (sid, eval, vk,CheckWitnessR,ct,x, (fid, sk), σsk) to Fbhs to obtain a signature σ∗.

3. Set π = (ct, σ∗) and send (sid, ssid, proof,R, x, π) to the verifier.

Verifier: When the verifier receives a tuple (sid, ssid, proof,R, x, π), it ignores the request if the ready
flag has not been set. Otherwise, it parses π = (ct, σ), and ignores the message if π does not have this
form. Otherwise, it submits (sid, verify, vk, (CheckWitnessR,ct,x, 1), σ) to Fbhs. If the signature is valid
(i.e., Fbhs replies with 1), then the verifier accepts and outputs (sid, ssid, proof,R, x). Otherwise the
verifier ignores the message.

Figure 3: Preprocessing ZK argument in the Fbhs-hybrid model.

6 Universally-Composable Preprocessing NIZKs

In this section, we show how to combine blind homomorphic signatures with CPA-secure encryption
to obtain UC-NIZKs in the preprocessing model from standard lattice assumptions. We give our
protocol ΠZK in the Fbhs-hybrid model in Figure 3. Next, we state the formal security theorem and
describe how to instantiate it from standard lattice assumptions. We give the proof of Theorem 6.1
in Appendix E.

Theorem 6.1 (Preprocessing Zero-Knowledge Arguments). Let ΠSE = (KeyGen,Encrypt,Decrypt)
be a CPA-secure encryption scheme. Then, the protocol ΠZK in Figure 3 (instantiated with ΠSE)
securely realizes FZK in the presence of (static) malicious adversaries in the Fbhs-hybrid model.

Corollary 6.2 (Preprocessing UC-NIZKs from LWE). Let λ be a security parameter. Then, under
the LWE assumption, for all d = poly(λ), there exists a protocol πNIZK that securely realizes FZK in
the presence of (static) malicious adversaries in the CRS model for all NP relations R that can be
computed by a circuit of depth at most d. The protocol πNIZK satisfies the following properties:

32

• The (one-time) preprocessing phase is a two-round protocol between the prover and the verifier.

• The prover’s and verifier’s algorithms are both non-interactive.

• If R is an NP relation, then the length of a proof of membership for the language associated
with R is m+ poly(λ, d), where m is the size of the witness associated with R.

Proof. Fix a depth bound d = poly(λ). First, we can instantiate the CPA-secure encryption scheme
ΠSE = (KeyGen,Encrypt,Decrypt) in Figure 3 from lattices using Fact 2.2. Let d′ be a bound on
the depth of the circuit that computes the CheckWitnessR,ct,x function in Figure 3. Note that
d′ = poly(λ, d), since the depth of the relation R is bounded by d and the depth of the Decrypt
function is poly(λ). By Corollary 5.3, under the LWE assumption, there exists a protocol πbhs
that securely realized Fbhs for the class of all depth-d′ Boolean circuits in the presence of (static)
malicious adversaries. The claim then follows by combining Theorem 6.1 with Corollary 5.3 and the
universal composition theorem (Theorem A.2). We now check the additional properties:

• The preprocessing phase corresponds to the blind signing protocol of πbhs, which is a two-round
protocol between the signer and the verifier.

• The prover’s algorithm corresponds to signature evaluation while the verifier’s algorithm
corresponds to signature verification. Both of these are non-interactive in πbhs.

• The length of a proof for an NP relation R consists of an encryption of the witness under ΠSE

(of size m+ poly(λ)) and a signature under πbhs (of size poly(λ, d)). The total size is bounded
by m+ poly(λ, d).

6.1 Applications to MPC

In this section, we describe several applications of our preprocessing UC-NIZKs to boosting the
security of MPC protocols. First, we show that combining our construction with the round-optimal
semi-malicious MPC protocol of Mukherjee-Wichs [MW16] yields a round-optimal malicious-secure
MPC protocol where the communication complexity only depends on the size of the inputs/outputs
in a reusable preprocessing model (Remark 6.5) from lattices. Then, we show that by leveraging the
observation in Remark 4.8, we obtain a succinct version of the GMW [GMW86, GMW87] compiler
from lattice assumptions.

Malicious-secure MPC from lattices. Previously, Mukherjee and Wichs showed how to con-
struct a two-round MPC protocol with UC-security against semi-malicious adversaries from standard
lattice assumptions [MW16]. Their protocol has several notable properties, including optimal round
complexity and near-optimal communication complexity: namely, the total communication between
the parties depends only on the length of the parties’ inputs and outputs, and not on the complexity
(i.e., circuit size) of the underlying computation. Achieving this latter property is often referred to
as breaking the “circuit-size barrier” for secure computation [BGI16].

The Mukherjee-Wichs construction (as well as its predecessor [AJL+12]) achieve security against
semi-malicious adversaries, and rely on general-purpose NIZKs to achieve full security against
malicious adversaries without increasing the round complexity. However, since NIZKs are not known
to follow from standard lattice assumptions in the CRS model, the security of the malicious-secure
protocols cannot be reduced to a single set of hardness assumptions (for instance, we need to
combine lattice assumptions with other number-theoretic assumptions).

33

Using our lattice-based preprocessing NIZKs, we can obtain malicious-secure MPC in a pre-
processing model while basing security exclusively on standard lattice assumptions. Specifically,
in the preprocessing step, the parties would execute the preprocessing protocol of our UC-NIZK
construction (Figure 3, Corollary 6.2). In the online phase of the protocol, the parties essentially
have access to an ideal zero-knowledge functionality, and so, we can apply the same semi-malicious
to malicious boosting described in [AJL+12, MW16] to obtain a protocol with full malicious security.
The round complexity and communication complexity of the online phase of the protocol is un-
changed from that of the Mukherjee-Wichs construction. Moreover, our preprocessing protocol has
several appealing properties: it is not only independent of the party’s inputs, but it is also (almost)
independent of the computation being performed (it depends only polylogarithmically on the depth
of the online computation). This means that the same preprocessing can in fact be reused across
many protocol executions, provided that the computations have bounded depth. In fact we can
make the preprocessing completely independent of the online computation if we make an additional
circular security assumption (c.f., Corollary 6.4). We state our conclusions more precisely below:

Fact 6.3 (MPC from Multi-Key FHE [MW16]). Let λ be a security parameter, and f : ({0, 1}`in)n →
({0, 1}`out)n be an arbitrary n-input function. Let Cf be the circuit that computes f , and let df be
its depth. Then, under the LWE assumption, there exists a protocol πf that securely realizes Ff in
the presence of (static) semi-malicious adversaries in the CRS model and assuming the parties have
access to an authenticated broadcast channel. Recall that Ff is the general UC functionality for
computing the function f (Figure 8). Moreover, the protocol πf satisfies the following properties:

• Optimal round complexity: The protocol πf is a two-round protocol.

• Low communication complexity: The total communication complexity of the protocol
is (`in + `out) · poly(λ, n, df). In other words, the total communication depends only on the
security parameter, the length of the inputs, the length of the outputs, and the depth of the
computation (rather than the size |Cf |). Moreover, if we make an additional circular security
assumption, then the total communication complexity becomes (`in + `out) · poly(λ, n), which
is completely independent of the complexity of the computation f . This is essentially the best
we can hope for from an MPC protocol for Ff .

Corollary 6.4 (Malicious-Secure MPC in the Preprocessing Model from Lattices). Let λ be a
security parameter, and let f : ({0, 1}`in)n → ({0, 1}`out)n be an arbitrary n-input function. Let Cf be
the circuit that computes f , and let df be its depth. Then, under the LWE assumption, there exists
a protocol πf that securely realizes Ff in the presence of (static) malicious adversaries in the CRS
model (and assuming the parties have access to an authenticated broadcast channel). The protocol

πf splits into two sub-protocols: a preprocessing protocol π
(pre)
f and an online protocol π

(online)
f with

the following properties:

• Reusable preprocessing: The total computational and communication complexity of the

preprocessing protocol π
(pre)
f is poly(n, λ, log df). Notably, the preprocessing is independent

of the size of each party’s inputs and the overall size |Cf | of the computation. Because the
preprocessing only depends logarithmically on the depth of Cf (and not its size), the same
precomputation can be reused across many parallel evaluations of Cf (which would increase
the size of the computation, but not its depth). Moreover, if we make the additional circular
security assumption from Fact 6.3, then the total computational and communication complexity
is poly(n, λ), and completely independent of the function f .

34

• Optimal online round complexity: The online protocol π
(online)
f consists of two rounds of

communication.

• Low online communication complexity: The total communication complexity of the

online protocol π
(online)
f is (`in + `out) · poly(λ, n, df). If we make the additional circular

security assumption from Fact 6.3, then the total communication complexity of π
(online)
f is

again essentially optimal: (`in + `out) · poly(λ, n).

Proof. Follows by applying the generic semi-malicious-to-malicious compiler of [AJL+12, Ap-
pendix E] to the MPC protocol described in Fact 6.3 along with our UC-NIZKs in the preprocessing
model from LWE.

Remark 6.5 (Reusable Preprocessing). A nice property satisfied by our MPC protocol in the
preprocessing model is that the preprocessing is reusable. Namely, we only have to run the
preprocessing protocol once, provided that all of the computations in the online phase can be
implemented by circuits of some bounded depth. In fact, if we are willing to make an additional
circular security assumption, the preprocessing is entirely independent of the computation. We note
that many classic MPC protocols that leverage preprocessing for better online efficiency do not
provide reusable preprocessing [Bea91, DPSZ12]. In these cases, the complexity of the preprocessing
phase scales with the size of the circuit that is computed in the online phase as opposed to the
depth (e.g., the classic technique of Beaver multiplication triples [Bea91] requires generating a single
triple for every multiplication gate that will be evaluated during the online phase of the protocol).
Having a reusable preprocessing protocol enables us to amortize the cost of the preprocessing across
many different computations.

Remark 6.6 (Non-Reusable Preprocessing from Weaker Assumptions). An alternative approach
to boosting the Mukherjee-Wichs protocol to provide malicious security in the preprocessing model
is to use a bounded-theorem preprocessing NIZK, which can in turn be instantiated from one-way
functions [DMP88, LS90, Dam92] or oblivious transfer [KMO89]. One drawback of this approach is
that the preprocessing is no longer reusable across multiple computations (since each NIZK system
can only be used to prove an a priori bounded number of statements). As a result, the round
complexity and the computational costs of the preprocessing protocol can no longer be amortized
across multiple protocol executions. Moreover, it is unclear that the original bounded-theorem
NIZK candidates satisfy the stronger property of universal composability. As such, they cannot be
directly applied to achieve malicious security of the Mukherjee-Wichs construction in the UC model.

A succinct GMW compiler from lattices. As discussed in Remark 4.8, if a prover wants to
prove m statements (each of which can be checked by a circuit of depth at most d) using the same
witness w, then the total length of all of the arguments will be |w|+m · poly(λ, d). In particular,
the length of the common witness can be amortized across many statements. We can leverage
this property to obtain a “succinct” version of the classic GMW compiler [GMW86, GMW87] that
transforms any MPC protocol Π for some function f in the semi-honest model to a protocol Π′ for
the same function f in the malicious model. We begin by briefly recalling the “GMW compiler:”

• Input commitment: First, the parties commit to their (private) inputs.

• Coin tossing: The parties engage in a secure coin-tossing protocol to determine the (secret)
randomness each party uses in the protocol execution. At the end of this step, each party has
a (private) random string as well as a commitment to every other party’s randomness.

35

• Protocol emulation: During the protocol execution, the parties run the semi-honest protocol
Π. Whenever the parties send a message, they include a NIZK argument that their message
was computed according to the specification of Π on inputs and randomness that are consistent
with their committed inputs and randomness.

The NIZK arguments bind each user to following the semi-honest protocol as described. In the
UC-model, Canetti et al. [CLOS02] showed an analog of the GMW compiler based on UC-NIZKs.

Our preprocessing NIZKs from lattices gives a new instantiation of the GMW compiler from
standard lattice assumptions. Our construction has the appealing property that the communication
overhead of the compiler protocol Π′ is essentially independent of the parties’ computational
complexity in the semi-honest protocol Π. We give a concrete comparison below:

• Using traditional NIZKs based on trapdoor permutations [FLS90, DDO+01] or pairing [GOS06],
the total size of the NIZK proofs is proportional to the size of each party’s computation.
Thus, the communication overhead of Π′ compared to the original protocol Π on each round
r is poly(λ, n, |Cr|), where λ is the security parameter, n is the number of parties, and Cr is
the circuit that checks whether a party’s message on round r is consistent with the protocol
specification Π as well as the party’s committed inputs and randomness.

• In the GMW protocol, each party uses the same witness to construct their proofs in each
round of the protocol (the witness is their private input and randomness). Thus, using the
trick described in Remark 4.8, the parties only have to communicate an encryption of their
input and randomness once at the beginning of the protocol. Thereafter, on each round r of
the protocol execution, the size of each proof is poly(λ, n, dr), where dr is a bound on the depth
of the consistency check circuit Cr defined above. Since dr can be significantly smaller than
Cr, the communication overhead of using our lattice-based preprocessing NIZK to instantiate
the GMW compiler can lead to substantial asymptotic savings.

As was also noted in Remark 4.8, a similar savings in communication is also possible by first applying
the FHE-based transformation from [GGI+15] to any NIZK construction to obtain a NIZK with the
same proof size as that of the construction in Corollary 6.2, and then using the resulting construction
to implement the GMW compiler. Compared to this alternative approach, our construction has the
advantage that it can be instantiated directly from lattice assumptions (and does not additionally
assume the existence of a NIZK). Moreover, our construction is likely more efficient since we do
not have to incur the cost of composing FHE decryption with NIZK verification in addition to
performing FHE evaluation.

Acknowledgments

We thank Dan Boneh and Akshayaram Srinivasan for many helpful comments and discussions on
this work. This work was funded by NSF, DARPA, a grant from ONR, and the Simons Foundation.
Opinions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA.

36

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In EUROCRYPT, 2010.

[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary N. J. Peterson, and Dawn Xiaodong Song. Provable data possession at untrusted
stores. In ACM CCS, 2007.

[ABC+15] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and
Brent Waters. Computing on authenticated data. J. Cryptology, 28(2), 2015.

[Abe01] Masayuki Abe. A secure three-move blind signature scheme for polynomially many
signatures. In EUROCRYPT, 2001.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In CRYPTO,
2009.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. In
CRYPTO, 2010.

[AHO10] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on elements in
bilinear groups for modular protocol design. IACR Cryptology ePrint Archive, 2010,
2010.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,
and Daniel Wichs. Multiparty computation with low communication, computation and
interaction via threshold FHE. In EUROCRYPT, 2012.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, 1999.

[AKK09] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from homo-
morphic identification protocols. In ASIACRYPT, 2009.

[AL11] Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signatures
in the standard model. In PKC, 2011.

[AO09] Masayuki Abe and Miyako Ohkubo. A framework for universally composable non-
committing blind signatures. In ASIACRYPT, 2009.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In
STACS, 2009.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In CRYPTO, 2014.

[APSD18] Navid Alamati, Chris Peikert, and Noah Stephens-Davidowitz. New (and old) proof
systems for lattice problems. In PKC, 2018.

37

[BBDQ18] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach. Hash proof systems
over lattices revisited. In PKC, 2018.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM J. Comput., 20(6), 1991.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO,
1991.

[BF11a] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial
functions. In EUROCRYPT, 2011.

[BF11b] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary
fields and new tools for lattice-based signatures. In PKC, 2011.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page,
Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable signa-
tures revisited. In PKC, 2009.

[BFKW09] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters. Signing a
linear subspace: Signature schemes for network coding. In PKC, 2009.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. In STOC, 1988.

[BFR13] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of compu-
tation on outsourced data. In ACM CCS, 2013.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic
encryption, arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT,
2014.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure
computation under DDH. In CRYPTO, 2016.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In ACM CCS,
2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, 2013.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The
one-more-rsa-inversion problems and the security of chaum’s blind signature scheme. J.
Cryptology, 16(3), 2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In PKC, 2003.

[Bra00] Stefan A. Brands. Rethinking public key infrastructures and digital certificates: building
in privacy. MIT Press, 2000.

38

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
ITCS, 2014.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, 2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In
CSFW, 2004.

[CC17] Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-interactive
zero-knowledge proofs of knowledge. IACR Cryptology ePrint Archive, 2017, 2017.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and
correlation intractability from strong KDM-secure encryption. In EUROCRYPT, 2018.

[CD04] Ronald Cramer and Ivan Damg̊ard. Secret-key zero-knowlegde and non-interactive
verifiable exponentiation. In TCC, 2004.

[CFW12] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signatures
in the standard model. In PKC, 2012.

[CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with
efficient verification for polynomial functions. In CRYPTO, 2014.

[CG15] Pyrros Chaidos and Jens Groth. Making sigma-protocols non-interactive without random
oracles. In PKC, 2015.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO, 1982.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, 2010.

[CKW04] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind signatures
without random oracles. In SCN, 2004.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In STOC, 2002.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, 2003.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT, 2002.

[Dam92] Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with proprocessing. In EUROCRYPT, 1992.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, 2001.

[DFN06] Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge from
homomorphic encryption. In TCC, 2006.

39

[DMP87] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge
proof systems. In CRYPTO, 1987.

[DMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge
with preprocessing. In CRYPTO, 1988.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In CRYPTO, 2012.

[DVW09] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retrievability via hardness
amplification. In TCC, 2009.

[FHKS16] Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel Slamanig. Practical
round-optimal blind signatures in the standard model from weaker assumptions. In
SCN, 2016.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal
blind signatures in the standard model. In CRYPTO, 2015.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference
string model. In CRYPTO, 2006.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string. In FOCS, 1990.

[FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key
homomorphic authenticators. In ASIACRYPT, 2016.

[Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures: A
generic framework. In PKC, 2012.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, 1986.

[Fuc09] Georg Fuchsbauer. Automorphic signatures in bilinear groups and an application to
round-optimal blind signatures. IACR Cryptology ePrint Archive, 2009, 2009.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith.
Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge
proofs. J. Cryptology, 28(4), 2015.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
In FOCS, 1984.

[GKKR10] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network
coding over the integers. In PKC, 2010.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In STOC, 1985.

40

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all np-statements
in zero-knowledge, and a methodology of cryptographic protocol design. In CRYPTO,
1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In STOC, 1987.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1), 1994.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In EUROCRYPT, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In ASIACRYPT, 2006.

[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In ASIACRYPT, 2010.

[GRS+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh.
Round optimal blind signatures. In CRYPTO, 2011.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT, 2008.

[GS12] Essam Ghadafi and Nigel P. Smart. Efficient two-move blind signatures in the common
reference string model. In ISC, 2012.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In EUROCRYPT, 2018.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO,
2013.

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient
ABE for branching programs. In ASIACRYPT, 2015.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic
signatures from standard lattices. In STOC, 2015.

[HK16] Lucjan Hanzlik and Kamil Kluczniak. A short paper on blind signatures from knowledge
assumptions. In Financial Cryptography, 2016.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput., 39(3), 2009.

[KMO89] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-knowledge
proofs. In CRYPTO, 1989.

41

[KR06] Yael Tauman Kalai and Ran Raz. Succinct non-interactive zero-knowledge proofs with
preprocessing for LOGSNP. In FOCS, 2006.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-
based authenticated key exchange from lattices. In ASIACRYPT, 2009.

[KZ06] Aggelos Kiayias and Hong-Sheng Zhou. Concurrent blind signatures without random
oracles. In SCN, 2006.

[LNSW13] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-knowledge
proofs of knowledge for the ISIS problem, and applications. In PKC, 2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In EUROCRYPT, 2007.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs.
In CRYPTO, 1990.

[LW15] Vadim Lyubashevsky and Daniel Wichs. Simple lattice trapdoor sampling from a broad
class of distributions. In PKC, 2015.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and applications
to ajtai’s connection factor. SIAM J. Comput., 34(1), 2004.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity
of LWE search-to-decision reductions. In CRYPTO, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, 2012.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters.
In CRYPTO, 2013.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput., 37(1), 2007.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key
FHE. In EUROCRYPT, 2016.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC, 2009.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
EUROCRYPT, 1996.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. J. Cryptology, 13(3), 2000.

[PV08] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge
proofs for lattice problems. In CRYPTO, 2008.

42

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In CRYPTO, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

[RSS18] Ron D. Rothblum, Adam Sealfon, and Katerina Sotiraki. Towards non-interactive
zero-knowledge for NP from LWE. IACR Cryptology ePrint Archive, 2018, 2018.

[Rüc10] Markus Rückert. Lattice-based blind signatures. In ASIACRYPT, 2010.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO,
1989.

[SP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without
interaction. In FOCS, 1992.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In ASIACRYPT,
2008.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, 2014.

[XXW13] Xiang Xie, Rui Xue, and Minqian Wang. Zero knowledge proofs from ring-lwe. In
CANS, 2013.

[ZY17] Jiang Zhang and Yu Yu. Two-round PAKE from approximate SPH and instantiations
from lattices. In ASIACRYPT, 2017.

A The Universal Composability Framework

In this section, we briefly review the universal composability (UC) framework. We refer to [Can01]
for the full details. The description here is adapted from the presentation in [MW16, Appendix A]
and [GS18, Appendix A]. Readers familiar with UC security can safely skip this section, and we
only include it for completeness.

The UC framework. We work in the standard universal composability framework with static
corruptions. The UC framework defines an environment Z (modeled as an efficient algorithm)
that is invoked on the security parameter 1λ and an auxiliary input z ∈ {0, 1}∗. The environment
oversees the protocol execution in one of two possible experiments:

• The ideal world execution involves dummy parties P̃1, . . . , P̃n, an ideal adversary S (also called
a “simulator”) who may corrupt some of the dummy parties, and an ideal functionality F .

• The real world execution involves parties P1, . . . , Pn (modeled as efficient algorithms) and a
real-world adversary A who may corrupt some of the parties.

In both cases, the environment Z chooses the inputs for the parties, receives the outputs from the
uncorrupted parties, and can interact with the real/ideal world adversaries during the protocol
execution. At the end of the protocol execution, the environment outputs a bit, which is defined to
be the output of the experiment. More precisely, we define the following random variables:

43

• Let idealF ,S,Z(1λ, z) be the random variable for the output of the environment Z after interact-
ing with the ideal world execution with adversary S, the functionality F on security parameter
λ and input z. We write idealF ,S,Z to denote the ensemble {idealF ,S,Z(1λ, z)}λ∈N,z∈{0,1}∗ .

• Let realπ,A,Z(1λ, z) denote the random variable for the output of the environment Z after
interacting with the real world execution with adversary A and parties running a proto-
col π on security parameter λ and input z. We write realπ,A,Z to denote the ensemble
{realπ,A,Z(1λ, z)}λ∈N,z∈{0,1}∗ .

Definition A.1. Fix n ∈ N, let F be an n-ary functionality, and π be an n-party protocol. We
say that the protocol π securely realizes F if for all efficient adversaries A, there exists an ideal
adversary S such that for all efficient environments Z, we have that

realπ,A,Z
c
≈ idealF ,S,Z .

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as
usual in the standard model of execution, the parties have access to (multiple copies of) an ideal
functionality. More precisely, in a protocol execution in the F-hybrid model (where F denotes an
ideal functionality), the parties may give inputs and receive outputs from an unbounded number of
copies of F . The different copies of F are differentiated using a session ID (denoted sid). All of
the inputs to each copy of F and the outputs from each copy of F have the same session ID. We
can correspondingly extend Definition A.1 to define the notion of a protocol π securely realizing a
functionality G in the F-hybrid model.

The universal composition operation. We now define the universal composition operation and
state the universal composition theorem. Let ρ be an F-hybrid protocol, and let Π be a protocol
that securely realizes F (Definition A.1). The composed protocol ρΠ is the protocol where each
invocation of the ideal functionality F in ρ is replaced by a fresh invocation of the protocol Π.
Specifically, the first message sent to each copy of F (from any party) is replaced with the first
message of Π (generated with the same input and sid associated with the particular copy of F).
Each output value generated by a copy of Π is treated as a message received from the corresponding
copy of F . Note that if Π is a G-hybrid protocol (where G is an arbitrary ideal functionality), then
ρΠ is also a G-hybrid protocol.

The universal composition theorem. Let F be an ideal functionality. In its general form, the
universal composition theorem [Can01] states that if Π is a protocol that securely realizes F , then
for any F-hybrid protocol ρ that securely realizes G, the composed protocol ρΠ securely realizes G.
We state the formal theorem below:

Theorem A.2 (Universal Composition [Can01, Corollary 15]). Let F ,G be ideal functionalities,
and let Π be a protocol that securely realizes F . If ρ securely realizes G in the F-hybrid model, then
the composed protocol ρΠ securely realizes G.

A.1 UC Functionalities

In this section, we review the ideal common reference string (CRS), oblivious transfer (OT), and
zero-knowledge (ZK) functionalities that we use in this work.

44

The CRS functionality. The common reference string (CRS) functionality FDcrs (parameterized
by an efficiently-sampleable distribution D) samples and outputs a string from D. The formal
specification from [CR03] is as follows:

Functionality FDcrs

The ideal CRS functionality FDcrs is parameterized by an efficiently-sampleable distribution D and runs
with parties P1, . . . , Pn and an ideal adversary S. Its behavior is as follows:

• Upon activation with session ID sid, the functionality samples σ ← D and sends (sid, σ) to the
adversary S.

• On receiving sid from a party Pi, send (sid, σ) to Pi.

Figure 4: The FDcrs functionality [CR03]

The OT functionality. The oblivious transfer (OT) functionality Fsot (parameterized by the
message length s) is a two-party functionality between a sender S and a receiver R. The sender’s
input consists of two messages x0, x1 ∈ {0, 1}s and the receiver’s input consists of a bit b ∈ {0, 1}.
At the end of the protocol execution, the receiver learns xb (and nothing else), and the sender learns
nothing. These requirements are captured by the OT functionality Fsot from [CLOS02] defined as
follows:

Functionality Fsot

The ideal OT functionality Fsot is parameterized by a message length s and runs with a sender S, a
receiver R, and an ideal adversary S. Its behavior is as follows:

• Upon receiving a message (sid, sender, x0, x1) from S where x0, x1 ∈ {0, 1}s, store the tuple
(sid, x0, x1).

• Upon receiving a message (sid, receiver, b) from R, check if a tuple of the form (sid, x̂0, x̂1) has been
stored for some pair of messages x̂0, x̂1. If so, send (sid, x̂b) to R, sid to the adversary, and halt. If
not, send nothing to R, but continue running.

Figure 5: The Fsot functionality [CLOS02]

For simplicity of notation, we define a block-wise OT functionality F `,sot where the sender’s input
consists of ` pairs of messages {(xi,0, xi,1)}i∈[`] and the receiver’s input consists of ` bits b1, . . . , b`.
At the end of the protocol execution, the receiver learns the messages x1,b1 , . . . , x`,b` (and nothing
else), and the sender learns nothing. The block-wise OT functionality can be securely realized from
the standard OT functionality Fsot via the universal composition theorem [Can01].

45

Functionality F `,sot

The ideal OT functionality F`,sot is parameterized by the number of messages ` and message length s,
and runs with a sender S, a receiver R, and an ideal adversary S. Its behavior is as follows:

• Upon receiving a message (sid, sender, {(xi,0, xi,1)}i∈[`]) from S where xi,β ∈ {0, 1}s for i ∈ [`],

β ∈ {0, 1}, store
(
sid, {(xi,0, xi,1)}i∈[`]

)
.

• Upon receiving a message (sid, receiver, (b1, . . . , b`)) from R for b1, . . . , b` ∈ {0, 1}, check if a tuple
of the form

(
sid, {(x̂i,0, x̂i,1)}i∈[`]

)
has been stored for some choice of x̂i,β ∈ {0, 1}` where i ∈ [`]

and β ∈ {0, 1}. If so, send (sid, {x̂i,bi}i∈[`]) to R, sid to the adversary, and halt. If not, send
nothing to R, but continue running.

Figure 6: The F `,sot functionality

The ZK functionality. The zero-knowledge (ZK) functionality is a two-party functionality between
a prover P and a verifier V. The prover is able to send the functionality a description of an NP
relation R, a statement x to be proven along with a witness w. The functionality forwards the
relation and the statement x to the verifier if and only if R(x,w) = 1. Our definition is inherently
multi-theorem; namely, the prover can prove arbitrarily many statements (possibly with respect to
different NP relations). We distinguish between different proof sub-sessions by associating a unique
sub-session ID ssid with each sub-session. Our definition is adapted from the one given in [CLOS02].

Functionality FZK

The ideal ZK functionality runs with a prover P , a verifier V and an ideal adversary S. Its behavior is as
follows:

• Upon receiving a message (sid, ssid, prove,R, x, w) from P where R is an NP relation, if R(x,w) = 1,
then send (sid, ssid, proof,R, x) to V and S. Otherwise, ignore the message.

Figure 7: The FZK functionality.

The general UC functionality. Let f : ({0, 1}`in)n → ({0, 1}`out)n be an arbitrary n-input
function. The general UC-functionality Ff is parameterized with a function f and described in
Figure 8. Our presentation is adapted from that in [GS18].

46

Functionality Ff

The general UC functionality Ff is parameterized by a (possibly randomized) function f : ({0, 1}`in)n →
({0, 1}`out)n on n inputs, and runs with parties P = (P1, . . . , Pn), and an ideal adversary S, as follows:

• Each party Pi sends (sid, input,P, Pi, xi) where xi ∈ {0, 1}`in to Ff .

• After receiving inputs from each of the parties, the functionality computes (y1, . . . , yn) ←
f(x1, . . . , xn). For every party Pi that is corrupted, the functionality sends S the message
(sid, output,P, Pi, yi).

• When the functionality receives a message (sid, finish,P, Pi) from S, the ideal functionality sends
(sid, output,P, Pi, yi) to Pi. The functionality F ignores the message if inputs from all parties in P
have not been received.

Figure 8: The general UC functionality Ff .

B Adaptively-Secure Homomorphic Signatures

In this section, we show how to transform a homomorphic signature scheme that satisfies only
selective unforgeability to full unforgeability (Definition 3.5). Although the transformation follows
the construction of [GVW15], we give the full construction to show that the resulting construction
still satisfies our strengthened notion of context-hiding (Definition 3.9).

Construction B.1 (Adaptively-Secure Homomorphic Signature [GVW15, adapted]). Fix a security
parameter λ and a message length ` ∈ N. Let C = {Cλ}λ∈N be a function class where each Cλ is a
collection of Boolean circuits (on `-bit inputs). Then, define the following quantities:

• First, let ΠHS,in = (PrmsGenin,KeyGenin, Signin,PrmsEvalin,SigEvalin,Hidein,Verifyin,VerifyFreshin,
VerifyHidein) be a selectively-secure decomposable homomorphic signature scheme with mes-
sage space {0, 1}, message length ` ∈ N, and function class C = {Cλ}λ∈N. This is the “inner”
homomorphic signature scheme that will be used to sign messages ~x ∈ {0, 1}`. For simplicity,
assume also that the signatures in ΠHS,in have an “empty” message-independent component.13

• Let ρ be the length of the public keys in ΠHS,in. For a circuit C ∈ Cλ, let FC be the function that

maps
—

pkin 7→ PrmsEvalin(C,
—

pkin), where
—

pkin are the public parameters output by PrmsGenin.
Let C′ = {C′λ}λ∈N be a function class where each function class C′λ contains all functions FC
for C ∈ Cλ.

• Finally, let ΠHS,out = (PrmsGenout,KeyGenout,Signout,PrmsEvalout,SigEvalout,Hideout,Verifyout,
VerifyFreshout,VerifyHideout) be a selectively-secure homomorphic signature scheme with mes-
sage space {0, 1}, message length ρ ∈ N, and function class C′ = {C′λ}λ∈N. This is the “outer”
homomorphic signature scheme that will be used to sign the public keys of ΠHS,in.

13This restriction simplifies the presentation of our construction, and is satisfied by Construction 3.11. It is straightfor-
ward (but notationally cumbersome) to modify this generic construction to apply to the setting where the signatures
in ΠHS,in have a non-empty message-independent component.

47

We construct a homomorphic signature scheme ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,
Hide,Verify,VerifyFresh,VerifyHide) for message space {0, 1}, message length `, and function class C
as follows:

• PrmsGen(1λ, 1`)→ # —

pk: On input the security parameter λ and message length `, the parameter-
generation algorithm generates independent public parameters

—

pkout,i ← PrmsGenout(1
λ, 1ρ)

for i ∈ [`]. Then, it sets pki =
—

pkout,i for i ∈ [`] and returns
—

pk = (pk1, . . . , pk`).

• KeyGen(1λ) → (vk, sk): On input the security parameter λ, the key-generation algorithm
generates two pairs of keys (vkin, skin) ← KeyGenin(1λ), (vkout, skout) ← KeyGenout(1

λ), and
sets vk = (vkin, vkout) and sk = (skin, skout).

• Sign(pki, sk, xi) → σi: On input a public key pki =
—

pkout,i, a signing key sk = (skin, skout),

and a message xi ∈ {0, 1}, the signing algorithm computes σpki ← SignPK(pki, sk) and

σmi ← SignM(pki, sk, xi, σ
pk
i) where the algorithms SignPK and SignM are defined as follows:

– SignPK(pki, sk): The message-independent signing algorithm first samples a fresh public
key pkin,i ← PrmsGenin(1λ, 11) for the inner homomorphic signature scheme.14 By
assumption, pkin,i is a bit-string of length ρ. Then, the algorithm signs the public key

pkin,i using the outer signature scheme: ~σout,i ← Signout(
—

pkout,i, skout, pkin,i). It returns

σpki = (~σout,i, pkin,i).

– SignM(pki, sk, xi, σ
pk): The message-dependent signing algorithm parses σpk = (~σout,i, pkin,i),

and signs the message using the inner signature scheme: σin,i ← Signin(pkin,i, skin, xi). It
outputs σmi = σin,i.

Finally, the signing algorithm outputs σi = (σpki , σ
m
i).

• PrmsEval(C,
—

pk)→ pkC : On input a circuit C ∈ C and public parameters
—

pk = (pk1, . . . , pk`),
the parameter-evaluation algorithm parses pki =

—

pkout,i for each i ∈ [`]. It outputs pkC ←
PrmsEvalout(FC , (

—

pkout,1, . . . ,
—

pkout,`)).

• SigEval(C,
—

pk′, ~x, ~σ) → σ: On input a circuit C ∈ C, public parameters
—

pk′ = (pk′1, . . . , pk′`),
a message ~x ∈ {0, 1}` and a signature ~σ = (~σpk, ~σm), the signature-evaluation algorithm
parses pk′i =

—

pk′out,i for all i ∈ [`]. Then, it computes σpk ← SigEvalPK(C,
—

pk′, ~σpk) and

σm ← SigEvalM(C,
—

pk′, ~x, ~σ), where SigEvalPK and SigEvalM are defined as follows:

– SigEvalPK(C,
—

pk, ~σpk): The message-independent signature-evaluation algorithm first
parses ~σpk = ((~σout,1, pkin,1), . . . , (~σout,`, pkin,`)). It then computes

~σout,C ← SigEvalout(FC , (
—

pk′out,1, . . . ,
—

pk′out,`), (pkin,1, . . . , pkin,`), (~σout,1, . . . , ~σout,`)),

and pkin,C ← PrmsEvalin(C, (pkin,1, . . . , pkin,`)). Finally, it returns σpk = (~σout,C , pkin,C).

14Note that we are implicitly assuming here that the public keys pkin,i for each i ∈ [`] can be generated independently

of one another: namely, that the output distribution of PrmsGenin(1
λ, 1`) is identical to ` independent invocations of

PrmsGenin(1
λ, 11). This property is satisfied by the homomorphic signature scheme in Construction 3.11.

48

– SigEvalM(C,
—

pk′, ~x, ~σ): The message-dependent signature-evaluation algorithm writes ~σ
as (~σpk, ~σm), where ~σpk = ((~σout,1, pkin,1), . . . , (~σout,`, pkin,`)), and ~σm = (σin,1, . . . , σin,`).
It outputs the signature σm ← SigEvalin(C, (pkin,1, . . . , pkin,`), ~x, (σin,1, . . . , σin,`)).

Finally, the signature-evaluation algorithm outputs σ = (σpk, σm).

• Hide(vk, x, σ) → σ∗: On input a verification key vk = (vkin, vkout), a message x ∈ {0, 1},
and a signature σ = (σpk, σm), the hide algorithm parses σm = σin. It computes σ∗in ←
Hidein(vkin, x, σin), and returns σ∗ = (σpk, σ∗in).

• Verify(pk, vk, x, σ) → {0, 1}: On input a public key pk =
—

pkout, a verification key vk =
(vkin, vkout), a message x ∈ {0, 1}, and a signature σ = (σpk, σm), the verification algorithm
parses σpk = (~σout, pkin), σm = σin, and accepts if

Verifyout(
—

pkout, vkout, pkin, ~σout) = 1 and Verifyin(pkin, vkin, x, σin) = 1.

Otherwise, it rejects.

• VerifyFresh(pk, vk, x, σ) → {0, 1}: On input a public key pk =
—

pkout, a verification key vk =
(vkin, vkout), a message x ∈ {0, 1}, and signature σ = (σpk, σm), the fresh verification algorithm
parses σpk = (~σout, pkin), σm = σin, and accepts if

VerifyFreshout(
—

pkout, vkout, pkin, ~σout) = 1 and VerifyFreshin(pkin, vkin, x, σin) = 1.

Otherwise, it rejects.

• VerifyHide(pk, vk, x, σ∗) → {0, 1}: On input a public key pk =
—

pkout, a verification key
vk = (vkin, vkout), a message x ∈ {0, 1}, and signature σ∗ = (σpk, σm), the hide verification
algorithm parses σpk = (~σout, pkin), σm = σin, and accepts if

Verifyout(
—

pkout, vkout, pkin, ~σout) = 1 and VerifyHidein(pkin, vkin, x, σin) = 1.

Otherwise, it rejects.

Theorem B.2 (Correctness). Suppose ΠHS,in and ΠHS,out satisfy signing correctness (Definition 3.2),
evaluation correctness (Definition 3.3), and hiding correctness (Definition 3.4). Then, Construc-
tion B.1 satisfies signing correctness, evaluation correctness, and hiding correctness.

Proof. Follows by construction.

Theorem B.3 (Unforgeability). Suppose ΠHS,in and ΠHS,out satisfy selective-unforgeability (Defini-
tion 3.5). Then, Construction B.1 satisfies unforgeability (Definition 3.3).

Proof. Follows from [GVW15, §4].

Theorem B.4 (Context-Hiding). Suppose ΠHS,in satisfies context-hiding (Definition 3.9). Then,
Construction B.1 satisfies context-hiding.

Proof. Let Sin = (SExtin ,SGenin) be the context-hiding simulator for ΠHS,in. We construct a context-
hiding simulator S = (SExt,SGen) for ΠHS as follows:

49

• SExt(pk, vk, (x̃0, σ̃0), (x̃1, σ̃1)): On input a public key pk, a verification key vk = (vkin, vkout),

and two message-signature pairs (x̃0, σ̃0), (x̃1, σ̃1), the simulator first parses σ̃0 = (σ̃pk0 , σ̃
m
0),

and σ̃1 = (σ̃pk1 , σ̃
m
1). Then, it parses σ̃pk0 = (~σout, pkin) = σ̃pk1 , σ̃m0 = σ̃in,0, and σ̃m1 = σ̃in,1.

Finally, it outputs the trapdoor td← SExtin (pkin, vkin, (x̃0, σ̃in,0), (x̃1, σ̃in,1)).

• SGen(pk, vk, td, x, σpk): On input a public key pk, a verification key vk = (vkin, vkout), a trapdoor
td, a message x ∈ {0, 1}, and a message-independent signature component σpk = (~σout, pkin),
the simulator computes σ∗in ← SGenin (pkin, vkin, td, x, ε) and outputs σ∗ ← (σpk, σ∗in). Here, we
rely on the assumption that the signatures in ΠHS,in have an empty message-independent
component.

We now show that if ΠHS,in is context-hiding, then experiments ExptchA,S,ΠHS
(λ, 0) and ExptchA,S,ΠHS

(λ, 1)
are indistinguishable for any unbounded adversary A.

• Let pk be the public key, vk = (vkin, vkout) be the verification key, and (x̃0, σ̃0), (x̃1, σ̃1)
be the message-signature pairs that A submits to the context-hiding challenger at the be-
ginning of the experiment. Write σ̃0 = (σ̃pk0 , σ̃

m
0) and σ̃1 = (σ̃pk1 , σ̃

m
1), where σ̃m0 = σ̃in,0

and σ̃m1 = σ̃in,1 Without loss of generality, we can assume that x̃0 6= x̃1, σ̃pk0 = σ̃pk1 , and
that Verifyin(pkin, vkin, x̃0, σ̃in,0) = 1 = Verifyin(pkin, vkin, x̃1, σ̃in,1). Otherwise, the output of
the experiment is always 0, and the adversary’s distinguishing advantage is correspond-
ingly 0. Next, in ExptchA,S,ΠHS

(λ, 1), the challenger constructs a trapdoor td by invoking

td← SExtin (pkin, vkin, (x̃0, σ̃in,0), (x̃1, σ̃in,1)).

• Let pk′, x ∈ {0, 1}, σ = (σpk, σm) be a query A makes to the challenger. If Verify(pk′, vk, x, σ) =
1, then the challenger proceeds as follows:

– In ExptchA,S,ΠHS
(λ, 0), the challenger parses σm = σin, and computes σ∗in ← Hidein(vkin, x, σin).

It replies to the adversary with σ∗ ← (σpk, σ∗in).

– In ExptchA,S,ΠHS
(λ, 1), the challenger parses σpk = (~σout, pkin), and computes σ∗in ←

SGen(pkin, vkin, td, x, ε). It returns σ∗ = (σpk, σ∗in).

Since Verify(pkin, vkin, x̃0, σ̃in,0) = 1 = Verify(pkin, vkin, x̃1, σ̃in,1), and σ̃pk0 = σ̃pk1 , we have that td is a
valid trapdoor for SExtin . Since ΠHS,in is context-hiding, the message-dependent component σ∗in of the
final signature σ∗ generated by SGen in ExptchA,S,ΠHS

(λ, 1) is statistically indistinguishable from σ∗in
generated by the challenger in ExptchA,S,ΠHS

(λ, 0). The claim follows.

Theorem B.5 (Compactness). Fix a security parameter λ. Suppose ΠHS,in and ΠHS,out satisfy
compactness (Definition 3.10), and moreover, the size of a homomorphically-evaluated public key
output by PrmsEvalout(C, ·) is poly(λ, d), where d is a bound on the depth of the circuit C. Then,
Construction B.1 satisfies compactness.

Proof. Follows immediately by construction. Specifically, the signature output by SigEval consists
of compact signatures output by SigEvalout and SigEvalin, and a homomorphically-evaluated public
key output by PrmsEvalout. Therefore, the size of the signatures depend only on |C(~x)| and is
independent of |~x|.

Instantiating the construction. We note that both ΠHS,in and ΠHS,out can be instantiated by
Construction 3.11 in Section 3. In particular, Construction 3.11 satisfies the additional compactness
requirement on the size of the public keys needed in Theorem B.5. This yields the following corollary:

50

Corollary B.6 (Adaptively-Secure Homomorphic Signatures). Fix a security parameter λ and
a message length ` = poly(λ). Let C = {Cλ}λ∈N be a function class where Cλ consists of Boolean
circuits of depth up to d = d(λ) on `-bit inputs. Then, under the SIS assumption, there exists
a homomorphic signature scheme ΠHS = (PrmsGen,KeyGen, Sign,PrmsEval, SigEval,Hide,Verify,
VerifyFresh,VerifyHide) with message space {0, 1}, message length `, and function class C that
satisfies adaptive unforgeability (Definition 3.5), context-hiding (Definition 3.9), and compactness
(Definition 3.10).

C Proof of Theorem 4.4

We show completeness, soundness, zero-knowledge separately.

Completeness. Take any statement x and witness w whereR(x,w) = 1. Let (kP , kV)← Setup(1λ),
where kP = (kSE,

—

pkHS, vkHS, ~σk). Take (ct, σ∗x,ct)← Prove(kP , x, w). By correctness of ΠSE,

Cx,ct(kSE) = R(x,SE.Decrypt(kSE, ct)) = R(x,w) = 1.

Completeness of ΠNIZK then follows from evaluation correctness (Definition 3.3) and hiding correct-
ness (Definition 3.4) of ΠHS.

Soundness. At a high-level, soundness follows from (selective) unforgeability of ΠHS (Definition 3.5,
Remark 3.6). An adversary that succeeds in breaking soundness must produce a statement x /∈ L, a
ciphertext ct and a signature σ∗x,ct on the message 1 with respect to the function Cx,ct. Since x /∈ L,
there does not exist any witness w ∈ {0, 1}m where R(x,w) = 1, which means that there are no
inputs to Cx,ct where the output is 1. More formally, suppose there is an adversary A that breaks
soundness of ΠNIZK with advantage ε. We use A to construct an adversary that breaks selective
unforgeability of B. Algorithm B works as follows:

1. At the beginning of the selective unforgeability game, algorithm B generates a secret key
kSE ← SE.KeyGen(1λ), and sends kSE to the challenger. The challenger replies with the public
parameters

—

pkHS, the verification key vkHS and a signature ~σk.

2. Algorithm B sets kP = (kSE,
—

pkHS, vkHS, ~σk) and gives kP to A.

3. Whenever A makes an oracle query to the verification oracle, algorithm B answers according
to the specification in Construction 4.3. Note that the verification algorithm only depends on
—

pkHS and vkHS, both of which are known to B (and in fact A). Notably, the secret signing key
skHS is not needed to run Verify.

4. At the end of the game, when A outputs a statement x and a proof π = (ct, σ∗x,ct), algorithm
B gives the circuit Cx,ct, the message 1, and the signature σ∗x,ct to the challenger.

By construction, algorithm B perfectly simulates the prover key for A. Thus, with probability ε,
algorithm A outputs x /∈ L such that σ∗x,ct is a valid signature on the message 1 with respect to the
function Cx,ct. By definition, Cx,ct(kSE) = 0, so σ∗x,ct is a valid forgery. Soundness follows.

Zero-Knowledge. At a high-level, zero-knowledge follows by CPA-security of the encryption
scheme and weak context-hiding of the homomorphic signature scheme. Since ΠHS is weak context-
hiding (Definition 3.8), there exists an efficient simulator Sch that can simulate the signatures output
by the Hide algorithm. We use Sch to construct the zero-knowledge simulator S = (S1,S2):

51

• On input the security parameter λ and the verification state kV = (
—

pkHS, vkHS, skHS) where
—

pkHS = (pk1, . . . , pkρ), algorithm S1 samples a secret key kSE ← SE.KeyGen(1λ). Next, it

computes ~σpkk ← SignPK(
—

pk, skHS), and outputs the state τV = (kSE, ~σ
pk
k).

• On input the verification state kV = (
—

pkHS, vkHS, skHS), the simulation state τV = (kSE, ~σ
pk
k),

and a statement x ∈ {0, 1}n, the simulator algorithm S2 begins by constructing a ci-
phertext ct ← SE.Encrypt(kSE, 0

m). Then, it computes pkx,ct ← PrmsEval(Cx,ct,
—

pkHS),

σpkx,ct ← SigEvalPK(Cx,ct,
—

pkHS, ~σ
pk
k), and finally, it simulates the signature by computing

σmx,ct ← Sch(pkx,ct, vkHS, skHS, 1, σ
pk
x,ct), and outputs the simulated proof π = (ct, σ∗x,ct), where

σ∗x,ct = (σpkx,ct, σ
m
x,ct).

To complete the proof, we use a hybrid argument:

• hyb0: This is the experiment where the adversary has access to O0, where O0(kP , x, w) :=
Prove(kP , x, w).

• hyb1: Same as hyb0, except the Prove(kP , x, w) queries are handled as follows:

1. The challenger first computes ct← SE.Encrypt(kSE, w).

2. Next, it computes the public key pkx,ct ← PrmsEval(Cx,ct,
—

pkHS), a public signature

component σpkx,ct ← SigEvalPK(Cx,ct,
—

pkHS, ~σ
pk
k), and a simulated signature σmx,ct ←

Sch(pkx,ct, vkHS, skHS, 1, σ
pk
x,ct). Here ~σk = (~σpkk , ~σ

m
sk) is the signature on kSE the chal-

lenger generated from Setup (and is part of the proving key kP).

3. Finally, the challenger responds with π = (ct, σ∗x,ct), where σ∗x,ct = (σpkx,ct, σ
m
x,ct).

• hyb2: Same as hyb1, except the challenger replaces the encryption of w with an encryption
of 0m when answering the Prove(kP , x, w) queries.

• hyb3: This is the experiment where the adversary has access to O1, where O1(kV , τV , x, w) :=
S2(kV , τV , x).

We now briefly argue that each pair of hybrids are computationally indistinguishable:

• Hybrids hyb0 and hyb1 are computationally indistinguishable by weak context-hiding security
of ΠHS. Specifically, if A is able to distinguish hyb0 and hyb1, then we can construct an
adversary B that breaks context-hiding as follows:

1. At the beginning of the game, algorithm B receives a signing and a verification key
(vkHS, skHS) from the challenger. It then samples parameters

—

pkHS ← PrmsGen(1λ, 1ρ),
a symmetric key kSE ← SE.KeyGen(1λ) and a signature ~σk ← Sign(

—

pkHS, skHS, kSE).
Algorithm B constructs the verification key kV = (

—

pkHS, vkHS, skHS) and sends it to A.

2. When A makes an oracle query on a pair (x,w) where R(x,w) = 1, algorithm B
simulates the response by first computing ct← SE.Encrypt(kSE, w). Next, it computes

σx,ct ← SigEval(Cx,ct,
—

pkHS, kSE, ~σk) and parses the result as σx,ct = (σpkx,ct, σ
′
x,ct). It also

computes pkx,ct ← PrmsEval(Cx,ct,
—

pkHS), and sends the public key pkx,ct, the message 1,

and the signature (σpkx,ct, σ
′
x,ct) to the context-hiding challenger. The challenger replies

with a refreshed signature σ∗x,ct. Algorithm B responds to the query with (ct, σ∗x,ct).

52

3. At the end of the experiment, B outputs whatever A outputs.

By construction, if the signatures returned by the context-hiding challenger are generated using
the Hide algorithm, then B perfectly simulates hyb0, while if the signatures are generated
using the simulator, then B perfectly simulates hyb1. Indistinguishability of the two hybrids
thus follows by context-hiding.

• Hybrids hyb1 and hyb2 are computationally indistinguishable by CPA-security of ΠSE. Specif-
ically, the challenger’s logic in hyb1 and hyb2 does not depend on kSE, so we can simulate
the two hybrid experiments given access to an encryption oracle. Note that the signature
component ~σpkk needed to respond to queries in hyb1 and hyb2 is only the public component
of the signature (and can be generated without knowledge of the actual secret key kSE).

• Hybrids hyb2 and hyb3 are identical experiments. Namely, the behavior of the challenger in
hyb2 precisely coincides with the behavior in the experiment where the adversary is given
access to the oracle O1(kV , τV , x, w) := S2(kV , τV , x).

Since each pair of hybrid experiments are computationally indistinguishable, we conclude that ΠNIZK

provides zero-knowledge.

D Proof of Theorem 5.1

Let A be a static adversary that interacts with the environment Z, a signer S, and receiver R
running the real protocol Πbhs (Figure 2). We construct an ideal world adversary (simulator) S
that interacts with the environment Z, the ideal functionality Fbhs, and dummy parties S̃, R̃ such
that no environment Z can distinguish an interaction with A in the real protocol from one with S
in the ideal world.

We begin by describing the simulator S. At the beginning of the protocol execution, the simulator
S begins by simulating an execution of Πbhs with adversary A. In particular, S simulates the
environment Z, the behavior of the honest parties, as well as the ideal OT functionality F `,sot in
the simulated protocol execution with A. Algorithm A begins by declaring which parties it wants
to corrupt, and S corrupts the analogous set of dummy parties in the ideal execution (e.g., if A
corrupts the signer S, then S corrupts the dummy signer S̃). The simulation then proceeds as
follows.

Simulating the communication with the environment. Whenever the simulator S receives
an input from the environment Z, it forwards the input to A (as if it came from the environment
in the simulated protocol execution). Whenever A writes a message on its output tape (in the
simulated protocol execution), the simulator S writes the same output on its own output tape (to
be read by the environment).

Simulating the key-generation phase. In the key-generation phase, the simulator S proceeds
as follows, depending on whether the signer S̃ is corrupt:

• The signer is honest. When S receives a value (sid, keygen) from Fbhs, the simulator generates
—

pk← PrmsGen(1λ, 1t`), (sk, vk′)← KeyGen(1λ), and stores (sid, sk). It sets vk = (
—

pk, vk′), and
sends (sid, vkey, vk) to Fbhs.

53

• The signer is corrupt. When Z activates a corrupt signer S̃ on input (sid, keygen), S activates
the signer S with the same input (sid, keygen) in its simulated copy of Πbhs. Let (sid, vkey, vk)
be the verification key output by S (as decided by A). The simulator S then sends a request
(sid, keygen) to Fbhs (on behalf of S̃), and responds to the key-generation request from Fbhs

with the tuple (sid, vkey, vk).

Simulating the signature-generation phase. The simulator S simulates the signing protocol
as follows, depending on whether the signer S̃ is corrupt:

• The signer is honest. We first describe how the simulator S constructs the ideal algorithms
(IdealSign, IdealEval) when it receives a query (sid, signature) from Fbhs. Let vk = (

—

pk, vk′) and
sk be the parameters the simulator sampled in the key-generation phase (since S̃ is honest, the
simulator chose the secret signing key). The simulator then defines the IdealSign and IdealEval
algorithms (with

—

pk, vk′, sk hard-wired) as follows:

– IdealSign(~x): On input ~x ∈ {0, 1}`:
1. Sample shares ~w1, . . . , ~wt ←R {0, 1}` such that

⊕
i∈[t] ~wi = ~x.

2. Generate (~σ1, . . . , ~σt)← Sign
(# —

pk, sk, (~w1, . . . , ~wt)
)
.

3. Return SigEval
(
frecon,

—

pk, (~w1, . . . , ~wt), (~σ1, . . . , ~σt)
)
.

– IdealEval(g, x): On input a function g ∈ H and a value x ∈ {0, 1}:
1. Compute pkg ← PrmsEval(g ◦ frecon,

—

pk).

2. Sign σ ← Sign(pkg, sk, x).

3. Return Hide(vk′, x, σ).

The simulator replies to Fbhs with (IdealSign, IdealEval). If the receiver is honest, then this
completes the simulation for the signing request. Conversely, if the receiver is corrupt, then the
simulator S proceeds as follows:

– When Z activates the receiver R̃ on input (sid, sign, vk, ~x), the simulator forwards (sid, sign, vk, ~x)
to R (which is under the control of A) in the simulated protocol execution (as if it came from
A’s environment).

– After R sends inputs
(
(sid, i), receiver, ~wi

)
for all i ∈ [t] to the ideal OT functionality F `,sot in

the simulated protocol execution, the simulator computes ~x←
⊕

i∈[t] ~wi. If this is not the first
signing request from R, then the simulator ignores the request. Otherwise, the simulator sends
(sid, sign, vk, ~x) to Fbhs.

– When Fbhs sends (sid, sign, x) to S to choose the signature on behalf of R̃, the simulator
constructs signatures ~σi ← Sign(

—

pki, sk, ~wi) and sends
(
(sid, i), ~σi) to R for i ∈ [t]. For the

message-independent components of the signatures, S parses ~σi = (~σpki , ~σ
m
i) for i ∈ [t], and sends

{~σpki }i∈[t] to R. The simulator also computes ~σ ← SigEval(frecon,
—

pk, (~w1, . . . , ~wt), (~σ1, . . . , ~σt)),
and sends (sid, signature, (fid, ~x), ~σ), where ~x =

⊕
i∈[t] ~wi, to Fbhs.

• The signer is corrupt. If the receiver R̃ is also corrupt, then S determines the behavior of S̃
and R̃ using A (who controls the behavior of S and R in the simulated protocol execution).
Specifically, the simulator proceeds as follows:

54

– When the environment activates R̃ with an input (sid, sign, vk, ~x), the simulator activates the
receiver R in its simulated protocol execution with the same input.

– The simulator simulates the ideal OT functionality F `,sot in its simulated protocol execution
exactly according to the specification of F `,sot in Figure 6.

– The simulator echoes any output of A (to the environment).

Note that in this case where the signer and receiver are both corrupt, the simulator S never
interacts with the ideal functionality. Conversely, if the receiver R̃ is honest, then the simulator
proceeds as follows:

– When the ideal functionality sends a query (sid, signature) to S, the simulator needs to respond
with a specification of the ideal signing and evaluation functionalities IdealSign and IdealEval.
The simulator starts by performing several basic checks:

1. The simulator begins by activating the signer S with the input (sid, signature) in its
simulated execution of the protocol. Let

(
(sid, i), sender, {(σi,j,0, σi,j,1)}j∈[`]

)
for i ∈ [t] be

the inputs S sends to F `,sot , and let {σpki,j}i∈[t],j∈[`] be the message-independent components
S sends to R in the simulated protocol execution. Note that in the real protocol execution,
the receiver R only interacts with F `,sot and does not send any messages to S (so S does
not need to simulate any messages on behalf of R).

2. Let vk be the verification key S chose during key-generation. The simulator parses the
verification key as vk = (

—

pk, vk′) where
—

pk = {pki,j}i∈[t],j∈[`]. If the verification key does not
have this structure, then the simulator defines the ideal signing and evaluation functions
IdealSign and IdealEval to always output ⊥.

3. Otherwise, the simulator parses σi,j,b = (σpki,j,b, σ
m
i,j,b) for i ∈ [t], j ∈ [`], b ∈ {0, 1}. We say

that a signature σi,j,b is “valid” if

σpki,j,b = σpki,j and VerifyFresh(pki,j , vk′, b, σi,j,b) = 1, (D.1)

and otherwise, we say that σi,j,b is “invalid.” Then, if there exists indices i ∈ [t] and j ∈ [`]
where σi,j,0 and σi,j,1 are both invalid, the simulator defines the signing and evaluation
functions IdealSign and IdealEval to always output ⊥.

4. Finally, the simulator checks if for all j ∈ [`], there exists i ∈ [t] where σi,j,0 and σi,j,1 are
both valid. If this is not the case, then S defines the ideal signing and evaluation functions
IdealSign and IdealEval to always output ⊥.

If all of the checks pass, then there exists i∗, j∗ where σi∗,j∗,0 and σi∗,j∗,1 are both valid. In this
case, the simulator uses the context-hiding simulator Sch = (SExt,SGen) from Definition 3.9
to extract a simulation trapdoor td ← SExt(pki∗,j∗ , vk′, (0, σi∗,j∗,0), (1, σi∗,j∗,1)). Then, the

simulator defines the functions (IdealSign, IdealEval) as follows. Note that the public keys
—

pk,

the simulation trapdoor td, and the message-independent signature components {σpki,j}i∈[t],j∈[`]

are hard-wired in the description of the algorithms.

• IdealSign(~x): On input ~x ∈ {0, 1}`:
1. First, the ideal signing algorithm initializes ~w1, . . . , ~wt ← 0`.

2. By assumption, for all i ∈ [t] and j ∈ [`], there is at least one b ∈ {0, 1} where σi,j,b is
valid. Now, for all i ∈ [t] and j ∈ [`], if there is exactly one bit b ∈ {0, 1} where σi,j,b is
valid, then the simulator sets wi,j = b.

55

3. For all remaining indices i ∈ [t] and j ∈ [`] where both σi,j,0 and σi,j,1 are valid, the
simulator samples wi,j ←R {0, 1}, subject to the restriction that

⊕
i∈[t] ~wi = ~x. Note that

this constraint is always satisfiable since for all j ∈ [`], there is at least one i ∈ [t] where
both σi,j,0 and σi,j,1 are valid by assumption.

4. Then, for all i ∈ [t], the algorithm sets ~σi = (σi,1,wi,1 , . . . , σi,`,wi,`), and outputs the

signature SigEval
(
frecon,

—

pk, (~w1, . . . , ~wt), (~σ1, . . . , ~σt)
)
.

• IdealEval(g, x): On input a function g ∈ H, and a value x ∈ {0, 1}:
1. Compute pkg ← PrmsEval(g ◦ frecon,

—

pk).

2. Compute σpkg ← SigEvalPK
(
g ◦ frecon,

—

pk, (~σpk1 , . . . , ~σ
pk
t)
)
, where ~σpki = (σpki,1, . . . , σ

pk
i,`).

3. Return SGen(pkg, vk′, td, x, σpkg)

– When the ideal functionality sends (sid, sig-success) to S, the simulator responds as follows.
First, let {(σi,j,0, σi,j,1)}i∈[t],j∈[`] be the set of signatures the signer provided to the ideal OT

functionality and {σpki,j}i∈[t],j∈[`] be the set of message-independent public components sent by S
in the simulated protocol execution. As before, we say that σi,j,b is valid if and only if Eq. (D.1)
holds. First, if the simulator previously defined IdealSign and IdealEval to ⊥, then it replies
with (sid, 0). Otherwise, let n be the number of indices i ∈ [t], j ∈ [`], and b ∈ {0, 1} where
σi,j,b is invalid. Then, with probability 1 − 2−n, the simulator responds with (sid, 0). With
probability 2−n, the simulator responds with (sid, 1).

Simulating the signature-verification phase. When the environment activates P̃ ∈ {S̃, R̃} on
input (sid, verify, vk′, (f, ~x), ~σ), the simulator S proceeds as follows:

• If P̃ is honest and the simulator S receives a query (sid, verify, vk′, (f, ~x), ~σ) from Fbhs, the
simulator first parses vk′ = (

—

pk′, vk′′). It then computes pk′f ← PrmsEval(f ◦ frecon,
—

pk′) and
sets t ← VerifyHide(pk′f , vk′′, ~x, ~σ) if f 6= fid, and t ← Verify(pk′f , vk′′, ~x, ~σ) if f = fid. It returns
(sid, verified, ~x, ~σ, t) to Fbhs.

• If P̃ is corrupted, then S activates the party P with the input (sid, verify, vk′, (f, ~x), ~σ) in its
simulated copy of Πbhs. Let (sid, verified, ~x, ~σ, t) be the output by P. The simulator forwards
(sid, verified, ~x, ~σ, t) to the environment. Note that the simulator does not interact with the ideal
functionality Fbhs in this case.

Simulating the signature-evaluation phase. When the environment activates P̃ ∈ {S̃, R̃} on
an input (sid, eval, vk, g, (f, ~x), ~σ), where f = fid, the simulator S proceeds as follows:

• If P̃ is honest, then S only needs to simulate the verification request (if asked by the ideal
functionality). The simulator responds to the verification request using the procedure described
above (for simulating the verification queries).

• If P̃ is corrupt, then S activates party P with the input (sid, eval, vk, g, (f, ~x), ~σ) in its simulated
copy of Πbhs. Let (sid, signature, (g, g(~x)), σ′) be the output by P. The simulator forwards
(sid, signature, (g, g(~x)), σ′) to the environment. Note that the simulator does not interact with
the ideal functionality Fbhs in this case.

To complete the proof, we show that no efficient environment Z can distinguish the output of the
real execution with the adversary A from the output of the ideal execution with the simulator S.

56

Our argument considers several distinct cases, depending on whether the signer and receiver are
honest or corrupt.

Lemma D.1. If both the signer and the receiver are honest, then for all efficient environments Z,

we have that idealFbhs,S,Z
c
≈ realΠbhs,A,Z .

Proof. We proceed via a hybrid argument:

• hyb0: This is the real distribution realΠbhs,A,Z .

• hyb1: Same as hyb0, except we modify the honest parties’ behavior as follows:

– At the beginning of the experiment, initialize ~x∗ ← ⊥.

– At the end of a signing request, let (sid, signature, (fid, ~x), ~σ) be the signature output
by the receiver. Update ~x∗ ← ~x. If any party issued a verification request of the form
(sid, signature, (fid, ~x), ~σ) prior to the signing request, then the experiment aborts with
output ⊥.

– Let vk be the verification key generated by the signer in the key-generation phase. When
the environment activates a party on a verification request (sid, verify, vk′, (f, ~x), ~σ) where
vk′ = vk and ~x 6= f(~x∗), then the party outputs (sid, verified, (f, ~x), ~σ, 0). Otherwise, the
output is determined as in hyb0.

• hyb2: This is the ideal distribution idealFbhs,S,Z .

We now show that the outputs of each pair of consecutive hybrid experiments are computationally
indistinguishable.

Claim D.2. Suppose ΠHS satisfies unforgeability (Definition 3.5). Then, the outputs of hyb0 and
hyb1 are computationally indistinguishable.

Proof. Suppose there exists an environment Z (and an adversary A) such that the outputs of
hyb0 and hyb1 are distinguishable. We use Z and A to construct an adversary B that breaks
unforgeability (Definition 3.5) of ΠHS. Algorithm B operates according to the specification of the
unforgeability security experiment ExptufA,ΠHS

(λ), and simulates an execution of hyb0 or hyb1 for
the environment Z (and adversary A). Specifically, B simulates the behavior of the honest signer
and receiver in the protocol execution experiment:

• At the beginning of the unforgeability security game, algorithm B receives public keys
—

pk and
a verification key vk′ from the challenger. It also initializes ~x∗ ← ⊥.

• When Z activates the signer S to run the key-generation protocol with a query (sid, keygen),
algorithm B simulates the honest signer’s behavior by outputting (sid, vkey, (

—

pk, vk′)).

By definition of the unforgeability experiment ExptufA,ΠHS
(λ), the unforgeability challenger

samples
—

pk ← PrmsGen(1λ, 1t`), and (sk, vk′) ← KeyGen(1λ). Thus, algorithm B perfectly
simulates the signer’s behavior in hyb0 and hyb1.

57

• For signing queries, after Z activates the receiver R with a tuple (sid, sign, vk, ~x) and the
signer S with a tuple (sid, signature), algorithm B samples ~w1, . . . , ~wt ←R {0, 1}` such that⊕

i∈[t] ~wi = ~x and submits (~w1, . . . , ~wt) to the unforgeability challenger to receive (~σ1, . . . , ~σt).

It computes ~σ ← SigEval(frecon,
—

pk, (~w1, . . . , ~wt), (~σ1, . . . , ~σt)) and simulates the receiver’s
output as (sid, signature, (fid, ~x), ~σ). In addition, B sets ~x∗ ← ~x.

In ExptufA,ΠHS
(λ), the challenger computes (~σ1, . . . , ~σt)← Sign

(# —

pk, sk, (~w1, . . . , ~wt)
)
, exactly as

in hyb0 and hyb1. Thus, B perfectly simulates the signing queries in hyb0 and hyb1.

• For verification and evaluation queries, B implements the same procedure as in hyb0 and
hyb1. None of these queries require knowledge of the secret signing key sk, and thus, can be
perfectly simulated by B.

• At any point during the simulation, if Z activates a party on a verification request of the form
(sid, verify, vk, (f, ~x), ~σ) where f(~x∗) 6= ~x and ~σ is a valid signature on (f, ~x), then B does the
following:

– If f = fid, then B computes ~σ∗ ← Hide(vk′, ~x, ~σ) and sends the tuple (frecon, ~x, ~σ
∗) to the

unforgeability challenger as its forgery.

– Otherwise, B sends the tuple (f ◦frecon, ~x, ~σ) to the unforgeability challenger as its forgery.

Since the only difference between hyb0 and hyb1 is the additional checks in the signing and
verification protocols, if the outputs of hyb0 and hyb1 are distinguishable with non-negligible
advantage ε, then one of the following conditions must hold with probability ε:

• The receiver’s output in the signing request is a tuple (sid, signature, (fid, ~x), ~σ) and a party was
activated to run a verification request on the tuple (sid, signature, (fid, ~x), ~σ) before the signing
request. Since ~σ was output by an honest signing request, this means that ~σ is a valid signature
on ~x: namely, that Verify(pkrecon, vk′, ~x, ~σ) = 1, where pkrecon ← PrmsEval(frecon,

—

pk). Moreover,
since the verification request occurred before the signing request, algorithm B would have
submitted the tuple (frecon, ~x, ~σ

∗) to the unforgeability challenger where ~σ∗ ← Hide(vk′, ~x, ~σ)
before it made any signing queries to the unforgeability challenger. By hiding correctness, ~σ∗

is a valid signature on ~x with respect to frecon, and so B wins the unforgeability game.

• Otherwise, the environment must have activated a party on a verification query of the
form (sid, verify, vk, (f, ~x), ~σ) the successfully verifies in hyb0 but not in hyb1. First, since
the signature ~σ verifies in hyb0, this means that f ◦ frecon ∈ H′ and moreover, that
VerifyHide(pkf◦frecon , vk′, ~x, ~σ) = 1 where

—

pkf◦frecon ← PrmsEval(f ◦ frecon,
—

pk). Now, if the ad-
versary B made a signing request to the unforgeability challenger on the message (~w1, . . . , ~wt),
then it would have also set ~x∗ =

⊕
i∈[t] ~wi. Since ~σ verifies in hyb0 but not in hyb1, the

special condition in hyb1 must be satisfied which means

(f ◦ frecon)(~w1, . . . , ~wt) = f(~x∗) 6= ~x.

This means that ~σ is a valid signature on ~x with respect to the function f ◦frecon, and thus, is a
valid forgery. Alternatively, if B never made a signing request to the unforgeability challenger,
then ~σ is trivially a valid forgery.

58

In both cases, algorithm B breaks unforgeability of ΠHS, so we conclude that B has advantage ε in
the unforgeability game.

Claim D.3. The outputs of hybrids hyb1 and hyb2 are identically distributed.

Proof. We consider the view of the environment Z in hyb1 and hyb2 during each phase of the
protocol.

• Key-generation: For the key-generation phase, the simulator S in hyb2 exactly emulates the
generation of

—

pk and vk = (sk, vk′) as defined in hyb1. Thus, the outputs of the honest parties
in the key-generation phase of hyb1 and hyb2 are identically distributed.

• Signature-generation: In hyb2, since both S and R are honest, the signatures that the receiver
obtains from Fbhs are determined by the ideal algorithm IdealSign that S provides to the
functionality Fbhs. Since S defines these algorithms exactly as in the protocol specification
of Πbhs using the identically-distributed signing key sk and verification key vk, the resulting
signatures in hyb1 and hyb2 are identically distributed. Moreover, the same abort condition
is present in both hyb1 and hyb2, so whenever an environment issues a query that causes the
ideal functionality to abort in hyb2, the experiment also aborts in hyb1.

• Signature-verification: In hyb2, the ideal functionality Fbhs handles the signature verification
queries (sid, verify, vk′, (f, ~x), ~σ). We consider the different possibilities:

– If f /∈ H, then Fbhs always sets the verification bit t = 0. In this case, the honest parties
in hyb1 also sets t = 0 according to the protocol specification.

– Otherwise, if vk = vk′ and (vk, (f, ~x), ~σ, 1) ∈ L, then Fbhs sets t = 1. We consider
several scenarios depending on how the entry (vk, (f, ~x), ~σ, 1) ∈ L was added to L. If ~σ
was generated as the result of a signing or a evaluation request, then by correctness of
ΠHS, the honest party in hyb1 also outputs 1. If the entry was added as a result of a
previous verification request (which successfully verified), then because the honest party’s
verification algorithm in ΠHS is deterministic (and the signature verified previously), the
party also outputs 1 in hyb1.

– Otherwise, if vk = vk′, and there does not exist (vk, (fid, ~x
′), ~σ′, 1) ∈ L for some ~x′, ~σ′

where ~x = f(~x′), then Fbhs sets t = 0. This corresponds to a setting where the receiver
never makes a signing request on any ~x∗ ∈ {0, 1}` where ~x = f(~x∗). This means the
condition in hyb1 is satisfied, in which case the party’s output is (sid, verified, (f, ~x′), ~σ′, 0).
This matches the behavior in hyb2.

– Otherwise, if there is already an entry (vk′, (f, ~x), ~σ, t′) ∈ L for some t′, the ideal
functionality sets Fbhs sets t = t′. In the real protocol execution in hyb1, the honest
verifier’s decision algorithm is deterministic. Hence, if a signature previously verified
(resp., failed to verify), it will continue to verify (resp., fail to verify).

– Finally, if none of the above criterion apply, then the ideal functionality allows the
simulator S to decide the verification response in hyb2. By construction, for an honest
party, the simulator implements the same logic as that in the actual protocol Πbhs.

We conclude that the outputs of the honest parties in response to verification queries are
identically distributed in hyb1 and hyb2.

59

• Signature-evaluation: In hyb2, since both parties S and R are honest, the resulting signatures
that a party receives from Fbhs are fully determined by the ideal algorithm IdealEval that S
provides to the functionality Fbhs. Since S implements these algorithms exactly as in the
protocol specification of Πbhs using the identically-distributed signing key sk and verification
key vk, the signatures output by the evaluation algorithm in hyb1 and hyb2 are identically
distributed. Moreover, by correctness of ΠHS and construction of S, the abort condition in
Fbhs for evaluation queries is never triggered.

Lemma D.1 now follows by combining Claims D.2 and D.3.

Lemma D.4. If the signer is honest and the receiver is corrupt, then for all efficient environments

Z, we have that idealFbhs,S,Z
c
≈ realΠbhs,A,Z .

Proof. We use a similar hybrid structure as that used in the proof of Lemma D.1:

• hyb0: This is the real distribution realΠbhs,A,Z .

• hyb1: Same as hyb0, except we modify the honest signer’s behavior as follows:

– At the beginning of the experiment, initialize ~x∗ ← ⊥.

– During a signing request, let ~w1, . . . , ~wt be the messages R submits to F `,sot . Update
~x∗ ←

⊕
i∈[t] ~wi. If the environment activated the signer to make a verification request of

the form (sid, signature, (fid, ~x
∗), ~σ) where ~σ is a valid signature on (fid, ~x

∗) prior to the
signing request, then the experiment aborts with output ⊥.

– Let vk be the verification key generated by the signer in the key-generation phase.
If the environment activates the honest signer on a verification request of the form
(sid, verify, vk′, (f, ~x), ~σ) where vk′ = vk and ~x 6= f(~x∗), then the signer’s output is set to
(sid, verified, (f, ~x), ~σ, 0). Otherwise, the output is determined as in hyb0.

• hyb2: This is the ideal distribution idealFbhs,S,Z .

Claim D.5. Suppose ΠHS satisfies unforgeability (Definition 3.5). Then, the outputs of hyb0 and
hyb1 are computationally indistinguishable.

Proof. Suppose there exists an environment Z and adversary A (that corrupts the receiver R) such
that the outputs of hyb0 and hyb1 are distinguishable. We use Z and A to construct an algorithm
B that breaks unforgeability of ΠHS. In the reduction, algorithm B simulates the behavior of the
honest signer for Z and A according to the protocol specification in hyb0 and hyb1. The overall
argument follows a very similar structure as the proof of Claim D.2, so we only give a sketch of how
B simulates the execution of hyb0 and hyb1 below:

• As in the proof of Claim D.2, algorithm B uses the public keys
—

pk and the verification key vk′

from the unforgeability challenger as the signer’s verification key vk = (
—

pk, vk′).

• To simulate a signing protocol, after the receiver R (under the direction of A) submits shares

~w1, . . . , ~wt ∈ {0, 1}` to F `,sot , algorithm B submits (~w1, . . . , ~wt) to the unforgeability challenger

to obtain the signatures (~σ1, . . . , ~σt), which it uses to simulate the response from F `,sot .

• Finally, algorithm B simulates the verification and evaluation queries to the honest signer as
described in hyb0 and hyb1, since these operations only depend on the public parameters.

60

By an analogous argument to that in the proof of Claim D.2, algorithm B correctly simulates the
behavior of the honest signer in a protocol execution with Z and A. Thus, with non-negligible
probability, the environment will activate the honest signer on a signing or verification query whose
behavior differs between hyb0 and hyb1. As in the proof of Claim D.2, if either condition is satisfied,
the environment’s query enables B to break unforgeability of the signature scheme.

Claim D.6. The outputs of hyb1 and hyb2 are identically distributed.

Proof. We argue that the view of the environment Z is identically distributed in hyb1 and hyb2.
The argument follows similarly to that in the proof of Claim D.3. We sketch the key details below:

• Key-generation: The simulator S (in hyb2) implements the key-generation phase exactly
according to the specification of the real protocol Πbhs (in hyb1).

• Signature-generation: In hyb1, when the receiver R (under the direction of A) submits shares

~w1, . . . , ~wt ∈ {0, 1}` to F `,sot , it receives in response from the F `,sot functionality signatures
~σ1, . . . , ~σt where (~σ1, . . . , ~σt) ← Sign(

—

pk, sk, (~w1, . . . , ~wt)). This is precisely how S simulates
the signing request for A in hyb2. Let ((fid, ~x), ~σ) be the message-signature pair that the
simulator S registers with the ideal functionality Fbhs at the end of the signing request in
hyb2. If this pair is already registered with Fbhs as an invalid signature, then Fbhs aborts and
the protocol execution halts in hyb2. By definition of hyb2 and S, this is only possible if the
environment activates the honest signer to make a verification request on the message-signature
pair ((fid, ~x), ~σ) prior to the signing request. This coincides with the abort condition in hyb1,
and so we conclude that the output of the signature-generation phase in hyb1 and hyb2 is
identically distributed.

• Signature-verification: Signature verification is a non-interactive procedure, so it suffices
to argue that the outputs of the honest signer in response to the environment’s queries
are identically distributed in hyb1 and hyb2. By construction of S, only verification and
evaluation queries involving an honest party requires interacting with the ideal functionality.
The argument then proceeds as in the proof of Claim D.3.

• Signature-evaluation: Similar to the case of signature verification, signature evaluation is
non-interactive, so it suffices to argue that the outputs of the honest signer in response to the
environment’s queries are identically distributed. This argument then proceeds as in the proof
of Claim D.3.

Combining Claims D.5 and D.6, the lemma follows.

Lemma D.7. If the signer is corrupt and the receiver is honest, then for all efficient environments

Z, we have that idealFbhs,S,Z
c
≈ realΠbhs,A,Z .

Proof. We proceed via a hybrid argument:

• hyb0: This is the real distribution realΠbhs,A,Z .

• hyb1: Same as hyb0 except we modify the honest receiver’s behavior in the signature-
generation protocol as follows. Let vk be the verification key chosen by the signer in the key-
generation phase. Let

(
(sid, i), sender, {(σi,j,0, σi,j,1)}i∈[t],j∈[`]

)
be the set of signatures the signer

61

submits to the ideal OT functionality F `,sot , and let {σpki,j}i∈[t],j∈[`] be the message-independent
signature components S sends to R. The receiver always outputs (sid, signature, (fid, ~x),⊥) if
any of the following conditions hold:

– The signer’s verification key vk cannot be written as (
—

pk, vk′) where
—

pk = {pki,j}i∈[t],j∈[`].

– If there exists indices i ∈ [t] and j ∈ [`] where both σi,j,0 and σi,j,1 are invalid. We say
that a signature σi,j,b is valid if it satisfies Eq. (D.1).

– If there exists j ∈ [`] such that for all i ∈ [t], at least one of σi,j,0 and σi,j,1 is invalid.

Otherwise, the honest receiver implements the verification protocol as in the real scheme.

• hyb2: Same as hyb1 except we use the context-hiding simulator S = (SExt,SGen) to generate
the signatures the honest receiver R outputs on evaluation queries. Here, we assume that
none of the conditions from hyb1 are satisfied (otherwise, the honest receiver outputs ⊥ in
the signing protocol and ignores all evaluation requests). In particular, we have the following:

– Let
(
(sid, i), sender, {(σi,j,0, σi,j,1)}i∈[t],j∈[`]

)
be the set of signatures the signer submits

to the ideal OT functionality F `,sot , and let {σpki,j}i∈[t],j∈[`] be the message-independent
signature components S sends to R.

– Since none of the conditions in hyb1 are satisfied, there exist indices i∗, j∗ where σi∗,j∗,0
and σi∗,j∗,1 are both valid. Moreover, the verification key vk can be written as vk = (

—

pk, vk′)

where
—

pk = {pki,j}i∈[t],j∈[`]. The experiment invokes the context-hiding simulator SExt to

extract a simulation trapdoor td← SExt(vk′, (0, σi∗,j∗,0), (1, σi∗,j∗,1)), and stores td. The
receiver’s signature is constructed using the same procedure from hyb1.

– During signature evaluation, on input (sid, eval, vk, g, (f, ~x), ~σ), R first applies the sig-
nature verification procedure on input (sid, verify, vk, (f, ~x), ~σ). If the signature verifies,

the receiver’s signature is generated by computing pkg ← PrmsEval(g ◦ frecon,
—

pk), σpkg ←
SigEvalPK

(
g ◦ frecon,

—

pk, (~σpk1 , . . . , ~σ
pk
t)
)
, where ~σpki = (σpki,1, . . . , σ

pk
i,`), and finally σ∗ ←

SGen(pkg, vk′, td, g(~x), σpkg). The receiver’s output is the tuple (sid, signature, (g, g(~x)), σ∗).

• hyb3: This is the ideal distribution idealFbhs,S,Z .

Claim D.8. Suppose t = ω(log λ). Then, the outputs of hybrids hyb0 and hyb1 are statistically
indistinguishable.

Proof. The only difference between the two experiments is the additional checks in hyb1 which
affects the honest receiver’s output on signing queries. We consider each of the conditions separately,
and argue that for each of them, the receiver’s output in hyb1 is the same as that in hyb0, except
with probability at most 2−(t−1) = 2−ω(log λ) = negl(λ).

• Suppose that the signer’s verification key is not well-formed: namely, that vk 6= (
—

pk, vk′) where
—

pk = {pki,j}i∈[t],j∈[`]. In this case, the receiver’s signature is ⊥ in both hyb0 and hyb1.

• Suppose there exists i ∈ [t] and j ∈ [`] where both σi,j,0 and σi,j,1 are invalid. In this case, the
honest receiver in hyb0 outputs ⊥ as its signature, which matches the behavior in hyb1.

62

• Suppose there exists j ∈ [`] such that for all i ∈ [t], at least one of σi,j,0 and σi,j,1 is invalid.
We argue that in this case, the receiver outputs ⊥ with probability at least 1 − 2−(t−1) in
hyb0. Without loss of generality, we can assume that exactly one of σi,j,0 and σi,j,1 for all
i ∈ [t] is invalid (the case where both are invalid is captured by the previous case). Let
b1, . . . , bt ∈ {0, 1} be such that σi,j,bi is invalid, and let ~x = (x1, . . . , x`) ∈ {0, 1}` be the
receiver’s message in the signing protocol. In the real protocol, the honest receiver samples
wi,j ←R {0, 1} for all i ∈ [t] such that xj =

⊕
i∈[t]wi,j . We consider two possibilities:

– Suppose xj 6=
⊕

i∈[t] bi. This means that there exists i ∈ [t] where wi,j 6= bi. In the real
protocol, this means that the receiver obtains signature σi,j,wi,j , which by assumption is
invalid. In this case, the receiver in hyb0 outputs ⊥ as its signature.

– Suppose xj =
⊕

i∈[t] bi. Since wi,j are sampled uniformly at random subject to the

constraint, with probability 2−(t−1), it is the case that wi,j = bi for all i ∈ [t]. In this
case, the receiver in hyb0 does not output ⊥ (since every signature it obtains is valid).
With probability 1− 2−(t−1), there is an index i ∈ [t] where wi,j 6= bi. In this case, the
receiver obtains signature σi,j,wi,j , which by assumption is invalid. Thus, we conclude

that the receiver in hyb0 aborts with probability 1− 2−(t−1).

In this case, the honest receiver in hyb0 outputs ⊥ with probability at least 1− 2−(t−1), while
in hyb1, the receiver outputs ⊥ with probability 1. In both cases, the probability is taken
over the receiver’s random coins. Since t = ω(log λ), we conclude that the statistical distance
between the output distributions of hyb0 and hyb1 is negligible.

Claim D.9. Suppose ΠHS satisfies context-hiding (Definition 3.9). Then, the outputs of hybrids
hyb1 and hyb2 are computationally indistinguishable.

Proof. Suppose there exists an environment Z and adversary A (that corrupts the signer S) such
that the outputs of hyb1 and hyb2 are distinguishable. We use Z and A to construct an adversary
B that breaks context-hiding security (Definition 3.9) of ΠHS. Algorithm B begins by simulating the
protocol execution in hyb1 and hyb2 for Z and A. In the simulation, B is responsible for simulating
the behavior of the honest receiver R and the ideal OT functionality F `,sot .

• Key-generation: The key-generation protocol only involves Z and A, so B does not need to
simulate anything.

• Signature-generation: On a signature-generation query (sid, sign, vk, ~x), let {(σi,j,0, σi,j,1)}i∈[t],j∈[`]

be the signatures the signer S submits to the ideal OT functionality F `,sot in the simulated
protocol execution (as directed by Z and A). Additionally, let {σpki,j}i∈[t],j∈[`] be the message-
independent signature components the signer sends to the receiver. Algorithm B checks the
three conditions in hyb1 and hyb2, and if any condition is satisfied, it defines the receiver’s
output to be (sid, signature, (fid, ~x),⊥).

Otherwise, the verification key vk has the form vk = (
—

pk, vk′) where
—

pk = {pki,j}i∈[t],j∈[`],
and moreover, there exists indices i∗, j∗ where σi∗,j∗,0 and σi∗,j∗,1 are both valid. Algorithm
B submits the public key pki∗,j∗ , the verification key vk′, and the message-signature pairs
(0, σi∗,j∗,0) and (1, σi∗,j∗,1) to the context-hiding challenger. Finally, algorithm B simulates
the receiver’s output according to the specification in hyb1 and hyb2.

63

If the receiver’s output is not ⊥, algorithm B does the following. Let ~w1, . . . , ~wt where⊕
i∈[t] ~wi = ~x be the bit-strings B chose when simulating the honest receiver. For i ∈ [t],

algorithm B defines ~σi = (σi,1,wi,1 , . . . , σi,`,wi,`).

• Signature-verification: Algorithm B simulates the verification queries involving the receiver R
as described in hyb1 and hyb2. Note that because signature verification is non-interactive,
the environment Z and the adversary A completely dictate the behavior of verification queries
to the corrupt signer.

• Signature-evaluation: Whenever Z activates the receiver on a signature-evaluation query
(sid, eval, vk, g, (f, ~x), ~σ), where vk = (

—

pk, vk′), algorithm B ignores the request if the receiver’s
signature in the signing protocol was ⊥. Otherwise, it proceeds as follows:

– As in hyb1 and hyb2, algorithm B checks that f = fid and that σ is a valid signature
on (f, ~x). If the signature verifies, then B first computes pkg ← PrmsEval(g ◦ frecon,

—

pk).
Then, it computes σ′ ← SigEval(g ◦ frecon, (~σ1, . . . , ~σt)) where ~σi is defined as in the
signing protocol.

– Algorithm B submits the public key pkg, the message g(~x), and the signature σ′ to the
context-hiding challenger, and receives in response a signature σ∗. Algorithm B simulates
the output of the honest receiver as (sid, signature, (g, g(~x)), σ∗).

Note that signature evaluation is non-interactive, the environment Z and the adversary A
completely dictate the behavior of evaluation queries to the corrupt signer.

• At the end of the experiment, when Z outputs a bit, B outputs the same bit.

We now show that B breaks context-hiding security with the same advantage as Z. By construction,
the only difference between the two hybrid experiments hyb1 and hyb2 is the way the honest
receiver’s signatures are generated on evaluation queries. Note that if the honest receiver outputs ⊥
in response to a signing query, then the honest receiver in hyb1 and hyb2 ignores all evaluation
queries. In this case, the two experiments are identical. Thus, without loss of generality, we assume
that the signing protocol succeeds. In this case, algorithm B submits a valid key, verification key,
and message-signature pairs to the context-hiding challenger.

Now, assume that B does not abort during signature generation. Then, if the context-hiding
challenger implements the hide algorithm using Hide, then the signatures output by B when
simulating the honest evaluation queries are distributed according to hyb1, and B perfectly simulates
an execution of hyb1 for Z and A. Alternatively, if the context-hiding challenger implements the
hide algorithm using SGen, then the signatures output by B when simulating the honest evaluation
queries are distributed according to hyb2, and B perfectly simulates an execution of hyb2 for Z and
A. Thus, if Z is able to distinguish experiments hyb1 and hyb2, algorithm B breaks context-hiding
of ΠHS with the same advantage.

Claim D.10. The outputs of hybrids hyb2 and hyb3 are identically distributed.

Proof. We now show that the view of the environment Z when interacting with an adversary A in
hyb2 is distributed identically with its view when interacting with the simulator S in hyb3.

64

• Key-generation: When the environment Z activates the signer on a key-generation query,
algorithm S simply forwards the query to its simulated protocol execution with adversary A
(as if it came from A’s environment). Thus, the output of S in hyb3 is distributed identically
to the output of A in hyb2.

• Signature-generation: By construction, S perfectly simulates the behavior of the ideal OT
functionality F `,sot , so it perfectly simulates the view of A in its simulated protocol execution
(since A only interacts with F `,sot). Thus, S perfectly simulates any interaction between the
adversary and the environment that can occur during this phase.

It suffices to argue that the output of the honest receiver in hyb2 and hyb3 is identi-
cally distributed on a query (sid, sign, vk, ~x), where vk can be parsed as vk = (

—

pk, vk′). Let

{(σi,j,0, σi,j,1)}i∈[t],j∈[`] be the signatures the signer submits to the ideal OT functionality F `,sot ,

and let {σpki,j}i∈[t],j∈[`] be the message-independent signature components the signer sends to
the receiver. First, if any of the verification conditions in hyb2 (defined in the description of
hyb1) are satisfied, then the output of the honest receiver in hyb2 is (sid, signature, (fid, ~x),⊥).
By construction, the simulator S implements an identical set of checks. If any of the conditions
are satisfied, then the simulator defines the IdealSign function to output ⊥ on all inputs. This
means that in hyb3, the honest receiver also outputs ⊥ as its signature in response to the
signing request. We conclude that the behavior in hyb2 and hyb3 is identical whenever any
of the conditions in hyb2 is triggered.

Now, consider the case where none of the conditions in hyb2 are satisfied. This means that
for all j ∈ [`], there is at least one ij ∈ [t] where both σij ,j,0 and σij ,j,1 are valid (according to
the criterion in Eq. (D.1)). We consider the receiver’s output in hyb2 and hyb3.

– In hyb2, the honest receiver chooses ~wi ←R {0, 1}` for all i ∈ [t] such that ~x =
⊕

i∈[t] ~wi.
This is equivalent to first sampling wi,j ←R {0, 1} for all j ∈ [`] and i 6= ij and setting
wij ,j ∈ {0, 1} such that ~x =

⊕
i∈[t] ~wi. Next, we say that an index i ∈ [t] and j ∈ [`] is

“bad” if either σi,j,0 or σi,j,1 is invalid. For all bad indices i, j, define bi,j ∈ {0, 1} so that
σi,j,bi,j is valid. We consider two possibilities.

∗ The receiver in hyb2 outputs ⊥ as its signature if there is a bad index i ∈ [t], j ∈ [`]
where wi,j 6= bi,j . Suppose there are n such bad indices. Since both σij ,j,0 and σij ,j,1
are valid for all j ∈ [`], and all of the wi,j ’s are sampled uniformly at random for
i 6= ij , it follows that with probability 1− 2−n (over the randomness used to sample
the wi,j ’s), there is at least one i 6= ij and j ∈ [`] where wi,j 6= bi,j .

∗ With probability 2−n, for all bad indices i ∈ [t], j ∈ [`], we have that wi,j = bi,j .

In this case, the honest receiver in hyb2 obtains valid signatures σi,j,wi,j from F `,sot

and constructs ~σ according to the specification of hyb2. Here, wi,j = bi,j for all
bad indices, and for all remaining indices i 6= ij and j ∈ [`], the choice bit wi,j is
uniformly random.

– In hyb3, the ideal signing algorithm IdealSign is used to generate the honest receiver’s
signature, and the simulator S decides whether the honest receiver outputs ⊥ or the
output of IdealSign. By construction, if n is the number of bad indices, then S causes the
honest receiver to output ⊥ with probability 1−2−n, which is precisely the probability that
the honest receiver outputs ⊥ in hyb2. With probability 2−n, the honest receiver outputs

65

the signature computed by IdealSign. We argue that in this case, the signature output by
IdealSign is distributed identically to the signature that would have been constructed by
the honest receiver in hyb2. By construction, IdealSign sets ~σi = (σi,1,wi,1 , . . . , σi,`,wi,`)
for all i ∈ [t] where wi,j = bi,j for all bad indices i ∈ [t] and j ∈ [`]. For the remaining
indices, wi,j is uniformly random subject to the restriction that

⊕
~wi = ~x where ~wi =

(wi,1, . . . , ~wi,`). Observe that this is the same distribution from which the wi,j are
sampled in hyb2. Finally, IdealSign constructs the final signature σ′ by computing
~σ ← SigEval(frecon,

—

pk, (~w1, . . . , ~wt), (~σ1, . . . , ~σt)). This is precisely the behavior of the
honest receiver in hyb2. In addition, by correctness of ΠHS, it will never be the case that
(vk, (fid, ~x), ~σ, 0) ∈ L. Specifically, ~σ is a valid signature on ~x under vk, so the simulator
S would never register it as an invalid signature in Fbhs. (Because the signer is corrupt,
the unforgeability criterion in signature verification is ignored).

We conclude that the output of the honest receiver in response to a signing query is identically
distributed in hyb2 and hyb3.

• Signature-verification: If the environment Z activates the corrupt signer S̃ on a verification
query (sid, verify, vk′, (f, ~x), ~σ), the simulator S activates the real signer S (under the control
of A) in its simulated version of Πbhs. Since the simulator S forwards S’s output to Z, the
responses to these queries in hyb2 and hyb3 are identically distributed.

Next, suppose the environment Z activates the honest receiver R on a signature verification
query (sid, verify, vk′, (f, ~x), ~σ). In hyb3, the ideal functionality Fbhs handles the signature-
verification queries. We consider the different possibilities below. Note that because the signer
is assumed to be corrupt, the unforgeability condition is ignored.

– If f /∈ H, then Fbhs sets the verification bit t = 0. This is the behavior in hyb2.

– Otherwise, if vk = vk′ and (vk, (f, ~x), ~σ, 1) ∈ L, then Fbhs sets t = 1. We consider several
scenarios depending on how the entry (vk, (f, ~x), ~σ, 1) was added to L. If ~σ was generated
as a result of a signing or a evaluation request involving the honest receiver, then by
(evaluation and hiding) correctness of ΠHS, ~σ is a valid signature on ~x, and the honest
receiver in hyb2 would also accept the signature. If the entry was added as a result of a
previous verification request (which successfully verified), then because the honest party’s
verification algorithm in ΠHS is deterministic and since the signature previously verified,
then the honest receiver would also output 1 in hyb2.

– Otherwise, if there is already an entry (vk′, (f, ~x), ~σ, t′) ∈ L for some t′, Fbhs sets t = t′.
In the real protocol in hyb2, the honest verifier’s algorithm is deterministic. Hence, if a
signature previously verified (resp., failed to verify), it will continue to verify (resp., fail
to verify).

– Finally, if none of the above criterion apply, then the ideal functionality allows the
simulator S to decide the verification response in hyb3. By construction, for the honest
receiver, the simulator implements the same logic as in the real protocol in hyb2.

We conclude that the output of the honest receiver in response to verification queries is
identically distributed in hyb2 and hyb3.

66

• Signature-evaluation: By definition, for any signature evaluation query made by Z to S̃ in
hyb3, the simulator S invokes S (under the control of A) in its simulated copy of Πbhs and
forwards S’s output to Z. Therefore, Z’s views in hyb2 and hyb3 are identical.

Next, suppose that the environment Z activates the honest receiver R̃ on an evaluation query
in hyb3. In this case, the ideal functionality first verifies the signature (as argued above,
the outcome of the signature verification procedure is identically distributed in hyb2 and
hyb3), and then invokes the IdealEval algorithm provided by S to construct the signature.
By construction, IdealEval is precisely the algorithm used in hyb2 to generate the signatures
(specifically, both IdealEval and the procedure in hyb2 simulate the signatures using the
context-hiding simulator for ΠHS). We conclude that the output of the honest receiver in
response to an evaluation query is identically distributed in hyb2 and hyb3.

We conclude that on all queries, the view of the environment Z in hyb2 and hyb3 is identically
distributed.

Lemma D.7 now follows by combining Claims D.8, D.9, and D.10.

Lemma D.11. If both the signer and the receiver are corrupt, then idealFbhs,S,Z ≡ realΠbhs,A,Z .

Proof. When both parties are corrupt, the simulator S only needs to simulate the behavior of
the ideal OT functionality F `,sot when simulating the protocol execution for adversary A. Since S
forwards all of the queries from Z to A (as if it came from A’s environment in the simulated protocol

execution), and moreover, S perfectly simulates the behavior of the F `,sot functionality, the output of
S in the ideal execution is distributed identically to the output of A in the real execution.

Theorem 5.1 now follows by combining Lemmas D.1, D.4, D.7, and D.11.

E Proof of Theorem 6.1

Let A be a static adversary that interacts with the environment Z, a prover P, and a verifier V
running the real protocol ΠZK (Figure 3). We construct an ideal world adversary (simulator) S that
interacts with the environment Z, a dummy prover P̃, a dummy verifier Ṽ, and ideal functionality
FZK such that no environment Z can distinguish an interaction with A in the real execution from
one with S in the ideal execution.

We begin by describing the simulator S. At the beginning of the protocol execution, the simulator
S begins by invoking the adversary A. Algorithm A begins by declaring which parties it would like
to corrupt, and S corrupts the corresponding set of dummy parties. The simulation then proceeds
as follows.

Simulating the communication with the environment. Whenever the simulator S receives
an input from the environment Z, it forwards the input to A (as if it came from the environment
in the simulated protocol execution). Whenever A writes a message on its output tape (in the
simulated protocol execution), the simulator S writes the same output on its own output tape (to
be read by the environment).

Simulating the ideal BHS functionality. At the beginning of the protocol execution, the
simulator S initializes an empty list L to keep track of the signatures in the simulated instance
of Fbhs. The simulator S simulates the ideal BHS functionality exactly as described in Figure 1.

67

Whenever the specification of Fbhs needs to interact with the ideal adversary, the simulator S
forwards the request to A (as if it came from Fbhs in the simulated protocol execution), and uses
the response from A to continue the simulation.

Simulating the preprocessing phase. In the preprocessing phase, the verifier and the prover
never exchange any messages with each other. They only interact with the Fbhs functionality. As
stated above, the simulator simulates the behavior of Fbhs exactly as described in Figure 1. If a
party is corrupt, then the simulator uses A to determine the messages it sends to Fbhs. If a party is
honest, then S simulates the behavior of the honest party exactly as in the real protocol. Let ṽk be
the verification key the verifier sends to the prover in the simulated execution.

Simulating the proofs. After simulating the preprocessing phase, the simulator S proceeds as
follows, depending on which parties are corrupt:

• The prover is honest : If the prover is honest, then the prover (in both the real and ideal execu-
tions) does nothing until it is activated by the environment. In the ideal execution, whenever
the environment activates the prover on an input (sid, ssid, prove,R, x, w) where R(x,w) = 1,
then S receives a tuple (sid, ssid, proof,R, x) from FZK. When this occurs, S simulates the
request as follows. First, let s̃k be the secret key the simulator S chose for the prover when sim-
ulating the preprocessing phase (since the prover is honest, S chooses the secret key). Then, S
constructs a ciphertext c̃t← Encrypt(sk, 0τ), where τ denotes the length of the witness for rela-
tion R. Next, S constructs a signature σ̃∗ ← IdealEval(CheckWitnessR,ct,x, 1), where IdealEval
is the ideal signature evaluation functionality that A chooses for Fbhs. The simulator S con-
structs the simulated proof π̃ = (c̃t, σ̃∗), adds the signature (vk, (CheckWitnessR,ct,x, 1), σ̃∗, 1)
to L (if an entry does not already exist), and sends (sid, ssid, proof, x, π̃) to the verifier in the
simulated protocol execution.

• The prover is corrupt : First, if the verifier is also corrupt, then the simulator S only needs to
simulate the BHS functionality Fbhs. Specifically, whenever the environment activates the
prover on an input in the ideal execution, the simulator simply forwards the input to the
(corrupt) prover in the simulated execution.

On the other hand, if the verifier is honest, then S proceeds as follows:

– At the beginning of the simulation, S initializes s̃k to ⊥. At any point in the simulated
protocol execution, if the prover (as dictated by A) makes a successful signing request to
the Fbhs functionality, the simulator S updates s̃k to be the message the prover submitted
to the signing functionality. By definition of the Fbhs functionality, the prover can make
at most one successful signing request to the Fbhs.

– Whenever the environment activates the prover in the ideal execution on an input
(sid, ssid, prove,R, x, w), the simulator S activates the prover in the simulated protocol
execution on the same input.

– Whenever the prover in the simulated execution sends a message (sid, ssid, proof,R, x, π)
to the verifier, the simulator parses π = (ct, σ∗). If π does not have this form or if
s̃k = ⊥, then S ignores the message. Otherwise, the simulator S submits the request
(sid, verify, vk, (CheckWitnessR,ct,x, 1), σ∗) to its (simulated) ideal functionality Fbhs. If
the signature does not verify, then S ignores the request. Otherwise, it computes
w ← Decrypt(s̃k, ct) and outputs (sid, ssid, proof,R, x) for the honest verifier in the

68

simulated execution. In addition, S submits (sid, ssid, prove,R, x, w) to ΠZK (on behalf
of the prover P̃).

To conclude the proof, we show that the environment cannot distinguish the output of the real
execution with adversary A from an ideal execution with the simulator S. We consider the two
cases separately.

Lemma E.1. If the prover is honest, and ΠSE is a CPA-secure encryption scheme, then in the

Fbhs-hybrid model, realΠZK,A,Z
c
≈ idealFZK,S,Z .

Proof. Our proof proceeds via a hybrid argument:

• hyb0: This is the real distribution realΠZK,A,Z .

• hyb1: Same as hyb0, except when constructing proofs, the honest prover does not submit
(sid, eval, vk,CheckWitnessR,ct,x, (fid, sk), σsk) to Fbhs to obtain the signature σ∗. Instead, the
signature is constructed as σ∗ ← IdealEval(CheckWitnessR,ct,x, 1). Afterwards, the entry
(vk, (CheckWitnessR,ct,x, 1), σ∗, 1) is added to Fbhs (if an entry does not already exist.)

• hyb2: Same as hyb1, except during the preprocessing phase, the honest prover sends
(sid, sign, vk, sk′) to Fbhs where sk′ ← KeyGen(1λ) is generated independently of sk. The
ciphertexts in the encryption step are still generated using sk.

• hyb3: Same as hyb2, except the honest prover encrypts the all-zeroes string 0τ (where τ is
the bit-length of the witness) when constructing the proofs.

• hyb4: Same as hyb3, except the honest prover requests the signature on sk in the preprocessing
step (instead of the dummy key sk′).

• hyb5: This is the ideal distribution idealFZK,S,Z .

We now show that assuming ΠSE is CPA-secure, the outputs of each pair of consecutive hybrid
experiments are computationally indistinguishable.

• Hybrids hyb0 and hyb1 are identical experiments according to the specification of Fbhs.
Specifically, since the prover is honest, the ideal functionality Fbhs answers the signature-
evaluation queries using the ideal evaluation function IdealEval, which is precisely the procedure
described in hyb1.

• Hybrids hyb1 and hyb2 are computationally indistinguishable if the encryption scheme
(KeyGen,Encrypt,Decrypt) is CPA-secure. First, the only difference in hyb1 and hyb2 is that
in hyb2, the entry (sid, vk, (fid, sk), σsk) in Fbhs is replaced with the entry (sid, vk, (fid, sk′), σsk).
We consider two cases, depending on whether the verifier is honest or corrupt.

The verifier is honest : If the verifier is honest, then these two experiments are identically
distributed. Specifically, the only queries the honest verifier makes to Fbhs are on (computed)
signatures σ∗ that are registered with Fbhs.

The verifier is corrupt : In this case, the adversary A can make arbitrary queries (on behalf of
the verifier) to the Fbhs functionality. In addition, since the verifier is the signer (with respect

69

to the Fbhs functionality), during signature verification, only the correctness and consistency
conditions are checked (and in particular, not the unforgeability condition). This means
that the view of adversary A is identically distributed in hyb1 and hyb2 unless A makes an
evaluation or a verification query to Fbhs on a message of the form (fid, sk) or (fid, sk′). We
first show that in hyb2, the probability that A makes a verification query to Fbhs on a message
of the form (fid, sk′) is negligible. By construction, in hyb2, the adversary’s view is completely
independent of sk′, so we can effectively defer the sampling of sk′ until after the adversary has
made all of its verification queries. Since the adversary makes poly(λ) verification queries, and
sk′ is drawn from a distribution with min-entropy at least ω(log λ),15 the probability (taken
over the randomness of the key-generation algorithm) that sk′ coincides with a message in the
adversary’s query is negligible.

We now show that if there exists an adversary A and an environment Z such that the outputs of
hyb1 and hyb2 are not computationally indistinguishable, then we can construct an adversary
B that breaks CPA-security of ΠSE. Based on the above analysis, to achieve non-negligible
distinguishing advantage, algorithm A has to issue a verification query on the message (fid, sk)
to the ideal functionality Fbhs with non-negligible probability. Algorithm B simulates an
instance of the protocol execution environment according to hyb2 as follows:

– Then, B starts the protocol execution experiment by activating the environment Z.
Algorithm B now simulates the protocol execution experiment as described in hyb2.

– To simulate the honest prover during the preprocessing phase, B leaves the secret key sk
unspecified (since it is not needed in the simulation). It samples sk′ ← KeyGen(1λ) for
the honest prover and simulates the rest of the preprocessing as described in hyb2.

– Whenever the environment activates the prover to construct a proof on a statement-
witness pair (x,w) for a relation R, algorithm B simulates the honest prover in hyb2 by
first checking that R(x,w) = 1. If so, then B submits an encryption query on the pair
(w,w) to the encryption oracle to obtain a ciphertext ct. Algorithm B simulates the rest
of the protocol exactly as described in hyb2.

– Algorithm B simulates the Fbhs functionality according to the specification of hyb1 and
hyb2 (the behavior of Fbhs is identical in the two hybrids, and does not depend on sk).

– At the end of the protocol execution experiment, algorithm B chooses a random bit-
string ξ ←R {0, 1}λ. It makes ξ chosen-message queries to the encryption oracle on pairs
(ξ1, 0), . . . , (ξλ, 1) to obtain ciphertexts ct1, . . . , ctλ. Then, for each verification query
made by adversary A to Fbhs on a message of the form (fid, ŝk) for some ŝk, algorithm B
checks to see if for all i ∈ [λ], Decrypt(ŝk, cti) = ξi. If this holds for all i ∈ [λ], then B
outputs 1. Otherwise, it outputs 0.

By definition, we see that B perfectly simulates the protocol execution according to the
specification in hyb2. By assumption, with non-negligible probability ε, algorithm A will issue
a query to Fbhs on the message (fid, sk). This means that with probability ε, there is some ŝk
where ŝk = sk.

15This is implied by CPA-security of the encryption scheme. Otherwise, the adversary has a noticeable probability of
guessing the key for the encryption scheme, which trivially breaks CPA-security.

70

– Suppose B is interacting with the encryption oracle O0 in the CPA-security game. In
this case, if there is a message of the form (fid, ŝk) where ŝk = sk, then B outputs 1 by
correctness of the encryption scheme. In this case, B outputs 1 with probability at least ε.

– Suppose instead that B is interacting with the encryption oracle O1. In this case, the
ciphertexts ct1, . . . , ctλ and keys ŝk are all independent of ξi. Thus, union bounding over
all of the messages of the form (fid, ŝk) appearing in the verification queries to Fbhs, the
probability that B outputs 1 (taken over the choice of ξi’s) is at most poly(λ)/2λ = negl(λ).

We conclude that B is able to break CPA-security with non-negligible probability ε− negl(λ).
Thus, if the encryption scheme is CPA-secure, the outputs of hybrids hyb1 and hyb2 are
computationally indistinguishable.

• Hybrids hyb2 and hyb3 are computationally indistinguishable if ΠSE is CPA-secure. Observe
that none of the logic in hyb2 and hyb3 depend on the secret key sk, and all of the messages
can be simulated given access to an encryption oracle Encrypt(sk, ·). By CPA-security of
ΠSE, we conclude that the outputs of these two hybrid experiments are computationally
indistinguishable.

• Hybrids hyb3 and hyb4 are computationally indistinguishable if ΠSE is CPA-secure. The
argument follows by the same logic as that used to argue computational indistinguishability
of hyb1 and hyb2.

• Hybrids hyb4 and hyb5 are identically distributed. By construction, the honest prover’s
behavior in hyb4 precisely coincides with the behavior of the simulated prover in hyb5. Thus,
the outputs of A in hyb4 are distributed exactly as the outputs of S in hyb5. Moreover, if the
verifier is honest, then the outputs of the honest verifier in hyb4 are distributed identically to
the outputs in hyb5; this follows by appealing to the correctness property of the ideal Fbhs

functionality. We conclude that the output distribution of hyb4 is identical to that of the
ideal execution.

Since each pair of hybrid arguments is computationally indistinguishable, the lemma follows.

Lemma E.2. If the prover is corrupt, then in the Fbhs-hybrid model, we have that realΠZK,A,Z ≡
idealFZK,S,Z .

Proof. In the case where the prover is corrupt, we show that the output of the real and ideal protocol
executions are identically distributed. We consider two cases.

The verifier is corrupt : If the verifier is also corrupt, then the simulator S is only responsible for
simulating the Fbhs functionality. Since S simulates the ideal BHS functionality exactly as described
in Figure 1, the output of S is identically distributed as the output of A in the real execution, and
the claim follows.

The verifier is honest : If the verifier is honest, we show that S perfectly simulates the behavior of
the honest verifier in the simulated protocol execution. By construction, S perfectly simulates the
behavior of the honest verifier in the preprocessing phase. Next, in the real execution, the honest
verifier only responds when it receives a tuple of the form (sid, ssid, proof,R, x, π) from the prover.
We show that the simulation is correct:

71

• Suppose in the real scheme, the verifier has not set the ready flag. This corresponds to the
setting where the prover has never made a signing request to Fbhs. In this case, the verifier
ignores the request. In the simulated protocol execution, if the prover never makes a signing
request to Fbhs, then s̃k = ⊥, and the verifier also ignores the request.

• Suppose in the real scheme, the proof π does not have the form (ct, σ). In this case, the verifier
also ignores the request. This is precisely how S simulates the honest verifier’s behavior in
the simulated protocol execution.

• Otherwise, in the real scheme, the honest verifier parses the proof as π = (ct, σ), and submits
(sid, verify, vk, (CheckWitnessR,ct,x, 1), σ) to Fbhs. We consider several cases:

Case 1 : Suppose that (vk, (CheckWitnessR,ct,x, 1), σ, 1) ∈ L, where L is the list of signatures
maintained by Fbhs. In this case, Fbhs declares the signature valid, and the honest verifier
in the real scheme accepts the proof by outputting (sid, ssid, proof,R, x). According to the
specification of Fbhs, there are two possible ways for (vk, (CheckWitnessR,ct,x, 1), σ, 1) to be
added to L:

– The prover made a successful evaluation query with function CheckWitnessR,ct,x on
some input sk where CheckWitnessR,ct,x(sk) = 1, and moreover, there is an entry
(vk, (fid, sk), σ′, 1) ∈ L for some σ′.

– The prover previously made a verification query on (vk, (CheckWitnessR,ct,x, 1), σ, 1) and
the adversary decided the verification result. According to the Fbhs specification, the
adversary chooses the verification output only if there exists (vk, (fid, sk), σ′, 1) ∈ L for
some σ′ where CheckWitnessR,ct,x(sk) = 1.

We conclude that in this case, there exist sk and σ′ where (vk, (fid, sk), σ′, 1) ∈ L and
CheckWitnessR,ct,x(sk) = 1. Since the verifier is honest, by the specification of Fbhs, this
is possible only if the prover has previously made a successful signing request on sk. This
means that in the simulated protocol execution, the prover must have submitted a signing
request to Fbhs on message sk. By construction of the simulator, s̃k = sk. Now, in the
simulation, S computes Decrypt(s̃k, ct) to obtain w. Since CheckWitnessR,ct,x(sk) = 1, this
means that R(x,w) = 1. In the ideal execution, the simulator sends (sid, ssid, proof,R, x, w)
to ΠZK, which by definition forwards the output (sid, ssid, proof,R, x) to the dummy verifier.
Thus, in this case, the honest verifier’s behavior in both the real and ideal executions is
identical.

Case 2 : Suppose that (vk, (CheckWitnessR,ct,x, 1), σ, 1) /∈ L. We consider two possibilities.

– If there does not exist an entry (vk, (fid, sk), σ′, 1) where CheckWitnessR,ct,x(sk) = 1 in
the list L for some sk and σ′, then by the unforgeability condition, the ideal functionality
Fbhs declares the signature invalid, and the honest verifier in the real scheme ignores the
message. Since S simulates the ideal functionality Fbhs perfectly, the simulator S also
ignores the message in the simulated execution.

– On the other hand, if L does contain an entry (vk, (fid, sk), σ′, 1) for some sk and σ′

where CheckWitnessR,ct,x(sk) = 1, then Fbhs allows the adversary to decide whether the
signature is valid or not. If the adversary declares the signature invalid, then in both

72

the real and the simulated executions, the verifier ignores the message. If the adversary
declares the signature valid, then in the real execution, the verifier accepts the proof
and outputs (sid, ssid, proof,R, x). In the simulated execution, because there does exist
(vk, (fid, sk), σ′, 1) ∈ L where CheckWitnessR,ct,x(sk) = 1, we can apply the same analysis
from Case 1 to argue that in the ideal execution, the simulated verifier also accepts
the proof and outputs (sid, ssid, proof,R, x). Moreover, in this case, S also forwards
(sid, ssid, proof,R, x, w) where w ← Decrypt(s̃k, ct) and R(x,w) = 1 to ΠZK. This means
that the honest verifier in the ideal execution also outputs (sid, ssid, proof,R, x).

From the above analysis, we see that in all cases, the behavior of the honest verifier in both the real
execution and the ideal execution is identical. Moreover, algorithm S perfectly simulates the view
of A in the simulated protocol execution. The lemma follows.

Combining Lemmas E.1 and E.2, we conclude that the ΠZK protocol securely realizes FZK in the
presence of malicious adversaries in the Fbhs-hybrid model.

73

	Introduction
	Multi-Theorem Preprocessing NIZKs from Lattices
	Additional Related Work

	Preliminaries
	Lattice Preliminaries

	Homomorphic Signatures
	Homomorphic Signatures Construction

	Preprocessing NIZKs from Homomorphic Signatures
	Blind Homomorphic Signatures
	Constructing Blind Homomorphic Signatures

	Universally-Composable Preprocessing NIZKs
	Applications to MPC

	The Universal Composability Framework
	UC Functionalities

	Adaptively-Secure Homomorphic Signatures
	Proof of Theorem 4.4
	Proof of Theorem 5.1
	Proof of Theorem 6.1

