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Abstract

Attribute based encryption (ABE) is an advanced encryption system with a built-in mechanism
to generate keys associated with functions which in turn provide restricted access to encrypted
data. Most of the known candidates of attribute based encryption model the functions as
circuits. This results in significant efficiency bottlenecks, especially in the setting when the
function, associated with the ABE key, admits a RAM program whose runtime is sublinear
in the length of the attribute. In this work we study the notion of attribute based encryp-
tion for random access machines (RAMs), introduced in the work of Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich (Crypto 2013). We present a construction of attribute based
encryption for RAMs satisfying sublinear decryption complexity assuming learning with errors.
This improves upon the work of Goldwasser et al., who achieved this result based on SNARKs
and extractable witness encryption.

En route to constructing this primitive, we introduce the notion of controlled homomorphic
recoding (CHR) schemes. We present a generic transformation from controlled homomorphic
recoding schemes to attribute-based encryption for RAMs and then we show how to instantiate
controlled homomorphic recoding schemes based on learning with errors.

1 Introduction

Attribute based encryption [SW+05] is a powerful paradigm that provides a controlled access mech-
anism to encrypted data. Unlike a traditional encryption scheme, in an attribute based encryption
scheme, an authority can generate a constrained key skP for a program P such that it can de-
crypt an encryption of message µ, associated with attribute x, only if the condition P (x) = 0 is
satisfied. The last decade of research in this area [SW+05, GPSW06, OSW07, GJPS08, W+09,
LW11, Wat12, GVW15a, GGH+13, GKP+13b, BGG+14, GGHZ14, Wee14, GVW15b, BV16] has
led to several useful applications including verifiable computation [PRV12] and reusable garbled
circuits [GKP+13a]. Special cases of ABE, such as identity based encryption [BF01, Wat05, DG17,
BLSV17], and generalizations of ABE, such as FE [BSW11, O’N10, GGH+16], have also been
extensively studied.

Current known constructions of ABE offer different flavors of efficiency guarantees and can be
based on various cryptographic assumptions. Barring few expections, all these constructions [GPSW06,
W+09, LOS+10, GVW15a, BGG+14, GVW15b] model the random access programs, associated
with the constrained keys, as circuits. However, transforming random access programs into circuits
is associated with significant efficiency costs. If the execution time of these programs were sub-linear
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in the input length to begin with (for instance, binary search), modeling them as circuits destroys
the sub-linearity property. As a consequence, the decryption complexity could be exponential in
the running time of the programs. This is quite unsatisfactory as we often encounter scenarios
where sublinear computations have to be performed on massive data sets. Even if the programs
do not have sublinear complexity in the input length, another issue with modeling programs as
circuits is that the decryption algorithm could be drastically slower than the running time of the
original programs, not to mention the additional overhead involved in transforming programs into
circuits.

To circumvent these issues, Goldwasser et al. [GKP+13b] introduced the notion of ABE for
RAMs (A RAM program is associated with a memory (initialized with the input to the RAM
program) and step circuit. In every step of the RAM computation, the step circuit outputs the
next index to be read and additionally, it also writes to a location in the memory. It differs
from a Turing machine, in that a RAM program does not have to read all the locations in the
memory.). In this setting, the program P associated with attribute keys are represented as RAM
programs, which are a more natural model of computation than boolean circuits. They presented
the first construction of ABE for RAMs assuming extractable witness encryption and SNARKs.
They achieved decryption complexity polynomial only in the running time of the program. Recent
works [GGHW14, BP14, BSW16] have brought into question the veracity of the assumptions of
extractable witness encryption and SNARKs. While the existence of these assumptions have been
ruled out only in specific scenarios, they certainly guide us to be more careful about using them
for cryptographic applications.

1.1 Our Contributions

The goal of this work is to base the primitive of ABE for RAMs on well studied cryptographic
assumptions. Before stating our result, we explain the model of ABE for RAMs below.

As defined in an ABE for circuits scheme, an ABE for RAMs scheme consists of setup, key
generation, encryption and decryption algorithms. The encryption algorithm takes as input an
attribute database D, a message µ and produces the ciphertext ct. The key generation takes
as input a RAM program P and produces attribute key skP associated with P . The decryption
algorithm, modeled as a RAM program, takes as input skP , a ciphertext ct and produces the
decrypted message µ only if PD = 0. The key efficiency requirement on the scheme is that the
decryption of skP on encryption of µ should take time p(λ, T ), where T is an upper bound on the
running time of P , for a fixed polynomial p(·). In particular, if T is polylogarithmic in length
|D| of the attribute then the decryption complexity is also polylogarithmic in |D|. We term this
sublinear decryption property. Barring the work of Goldwasser et al. [GKP+13b], none of the ABE
constructions achieve sublinear decryption complexity property.

We show the following result:

Theorem 1.1 (Informal). Assuming learning with errors (with sub-exponential modulus1), there
is a construction of public key attribute-based encryption scheme for random access machines sat-
isfying sub-linear decryption property.

Our construction satisfies selective security (Using the work of [GKW16], we can boost our
security to semi-adaptive security. However, this transformation would not preserve the sub-linear
decryption property.). Even for programs that do not run in time sublinear in the input length,
our work beats previous works in terms of decryption complexity. The decryption complexity in

1The same assumption for lattice-based ABE for general circuits [BGG+14].
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our work is a polynomial p(λ, T ), while previous works [GVW15a, BGG+14, GVW15b] achieved
decryption complexity p(λ, T 3) (polynomial p being the same), where T 3 is the depth of the circuit
obtained by transforming a RAM program of runtime at most T [CR72, PF79].

To prove the above theorem, we introduce a novel primitive that we call controlled homomorphic
recoding schemes. This primitive generalizes the concepts of fully key homomorphic encryption,
introduced in the work of [BGG+14]. Using this tool, we build ABE for RAMs and then we conclude
by instantiating the tool from lattice assumptions.

In our scheme, in addition to the decryption complexity, the rest of the parameters in our sys-
tem also depend on the upper bound on the running time. The decryption complexity itself can
be made input-dependent, and hence independent of the upper time bound, using powers-of-two
technique introduced by [GKP+13b]. However, it is unclear how to make the encryption and the
key generation complexity independent of the time bound in our scheme. In contrast, the scheme
of Goldwasser et al. [GKP+13b] achieve succinctness property, meaning that the encryption com-
plexity and the key generation complexity is independent of the time bound. A natural question
to ask here is whether we can achieve succinctness property without resorting to stronger assump-
tions. It turns out that an attribute based encryption satisfying succinctness property would imply
succinct randomized encodings. This is because, attribute based encryption for RAMs satisfying
succinctness, additionally assuming learning with errors, imply succinct randomized encodings for
Turing machines2 [BGJ+16, AJS15]. Current constructions of succinct randomized encodings are
based on indistinguishability obfuscation [CHJV15, BGL+15, KLW15] for circuits.

1.2 Technical Overview

We first discuss the hurdles involved in extending the current known attribute based encryption for
circuits schemes to the RAM setting. In the ABE for circuits scheme of Boneh et al. [BGG+14],
the public key consists of matrices A,A1, . . . ,AN ∈ Zn×mq . The encryption of an attribute D =
(x1, . . . , xN ) and message µ produces the ciphertext consisting of,

sTA + eT, sT(A1 + x1G) + eT1 , . . . , s
T(AN + xNG) + eTN , Enc(sk, µ)

where s ∈ Znq is a randomly chosen secret vector, G is the gadget matrix [MP12], e, {ei} are error
vectors (chosen from an appropriate Gaussian distribution) and Enc is a symmetric encryption
scheme3 that allows for decrypting using “noisy” keys. In particular, given sk + err, where err
has small norm, we can distinguish Enc(sk, 0) and Enc(sk, 1). An attribute key corresponding to
a RAM program P is computed as follows: first transform the program P into a circuit C. Next,
homomorphically evaluate C on the matrices A1, . . . ,A` to obtain the matrix AC. Finally, the
attribute key consists of the trapdoor TC such that the following holds: [A|AC] · TC = sk. The
decryption consists of two steps: (i) homomorphism step: in this step, evaluate the ciphertexts
{sT(Ai + xiG) + eTi } to obtain the ciphertext that is approximately sT(AC + C(D)G), (ii) au-
thentication step: in this step, we use the homomorphically computed ciphertext and the trapdoor
TC to obtain a noisy secret key sk only if C(D) = 0. The noisy key then allows us to obtain the
message µ.

Notice that the attribute key TC is generated as a function of the matrices {Ai} and circuit C.
This means key generation algorithm knows all the operations, specified by the circuit C, that is
to be performed on the data and thus can authenticate only those operations that are legal. As

2The works [BGJ+16, AJS15] show implication of ABE for Turing machines (as defined in [AJS15]) to succinct
randomized encodings (Appendix A.5 in [BGJ+16]. However, ABE for RAMs satisfying succinctness property implies
ABE for Turing machines.

3Boneh et al. use a specific lattice based symmetric encryption scheme.
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an example, consider a circuit that consists of applying OR gates to its input and then applying a
giant AND gate at the top. At the time of generating the key for this circuit, the authority knows
that first applying OR and then AND is the only legal computation path that can be taken and
it can thus generate a trapdoor that only authenticates this computation. However, if we were to
generate attribute keys for RAM programs directly then we would run into trouble. The operations
performed during RAM computation can be highly data-dependent (unlike circuits, which consist
of data-oblivious operations) and hence it is unclear which set of operations to authenticate during
the key generation process. For instance, a RAM program P could read the first bit of the database
and if its value is 0 it executes a sequence of OR gates and then applies a giant AND gate, otherwise
if its value is 1 then it could simply output the second bit of the database. This means that the
computation path, i.e., a sequence of operations to be performed on the data, is ill-defined during
the key generation phase and hence its unclear how to execute the authentication mechanism.

A first attempt to solve the above issue is enumerate all possible computation paths and then
generate a trapdoor for every computation path. In more detail, let T be an upper bound on the
running time of the program and for now, think of T as being a constant. This means that all
possible T -sized subsets of the memory locations can be accessed by the program during decryption.
For every possible T -sized set I ⊆ [N ], we first perform homomorphic evaluation on the matrices
{Ai}i∈I to obtain the matrix AI . The next step is to generate a trapdoor TI such that [A|AI ]·TI =
sk. Since T is a constant, the size of the attribute key is polynomial sized, as desired. On input
an encryption of attribute D and message µ, first determine the set of locations I∗ accessed by the
program. Then use the trapdoor TI∗ to obtain the noisy key and decrypt the message as before.
This scheme achieves sublinear decryption complexity: the decryption algorithm only needs to touch
ciphertext encodings computed with respect to {Ai}i∈I∗ and trapdoor TI∗ . However, in terms of
security, this scheme fails. There is no mechanism in place that prevents a malicious evaluator from
illegally using a trapdoor TI′ , for I ′ 6= I∗. This suggests that we need a controlled authentication
mechanism that lets us evaluate only “legal” trapdoors depending on the data. Moreover, even if
we tweak the scheme to incorporate this mechanism, a bigger problem is that this does not scale
for the case when T is not a constant since the attribute key would no longer be polynomial sized.
We introduce the notion of controlled homomorphic recoding schemes that overcomes the above
barriers.

Our Approach: Controlled Homomorphic Recoding Scheme. The main insight in our
approach is to divide the computation into several tiny modules of computation and then apply
authentication mechanism after the execution of every module. A RAM program presents a natural
way to achieve such a modularization: a module corresponds to the associated step circuit of
the RAM program. As in the case of [BGG+14], the encryption will consist of encodings of the
database. We design the decryption process to proceed by homomorphically evaluating the step
circuit followed by authenticating its output which then is followed by homomorphic evaluation
of the step circuit for next time step and so on. In order to perform authentication after every
time step, we provide T auxiliary keys as part of the attribute key, where T is the maximum
running time of the associated RAM program. The main challenge we face when we try to nail
down this approach is that we need a mechanism to ‘stitch’ the intermediate homomorphism and
the authentication steps together. Specifically the authentication phase should not only verify the
correctness of the computation of the step circuit but it should also pass along the valid encoded
information to the next homomorphism phase. We term this phase, that performs the job of both
authentication and translation of encodings, as controlled recoding phase. Incorporating both the
homomorphism phase and the controlled recoding phase, we introduce the notion of controlled
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homomorphic recoding scheme.

x1 x2 x3 xi xj · · ·

Homomorphism
Phase

Controlled
Recoding
Phase

Homomorphism
Phase

x1 x2 x3 xi xj · · ·

Step circuit Step circuit

state

read j

write b

state

read j

write b

state

read j

xj

Figure 1: A high level description of how the two phases (homomorphism and controlled recoding)
mirror the execution of the RAM program. xi denotes the encoding of xi. The controlled recoding
phase translates the encodings of state and “read j” instruction from the previous time step to the
next time step. It also translates the jth database encoding into an encoding for the next time step.

A controlled homomorphic recoding scheme allows for encoding messages x along with secret ran-
domness s with respect to public key pk. There are two main phases associated with a controlled
homomorphic recoding scheme.

• Public Homomorphism: Given encodings of messages {xi}i∈[`] along with secret randomness s
computed with respect to public keys {pki}i∈[`] and a boolean circuit C, it outputs the encoding
of C(x1, . . . , x`) along with s with respect to the public key C(pk1, . . . , pk`). In particular, the
homomorphism phase can only be applied on encodings computed with respect to the same secret
randomness s.

• Controlled Recoding Phase: The main goal of this phase is two-fold: first verify the com-
putation in the previous time step and if the verification phase succeeds then produce encodings
for the next homomorphism phase. The verification step implicitly captures the controlled au-
thentication mechanism that we touched upon earlier. We describe the inner workings of this
phase below.

Given encodings of messages {xi}i∈[`] along with secret randomness s computed with respect
to public keys {pki}i∈[`] and a recoding key (The term recoding key is inspired from the work
of [GVW15a]. As in [GVW15a], the recoding key in our work serves the purpose of re-encryption.)
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rk, it outputs the encoding of f(x1, . . . , x`) with respect to the target public key pk∗, as long as
f(x1, . . . , x`) 6= ⊥. That is, if the output of f being ⊥ signals then the recoding process fails.
The function f , target public key pk∗ and a secret key associated with one of the public keys in
{pki}i∈[`] are used to compute the recoding key rk.

Looking ahead, in the construction of ABE from CHR, the control functions will be critical in
controlling the information to be passed on from the output of step circuit in the ith step to
(i+ 1)th step.

In more detail, we describe the algorithms associated with a controlled homomorphic recoding
scheme. Setup generates the public key pk and secret key sk. Enc is a mechanism to transform
attribute y and secret message s into a ciphertext ct. Equality test EqTest allows for checking if
two different ciphertexts ct1 and ct2 encode the same attribute bit, given the condition that they
both are computed with respect to the same public key pk and the same secret message s. The
rest of the algorithms are classified into public homomorphism and controlled recoding phases.

Public Homomorphism: There are two algorithms associated with this phase. The first algorithm
KeyEval takes as input many public keys pk1, . . . , pkn, circuit C and outputs a homomorphically
evaluated public key pkC . The second algorithm, takes as input ciphertexts ct1, . . . , ctn with cti
computed under pki, circuit C and it computes the ciphertext ct∗ under the resulting public key
C(pk1, . . . , pkn). Looking ahead, C will essentially represent the step circuit of a RAM program.
We present a pictorial representation of both these algorithms in Figure 2.

pk1 · · · pkn

C(pk1, . . . , pkn)

C

pk1 x1 s · · · pkn xn s

C(pk1, . . . , pkn) C(x1, . . . , xn) s

C

Figure 2: Description of homomorphism algorithms. The topmost figure denotes the execution of
KeyEval and the next figure denotes the execution of CtEval.

Controlled Recoding: There are two algorithms associated with the controlled recoding phase.
The ciphertext recoding procedure ReEnc allows for recoding ciphertexts of {xi}i∈[n] under pub-
lic keys (pk1, . . . , pkn) into a ciphertext of f(x1, . . . , xn) under the public key pk∗ as long as
f(x1, . . . , xn) 6= ⊥. This recoding process is carried out with the help of a recoding key rkf ,
which is associated with a functon f . The recoding key generation algorithm ReEncKG allows
for generating such a recoding key, rkf . Looking ahead, the function f will play a crucial role in
deciding which of the ciphertexts to recode.

Consider the following example. Let rkf be a recoding key that recodes ciphertexts under public
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keys (pk1, pk100), where f is a function that takes as input (x, y) and outputs y if x = 100, otherwise
it outputs ⊥. This is useful for the reading operation in the ABE application. We can think of the
public key pk1 being used to encode the read address 100 and pk100 used to encode the value in the
100th memory location.

pk1 x1 s · · · pkn xn s

pk∗ f(x1, . . . , xn) s

rkf

Figure 3: Description of ciphertext recoding, ReEnc.

We explain the correctness requirement by considering a toy example. Consider three input bits
(x1, x2, x3), circuits C1, C2, and control function f such that f

(
C1(x1, x2, x3), C2(x1, x2, x3)

)
∈

{0, 1}.

• Suppose ct1, ct2, ct3 are encodings of (x1, x2, x3) (under the same randomness) respectively
under the public keys (pk1, pk2, pk3).

• Homomorphically evaluating (ct1, ct2, ct3) using the circuit C1 (resp., C2) yields cipher-
text of C1(x1, x2, x3) (resp., C2(x1, x2, x3)) under the public key C1(pk1, pk2, pk3) (resp.,
C2(pk1, pk2, pk3)). Call these two encodings ct′1 and ct′2.

• Suppose rkf is a recoding key that translates ciphertexts encoded under the public keys
pk1, pk2, pk3 into a ciphertext under public key pk∗. Upon executing ReEncKG on input
ct′1, ct

′
2 and recoding key rkf , let ct∗ be the resulting ciphertext.

We require the following condition to hold: EqTest should declare ct∗ and ct equal, as long as ct is
a ciphertext of f(C1(x1, x2, x3), C2(x1, x2, x3)) and secret randomness s under the public key pk∗.

Toy Example: ABE for Circuits. Before we show how to construct ABE for RAMs from
CHR, it is instructive to look at how ABE for circuits can be constructed from CHR. We introduce
the security properties of CHR that will be useful to prove the security of the resulting ABE for
circuits scheme. These security properties will be reused later in the proof of security of the final
ABE for RAMs scheme.

We describe the high level construction of ABE for circuits.

• Setup: Let N be the length of the attribute. There are three types of CHR public keys to
be generated: (i) public keys (pk1, . . . , pkN ) corresponding to the attribute, (ii) anchor public
key-secret key pair (pk0, sk0), (iii) target public key pkout. The anchor secret key sk0 will be
set as the master secret key of the ABE scheme. The public key of the ABE scheme will be
set to (pk0, pkout, pk1, . . . , pkN ).

• Key Generation: Let C be the circuit for which we need to generate the attribute key.
Execute the following two steps:

– Homomorphism keys: Execute the key evaluation algorithm KeyEval of CHR on the
public keys pk1, . . . , pkn and circuit C to obtain the public key pkC .
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– Controlled Recoding keys: Execute the key recoding algorithm ReEncKG of CHR
on input public keys (pk, pkC), target public key pkout and control function f (defined
next) to obtain the recoding key rkf . The function f is defined as f(x, y) = 0 if it holds
that x = 0 and y = 0, otherwise f(x, y) = ⊥.

Set the ABE key of C to be rkf .

• Encryption: It takes as input attribute x of size N and message µ. It first samples secret
randomness s from a distribution4. It computes the following encodings: (i) encoding of xi
and s under the public key pki, (ii) encoding of 0 and s under the public key pk0 and finally,
(iii) encoding ct∗ of µ and s under the public key pkout.

• Decryption: This proceeds in two phases:

– Homomorphism: The circuit C is homomorphically evaluated on the encodings of xi
(and s) using the algorithm CtEval of the CHR scheme. The result is an encoding of
C(x) (and s) under pkC .

– Controlled Recoding: Using the recoding key rkf , the encodings of C(x) under pkC
and 0 under pk0 (with respect to same randomness s) can be translated into an encoding
of 0 and s under pkout as long as C(x) = 0. Recall that this is because the recoding
process only succeeds if the output of the function is not ⊥ and this in turn only happens
if C(x) = 0.

Once we have an encoding of 0 and s under pkout, we then run the equality test on this
encoding and ct∗ (as computed in encryption). If they are equal, this means that the secret
message µ has to be 0, otherwise it has to be 1. This concludes the scheme.

We now describe the security properties of CHR required to argue the security of this scheme.
These security properties will in fact be reused later on in the proof of security of ABE for RAMs
from CHR. We draw parallels of the security properties stated below with the security proof of
ABE for circuits construction of Boneh et al. [BGG+14].

I. Indistinguishability of Setup: To define this property, we first define a simulator Sim.CHRSetup
that takes as input a value v to be programmed and outputs a public key Sim.pk and a secret trap-
door τ5. We require that the distribution of simulated public keys {Sim.pk} is indistinguishable to
the distribution of real public keys {pk}.

This is analogous to the hybrid in the security proof of Boneh et al. [BGG+14], where the
(honestly generated) public keys correspond to matrices of the form {A} and the simulated public
keys are of the form {AR− vG} and R is the trapdoor. In the case of Boneh et al., the indistin-
guishability follows from an application of leftover hash lemma.

II. Indistinguishability of Recoding Keys: The simulator Sim.CHRrk is defined as follows:
let the public keys used to encode the database be simulated as (Sim.pk1, . . . ,Sim.pkn), where the
ith attribute bit xi is programmed in Sim.pki. As long as the output of C on x is not 0, the recoding
key rkf associated with the attribute key of C, can be generated without the secret key sk0.

The indistinguishability of recoding keys property states that the distribution of honestly gen-
erated recoding keys is indistinguishable from the distribution of simulated recoding keys.

4The security of the scheme will depend on which distribution we choose. Looking ahead, this corresponds to the
distribution used to sample the secret in the learning with errors assumption.

5This is not the same as lattice trapdoors which we use in the instantiation.
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Recall that in [BGG+14], the trapdoor TC was generated (in the construction) such that
[A|AC ]·A = P. In our language, A corresponds to pk0, P corresponds to pkout and AC corresponds
to pkC . Furthermore, TC can be viewed as a recoding key. In the construction of [BGG+14], the
trapdoor TA (a.k.a sk0) for A is used to generate TC . However, in the security proof, when the
output of C on the challenge attribute x∗ is 1, the matrix [A|AC ] can be written as [A|ARC −G]
and the trapdoor of G (along with knowledge of RC) helps in simulating the trapdoor RC without
the trapdoor TA.

III. Pseudorandomness of Ciphertexts: This property states that the encoding of b and se-
cret randomness s, under a public key pk, is indistinguishable from uniform distribution on the
space of encodings.

This is analogous to the hybrid in [BGG+14], where the assumption of learning with errors is
invoked. In more detail, they replace the encoding sTA + eT (encoding of 0 and s under pk0) with
uniform random distribution. This can be performed only if the trapdoor TA is no longer used to
generate the attribute keys.

Using the above security properties, we give the overview of the proof of security of ABE for circuits
from CHR.

• Suppose the adversary has submitted the challenge attribute x∗ along with attribute key
queries C1, . . . , Cq such that C(x∗) = 1. Using Sim.CHRSetup, the first step is to simulate the
public keys (Sim.pk1, . . . ,Sim.pkn) with the i-th attribute bit x∗i programmed in Sim.pki.

• Next, all the attribute keys are simulated using the algorithm Simrk. Here, the fact that
Ci(x

∗) = 1, for every i ∈ [q], is crucially used.

• At this point, the secret key sk0 is not used and therefore, the pseudorandomness of ciphertexts
property is invoked to compute all the encodings using uniform distribution.

Main Construction: ABE for RAMs from CHR. We now show how to construct ABE for
RAMs starting from a controlled recoding scheme. We only provide a high level template below
and this suffices to understand the main ideas in our construction. We also later identify some
technical challenges that arise when we try to implement this template and how to handle them.

• Setup: Let N be the length of the attribute. There are three main types of CHR public keys
to be generated: (i) public keys (Step[0].pkdb1 , . . . ,Step[0].pkdbN ) corresponding to the attribute
database, (ii) anchor public key-secret key pair (pk0, sk0), (iii) target public key pkout. In
addition, CHR public key used to encode the initial read address, namely Step[0].pkra and
the CHR public key used to encode the initial state information Step[0].pkst. All these public
keys, denoted by Step[0].PK, will be part of the ABE public key.

The anchor secret key sk0 will be set as the master secret key of the ABE scheme.

• Key Generation: Let P be the RAM program for which we need to generate the ABE key
with run time upper bounded by T and let C be the step circuit associated with P .

Sample public keys for every step in [T −1] and the number of such public keys for every step
is proportional to the output length of C. That is, generate Step[1].PK, . . . , Step[T − 1].PK,
where Step[i].PK denotes the set of public keys associated with the i-th step.
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The next step is to generate recoding keys Step[1].RK, . . . , Step[T−1].RK, where the recoding
keys in the set Step[i] recodes the encodings w.r.t the Step[i − 1] public keys to encodings
w.r.t the Step[i] public keys.

Execute the following two steps for every time step t ∈ [T ]:

– Homomorphism keys: Execute the key evaluation algorithm KeyEval of CHR on the set
of public keys on Step[t − 1].PK to obtain the set of public keys Step[t − 1].PKhom. The
public keys in Step[t− 1].PKhom is used to encode the output of C in the (t− 1)-th step.

– Controlled Recoding keys: Execute the key recoding algorithm ReEncKG of CHR on
the public keys Step[t− 1].PKhom and control functions in the class F to obtain the set of
recoding keys Step[t].RK, for every time step t ∈ [T ]. The class F is used to translate the
output of the (t− 1)-th step circuit to the input of t-th step circuit.

To give a glimpse of what F contains, we give two examples:

∗ Ind: this is an identity function. This is useful in converting an encoding of state output
by the previous step into an encoding input to the next step. This is also useful in
transferring the read address output by previous step to the next one.

∗ fi(i′, b): this outputs b only if i = i′. This is useful for writing operation: suppose the
step circuit at some time t outputs a location i′ and value b to be written to. In this case,
a recoding key associated with fi will transform encoding of location i′ into encoding of
b in the i-th database location only if i = i′.

Set the ABE key of the program P to be (Step[1].RK, . . . , Step[T ].RK).

• Encryption: It takes as input attribute x of size N and message µ. As before, it first samples
secret randomness s from a distribution. It computes the following encodings: (i) encoding
of xi and s under the public key pki, (ii) encoding of 0 and s under the public key pk0 and
finally, (iii) encoding ct∗ of µ and s under the public key pkout. Additionally, it also computes
encoding of initial read address (set to 1) under Step[0].pkra and the encoding of initial state
(also set to 1s). All the encodings computed will be part of the ABE ciphertext.

• Decryption: This proceeds in T steps, where T is the runtime of the RAM program and in
each step, it executes homomorphism and controlled recoding phases. In more detail, in the
tth step, it executes:

– Homomorphism: The step circuit C is homomorphically evaluated on the encodings
output by (t − 1)-th step to obtain encodings of output of t-th step under the public
keys in Step[t].PKhom.

– Controlled Recoding: Using the recoding keys in Step[t].RK, the encodings com-
puted under the public keys in Step[t].PKhom can be recoded to encodings computed
under the public keys in Step[t].PK. As described earlier, the recoding keys determine
what value to be fed to the t-th time step as a function of the (t− 1)-th time step.

In the last step, once we have an encoding of 0 and s under pkout, (as before) we then run the
equality test on this encoding and ct∗ (as computed in encryption). If they are equal, this
means that the secret message µ has to be 0, otherwise it has to be 1.

Security Overview. We describe the main steps in the security proof.
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• As in the case of ABE for circuits scheme, the first step is to simulate the public keys produced
by Sim.CHRSetup. In particular, the challenge attribute x∗ is programmed in Sim.CHRSetup.

• The next goal is to simulate the intermediate recoding keys (i.e, Step[1].RK, . . . , Step[T −
1].RK) in every attribute key. In particular, these recoding keys need to be generated without
the help of the anchor secret key. Recall that in the case of ABE for circuits scheme, we could
simulate the recoding key rkf since the output of f on the challenge attribute was guaranteed
to be 1. However, in the setting of ABE for RAMs, we have no such guarantee for the
intermediate steps of the computation. In particular, there could two programs P0 and P1

that output 1 on x∗ but differ on every intermediate step of the computation. Thus, we can
no longer invoke the indistinguishability of the recoding keys property.

To handle this case, we introduce the final security property associated with the CHR scheme.

IV. Indistinguishability of Simulated Keys: We first define an associated simulator Sim.CHRkey.
In its basic form, it takes as input anchor public key pk, simulated public keys (Sim.CHRpk1, . . . ,
Sim.CHRpkn), associated trapdoors (τ1, . . . , τn), homomorphism circuit C, control function f and
it produces simulated recoding keys associated with (C, f) along with simulated target public keys.

• Lets see how to use the above security property to simulate the intermediate recoding keys
in the attribute keys. For simplicity, consider the case when the adversary only makes a
single attribute key query for RAM program P . Using a standard hybrid argument, we can
apply the argument for the case of multiple key queries as well. As a first step, we switch
the recoding keys Step[1].RK in the attribute key of P to simulated recoding keys using the
above security property. Note that even the intermediate public keys Step[1].PK are simu-
lated6. In particular, we use the fact that the public keys in Step[0].PK are simulated using
Sim.CHRSetup. Next, we simulate the recoding keys in Step[2].RK. Recall that Step[2].RK
was computed as a function of Step[1].PK and the step circuit associated with P . Hence, in
order to simulate Step[2].RK we first need to simulate Step[1].PK. But note that we already
simulated Step[1].PK by Sim.CHRkey in the previous step itself! This allows for carry out
successful simulation of Step[2].RK.

• Continuing this way, we can simulate all the recoding keys in Step[1].RK, . . . , Step[T −1].RK.
We cannot, however, use the indistinguishability of simulated keys property to simulate
Step[T ].RK. This is because, the simulator Sim.CHRkey would end up simulating the tar-
get key, which in our construction is pkout. In turn this means that we cannot apply the
hybrid argument (for the multiple key queries case) as pkout is reused across different at-
tribute keys. However, we can still use the indistinguishability of recoding keys property to
argue this, since the simulator Sim.CHRrk does not simulate the target public key. To invoke
this, we require that the output of P on x∗ is not 0 and this in turn is guaranteed by the
ABE security experiment.

• Once the anchor secret key is not used in the generation of the recoding keys for any of the
attribute keys, we can now invoke the pseudorandomness of ciphertexts property to argue
that the secret message in the ABE encryption is hidden. This completes the security proof.

A remark about the definition of indistinguishability of simulated keys: there are two ways to
generate the simulated public keys (Sim.CHRpk1, . . . ,Sim.CHRpkn). We can use Sim.CHRSetup to

6We emphasize that the intermediate public keys are generated afresh for every attribute key. This enables us to
apply the hybrid argument for the case of multiple key queries.
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generate these keys. Indeed, to argue the security of the recoding keys in Step[1].RK, the public
keys in Step[0].PK is simulated using Sim.CHRSetup. Another option is to invoke Sim.CHRkey
to generate the {Sim.CHRpki}i. This is not circular since the simulated public keys produced by
Sim.CHRkey in the first step is used in the second step by Sim.CHRkey to produce the recoding keys
in Step[2].RK. In the technical sections, we formalize this by associating a distribution Eaux which
produces {Sim.CHRpki}.

Instantiation of CHR. It remains to show that the controlled homomorphic recoding schemes
can be based on learning with errors. The template for encoding and the key generation is inspired
by the schemes of Gorbunov et al. [GVW15a] and Boneh et al. [BGG+14].

To encode a message b with secret randomness s under the public key pk, our encoding is of the
form sT(A+ bG) + eT, where sT,A and e are sampled according to the parameters associated with
the learning with errors assumption. Suppose we have many encodings sT(A1 + b1G) + eT1 , . . . ,
sT(An + bnG) + eTn then we can compute an encoding of the form sT(AC +C(b1, . . . , bn)G) + e

′T,
where AC is homomorphically computed on public keys A1, . . . ,An.

To handle the recoding process, we need to generate recoding keys individually for every control
function. The recoding keys are set to be lattice trapdoors. As an illustration, we show how to
generate lattice trapdoor for the case of control function Ind.

• Ind: Suppose the input to the recoding key generation is anchor public key pk0, secret key
sk0, public key pk1, target public key pktgt and control function Ind. We set pk0 = A0,
sk0 = TA0 (a trapdoor for A0), public key pk1 = A1, pktgt = Atgt. The recoding key is of the

form [R0|I]T such that [A0|A1] · [R0|I]T = Atgt. Using this recoding key, we can translate
encoding of any message b under A1 into an encoding of b under Atgt.

We use similar ideas to generate recoding keys for the control functions that are relevant to th
construction of ABE for RAMs. We summarise this class of functions in Equation 3 (Section 3.2).

Additional Challenges. The template described above captures the main ideas in our construc-
tion. However, while implementing this high level template, we encounter additional difficulties and
we highlight a couple of them below.

Repeated Writing Issue. Yet another issue is that of malicious execution of the computation.
Suppose the 100th location was updated in the 11th step and also in the 25th step. Lets consider
what happens when the RAM program in the 30th step is supposed to read the 100th location. A
malicious evaluator could use the encryption computed in the 11th step to be input to the 30th

step, instead of 25th step. We need to implement suitable checks in place that prevents him from
performing these types of attacks.

In the technical sections, we introduce circuits Cup (Figure 4) and Cck (Figure 5) that keeps
track of all the addresses written so far along with the along with the most recent time stamps
associated with them. We also introduce the control function fij (Figure 1) is used to ensure that
only the correct encoding is recoded.

Early Termination. What if the program terminates much earlier than the upper time bound
T? The template described so far, as is, would have the decryption algorithm run in T steps
even if the program terminated early. A naive approach to solve this problem would be to give
out multiple keys for programs upper bounded by runtime 2, 22, . . . , T . This would introduce an
additional overhead of log(T ) in the size of the original key. Instead we show that we can tweak
the original scheme such that the decryption time can be made to be input-dependent.

12



1.3 Related Work

The constructions of ABE systems has a rich literature. The seminal result of Goyal, Pandey,
Sahai and Waters [GPSW06] presented the first construction of ABE for boolean formulas from
bilinear DDH assumption. Since then, several prominent works achieved stronger security guaran-
tees [LOS+10], better efficiency or design guarantees [Wee14, Att14, AC16] and achieving stronger
models of ABE for a restricted class of functions [KSW08]. The breakthrough work of Gorbunov,
Vaikuntanathan and Wee [GVW15a] presented the first construction of ABE for all polynomial-
sized circuits assuming learning with errors. Following this, several works [BGG+14, BV16] im-
proved this result in terms of efficiency and also considering stronger security models [GVW15a].
There are a few works that consider ABE in other models of computation. Waters [Wat12] pro-
posed a construction of functional encryption for regular languages. As mentioned earlier, Gold-
wasser et al. [GKP+13b] considered the problem of constructing attribute based encryption for
RAMs. Ananth and Sahai [AS16] construct functional encryption for Turing machines assuming
sub-exponentially secure functional encryption for circuits. Deshpande et al. [DKW16] present an
alternate construction of attribute based encryption for Turing machines under the same assump-
tions.

2 Preliminaries

Notation. Let λ denote the security parameter, and ppt denote probabilistic polynomial time.
Bold uppercase letters are used to denote matrices M, and bold lowercase letters for vectors v. We
use [n] to denote the set {1, ..., n}. We say a function negl(·) : N→ (0, 1) is negligible, if for every
constant c ∈ N, negl(n) < n−c for sufficiently large n. Let X and Y be two random variables taking
values in Ω. Define the statistical distance, denoted as ∆(X,Y ) as

∆(X,Y ) :=
1

2

∑
s∈Ω

|Pr[X = s]− Pr[Y = s]|

Let X(λ) and Y (λ) be distributions of random variables. We say that X and Y are statistically

close, denoted as X
s
≈ Y , if d(λ) := ∆(X(λ), Y (λ)) is a negligible function of λ. We say two

distributions X(λ) and Y (λ) are computationally indistinguishable, denoted as X
c
≈ Y if for any

ppt distinguisher D, it holds that |Pr[D(X(λ)) = 1]− Pr[D(Y (λ)) = 1]| = negl(λ).

2.1 Random Access Machines

We recall the definition of RAM program in [GHL+14]. A RAM computation consists of a RAM
program P and a database D. The representation size of P is independent of the length of the
database D. P has random access to the database D and we represent this as PD. On input x,
PD(x) outputs the answer y. In more detail, the computation proceeds as follows.

The RAM program P is represented as a step-circuit C. It takes as input internal state from
the previous step, location to be read, value at that location and it outputs the new state, location
to be written into, value to be written and the next location to be read. More formally, for every
i ∈ T , where T is the upper running time bound

(sti, loc
w
i , b

w
i , loc

r
i)← C(sti−1, loc

r
i−1, b

r
i−1),

where we have the following:
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• sti−1 denotes the state from the (i − 1)-th step and sti denotes the state in the i-th step.
Initial state st0 is set to be x, which is the input to PD(·).

• locri−1 denotes the location to be read from, as output by the (i− 1)-th step.

• bri−1 denotes the bit at the location locri−1.

• locri denotes the location to be read from, in the next step.

• locwi denotes the location to be written into.

• bwi denotes the value to be written at the location locwi .

At the end of the computation, denote the final state to be stend. If the computation has been
performed correctly, stend = y. In this work, we consider a simpler case, where the RAM program
P does not take additional input x and the output of PD is in space {0, 1}.

2.2 Attribute-Based Encryption for RAMs

In this part, we recall the syntax and security definition of (key-policy) attribute-based encryption
(ABE). An ABE scheme for a RAM program P and a database D consists a tuple of ppt algorithms
Π = (Setup,KeyGen,Enc,Dec) with details as follows:

• Setup, Setup(1λ, 1T ): On input security parameter λ and upper time bound T , setup algo-
rithm outputs public parameters pp and master secret key msk.

• Key Generation, KeyGen(msk, P ): On input a master secret key msk and a RAM program
P , it outputs a secret key skP .

• Encryption, Enc(pp, D, µ): On input public parameters pp, a database D and a message µ,
it outputs a ciphertext ctD.

• Decryption, Dec(skP , ctD): This is modeled as a RAM program. In particular, this algo-
rithm will have random access to the binary representations of the key skP and the ciphertext
ctD. It outputs the corresponding plaintext µ if the decryption is successful; otherwise, it
outputs ⊥.

Definition 2.1 (ABE Correctness). We say the ABE described above is correct, if for any (msk, pp)←
Setup(1λ, 1T ), any message µ, any RAM program P , and any database D where PD outputs 0, we
have Dec(skP , ctD) = µ, where skP ← KeyGen(msk, P ) and ctD ← Enc(pp, D, µ).

Sub-linear Efficiency. We require that the decryption complexity should be polynomial in the
runtime of the programs. In particular, if a program takes time sublinear in the input length, even
the decryption algorithm should take time sublinear in the input length.

Definition 2.2 (Sublinear Decryption). An ABE for RAMs scheme ABE is said to satisfy sublinear
decryption property if the following holds: (i) (msk, pp) ← Setup(1λ), (ii) skP ← KeyGen(msk, P )
for some RAM program P , (iii) ct ← Enc(pp, D, x) and, (iv) the decryption Dec of the functional
key skP on input the ciphertext ct takes time poly(t, λ), where t is the running time of PD.

In particular, if P takes time sublinear in |D| then the decryption time of skP on the ciphertext
ct is also sublinear.
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Security Definition. We present the simulation-based definition of selective security of attribute-
based encryption as follows

Definition 2.3. An ABE scheme Π for RAMs is simulation-based selectively secure if there exist
ppt simulator S = (S1,S2,S3) such that for any ppt admissible adversary A = (A1,A2), the two

distributions {ExptrealA (1λ)}λ∈N
c
≈ {ExptidealS (1λ)}λ∈N are computationally indistinguishable

1. D∗ ← A1(1λ)
2. (pp,msk)← Setup(1λ, 1T , D∗)

3. µ← AKeyGen(msk,·)
2 (pp)

4. ctD∗ ← Enc(pp, D∗, µ)

5. α← AKeyGen(msk,·)
2 (pp, ctD∗)

6. Output (pp, µ, α)

(a) ExptrealA (1λ)

1. D∗ ← A1(1λ)
2. pp← S1(1λ, 1T , D∗)

3. µ← AS3(D∗,·)
2 (pp)

4. ctD∗ ← S2(pp, D∗, 1|µ|)

5. α← AS3(D∗,·)
2 (pp, ctD∗)

6. Output (pp, µ, α)

(b) ExptidealS (1λ)

We call adversary A = (A1,A2) admissible, if the queries Pi made by (A2,A3) satisfies Pi(D
∗)) 6= 0.

Remark 2.1. We note that we can generalize the ABE syntax, by allowing RAM program P to
take in auxiliary input x, denoted as PD(x). The encryption algorithm Enc(pp, D, x, µ) outputs
ciphertext ctD,x associated with database D and auxiliary input x. Correctness and security can
be defined similarly by replacing database D with (D,x).

2.3 Lattice Background

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span
is Rm. The basis of Λ is a linearly independent set of vectors whose linear combinations are exactly
Λ. Every integer lattice is generated as the Z-linear combination of linearly independent vectors
B = {b1, ..., bm} ⊂ Zm. For a matrix A ∈ Zn×mq , we define the “q-ary” integer lattices:

Λ⊥q = {e ∈ Zm|Ae = 0 mod q}, Λu
q = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
q is a coset of Λ⊥q .

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R,
let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter
σ. Next, we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We abbreviate this as DΛ,σ when c = 0. We note that DZm,σ is

√
mσ-bounded.

Let Sm denote the set of vectors in Rm whose length is 1. The norm of a matrix R ∈ Rm×m
is defined to be supx∈Sm ||Rx||. The LWE problem was introduced by Regev [Reg05], who showed
that solving it on average is as hard as (quantumly) solving several standard lattice problems in
the worst case.

Definition 2.4 (LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over
Zq, the Learning With Errors problem LWEn,m,q,χ is to distinguish between the following pairs of
distributions (e.g. as given by a sampling oracle O ∈ {Os,O$}):

{A, sTA + xT} and {A,u}

where A
$← Zn×mq , s

$← Znq , u
$← Zmq , and x← χm.
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Gadget matrix. The gadget matrix described below is proposed in [MP12, AP14].

Definition 2.5. Let m = n · dlog qe, and define the gadget matrix G = g2 ⊗ In ∈ Zn×mq , where the

vector g2 = (1, 2, 4, ..., 2blog qc) ∈ Zdlog qe
q . We will also refer to this gadget matrix as “powers-of-two”

matrix. We define the inverse function G−1 : Zn×mq → {0, 1}m×m which expands each entry a ∈ Zq
of the input matrix into a column of size dlog qe consisting of the bits of binary representations.
We have the property that for any matrix A ∈ Zn×mq , it holds that G ·G−1(A) = A.

Sampling Algorithms. We will use the following algorithms to sample short vectors from spec-
ified lattices.

Lemma 2.2 ([GPV08, AP10]). Let q, n,m be positive integers with q ≥ 2 and sufficiently large
m = Ω(n log q). There exists a ppt algorithm TrapGen(q, n,m) that with overwhelming probability
outputs a pair (A ∈ Zn×mq ,TA ∈ Zm×m) such that the distribution of A is statistically close to

uniform distribution over Zn×mq and TA is a basis for Λ⊥q (A) satisfying

||TA|| ≤ O(n log q) and ||T̃A|| ≤ O(
√
n log q)

except with negl(n) probability.

Lemma 2.3 ([GPV08, CHKP10, ABB10]). Let q > 2,m > n. There are three sampling algorithms
as follows:

• There is a ppt algorithm SamplePre(A,TA,u, s), that takes as input: (1) a rank-n matrix
A ∈ Zn×mq , (2) a “short” basis TA for lattice Λ⊥q (A), a vector u ∈ Znq , (3) a Gaussian

parameter s > ||T̃A|| · ω(
√

log(m)); then outputs a vector r ∈ Zm+m1 distributed statistically
close to DΛu

q (A),s.

• There is a ppt algorithm SampleLeft(A,B,TA,u, s), that takes as input: (1) a rank-n matrix
A ∈ Zn×mq , and any matrix B ∈ Zn×m1

q , (2) a “short” basis TA for lattice Λ⊥q (A), a vector

u ∈ Znq , (3) a Gaussian parameter s > ||T̃A|| · ω(
√

log(m+m1)); then outputs a vector
r ∈ Zm+m1 distributed statistically close to DΛu

q (F),s where F := (A|B).

• There is a ppt algorithm SampleRight(A,B,R,TB,u, s), that takes as input: (1) a matrix
A ∈ Zn×mq , and a rank-n matrix B ∈ Zn×mq , a matrix R ∈ Zm×mq , where sR := ||R|| =

supx:||x||=1 ||Rx||, (2) a “short” basis TB for lattice Λ⊥q (B), a vector u ∈ Znq , (3) a Gaussian

parameter s > ||T̃B|| · sR · ω(
√

logm); then outputs a vector r ∈ Z2m distributed statistically
close to DΛu

q (F),s where F := (A|AR + B).

Based on the above sampling algorithms, we have the following lemma:

Lemma 2.4 ([GVW15c]). Given integers n ≥ 1, q ≥ 2 there exists some m∗ = m∗(n, q) =

O(n log q), β = β(n, q) = O(n
√

log q) and s > ||T̃A|| · ω(
√

log(m)) such that for all m ≥ m∗

and all k, we have

A
s
≈ A′, (A,TA,U,V)

c
≈ (A,TA,U

′,V′)

where (A,TA) ← TrapGen(q, n,m),A′
$← Zn×mq and U ← DZm×k ,V = A · U, V′

$← Zn×kq and
U′ ← SamplePre(A,TA,V

′, s).
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2.4 Homomorphic Evaluation Algorithms

In this part, we recall three homomorphic evaluation algorithms (PubEval,TrapEval,CtEval). The
following definition about homomorphic evaluation respective to some circuits is implicitly used in
various constructions, such as attribute-based encryption [BGG+14, GV15] and predicate encryp-
tion [GVW15b].

Definition 2.6 (δ-expanding evaluation). The deterministic algorithms (PubEval,
TrapEval,CtEval) are δ-expanding with function (circuit with u inputs) f : X d → Y if they are
efficient and satisfy the following properties:

• PubEval({Di ∈ Zn×mq }i∈[d], f): On input matrices {Di}i∈[d] and a function f ∈ F , the public
evaluation algorithm outputs Df ∈ Zn×mq as the result.

• TrapEval(x ∈ X d,A ∈ Zn×mq , {Ri}i∈[d], f): the trapdoor evaluation algorithm outputs Rf ,
such that

PubEval({ARi + xiG}i∈[d], f) = ARf + f(x)G

Furthermore, we have ||Rf || ≤ δ ·maxi∈[d] ||Ri||.

• CtEval({ci}di=1,x, f): On input vectors {ci}di=1 ∈ Zmq , an attribute x and function f , the
ciphertext evaluation algorithm outputs cf(x) ∈ Zmq , such that

CtEval({sT(Di + xiG) + ei}i∈[d],x, f) = sT(Df + f(x)G) + e′

where x = (x1, ..., xd) and Df = PubEval({Di ∈ Zn×mq }i∈[d], f). Furthermore, we require
||e′|| ≤ δ ·maxi∈[d] ||ei||.

The definition can be extended to δ-expanding with a family of functions F . I.e., (PubEval,TrapEval)
are δ-expanding with F if and only if for all f ∈ F , the algorithms are δ-expanding with f .

3 Controlled Homomorphic Recoding Scheme

We propose a controlled homomorphic recoding scheme scheme consisting of probabilistic polynomial-
time computable algorithms CHR = (Setup,Enc,KeyEval,CtEval,ReEncKG,ReEnc,EqTest). Denote
by S to be the space of secret messages encrypted in the scheme. We first describe the basic
algorithms.

• Setup, CHR.Setup(1λ): On input security parameter λ, it outputs a public key pk and secret
key sk.

• Encoding procedure, CHR.Enc(pk, y, s): On input public key pk, public attribute y and
secret message s from space S, it outputs the ciphertext ct (containing attribute y).

Homomorphic Evaluation algorithms: We describe the homomorphic evaluation algorithms below.
The evaluation algorithm allows for homomorphically computing on the public keys and the at-
tribute messages.

• Homomorphic key evaluation, CHR.KeyEval({pki}ni=1, C): On input public keys {pki}ni=1

and circuit C, it homomorphically evaluates C with respect to {pki}i∈[n] to obtain the resulting
public key pkC .
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• Ciphertext evaluation, CHR.CtEval({cti}ni=1, {yi}ni=1, C): On input ciphertexts {cti}i∈[n]

under the public keys {pki}i∈[n], circuit C, it outputs the resulting ciphertext ct∗, which is an
encryption of C(y1, . . . , yn) under the public key pkC = CHR.KeyEval({pki}i∈[n], C).

Looking ahead, in the correctness definition, we require that all the ciphertexts ct1, . . . , ctn
are encoded using same secret message s.

Controlled Recoding algorithms: We describe the controlled recoding algorithms below. The recod-
ing algorithm allows for translating ciphertexts which encode messages {yi}i∈[n] generated using
public keys {pki}i∈[n] into a ciphertext of C(y1, . . . , yn) under the target public key pk∗. This
translation is performed using a special recoding key rk.

• Recoding key generation, CHR.ReEncKG (pk1, . . . , pkn, ski, pk
∗, f): On input set of public

keys {pkj}j∈[n], secret key ski for the i-th public key, target public key pk∗, control function
f , it outputs the recoding key rk.

• Ciphertext recoding procedure, CHR.ReEnc
(
rk, {(pki, cti)}i∈[n]

)
7 : On input recoding key

rk, ciphertexts ct1, . . . , ctn computed under public keys pk1, . . . , pkn, it outputs the recoded
ciphertext ct∗.

Auxiliary algorithm: Equality Test. Finally, we describe an equality test algorithm. This determines
if two ciphertexts corresponds to encryptions of the same attribute message and secret message.

• Equality test, CHR.EqTest(pk, ct1, ct2): On input public key pk, two ciphertexts ct1, ct2, it
outputs Equal if both ct1 and ct2 encrypt the same attribute using the same secret message
and under the same public key pk. Otherwise, it outputs NotEqual.

Remark 3.1. Looking ahead, in the construction of ABE for RAMs from CHR, we sample an
anchor public key and secret key pair (pk0, sk0) and this pair is used in the generation of all the
recoding keys.

3.1 Properties of Controlled Homomorphic Recoding Scheme

We describe the properties to be satisfied by a controlled homomorphic recoding scheme. Before
that, we describe some auxiliary algorithms that will be useful to describe the correctness and
security properties.

Derivation of Recoding Keys, DerivReKey
(
{pki}i∈[`], ski∗ , {Ci}i∈[L], pk

∗, f
)
: It takes as input

public keys {pki}i∈[`], secret key ski∗ for some i∗ ∈ [`], circuits {Ci}i∈[L], target public key pk∗ and
controlled function f , it does the following:

1. Evaluate public key, pkCi ← CHR.KeyEval(pk1, . . . , pk`, Ci), for i ∈ [L].

2. Obtain rk by running CHR.ReEncKG({pki}i∈[k], {pkCi}i∈[L], ski∗ , pk
∗, f), where k ≤ `. That

is, rk recodes ciphertexts encoded under the public keys {pki}i∈[k] and {pkCi}i∈[L].

Derivation of Recoded Ciphertexts, DerivReEnc
(
rk, {(pki, cti)}i∈[`], {Ci}i∈[L]

)
: It takes as

input recoding key rk, public keys {pki}i∈[`], original ciphertexts {cti}i∈[`], circuits {Ci}i∈[L], it
does the following:

7For ease of notation, we omit the public keys in the input to algorithm CHR.ReEnc when the context is clear.

18



1. Evaluate public key, pkCi ← CHR.KeyEval(pk1, . . . , pk`, Ci), for i ∈ [L].

2. Evaluate ciphertexts ctCi ← CHR.CtEval(ct1, . . . , ct`, Ci) for i ∈ [L].

3. Compute the recoding algorithm, CHR.ReEnc(rk, {(pki, cti)}i∈[k], {(pkCi , ctCi)}i∈[L]), to ob-
tain the recoded ciphertext ct∗. Then output ct∗.

Put simply, the recoding key rk recodes ciphertexts computed with respect to the public keys
{pki}i∈[k] and {pkCi}i∈[L] into a ciphertext encoded with respect to the public key pk∗.

We explain the correctness property below. It incorporates the correctness of both the homo-
morphic and the recoding phases.

Definition 3.1 (CHR Correctness). Consider a message y ∈ {0, 1}`, secret message s and cipher-
texts ct1, . . . , ct`, circuits C1, . . . , CL and a function f . Consider the following process:

1. Execute CHR.Setup(1λ), ` number of times to obtain ` public/secret key pairs {(pki, ski)}i∈[`].

Also, compute target public key (pk∗, sk∗)← CHR.Setup(1λ).

2. Compute DerivReKey({pki}i∈[`], ski∗ , {Ci}i∈[L], pk
∗, f) to obtain the recoding key rk, for some

i∗ ∈ [`].

3. Compute DerivReEnc(rk, {(pki, cti)}i∈[`], {Ci}i∈[L]) to obtain ciphertext ct∗.

4. Finally, compute the ciphertext ct∗fresh ← CHR.Enc(pk∗, f(C1(y), . . . , CL(y)), s).

Suppose it holds that CHR.EqTest(cti,Enc(pki, yi, s)) = Equal with probability 1−negl(λ), where yi is
the i-th bit of y and s is uniformly random picked. Then it should hold that CHR.EqTest(ct∗, ct∗fresh) =
Equal with probability 1− negl(λ).

3.1.1 Security Definitions

The security definitions of controlled homomorphic recoding scheme Π consists of four parts: in-
distinguishability of setup, indistinguishability of simulated keys, indistinguishability of recoding
keys and pseudorandomness of ciphertexts. We describe them in detail below.

Indistinguishability of Setup. This property intuitively states that the distribution of public
keys produced by real setup is statistically close to that produced by simulated setup. We define
the following simulated setup algorithm:

Sim.CHRSetup(1λ, z): It takes as input security parameter λ, input z to be programmed and it
outputs the programmed simulated public key Sim.pk and associated trapdoor τ .

Definition 3.2 (Indistinguishability of Setup). A controlled homomorphic recoding scheme Π

is said to satisfy indistinguishability of setup if {pk}
s
≈ {Sim.pk} holds, where (pk, sk) ←

CHR.Setup(1λ) and (Sim.pk, τ)← Sim.CHRSetup(1λ, z) for some z ∈ Z.

Indistinguishability of Simulated Keys. We will first define a simulated key generation al-
gorithm.

Sim.CHRkey

(
pk, {Sim.pki, τi}i∈[`], {Cij}i∈[L],j∈[K], {fj}j∈[K]

)
: On input public keys pk, {Sim.pki}i∈[`]

with associated trapdoors {τi}i∈[`], circuits {Cij}i∈[L],j∈[K], functions {fj}j∈[K], it outputs
simulated recoding keys {Sim.rki}i∈[K] and simulated target public keys {Sim.pk∗i }i∈[K].
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We now define this property formally. This property states the output distribution of the following
two procedures are statistically close:

• Simulating the original public keys (except one of the public keys pk). Generate the recoding
keys and target public key honestly, with the help of sk.

• Simulate the original public keys. Execute Sim.CHRkey to obtain the simulated recoding keys
and the target public keys.

Definition 3.3 (Indistinguishability of Simulated Keys). A controlled homomorphic recoding scheme
Π satisfies indistinguishability of simulated keys property with respect to a distribution Eaux
if the following holds: for any collection of circuits {Cij}i∈[L],j∈[K], control functions {fj}j∈[K],

{(pk∗j , rkj)j∈[K]}
s
≈ {(Sim.pk∗j ,Sim.rkj)j∈[K]},

where:

1. For j ∈ [K], compute the setup pk∗j ← CHR.Setup(1λ). Then compute normal setup algorithm

(pk, sk)← CHR.Setup(1λ). Next, for j ∈ [`], compute (Sim.pkj , τj)← Eaux(1λ, j).

2. For j ∈ [K], execute rkj ← DerivReKey(pk, {Sim.pki}i∈[`], sk, {Cij}i∈[L], pk
∗
j , fj).

3. Compute Sim.CHRkey(pk, {Sim.pkj , τj}j∈[`], {Cij}i∈[L],j∈[K], {fj}j∈[K]) to obtain the simulated
recoding keys {Sim.rkj}j∈[K] and simulated public keys {Sim.pk∗j}j∈[K] associated with trap-
doors {τ∗j }j∈[K].

We refer the reader to the technical overview for a brief explanation as to why Eaux is necessary in
the above definition.

Indistinguishability of Recoding Keys. This property intuitively says that it is hard to dis-
tinguish honestly generated recoding keys from simulated recoding keys. To define this formally,
we first describe a simulated recoding key generation algorithm as follows:

Sim.CHRrk(pk, {Sim.pki, τi}i∈[`], {Ci}i∈[L], pk
∗,P, f, aux): On input public key pk, simulated public

keys {Sim.pki}i∈[`] with associated trapdoors {τi}i∈[`], circuits {Ci}i∈[L], target public key
pk∗, predicate P, controlled function f and auxiliary information aux, it outputs a simulated
recoding key rksim only if the output of P(f, aux) = 1. Otherwise, it outputs ⊥.

Remark 3.2. Looking ahead, in the construction of ABE for RAMs, P(f, aux) tests if the compu-
tation has terminated and if so, its output depends on the result of the computation. For instance,
P(f, aux) 6= 1 if the computation has terminated and it outputs 0 (meaning that the message can
be decrypted in this case). And thus, we should precisely be able to simulate in the scenario where
the output of the computation is not 0 or if the computation has not terminated.

Definition 3.4 (Indistinguishability of recoding Keys). A controlled homomorphic recoding scheme
Π satisfies indistinguishability of recoding keys property with respect to a distribution Eaux and

predicate P, if {rksim}
s
≈ {rkreal}, where circuits C1, . . . , CL, function f such that P(f, aux) = 1,

and we compute the distribution as:

• For i ∈ [`], compute the simulated setup (Sim.pki, τi) ← Eaux(1λ, i). Compute the setup
algorithm CHR.Setup(1λ) to obtain the public key-secret key pairs (pk, sk) and (pk∗, sk∗).

• Compute DerivReKey(pk, {Sim.pki}i∈[`], sk, {Ci}i∈L, pk∗, f) to obtain the recoding key rkreal.

• Compute Sim.CHRrk(pk, {Sim.pki, τi}i∈[`], {Ci}i∈[L], pk
∗,P, f, aux) to obtain the recoding key

rksim.

20



Pseudorandomness of Ciphertexts. Lastly, the pseudorandomness of ciphertexts requires that
the distribution of ciphertexts is computationally close to the uniformly distribution over ciphertext
space. We define the property formally below.

Definition 3.5 (Pseudorandomness of Ciphertexts). A controlled homomorphic recoding scheme
Π is said to satisfy pseudorandomness of ciphertexts property if for any message y ∈ Z,
it is computationally hard to distinguish {Enc(pk, y, s)} from uniformly random distribution over

ciphertext space, where (pk, sk)← Setup(1λ), s
$←− S.

3.2 Instantiation of CHR from Lattices

In this part, we show how to instantiate controlled homomorphic recoding scheme from lattices,
particularly the LWE assumption (c.f. Definition 2.4). Then we prove the correctness of our
instantiation and set the parameters in the following subsection. We describe the algorithms CHR =
(Setup,Enc,KeyEval,CtEval,ReEncKG,ReEnc,EqTest) below: first, we start by describing the setup
and the encoding algorithms. Then we describe the homomorphism phase, followed by equality
test. We postpone the description of the recoding phase to the end. Our instantiation Π is as
follows:

Basic algorithms: We describe setup and encoding algorithms below.

• CHR.Setup(1λ): On input the security parameter λ, the setup algorithm generates a matrix
A ∈ Zn×mq along with its trapdoor TA using

(A,TA)← TrapGen(q, n,m)

Output pk = A and sk = TA.

• CHR.Enc(pk, y, s): On input a public key pk = A ∈ Zn×mq , an attribute bit y ∈ {0, 1}
and a secret vector s ∈ Znq , this encoding procedure outputs the ciphertext ct = (c =

sT(A + yG) + eT, y), where e← DZm,σ.

Homomorphism Phase: We describe the key evaluation and ciphertext homomorphism phase
below.

• CHR.KeyEval(pk1, ..., pk`, C): On input {pki = Ai}`i=1 and a circuit C, the algorithm outputs
pkC = PubEval({Ai}i∈[`], C).

• CHR.CtEval(ct1, ..., ct`, C): On input ciphertexts {cti = (ci, yi)}i∈[`] encrypting {yi}i∈[`] under
public key {pki}i∈[`] respectively and a circuit C, the algorithm outputs ct = CtEval({ci}i∈[`], {yi}i∈[`],
C).

Equality Test: We describe the equality test below.

• CHR.EqTest(pk, ct1, ct2): On input pk = A and ct1, ct2 encrypting message under public key
pk, the algorithm outputs Equal if Round(ct1 − ct2) = 0, and NotEqual otherwise, where
function Round(·) is defined as

Round(x) =

{
0, if |x| < q/4

1, otherwise
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The control functions we support for generating recoding keys are

{fij(i′, j′, b)|i, i′ ∈ [N ], j, j ∈ [T ], b ∈ {0, 1}}, {fi(i′, b)|i, i′ ∈ [N ]}, {gi(x)|i ∈ [N ]}, h(·)

with descriptions as

fij(i
′, j′, b) =

{
b, if i = i′ ∧ j = j′

⊥, otherwise
, fi(i

′, b) =

{
b, if i = i′

⊥, otherwise
(1)

gi(x) =

{
i, if C(x) = i− 1

⊥, otherwise
, h(x) =

{
1, if x = 0

⊥, otherwise
(2)

where C is a gadget circuit defined as C(x) =
∑L

i=1 xi2
i, and x = (x1, . . . , xL). Our recoding

algorithm describe below also support the identity function, Ind(x) = x. We use notation F to
denote the set of control functions supported by our lattice-based instantiation, i.e.

F = {Ind, h, {gi}, {fi}, {fij}} (3)

Remark 3.3. Jumping ahead, the controlled functions defined above are used in different scenarios
in the ABE scheme, particularly in the key generation algorithm. We use the following table to
illustrate their relations.

Functions Usage

Ind recode current state (reading address) to next step

fij recode value of current reading address to next step

fi recode writing value to current writing address

gi recode (i− 1)-th time step to i-th time step

h recode current step to final step if the program terminates at this step

Table 1: Usage of Controlled Functions in ABE Setting

Recoding Phase. We describe the recoding phase next. The details of algorithms (ReEncKG,ReEnc)
are as follows. We abuse the notation of algorithm ReEncKG and ReEnc by allowing they taking
into several different forms of input and executing differently with respect to the inputs.

• CHR.ReEncKG (Inp): On input Inp, consider the following two cases:

– If Inp is of the form (pk0, pk1, sk0, pk
∗, Ind): Here the controlled function ind denotes the

identity function, i.e. ind(x) = x for any x. The public keys pk0, pk1, pk
∗, secret key sk0 and

target public public keys are parsed as follows,

pk0 = A0, pk1 = A1, sk0 = TA0 , pk∗ = A∗

the recoding key generation algorithm computes

R← SamplePre(A0,TA0 ,A
∗ −A1, σ)

such that

[A0|A1] ·
[

R
Im

]
= A∗

Then output rk = [R|Im].
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– If Inp is of the form (pk0, pk1, sk0, pk
∗, h): The public keys pk0, pk1, secret key sk0, target

public key pk∗, controlled function h (c.f. Equation (2)) are parsed as follows,

pk0 = A0, {pki = Ai}, sk0 = TA0 , pk∗ = A∗

The recoding key generation algorithm computes

(R0,R1)← SampleLeft(A0,A1,TA0 ,A
∗, σ)

such that

[A0|A1] ·
[
R0

R1

]
= A∗

Then output rk = (R0,R1).

– if Inp is of the form (pk0, {pki}Li=1, sk0, pk
∗, gi): The public keys pk0, {pki}Li=1, secret key sk0,

target public key pk∗, controlled function gi (c.f. Equation (2)) are parsed as follows,

pk0 = A0, {pki = Ai}, sk0 = TA0 , pk∗ = A∗

the recoding key generation algorithm first computes AC = CHR.KeyEval(pk1, ...,
pkL, C), then computes

(R0,R1)← SampleLeft(A0,AC + (i− 1)G,TA0 ,A
∗ + iG, σ)

such that

[A0|AC + (i− 1)G] ·
[
R0

R1

]
= A∗ + iG

Then output rk = (R0,R1).

– if Inp is of the form (pk0, pk1, pk2, sk0, pk
∗, fi): The public keys pk0, pk1, pk2, secret key sk0,

target public key pk∗, function fi (c.f. Equation (1)) are parsed as follows,

pk0 = A0, pk1 = A1, pk2 = A2, sk0 = TA0 , pk∗ = A∗

the recoding key generation algorithm first samples R1 ← DZm×m,σ and then computes

R0 ← SampleLeft(A0,TA0 ,A
∗ −A2 − (A1 + iG)R1, σ)

such that

[A0|A1 + iG|A2] ·

R0

R1

Im

 = A∗

Then output rki = [R0|R1|Im].

– If Inp is of the form (pk0, pk1,
pk2, pk3, sk0, pk

∗, fij): The public keys pk0, pk1, pk2, pk3, secret key sk0, target public key pk∗,
function fij (c.f. Equation (1)) are parsed as follows,

pk0 = A0, pk1 = A1, pk2 = A2, pk3 = A3, sk0 = TA0 , pk∗ = A∗

the recoding key generation algorithm first samples R2 ← DZm×m,σ and then computes

[R0|R1]← SampleLeft(A0,A + iG,TA0 ,A
∗ −A3 − (A2 + jG)R2, σ)
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such that

[A0|A1 + iG|A2 + jG|A3] ·


R0

R1

R2

Im

 = A∗

Then output rkij = [R0|R1|R2|Im].

• CHR.ReEnc(Inp): On input Inp, consider the following two cases:

– If Inp is of the form (rk, pk0, ct0, pk1, ct1): The recoding key rk, pairs (pk0, ct0) and (pk1, ct1)
are parsed as follows,

rk = [R|Im], (pk0 = A0, ct0 = (c0, 0)), (pk1 = A1, ct1 = (c1, y1))

the recoding algorithm computes

c2 = (c0, c1) ·
[

R
Im

]
Output re-encrypted ciphertext (c2, y1).

– If Inp is of the form (rk, pk0, ct0, pk1, ct1): The recoding key rk, pairs (pk0, ct0) and (pk1, ct1)
are parsed as follows,

rk = [R0|R1], (pk0 = A0, ct0 = (c0, 0)), (pk1 = A1, ct1 = (c1, 0))

the recoding algorithm computes

c∗ = (c0, c1) ·
[
R0

R1

]
Output re-encrypted ciphertext (c∗, 0).

– If Inp is of the form (rk, pk0, ct0, {pkj , ctj}Lj=1): The recoding key rk, pairs (pk0, ct0) and

{pkj , ctj}Lj=1 are parsed as follows,

rk = [R0|R1], (pk0 = A0, ct0 = (c0, 0)), {pkj = Aj , ctj = (cj , bj)}Lj=1

the recoding algorithm first computes c = CHR.CtEval(c1, . . . , ctL, C), and then calculates

c′ = (c0, c) ·
[
R0

R1

]
For j ∈ [L], compute c′j = CHR.CtEval(c′, Cj), where circuit C′j converts integer i to its j-th

bit. Output re-encrypted message {c′j , b′j}Lj=1.

– If Inp is of the form (rk, pk0, ct0, pk1, ct1, pk2, ct2): The recoding key rk and public key/ciphertext
pairs (pki, cti) for i ∈ {0, 1, 2} are parsed as follows,

rk = [R0|R1|Im], (pk0 = A0,ct0 = (c0, 0)), (pk1 = A1, ct1 = (c1, i)),

(pk2 = A3, ct2 = (c2, y))

the recoding algorithm computes

c∗ = (c0, c1, c2) ·

R0

R1

Im


Output re-encrypted message (c∗, y).
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– If Inp is of the form (rk, pk0, ct0, pk1, ct1, pk2, ct2, pk3, ct3): The recoding key rk and public
key/ciphertext pairs (pki, cti) for i ∈ {0, 1, 2, 3} are parsed as follows,

rk = [R0|R1|R2], (pk0 = A0, ct0 = (c0, 0)), (pk1 = A1, ct1 = (c1, i)),

(pk2 = A2, ct2 = (c2, j)), (pk3 = A3, ct3 = (c3, y))

the recoding algorithm computes

c∗ = (c0, c1, c2, c3) ·


R0

R1

R2

Im


Output re-encrypted message (c∗, y).

3.3 Correctness and Parameters Setting

Next, we show the correctness of the instantiation Π from lattices.

Lemma 3.4. The above instantiation Π of CHR for supported controlled function F as defined in
Equation (3) from lattices is correct (c.f. Definition 3.1) given the parameters setting below.

Proof. For i ∈ {0} ∪ [`], let y0 = 0,y = (y1, ..., y`) ∈ {0, 1}` and (pki = Ai, ski = TAi) ←
CHR.Setup(1λ). For i ∈ {0} ∪ [`], encrypt the message as

cti = (ci, yi)← CHR.Enc(pk, yi, s)

where s
$← Znq and ci = sT(Ai + yiG) + eTi and ei ← DZm,σ. Then compute auxiliary algorithms

(DerivReKey,DerivReEnc) as

• DerivReKey(Inp): On input Inp, consider the following cases:

– if Inp is of the form (pk0, {pki}i∈[`], sk0, C, pk
∗, Ind): first parse

{pki = Ai}i∈{0}∪[`], sk0 = TA0 , pk∗ = A∗

the algorithm evaluates pkC ← CHR.KeyEval({pki}i∈[`], C) and then computes rk by running
CHR.ReEncKG (pk0, pkC , pk

∗, sk0, Ind).

– if Inp is of the form (pk0, {pki}i∈[`], sk0, C, pk
∗, h): first parse

{pki = Ai}i∈{0}∪[`], sk0 = TA0 , pk∗ = A∗

the algorithm evaluates pkC ← CHR.KeyEval({pki}i∈[`], C) and then computes rk by running
CHR.ReEncKG (pk0, pkC , pk

∗, sk0, h).

– If Inp is of the form (pk0, {pki}Li=1, sk0, pk
∗, gi), then compute

rk← CHR.ReEncKG
(
pk0, {pki}Li=1, sk0, pk

∗, gi
)

– if Inp is of the form
(
pk0, {pki}i∈[`], pk

′, sk0, C, pk
∗, fj

)
: On input pki = Ai, for i ∈ {0} ∪ [`],

pk′ = A′, sk0 = TA0 , circuits C, a target public key pk∗ = A∗ and a controlled function fj as
defined in Equation (1), the algorithm first computes pkC ← CHR.KeyEval({pki}i∈[`], C), and
then runs

rk← CHR.ReEncKG
(
pk0, pkC , pk

′, sk0, pk
∗, fj

)
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– if Inp is of the form
(
pk0, {pki}i∈[`], pk

′, sk0, C1, C2, pk
∗, fij

)
: On input pki = Ai, for i ∈

{0} ∪ [`], pk′ = A′, sk0 = TA0 , circuits {Ci}i∈[2], a target public key pk∗ = A∗ and a
controlled function fij as defined in Equation (1), the algorithm first computes pkCi ←
CHR.KeyEval({pki}i∈[`], Ci) for i ∈ [2] and then runs

rk← CHR.ReEncKG
(
pk0, pkC1

, pkC2
, pk′, sk0, pk

∗, fij
)

• DerivReEnc(Inp): On input Inp, consider the following cases:

– If rk← DerivReKey
(
pk0, {pki}i∈[`], sk0, C, pk

∗, Ind
)
: First evaluate the public key/ciphertext

pkC = AC = CHR.KeyEval({pki}i∈[`], C)

cC(y) = sT(AC + C(y)G) + eT = CHR.CtEval({cti}`i=1, C)

Next, compute the recoding

c∗ = CHR.ReEnc(rk, pk0, pkC , ct0, ctC(y))

= (sT[A0|AC + C(y)G] + (eT0 , e
T))

[
R
Im

]
= sT(A∗ + C(y)G) + (eT0 R + eT)

Output the recoded ciphertext ct∗ = (c∗, C(y)).

– If rk← DerivReKey
(
pk0, {pki}i∈[`], sk0, C, pk

∗, h
)
: First evaluate the public key/ciphertext

pkC = AC = CHR.KeyEval({pki}i∈[`], C)

cC(y) = sT(AC + 0G) + eT = CHR.CtEval({cti}`i=1, C)

Next, compute the recoding

c∗ = CHR.ReEnc(rk, pk0, pkC , ct0, ctC(y))

= (sT[A0|AC + 0G] + (eT0 , e
T))

[
R0

R!

]
= sT(A∗ + 0G) + (eT0 R + eT)

Output the recoded ciphertext ct∗ = (c∗, 0).

– If rk← CHR.ReEncKG
(
pk0, {pki}Li=1, sk0, pk

∗, gi
)
: First evaluate the public key/ciphertext

pkC = AC = CHR.KeyEval({pki}i∈[L], C)

cCx) = sT(AC + (i− 1)G) + e = CHR.CtEval(ct1, ..., ctL, C)

Then, compute the recoding

c∗ = CHR.ReEnc(rk, pk0, pkC , ct0, ctC(x))

= (sT[A0|AC + (i− 1)G] + (eT0 , e
T))

[
R0

R1

]
= sT(A∗ + iG) + (eT0 R0 + eTR1)

Next, for j ∈ [L], compute c′j = CHR.CtEval(c′, Cj), where circuit C′j converts integer i to its

j-th bit. Output recoding {c′j , b′j}Lj=1, where {b′j}Lj=1 is the bit-representation of i.
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– If rk← DerivReKey
(
pk0, pkC , pk

′, pk∗, sk0, fj
)
: First evaluate public key/ciphertext as

pkC = ACi ← CHR.KeyEval({pki}i∈[`], Ci)

cC(y) = sT(AC + C(y)G) + eT ← CtEval({cti}`i=1, C)

where C(y) = i. Let ct′ = (c′, b) = Enc(pk′, b, s), and c′ = sT(A′ + bG) + e
′T. Next, compute

c∗ = CHR.ReEnc(rk, pk0, ct0, {pkCi , ctCi(y)}i∈[2], pk
′, ct′)

= (sT[A0|AC1 + iG|AC2 + jG|A′ + bG] + (eT0 , e
T
1 , e

′T))

R0

R1

Im


= sT(A∗ + bG) + (eT0 R0 + eT1 R1 + e′T)

Output recoded ciphertext as ct∗ = (c∗, b).

– If rk ← DerivReKey
(
pk0, {pki}i∈[`], pk

′, sk0, C1, C2, pk
∗, fij

)
: For i ∈ [2], compute pkCi =

ACi ← CHR.KeyEval({pki}i∈[`], Ci). Then for i ∈ [2], evaluate ciphertexts as

cCi(y) = sT(AC + Ci(y)G) + eT1 ← CtEval({cti}`i=1, C)

where C1(y) = i and C2(y) = j. Let ct′ = (c′, b) = Enc(pk′, b, s), and c′ = sT(A′ + bG) + e
′T.

Next, compute

c∗ = CHR.ReEnc
(
rk, (pk0, ct0), {pkCi , ctCi(y)}i∈[2], (pk

′, ct′)
)

= (sT[A0|AC1 + iG|AC2 + jG|A′ + bG] + (eT0 , e
T
1 , e

T
2 , e

′T))


R0

R1

R2

Im


= sT(A∗ + bG) + (eT0 R0 + eT1 R1 + eT2 R2 + e′T)

Output recoded ciphertext as ct∗ = (c∗, b).

If we encrypt the message freshly under target public key, i.e. ct∗fresh = (c∗fresh, b) = Enc(pk∗, s, b),
the vector c∗fresh = sT(A∗ + bG) + eT, where e← DZm,σ. Thus, we have

bc∗ − c∗freshc = berrorc

where error can be various forms in different settings, and the in the most complex setting, error =
eT0 R0 + eT1 R1 + eT2 R2 + e′T − ẽT. By setting parameters appropriately in the following, we have
CHR.EqTest(ct∗, c̃t) = Equal.

Parameter Setting. We set the parameters in the instantiation as follows: For decryption (or
equal test) to work correctly, the modulus q should be slightly larger than the noise accumulated
in the ciphertext. If the circuit being evaluated has depth d, the noise in the ciphertexts grows in
the worst case by a factor of O(md). Hence, we need q be the order of Ω(Bmd), where B is the
maximum magnitude of noise added during encryption. The hardness of LWE assumption requires
that the ratio q/B is not too large. The LWE problem is believed to be hard even when q/B is 2n

ε

for some fixed 0 < ε < 1/2.
To support circuits of depth d(λ) for some polynomial d(·), we set n = Θ̃(d1/ε), modulus q = 2n

ε
,

dimension m = Θ(n log q), LWE noise bound B = O(n) and Gaussian parameter σ = O(
√
n log q).
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3.4 Security Proof

In this part, we show that our instantiation Π of controlled homomorphic recoding scheme from
lattices satisfies the security definitions in Section 3.1.1, namely indistinguishability of setup, in-
distinguishability of simulated keys, indistinguishability of recoding keys and pseudorandomness of
ciphertexts.

Indistinguishability of Setup. First, we describe the simulated setup algorithm Sim.CHRSetup(1λ,
z) as follows:

Sim.CHRSetup(1λ, z): The simulated setup algorithm randomly chooses matrices A′ ← Zn×mq ,S←
{−1, 1}m×m, and outputs simulated public key Sim.pk = A = A′S− z ·G and trapdoor S.

We argue the statistical indistinguishability between the distribution of normally generated public
keys and simulated public keys in the following lemma.

Lemma 3.5. The instantiation Π of controlled homomorphic recoding scheme satisfies indistin-
guishability of setup (c.f. Definition 3.2).

Proof. The difference between normal setup algorithm Setup(1λ) and simulated setup algorithm
Sim.CHRSetup(1λ, z) is that in Setup(1λ), the pk = A ∈ Zn×mq is generated by algorithm TrapGen(q, n,

m) and in Sim.CHRSetup(1λ, z), we compute Sim.pk = Ã = A′S − zG, where matrices A′
$←

Zn×mq ,S
$← {−1, 1}m×m. By property of algorithm TrapGen as stated in Lemma 2.2, the output

distribution of A is statistically close to uniform distribution. By Leftover Hash Lemma 2.4, the dis-

tribution of A′S is statistically close to uniform distribution given the facts that A′
$← Zn×mq ,S

$←
{−1, 1}m×m. Therefore, we have that the distribution {pk} is statistically close to {Sim.pk}.

Generalization of Sim.GenCHRSetup: We can further generalize the simulated setup by augmenting
its input as Sim.CHRSetup(1λ, z, `; A), where z ∈ {0, 1}`, and A is used in a similar way as A′ in
algorithm Sim.CHRSetup(1λ, z).

Sim.GenCHRSetup(Inp): On input Inp, consider the following two cases:

• If Inp is of form (1λ, z), then run Sim.CHRSetup(1λ, z).

• If Inp is of form (1λ, z, `; A), then for i ∈ [`], choose Si
$← {−1, 1}m×m, and set Sim.pki =

Ai = ASi−ziG, where zi is i-th bit of vector z. Output {Sim.pki}i∈[`] and trapdoors {Si}`i=1.

Similarly, we can also show that the distribution of public keys generalized by Sim.GenCHRSetup(Inp)
is statistically close to the distribution of running normal setup algorithm ` times.

Corollary 3.6. The instantiation of controlled homomorphic recoding scheme satisfies indistin-
guishability of setup.

The proof of the above corollary is very similar to the proof of Lemma 3.5, thus we omit it here.

Remark 3.7. Looking ahead, the sequence of integers z to be programmed in the generalized case
corresponds to challenge database committed by the adversary in the ABE setting.

Corollary 3.8. The distribution of (regularly generated or simulated) public keys is indistinguish-
able from uniformly random distribution over space Zn×mq .
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Proof. For regularly generated public keys, they are computed by algorithm TrapGen. By Lemma 2.4,
the distribution of regularly generated public keys is statistically close to random distribution. For
simulated public keys, they are computed as A′S − zG, where A′ is chosen from random, and S
is chosen from distribution DZn×m,σ. Again by Lemma 2.4, the distribution of simulated keys is
statistically close to random.

Indistinguishability of Simulated Keys. We first describe the simulated key generation al-
gorithm Sim.CHRkey(pk, {Sim.pki, τi}i∈[`], {Ci}i∈[L], {yi}`i=1, f). The circuits {Ci}i∈[L] are defined as

Ci : {0, 1}` → {0, 1}. To be consistent with our instantiation of controlled homomorphic recoding
scheme where we allow algorithm DerivReKey to take into two different forms of inputs (c.f. proof
of Lemma 3.4). For simplicity, we only consider the case where L = 0, 1, 2 and variant controlled
function f , which is how we define algorithm DerivReKey as above. This proof can be generalized
to the case where L is any arbitrary integers.

Case. L = 0 and f = gi (c.f. Equation (2)). Sim.CHRkey(pk, {Sim.pki, τi}i∈[`],

{bi}`i=1, gi): First parse part of the input as pk = A, Sim.pki = Ai = ASi − biG, τi = Si, where
C({bi}`i=1) = i. Evaluate public key as AC = ASC = KeyEval({Sim.pki}i∈[`], C)

• If i = 1, then sample matrices R0,R1 from DZm×m,σ and output Sim.rk = [R0|R1], and
(Sim.pk∗i , τ

∗
i ) = (KeyEval(A∗, Ci),TrapEval(R0 + SC , Ci)) for i ∈ [`], where A∗ = A(R0 +

SCR1).

• If i > 1, then generate (Sim.pk, τ∗) = (A∗,S∗) ← Sim.GenCHRSetup(1λ). Then sample
[R0|R1], using

[R0|R1]← SampleRight(A,G,SC ,TG,A
∗, σ)

output Sim.rk = [R0|R1], and (Sim.pk∗i , τ
∗
i ) = (KeyEval(A∗, Ci),KeyEval(S∗, Ci)), for i ∈ [`].

Case. L = 1 and f = Ind. Sim.CHRkey(pk, {Sim.pki, τi}i∈[`],y, C, Ind): First parse part of
the input as pk = A,Sim.pki = Ai = ASi − yiG and τ = Si. Evaluate public key as AC =
ASC−C(y)G = KeyEval({Sim.pki}i∈[`], C), and sample a random matrix R from DZm×m . Output
Sim.rk = [R|Im], Sim.pk = A(R + SC)− C(y)G and its trapdoor R + SC .

Case. L = 1 and f = fi (c.f. Equation (1)). Sim.CHRkey(pk, {Sim.pki, τi}i∈[`],
Sim.pk′,y, C, fi): First parse part of the input as pk = A,Sim.pki = Ai = ASi− yiG, τi = Si, and
Sim.pk′ = AS′ − bG. Evaluate public key as AC = ASC − C(y)G = KeyEval({Sim.pki}i∈[`], Ci).

• If C(y) = i, sample matrices R0,R1 from DZm×m,σ and output Sim.pk∗ = A(R0 + SCR1 +
S′)− bG, its trapdoor (R0 + SCR1 + S′), and Sim.rk = [R0|R1|Im].

• If C(y) 6= i, generate Sim.pk = A∗ = AS∗ ← Sim.CHRSetup(A). Then sample [R0|R1],
using

[R0|R1]← SampleRight(A,G,SC1 ,TG,A
∗ −A′, σ)

output Sim.pk = A∗, its trapdoor S∗, and Sim.rk = [R0|R1|Im].

Case. L = 2 and f = fjk (c.f. Equation (1)). Sim.CHRkey(pk, {Sim.pki}i∈[`],
Sim.pk′,y, b, C1, C2, fjk): First parse part of the input as pk = A, Sim.pki = Ai = ASi −
yiG, and Sim.pk′ = A′ = AS′ − bG. Evaluate public key as ACi = ASCi − Ci(y)G =
KeyEval({Sim.pki}i∈[`], Ci), for i = 1, 2.
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• If C1(y) = j and C2(y) = k, sample matrices R0,R1,R2 from DZm×m,σ and output Sim.pk =
A(R0 + SC1R1 + SC2R2 + S′)− bG, its trapdoor (R0 + SC1R1 + SC2R2 + S′), and Sim.rk =
[R0|R1|R2|Im].

• If C1(y) = j and C2(y) 6= k (or the other case), generate Sim.pk = A∗ = AS∗ ←
Sim.CHRSetup(A). First sample a matrix R1 from DZm×m,σ, and then sample [R0|R2],
using

[R0|R2]← SampleRight(A,G,SC2 ,TG,A
∗ −ASC1R1, σ)

output Sim.pk = A∗, its trapdoor S∗, and Sim.rk = [R0|R1|R2|Im].

• If C1(y) 6= j and C2(y) 6= k, generate Sim.pk = A∗ = AS∗ ← Sim.CHRSetup(A). First
sample a matrix R1 from DZm×m,σ, and then sample [R0|R2], using

[R0|R2]← SampleRight(A,G,SC2 ,TG,A
∗ −AC1R1, σ)

output Sim.pk = A∗, its trapdoor S∗, and Sim.rk = [R0|R1|R2|Im].

The indistinguishability of simulated keys property is proved below:

Lemma 3.9. The instantiation Π of controlled homomorphic recoding scheme satisfies indistin-
guishability of simulated keys (c.f. Definition 3.3) with respect to Eaux, where Eaux is defined
as follows:

• Case I: Eaux is the same as Sim.CHRSetup(1λ, z), where aux corresponds to value being pro-
grammed, z.

• Case II: Eaux is the same as Sim.CHRkey.

Proof. The difference between the normal key generation DerivReKey and simulated key generation
Sim.CHRkey are summarized as below:

• In algorithm DerivReKey, the target public key A∗ is given as random matrix over Zn×mq and
recoding keys using the secret key sk = TA of pk = A via algorithm SamplePre or SampleLeft.

• In algorithm Sim.CHRkey, the target public key is not given as input, but generated via variant
computing methods as listed above, and recoding keys are sampled from Gaussian distribution
DZm×m (via direct sampling or algorithm SampleRight).

By Leftover Hash Lemma 2.4, the distribution (A,A∗) is statistically close to the distribution
(A,AR0). And by the properties of algorithms SamplePre, SampleLeft and SampleRight as stated
in Lemma 2.3, their outputs are statistically close to discrete Gaussian distribution DZm×m,σ. This
statement holds simulated public keys from algorithm Eaux (the two cases defined above), where
the simulated public keys are computed from algorithms Sim.CHRkey or Sim.CHRSetup. Therefore,

we have that (Sim.pk∗, rk)
c
≈ (Sim.pk,Sim.rk), and thus we prove our instantiation of controlled

homomorphic recoding scheme satisfies indistinguishability of simulated keys.

Generalization of Sim.CHRkey: We note that we can generalize algorithm Sim.CHRkey(pk,
{Sim.pki}i∈[`], pk

′,y, C1, C2, fjk) to generate a sequence of simulated recoding keys {Sim.rkij}i∈[N ],j∈[L]

(for some integers N,L as the range of circuits C1, C2 respectively) and one target simulated key:

Sim.GenCHRkey(pk, {Sim.pki}i∈[`], pk
′,y, C1, C2, N, L): First Evaluate y1 = C1(y) and y2 = C(y).

Then compute (Sim.pk∗,Sim.rky1y2) ← Sim.CHRkey(pk, {Sim.pki}i∈[`], pk
′,y, C1, C2, fy1y2), where

Sim.pk∗ = A∗. Then for j ∈ [L], k ∈ [N ],
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• If j = y1 and k 6= y2, sample Rjk1 from DZm×m,σ, then compute

[Rjk0|Rjk2]← SampleRight(A,G,SC2 ,TG,A
∗ −ASC1Rjk1, σ)

• If j 6= y1 and k = y2, sample Rjk2 from DZm×m,σ, then compute

[Rjk0|Rjk1]← SampleRight(A,G,SC1 ,TG,A
∗ −ASC2Rjk2, σ)

• If j 6= y1 and k 6= y2, sample Rjk1 from DZm×m,σ, then compute

[Rjk0|Rjk2]← SampleRight(A,G,SC2 ,TG,A
∗ − (ASC1 − (y1 − j)G)Rjk1, σ)

Output simulated recoding keys and target public key as {Sim.rkij}i∈[N ],j∈[L] and Sim.pk.

Corollary 3.10. The generalized instantiation of controlled homomorphic recoding scheme satisfies
indistinguishability of simulated keys (c.f. Definition 3.3) with respect to Eaux as defined in
Lemma 3.9.

The proof of indistinguishability of simulated keys from the generalized algorithm is very similar
to the proof of Lemma 3.9, thus we omit it here.

Remark 3.11. Looking ahead, the above generalization of the algorithm Sim.CHRkey will be used
in the ABE scheme to generate the recoding keys for translating the output of the step circuit in
the i-th step into the (i+ 1)-th step.

Indistinguishability of Recoding Keys. We first describe the simulated recoding key gen-
eration algorithm Sim.CHRrk(pk, {Sim.pki}i∈[`], {Ci}i∈[L],y, pk

∗, f). In the inputs, for i ∈ [`], the

circuit Ci : {0, 1}` → {0, 1} and f is defined as

f : {0, 1}L → {0, 1}, f({xi}i∈[L]) =

{
0, if ∧Li=1 x̄i = 1

1, otherwise
(4)

Remark 3.12. Looking ahead, in the ABE scheme, the function f will be used to signal whether
the output of the computation is all zero. If the output is all zero (earlier than the upper time bound
T ), then f outputs 0.

Sim.CHRrk(pk, {Sim.pki, τi}i∈[`], {Ci}i∈[L],y, pk
∗, f): If f(C1(y), . . . , CL(y)) = 0, then output ⊥.

Otherwise, parse the input as

pk = A, {Sim.pki = Ai}i∈[`] ← Sim.CHRSetup(1λ,y, `; A), pk∗ = A∗

where Ai = ASi − yiG and its trapdoor τi = Si. First for i ∈ [L], evaluate public key as
ACi = ASCi − Ci(y) = KeyEval({Sim.pkj}j∈[`], Ci). Since f({Ci(y)}i∈[L]) = 1, then there exists
an index k ∈ [L], such that Ck(y) = 1. For i ∈ [L] − {k}, sample matrices Ri ← DZm×m,σ, and
sample [R0|Rk], using

[R0|Rk]← SampleRight(A,G,SCk ,TG,A
∗ −

∑
i∈[L]−{k}

ACiRi)

Output simulated recoding key as Sim.rksim = {R}i∈[L].
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The indistinguishability of recoding keys property is proved using the properties of sampling algo-
rithms used in the (simulated) recoding keys generation process as follows:

Lemma 3.13. The instantiation Π of controlled homomorphic recoding scheme satisfies indistin-
guishability of recoding keys (c.f. Definition 3.4) with respect to Eaux, where Eauxis defined in
Lemma 3.9.

Proof. The only difference between generating normal recoding keys through DerivReKey and sim-
ulated recoding keys through Sim.CHRrk is

• The normal recoding keys are generated using algorithm SampleLeft with sk.

• The simulated recoding keys are generated using algorithm SampleRight.

By the property of algorithms SampleLeft, SampleRight as stated in Lemma 2.3, their outputs are
statistically close to discrete Gaussian distribution. In simulated recoding generation, either the
recoding keys are generated using SampleRight or directly sampled from discrete Gaussian dis-

tribution. Therefore, we have {rksim}
c
≈ {rkreal}, and thus show our instantiation of controlled

homomorphic recoding scheme satisfies indistinguishability of recoding keys.

Generalization of Sim.CHRrk: We can generalized the above Sim.CHRrk algorithm (used in the
ABE construction), by evaluating public keys {ACi} with respect to the gadget circuit C before
generating the simulated recoding keys. We define the algorithm formally as

Sim.GenCHRrk(Inp): On input Inp, consider the following two cases:

• If Inp is of form (pk, {Sim.pki}i∈[`], {Ci}i∈[L],y, pk
∗, f), the run

Sim.CHRrk(pk, {Sim.pki}i∈[`], {Ci}i∈[L],y, pk
∗, f)

• If Inp is of form (pk, {Sim.pki}i∈[`], {Ci}i∈[L],y, pk
∗, f, C), then If f(C1(y), . . . ,

CL(y)) = 0, output ⊥. Otherwise, first for i ∈ [L], evaluate public key as ACi = ASCi −
Ci(y) = KeyEval({Sim.pkj}j∈[`], Ci). Then evaluate {ACi} with respect to circuit C to obtain
AC = ASC − zG, where z 6= 0 since f(C1(y), . . . , CL(y)) = 1. Sample [R0|R1], using

[R0|R1]← SampleRight(A,G,SC,TG,A
∗, σ)

Output simulated recoding key Sim.rksim = [R0|R1].

Similarly, we can argue that the recoding key rksim key produced by the generalized algorithm
Sim.GenCHRrk(Inp) satisfies indistinguishability of recoding keys as

Corollary 3.14. The generalized instantiation of controlled homomorphic recoding scheme satisfies
indistinguishability of recoding keys (c.f. Definition 3.4) with respect to Eaux, where Eaux is
defined in Lemma 3.9.

The proof of indistinguishability of simulated keys from the generalized algorithm is very similar
to the proof of Lemma 3.13, thus we omit it here.
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Pseudorandomness of Ciphertexts. We show pseudorandomness of ciphertexts (under simu-
lated public keys or regularly generated public keys) based on the hardness of LWE assumption.
We first describe the simulated encryption algorithm Sim.CHRct:

Sim.CHRct(Sim.pk, τ, y, s): On input the simulated public key Sim.pk = AS−yG, the trapdoor S,
the attribute y and secret message s, the simulated encryption algorithm computes and outputs
the simulated ciphertext

Sim.ct = sT(AS− yG + yG) + eTS

where veceot e← DZm,σ.

Lemma 3.15. Assuming the hardness of sub-exponential LWE assumption (c.f. Definition 2.4),
the instantiation Π of controlled homomorphic recoding scheme satisfies pseudorandomness of
ciphertexts (c.f. Definition 3.5).

Proof. For regularly generated public keys, the ciphertext is of the form c = sT(A − yG) + eT,
where matrix A is chosen randomly from Zn×mq , vector s is secret and chosen randomly from Znq
and e ← DZm,σ. By hardness of LWE assumption, we have sTA + eT is computationally close to
uniformly random distribution over Zmq . For simulated public keys, the ciphertext is of the form

c = (sTA+eT)R. By the LWE assumption, we have sTA+eT is computationally close to uniform
distribution over Zmq , and since R← DZm×m and by Leftover Hash Lemma, we have (sTA + eT)R
is computationally close to uniformly random distribution over Zmq .

Therefore, we prove that the instantiation satisfies the property of pseudorandomness of cipher-
texts.

4 ABE for RAMs from CHR

In this section, we present the construction of ABE for the class of RAM programs P from controlled
homomorphic encoding scheme. Before we present our construction, we first define auxiliary circuits
that will be associated with the step circuit of the RAM program.

Auxiliary Circuits. We define auxiliary circuits (Cup, Cck) that will keep track of all the loca-
tions that have been written so far along with the most recent time step they were updated. These
circuits will be useful to prevent an adversary from using an “illegal” encoding to recode to the
next step. For instance, suppose the step circuit outputs the location 112 to be read in the next
step. If the 112-th location has been written multiple times then the adversarial evaluator can use
an ‘old’ encoding of the 112-th location (and hence, illegal) in the recoding step. We refer to this
issue as repeated writing issue in the technical overview.

Thus, we have (Cup, Cck) to keep track of the updates made. Moreover, the pair of circuits
(Cup, Cck) will be combined with the step circuit at the cost of increasing the size as a function of
the upper bound T .

We define auxiliary circuits Cup and Cck as

Input: a list L, location i, time j.
Computation: Traverse the list L to check whether there is a pair (i, j′) where j′ < j.
If yes, replace the pair (i, j′) with (i, j) and add (0, 0) to the list. Otherwise, add (i, j)
to the list.

Figure 4: Definition of circuit Cup
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Input: a list L, location i, time j.
Computation: Traverse the list L to check whether there is a pair (i, j). If yes, then
return j, otherwise return 0.

Figure 5: Definition of circuit Cck

We assume that, for every program P ∈ P, the associated step circuit C always takes as input the
first location of memory, and the initial state is all 1. This is without loss of generality since every
program P can be modified such that this property holds, with the overhead of an extra time step.
We list the RAM parameters that will be used in our construction in the following table:

Parameters Description Setting

N maximum database length poly(λ)

T maximum running time poly(λ)

τ state bit-length poly(λ)

θ address bit-length logN

η list unit bit-length logN + log T

φ Cck circuit output bit-length log T

Table 2: ABE Parameters

Every RAM program P ∈ P is parameterized by running time t and memory length N and
represented as a step-circuit C, which is

(sti, loc
w
i , b

w
i , loc

r
i)← C(sti−1, loc

r
i−1, b

r
i−1)

We incorporate the auxiliary circuits described above in the description of every program P ∈ P.
In more detail, we have a different step circuit for every step of the computation. The step-circuit
Cj in the j-th step, decomposed into binary representation can be written as follows, i.e.

Cj =
(
{Cst

i }τi=1, {Cw
i }θi=1, C

wb, {Cr
i}θi=1, {C

up
k }

(j+1)η
k=1 , {Cck

i }
φ
i=1

)
where Cst

i outputs the i-th bit of st for i ∈ [τ ], (Cw
i , C

r
i ) output the i-th bit of the write/read address

respectively for i ∈ [θ], and Cwb outputs the bit to be written. Since the list maintained by update
circuit Cup increases by one component for each step, so for j-th step the number of decomposed
outputs in Cup is (j + 1)η.

Construction. We construct attribute based encryption for RAMs from CHR scheme CHR =
(Setup,Enc,KeyEval,CtEval,ReEncKG,ReEnc,EqTest). In our construction below, we define a gad-
get circuit C as C(x1, ..., xθ) =

∑θ
i=1 xi2

i, where xi ∈ {0, 1} for i ∈ [θ]. In the execution of RAM
program, we assume that the initial state is all 1s, the satisfying state is all 0s, and the program
always reads the 1st location of database. As mentioned in Table 1, we use different controlled func-
tions in different ABE settings. We denote the ABE scheme to be ABE = (Setup,KeyGen,Enc,Dec).

Notational convention: As explained in the technical overview, we need a layer of public keys for
every step of the computation. The 0-th layer of public keys and the target public key (for the last
step of computation) is reused across different encryptions. The intermediate layers of public keys,
however, are freshly sampled from one execution of key generation to another.
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We denote the public keys of i-th step to be Step[i].pk. The superscript in the notation of the
public key denotes the type of the value being encoded. The subscript denotes the index of the
binary representation of the value being encoded.

Notations Encoding

Step[j].pksti i-th bit of state in j-th step

Step[j].pkrai i-th bit of to-read address for (j + 1)-th step

Step[j].pklti i-th bit of update list until j-th step

Step[j].pkdbi i-th bit of database in j-th step

Step[j].pk reading value in j-th step

Step[i].pkt i-th time step

pkout target public key

Table 3: ABE Construction Notations

We use the notation Step[j].hompk to correspond to the public key obtained by homomorphically
evaluating on j-th layer public keys. The superscripts and subscripts on hompk hold the same
meaning as above.

• ABE.Setup(1λ): On input security parameter λ,

� Public Keys associated with State: Generate the 0-th step public keys that are used to
encode the initial state. Compute CHR.Setup(1λ), τ number of times, to obtain {(Step[0].pksti ,
Step[0].sksti )}i∈[τ ].

� Public Keys associated with Read Address: Generate the 0-th step public keys that is
used to encode the initial read address. Compute CHR.Setup(1λ), θ number of times, to obtain
{(Step[0].pkraj ,Step[0].skraj )}j∈[θ].

� Public Keys Associated with Address List: Generate the 0-th step public keys that
are used to encode the address list, which is initialized with zeroes. During the evaluation
process, the address list is populated with the addresses written so far and the most re-
cent time step they were written. Compute CHR.Setup(1λ), η number of times, to obtain
{(Step[0].pkltk ,Step[0].skltk)}k∈[η]. Generate Step[0].pkt to encode the 0-th time step.

� Public Keys Associated with Database: Generate the 0-th step public keys that is used
to encode the initial attribute database. Compute CHR.Setup(1λ), N number of times, to
obtain {(Step[0].pklti ,Step[0].sklti )}i∈[N ].

� Anchor Public key: Generate a public key-secret key pair (pk0, sk0) ← CHR.Setup(1λ).
The public key pk0 will participate in every recoding key process (during key generation), in
which the secret key sk0 will be used. We note that the secret keys generated in the above
bullets will be discarded and only the public keys will be used for the rest of the construction.

Output master secret key msk = sk0 and public parameter pp as

pp = ({Step[0].pksti }i∈[τ ], {Step[0].pkraj }j∈[θ], {Step[0].pkltk}k∈[η], {Step[0].pkdbi }i∈[N ],Step[0].pkt, pk0, pkout)

• ABE.KeyGen(msk, P ): On input master secret key msk and program P with upper time bound
T and database length N , the key generation algorithm parse the step circuit of program P as
({Cst

j }τj=1, {Cw
i }θj=1, C

wb, {Cr
j}θj=1) Then generate public keys along for each step as:
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� Public Keys Associated with Read Value: For i ∈ [T ], generate the public key asso-
ciated with read value for each step. Compute CHR.Setup(1λ), T number of times, to obtain
{(Step[i].pk, Step[i].pk}i∈[T ].

� Public keys associated with time step: For i ∈ [T ], generate the public key associ-
ated with time step for each step. Compute CHR.Setup(1λ), T number of times, to obtain
{(Step[i].pkt, Step[i].pkt}i∈[T ].

� Public keys associated with state: For i ∈ [T ], generate the i-th public keys that
are used to encode the state. Compute CHR.Setup(1λ), Tτ number of times, to obtain
{Step[i].pkstj , Step[i].skstj }i∈[T ],j∈[τ ].

� public keys associated with read address: For i ∈ [T ], generate the i-th public keys
that are used to encode the read address for each step. Compute CHR.Setup(1λ), Tθ number
of times, to obtain {Step[i].pkraj ,Step[i].skraj }i∈[T ],j∈[θ].

� public keys associated with database: For i ∈ [T ], generate the i-th public keys that
are used to encode the database for each step. Compute CHR.Setup(1λ), TN number of times,
to obtain {Step[i].pkdb` ,Step[i].skdb` }i∈[T ],`∈[N ].

� public keys associated with address list: For i ∈ [T ], generate the public keys that are
used to encode the updated address list. In each step, the list grows by η entries as specified
in the Definition of circuit Cup (c.f. Figure 4). For i ∈ [T ], compute CHR.Setup(1λ), (i + 1)η
number of times, to obtain {Step[i].pkltj , Step[i].skltj }j∈(i+1)η.

For i ∈ [T ], generate the recoding key for time-step as

Step[i].rkt ← CHR.ReEncKG(pk0,Step[i].pkt, sk0, Step[i+ 1].pkt, gi)

where control function gi is defined in Equation (2). Next, for i ∈ {0} ∪ [T ], do the following:

1. State circuit {Cst
j }j∈[τ ]: First for j ∈ [τ ], homomorphically compute public key Step[i].hompkstj

with respect to Cst
j , then evaluate the gadget circuit C on input the homomorphic public keys,

and provide a terminating recoding key Step[i].rkout from current i-th step to the output step.
Next, provide a recoding key Step[i].rkstj which recode the state information of i-th step to the
(i+ 1)-th step. The detail follows: For j ∈ [τ ], evaluate Cst

j

Step[i].hompkstj ← CHR.KeyEval({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ],Step[i].pk, Cst
j )

And then compute Step[i].hompkst = CHR.KeyEval({Step[i].hompkstj }j∈[τ ], C), and use the se-
cret key sk0 to compute the recoding key

Step[i].rkout ← CHR.ReEncKG(pk0, Step[i].hompkst, sk0, pkout, h)

where control function h is defined in Equation (2). Next generate the recoding key as

Step[i].rkstj ← CHR.ReEncKG(pk0,Step[i].hompkstj , sk0,Step[i+ 1].pkstj , Ind)

2. Reading address circuit {Cr
j}j∈[θ]: First for j ∈ [θ], homomorphically compute public key

Step[i].hompkraj with respect to Cr
j , then provide a recoding key Step[i].rkraj which recode the

read address information of i-th step to the (i+1)-th step. Next, evaluate the gadget circuit C
on input the homomorphic public keys {Step[i].hompkraj } to obtain Step[i].pkra, and evaluate

the check circuit Cck on address list {Step[i].pkltk}k∈[iη] and Step[i].pkra. Provide recoding keys,
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which recode the specific database location to read value, according to read address Step[i].pkra

and result Step[i].pkck of Cck. The detail follows: For j ∈ [θ], evaluate Cr
j as

Step[i].hompkraj ← CHR.KeyEval({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ], Step[i].pk, Cr
j)

Then compute the following

Step[i].rkraj ← CHR.ReEncKG(pk0,Step[i].hompkraj , sk0, Step[i+ 1].pkrak , Ind)

Then evaluate gadget circuit C and the check circuit Cck (c.f. Figure 5) as

Step[i].pkra = CHR.KeyEval({Step[i].hompkraj }j∈[θ], C)

Step[i].pkck ← CHR.KeyEval(Step[i].pkr, {Step[i].pkltk}k∈[iη], pk
t
i, C

ck)

Next, for k ∈ [N ], ` ∈ [i− 1], compute the following

Step[i].rkrk` ← CHR.ReEncKG(pk0, Step[i].pkra,Step[i].pkck, Step[`].pkdbk , sk0,Step[i+ 1].pk, fk`)

where {Step[`].pkdbk }k∈[N ],`∈[i−1] are freshly generated public keys in Writing address/value
part as described below, and control function fk` is defined in Equation (1).

3. Writing address/value circuits ({Cw
j }j∈[θ], C

wb): First for j ∈ [θ], homomorphically

compute public key Step[i].hompkwj with respect to Cw
j and Step[i].pkwb with respect to Cwb).

Then, evaluate the gadget circuit C on input the homomorphic public keys {Step[i].hompkwj }
to obtain Step[i].pkw. Next, for each entry of the database, provide a recoding key, which
recodes the writing value to the freshly generated database public key Step[i + 1].pkdb` . The
detail follows: For j ∈ [θ], evaluate Cw

j and Cwb as

Step[i].hompkwj ← CHR.KeyEval({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ],Step[i].pk, Cw
j )

Step[i].pkwb ← CHR.KeyEval({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ],Step[i].pk, Cwb)

Then compute Step[i].pkw = CHR.KeyEval({Step[i].hompkj}j∈[θ], C), where circuit C is the
gadget circuit. Then do following computation for ` ∈ [N ]

Step[i].rkw` ← CHR.ReEncKG(pk0, Step[i].pkw,Step[i].pkwb, sk0, Step[i+ 1].pkdb` , f`)

where control function f` is defined in Equation (1).

4. Update circuit {Cup
j }j∈[(i+1)η]: First for j ∈ [(i+1)η], homomorphically compute public key

Step[i].hompkltj with respect to Cup
j . Then, provide a recoding key Step[i].rkltj which recode the

address list information of i-th step to the (i+1)-th step. The detail follows: For j ∈ [(i+1)η],
evaluate the update circuit Cup (c.f. Figure 4) as

Step[i].hompkltj ← CHR.KeyEval({Step[i].pkltj }j∈[iη],Step[i].pkw, pkti, C
up
j )

Then use the secret key sk0 to generate recoding key as

Step[i].rkltj ← CHR.ReEncKG(pk0, Step[i].hompkltj , sk0,Step[i+ 1].pkltj , Ind)

Output the secret key for RAM program P as skP = (P, {Step[i].KEY}T−1
i=0 , ) where

Step[i].KEY = (Step[i].rkout,Step[i].rkt, {Step[i].rkstj }j∈[τ ], {Step[i].rkrj}j∈[θ],

{Step[i].rkrakj}k∈[i−1],j∈[N ], {Step[i].rkwj }j∈[θ], {Step[i].rkltj }j∈[(i+1)η])
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• ABE.Enc(pp, D, µ): On input the public parameter pp, a database D = {xi}Ni=1 and a message µ,
the encryption algorithm first picks a secret message s uniformly at random from S and compute
the following ciphertexts:

� Database Encryption: For i ∈ [N ], generate ciphertexts for each entry of the database.
Compute Step[0].ctdbi = CHR.Enc(Step[0].pkdbi , xi, s), for i ∈ [N ].

� Initial state encryption For i ∈ [τ ], generate ciphertexts for initial state. Compute
Step[0].ctsti = CHR.Enc(Step[0].pksti , 1, s), for i ∈ [τ ].

� Initial Reading address Encryption: For i ∈ [θ], generate ciphertexts for initial reading
address. Compute Step[0].ctra1 = CHR.Enc(Step[0].pkra1 , 1, s), and for i = 2, . . . , θ compute
Step[0].ctrai = CHR.Enc(Step[0].pkrai , 0, s).

� Initial address list encryption: For i ∈ [η], generate ciphertexts for initial address list.
Compute Step[0].ctlti = CHR.Enc(Step[0].pklti , 0, s), for i ∈ [η].

� Auxiliary information encryption: Encrypt under the anchor public key c0 = CHR.Enc(pk0, 0, s)
and 0-th time step public key u0 = CHR.Enc(Step[0].pkt, 0, s).

� message encryption: If the message µ = 0, then compute ψ = Enc(pkout, 0, s). Otherwise,
if the message µ = 1, choose a random vector over the ciphertext space of CHR.

Output the ciphertext as

ctD = (D, c0, u1, {Step[0].ctsti }τi=1, {Step[0].ctdbi }Ni=1, {Step[0].ctrai }θi=1, {Step[0].ctlti }
η
i=1, ψ)

• ABE.Dec(skP , ctD): On input secret key skP for RAM program P and a ciphertext ctD, outputs
⊥ if PD 6= 0. Otherwise, parse skP = (P, {Step[i].KEY}T−1

i=0 ). Parse the step circuit Ci of the
RAM program as

Ci = ({Cst
j }τj=1, {Cw

i }θj=1, C
wb, {Cr

j}θj=1, {C
up
j }j∈[(i+1)η])

1. State circuit {Cst
j }j∈[τ ]: First, for j ∈ [τ ], homomorphically compute ciphertext Step[i].homctstj

with respect to Cst
j . If at the current step, the state is all 0, the use the terminating key

Step[i].rkout) to recode the i-th step to the output step, and execute the last step algorithm.
Otherwise, use the recoding key Step[i].rkstj to recode the state information of i-th step to
(i+ 1)-th step. The detail follows: For j ∈ [τ ], evaluate Cst

j as

Step[i].homctstj ← CHR.CtEval({Step[i].ctstk }k∈[τ ], {Step[i].ctrak }k∈[θ],Step[i].ct, Cst
j )

If at the current step, the state is all 0, then evaluate the following function Step[i].ctst =
CHR.CtEval({Step[i].homctstj }j∈[τ ], C), compute

Step[i].ctout = CHR.ReEnc(c0,Step[i].ctst,Step[i].rkout)8

and, jump to the last step. Otherwise, for j ∈ [τ ], compute

Step[i+ 1].ctstj = CHR.ReEnc(c0, Step[i].homctstj ,Step[i].rkstj )

8For ease of notation, we omit the public keys in the input to algorithm CHR.ReEnc when the context is clear.
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2. Reading address circuit {Cr
j}j∈[θ]: First, for j ∈ [θ], homomorphically compute ciphertext

Step[i].homctraj with respect to Cr
j . Then use the recoding key Step[i].rkraj to recode the read

address information of i-th step to (i+1)-th step. Next, homomorphically evaluate the gadget
circuit C and check circuit Cck to obtain Step[i].ctra and Step[i].ctck respectively. Recode the
value residing in correct location of database using Step[i].rkrk`, where k, ` can be determined
by the execution of PD. The detail follows: For j ∈ [θ], evaluate Cw

j as

Step[i].homctraj ← CHR.CtEval({Step[i].ctstk }k∈[τ ], {Step[i].ctrak }k∈[θ],Step[i].ct, Cr
j)

Then for j ∈ [θ], compute Step[i+ 1].ctraj = CHR.ReEnc(c0,Step[i].homctrj ,

Step[i].rkraj ). Next evaluate gadget circuit C and Cck (c.f. Figure 5)

Step[i].ctra = CHR.CtEval({Step[i].homctrj}j∈[θ], C)

Step[i].ctck = CHR.CtEval(Step[i].ctr, {Step[i].ctltj }j∈[iη], ui, C
ck)

where Step[i].ctra is encoding of read address j and Step[i].ctup is encoding of last written
time k, and ui is the encoding of time-step i that can be obtained by computing ui =
CHR.ReEnc(c0, ui−1,Step[i].rkt). We can determine k ∈ [N ] and ` ∈ [i − 1] by executing
P on the database D. And choose the corresponding re-key Step[i].rkrk`, then compute

Step[i+ 1].ctr = CHR.ReEnc(c0,Step[i].ctr,Step[i].ctck,Step[`].ctdbk , Step[i].rkrk`)

3. Writing address/value circuits ({Cw
j }j∈[θ], C

wb): First, for j ∈ [θ], homomorphically

compute ciphertext Step[i].homctwj with respect to Cw
j and compute Step[i].ctwb with respect

to Cwb. Then, evaluate the gadget circuit C on input ciphertexts {Step[i].homctwj } to obtain

Step[i].ctw. Next, recode the writing value along with the writing address to ctdbk , using
recoding key Step[i].rkwk , where k can be determined by the execution of PD. The detail
follows: For j ∈ [θ], evaluate Cw

i and Cwb as

Step[i].homctwj ← CHR.CtEval({Step[i].ctstk }k∈[τ ], {Step[i].ctrak }k∈[θ],Step[i].ct, Cw
j )

Step[i].ctwb ← CHR.CtEval({Step[i].ctstk }k∈[τ ], {Step[i].ctrak }k∈[θ],Step[i].ct, Cwb)

Then evaluate Step[i].ctw = CHR.CtEval({Step[i].homctwj }j∈[θ], C). Next, pick the correspond-
ing recoding key Step[i].rkwk , where k is the writing address, and compute

ctdbk = CHR.ReEnc(c0,Step[i].ctw, Step[i].ctwb, Step[i].rkwk )

4. Update circuit {Cup
j }j∈[(i+1)η]: First, for j ∈ [(i+1)η], homomorphically compute ciphertext

Step[i].homctltj with respect to Cup
j . Then use the recoding key Step[i].rkltj to recode the address

list information of i-th step to (i + 1)-th step. The detail follows: For j ∈ [i + 1]η, evaluate
the update circuit Cup

j (c.f. Figure 4) as

Step[i].homctltj ← CHR.CtEval({Step[i].ctlt` }`∈[iη], Step[i].ctw, ui, C
up
j )

Then for j ∈ [(i+ 1)η], compute

Step[i+ 1].ctltj = CHR.ReEnc(c0,Step[i].rkltj , Step[i].homctltj )

The algorithm of last step is to compute CHR.EqTest(pkout, Step[t].ctout, ψ), where t denotes the
time step when PD halts. If output of CHR.EqTest is equal, then output 0; otherwise output 1.

We show that the above scheme is a secure ABE for RAMs scheme. In particular, we prove the
following theorem.

Theorem 4.1. Assuming CHR for a class of controlled functions F (as defined in Equation (3)),
ABE (described above) is a secure ABE for RAMs scheme.
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4.1 Correctness and Efficiency Analysis

We now show that the above ABE scheme satisfies the properties of correctness and desired effi-
ciency.

Correctness. We show the correctness proof below.

Lemma 4.2. Assuming the correctness of CHR for the set of controlled functions F as defined in
Equation (3), the above ABE construction satisfies correctness as defined in Definition 2.1.

Proof. We first define a notion, named i-th step temporary key

Step[i].TempKey = ({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ],Step[i].pk)

Let the ciphertext be ctD and secret key be skP . At i-th step, by evaluating the ciphertext with
respect to circuits {Cst

j }j∈[τ ], {Cr
j}j∈[θ], {Cw

j }j∈[θ], C
wb and auxiliary circuits Cck, {Cup

j }j∈[(i+1)η], we
obtain the homomorphic ciphertexts

{Step[i].homctstj }j∈[τ ], {Step[i].homctraj , Step[i].homctwj }j∈[θ]Step[i].ctwb, {Step[i].homctltj }j∈[(i+1)η]

By the correctness of CHR scheme (c.f. Definition 3.1), we have that ciphertexts Step[i+1].ctstj ,Step[i+

1].ctrj , Step[i + 1].ctltj encrypt the same message under Step[i + 1].TempKey as their i-th step ho-
momorphically evaluated ciphertexts respectively. Since the evaluation of RAM program P on
database D is in the clear, so in the reading part, we choose the correct recoding key Step[i].rkrk`
to recode the value in the k-th location to Step[i+ 1].ct.

Suppose at step t, where t ≤ T , we have PD = 0, then evaluate

Step[t].ctst = CHR.CtEval({Step[t].homctstj }j∈[τ ], C)

where Step[t].ctst encrypts 0. Again by correctness of CHR scheme, the re-encrypted ciphertext
Step[i].ctout is also an encryption of 0. At last, the equality test CHR.EqTest(pkout, Step[t].ctout, ψ)
outputs correct µ by the property of algorithm CHR.EqTest.

Remark 4.3. As mentioned in Remark 2.1, our ABE construction can support auxiliary input
y, i.e. PD(y), where this additional input y serves as initial input of step circuit. The only
change in the current construction is that in the encryption algorithm, we encode y as ctaux =
CHR.Enc(pkaux, y, s), where pkaux denotes public key for auxiliary input. The correctness and secu-
rity proofs closely follow the current ones.

Efficiency Analysis. We would like to show the following: if a program P on input database D
takes time at most T then correspondingly, the decryption of secret key for P on input an encryption
of message x associated with attribute database D takes time p(λ, T ), for a fixed polynomial p,
independent of the input length.

We analyze the time to decrypt an encryption of database D associated with message x using
a key of RAM program with runtime bounded by T : observe that in the description of ABE.Dec,
bullets 1,2,3 and 4 are executed T number of steps. We focus on bounding the running time of
bulets 1,2,3 and 4 in any given step. We analyze all four cases below.

• State circuit: The runtime of CHR.CtEval is a polynomial in (λ, τ, θ, Tη). Observe that
τ is the length of the state, which is independent of the input length, and θ = logN, η =
log T + logN . Thus, the runtime of CHR.CtEval is upper bounded by a polynomial in (λ, T ).
The runtime of CHR.ReEnc is bounded by a polynomial in (λ, τ).
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• Reading address circuit: In this step, CHR.CtEval is executed twice. The runtime of
first execution of CHR.CtEval is a polynomial in (λ, θ). The runtime of CHR.CtEval is upper
bounded by (λ, Tη). Determining j and k takes time at most T . The runtime of CHR.ReEnc
is bounded by a polynomial in λ.

• Writing address/value circuits: In this step, CHR.CtEval is executed twice. In both exe-
cutions, the runtime is bounded by a polynomial in (λ, τ, θ, Tη). The runtime of CHR.ReEnc
is bounded by a polynomial in λ.

• Update circuit: In this step, CHR.CtEval is bounded by a polynomial in (λ, Tη). In this
step, the runtime of CHR.ReEnc is upper bounded by (λ, Tη). The runtime of CHR.ReEnc is
upper bounded by (λ).

From the above observations, it follows that the runtime of the decryption algorithm is a polynomial
in (λ, T ), where the polynomial is independent of the length of the database.

In particular, notice that if T is polylogarithmic in the input length then the decryption time
is sub-linear in the input length.

4.2 Security Proof

We prove the security of our ABE construction based on security of controlled homomorphic recod-
ing scheme. Before proceeding to the proof, we describe some auxiliary algorithms that are useful
to the proof. There are five algorithms:

• Sim.ABESetup produces “programmed” public keys. That is, every public key produced as
part of setup has hardwired in it, a bit of the challenge database. To perform this operation,
we invoke the indistinguishability of setup security of CHR (Definition 3.2).

• Sim.StepKey takes as input the i-th layer of simulated public keys (called temporary keys
below) and produces the i-th layer of simulated recoding keys and (i + 1)-th layer of simu-
lated public keys, except for terminating keys Step[i].rkout, which is used for recoding from
current step to final step is the program terminates. To perform this operation, we invoke
the indistinguishability of simulated keys (Definition 3.3).

• Sim.OutKey takes as input the i-th layer of simulated public keys and produces the simulated
terminating keys. We use that fact PD

∗
i 6= 0 for any queried program Pi to simulate the ter-

minating keys Step[i].Simrkout. To perform this operation, we invoke the indistinguishability
of recoding keys (Definition 3.4).

• Real.StepKey on input the i-th layer of simulated public keys (called temporary keys) and
master secret key of CHR, it produces the i-th layer of ‘real’ recoding keys and (i+1)-th layer
of ‘real’ public keys.

• Sim.Enc produces a simulated encryption of the message. To perform this, we invoke the
pseudorandomness of ciphertext property (Definition 3.5).

Proof Intuition. We explain the intuition of the proof next. For explaining the intuition, we
focus on weak selective security, where the adversary submits all the queries in the very beginning of
the security experiment. The adversary A submits the database D∗, secret message µ and program
queries P1, . . . , PQ such that PD

∗
i 6= 0.
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Hybrid H1 corresponds to the real experiment, where all the parameters are sampled according
to CHR. First, the challenger simulates the public keys of ABE using the algorithm Sim.ABESetup
on input the database D∗ (hybrid H2). Also, in the same hybrid, generate all the layers of the
recoding keys in every attribute key using Real.StepKey. The challenger, over a sequence of hybrids
(H3,1,?), starts manipulating the attribute key of P1. Recall that the attribute key of P1 consists of
T sets of recoding keys, the step-keys. Next, switch every intermediate layer of recoding layers to be
simulated. That is, in the j-th step (H3,1,j), all the (j−1) layers of recoding keys are simulated using
Sim.StepKey while all the layer from (j + 1)-th onwards are computed using Real.StepKey. Switch
the j-th layer of recoding keys to be simulated using Sim.StepKey. At the end of this sequence
of hybrids, all the layers of recoding keys in the attribute key of P1 are simulated. Perform this
sequence of hybrids to the rest of the attribute keys associated with P2, . . . , PQ. Once this is done,
simulate the ciphertext of µ using Sim.Enc.

We present a formal descriptions of the above algorithms.

• Sim.ABESetup(1λ, D∗): On input security parameter λ and challenge database D∗ = {x∗i }Ni=1,
the simulated setup algorithm first generate the anchor public key pk0 along with sk0 by running
(pk0, sk0) ← CHR.Setup(1λ) and simulate public key for 0-th time step pkt0 and final public key
pkout as

(Simpkt0,Simpkout)← Sim.GenCHRSetup(1λ, 0, 2; pk0)

Then simulate the rest of public parameters as

1. Simulate public keys Step[0].Simpksti for initial state as

{Step[0].Simpksti }i∈[τ ] ← Sim.GenCHRSetup(1λ, 1, τ ; pk0)

2. Embed the challenge attribute database D∗ into Step[0].Simpkdbi as

{Step[0].Simpkdbi }i∈[N ] ← Sim.GenCHRSetup(1λ, D∗, N ; pk0)

3. Simulate public keys Step[0].Simpkri for read address as Step[0].Simpkr1 ← Sim.GenCHRSetup(1λ, 1, 1; pk0)

{Step[0].Simpkri}θi=2 ← Sim.GenCHRSetup(1λ, 0, θ − 1; pk0)

4. Simulate public keys Step[0].Simpklti for address list as

{Step[0].Simpklti }i∈[η] ← Sim.GenCHRSetup(1λ, 0η, η; pk0)

Output master secret key msk = sk0 and simulated public parameter Sim.pp as

Sim.pp = ({Step[0].Simpksti }i∈[τ ],{Step[0].Simpkrj}j∈[θ], {Step[0].Simpkltk}k∈[η],

{Step[0].Simpkdbi }i∈[N ], Simpkt0, pk0,Simpkout)

• Sim.StepKey(Sim.pp,msk, {Step[j].SimTempKey}j∈[i], P
D∗): On input simulated public param-

eters Sim.pp, master secret key msk, temporary keys {Step[i].SimTempKey}j∈[i] and i-th step
internal state yi (including state, reading address, etc., obtained by executing a RAM program
on challenge database D∗ upto the i-th step), the simulated step key generation outputs i-th step
key Step[i].SimKEY and (i+ 1)-th simulated temporary key Step[i+ 1].SimTempKey. For j ∈ [i],
the algorithm parses

Step[j].SimTempKey = (Step[j].Simpkt,{(Step[j].Simpkstk }k∈[τ ], {(Step[j].Simpkrak }k∈[θ],

{Step[j].Simpkdbk }k∈[N ], {Step[j].Simpkltk}k∈(j+1)η, Step[j].Simpk)
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We use Step[j].SimTrdr to denote the trapdoor of Step[j].SimTrdr. For the i-th step of execution
PD

∗
, let {stik}k∈[τ ] be the internal state, {raik}k∈[θ] be the reading address, wi be the writing

address, wbi be the writing bit, and {ltik}k∈(i+1)η be the update list. Denote the i-th step

execution status Ei for PD
∗

as

Ei = ({stik}k∈[τ ], {raik}k∈[θ], rbi)

Output ⊥ if Step[i].rkout if f({Cst
j (Ei)}τj=1) = 1, where controlled function f is defined in Defini-

tion (4). Otherwise, evaluate the public keys as

Step[i].Simhompkstj ← CHR.KeyEval({Step[i].Simpkstk }k∈[τ ], {Step[i].Simpkrak }k∈[θ], Step[i].Simpk, Cst
j )

And compute Step[i].Simhompkst = CHR.KeyEval({Step[i].Simhompkstj }j∈[τ ], C), then use the se-
cret key sk0 to compute the recoding key as

Step[i].rkout ← CHR.ReEncKG(pk0, Step[i].Simhompkst, sk0, pkout, h)

Do the following:

1. State circuit {Cst
k }k∈[τ ]: For k ∈ [τ ], compute

(Step[i].Simrkstk , Step[i+1].Simpkstk )← Sim.CHRkey(pk0, Step[i].SimTempKey,Step[j].SimTrdr, Ei, C
st
k , Ind)

2. Reading circuit {Cr
k}k∈[θ], for k ∈ [θ], compute

(Step[i].Simrkrak , Step[i+1].Simpkrak )← Sim.CHRkey(pk0,Step[i].SimTempKey,Step[j].SimTrdr, Ei, C
r
k, Ind)

3. Writing circuit {Cwk }k∈[θ] and Cwb: For j ∈ [N ], compute

(Step[i].Simrkwj ,Step[i+1].Simpkdbj )← Sim.CHRkey(pk0, Step[i].SimTempKey, Step[j].SimTrdr, Ei, C
w, fj)

4. Update circuit {Cup
k }k∈[i+1]η: For k ∈ [i+ 2]η, compute

(Step[i].Simrkltk , Step[i+ 1].Simpkltk)← Sim.CHRkey(pk0,Step[j].Simpkt, {Step[j].Simpkltk}k∈(j+1)η

Step[j].SimTrdr, wi, i, {ltik}k∈(i+1)η, C
lt
k , Ind)

5. Time step: Compute

(Step[i].Simrkt,Step[i+ 1].Simpkt)← Sim.CHRkey(pk0,Step[j].Simpkt,Step[j].SimTrdr, gi)

Let circuit Cra = C({Cra
k }k∈[θ]) and calculate Cra(yi) = j∗, Cup(yi, 0) = k∗. Then compute

({Step[i].Simrkrjk}j∈[N ],k∈[i−1], Step[i+ 1].Simpk)← Sim.GenCHRkey(pk0,Step[i].SimTempKey,

Step[j].SimTrdr, Ei, C
ra, Cup, N, i− 1)

Output (Ei+1, Step[i].SimKEY,Step[i+ 1].SimTempKey) as

Step[i].SimKEY = (Step[i].rkout, Step[i].rkt, {Step[i].Simrkstj }, {Step[i].Simrkrak },
{Step[i].Simrkwj }, {Step[i].Simrkltk}, {Step[i].Simrkrjk})

Step[i+ 1].SimTempKey = (Step[i+ 1].Simpkt, {(Step[j].Simpkstk }k∈[τ ], {(Step[j].Simpkrak }k∈[θ],

{Step[j].Simpkdbk }k∈[N ], {Step[j].Simpkltk}k∈(j+1)η,Step[j].Simpk)
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• Sim.OutKey(Sim.pp, {Step[j].SimTempKey}j∈[i], P
D∗): On input simulated public parameters Sim.pp,

temporary keys {Step[i].SimTempKey}j∈[i] and i-th step internal state yi (including state, reading
address, etc., obtained by executing a RAM program on challenge database D∗ upto the i-th
step), the simulated out key generation outputs i-th simulated out key Step[i].Simpkout. Denote
the i-th step execution status Ei for PD

∗
as above. Output ⊥ if f({Cst

j (Ei)}τj=1) = 1. Otherwise,
compute and output

Step[i].Simpkout ← Sim.GenCHRrk(pk0,Step[i].SimTempKey, Ei, {Cst
k }τk=1, h)

• Real.StepKey(Sim.pp,msk, {Step[j].SimTempKey}j∈[i]): On input simulated public parameters Sim.pp,
simulated temporary keys {Step[j].SimTempKey}j∈[i] and master secret key msk, the real step key
generation outputs i-th step key Step[i].KEY and (i+ 1)-th temporary key Step[i+ 1].TempKey.
the algorithm parses

Step[i].SimTempKey = ({(Sim.Step[i].pkstj }j∈[τ ],{(Sim.Step[i].pkraj }j∈[θ], {Sim.Step[i].pkdbj }j∈[N ],

{Sim.Step[i+ 1].pkltj }j∈iη,Sim.Step[i].pk)

Output ⊥ if Step[i].rkout if f({Cst
j (Ei)}τj=1) = 1, where controlled function f is defined in Defini-

tion (4). Otherwise, set Cst = C({Cst
j }j∈[τ ]) and compute

Step[i].rkout ← DerivReKey(pk0, Step[i].SimTempKey,yi, Sim.pk
out,msk, Cst)

For time step, first generate Step[i+ 1].pkt using CHR.Setup(1λ), and then compute

Step[i].rkt ← CHR.ReEncKG(pk0, Step[i].Simpkt, sk0, Step[i+ 1].pkt, gi)

Then for h ∈ [N ], j ∈ [τ ], k ∈ [θ], ` ∈ [(i + 1)η], generate Step[i].pkdbh ,Step[i + 1].pkstj , Step[i +

1].pkrak , Step[i+ 1].pklt` using CHR.Setup(1λ) and then execute

Step[i].rkstj ← DerivReKey(pk0,Step[i].SimTempKey,msk, Cst
j , Step[i+ 1].pkstj , Ind)

Step[i].rkrak ← DerivReKey(pk0, Step[i].SimTempKey,msk, Cr
k,Step[i+ 1].pkrak , Ind)

Step[i].rkwh ← DerivReKey(pk0, Step[i].SimTempKey,msk, Cw, Cwb, Step[i].pkdbh , fh)

Step[i].rklt` ← DerivReKey(pk0, Step[i].SimTempKey,msk, C lt
` , Step[i+ 1].pklt` , Ind)

where circuit Cw = C({Cw
h }h∈[θ]) Next, for k ∈ [i− 1], j ∈ [N ], compute the following

Step[i].rkrkj ← DerivReKey(pk0,Step[i].SimTempKey,msk, Cr, Cup,Step[k].Simpkdbj , f
r
kj)

where circuit Cr = C({Cr
k}k∈[θ]). Output i-th step key Step[i].KEY and (i+ 1)-th temporary key

Step[i+ 1].TempKey.

• Sim.Enc(Sim.pp, D∗, µ): On input simulated public parameters Sim.pp, challenge database D∗ =
{x∗i }Ni=1 and message µ, the simulated encryption algorithm outputs simulated ciphertext Sim.ct.
For ease of notation, we use Step[0].SimTrdr to denote the all trapdoor information of step 0.
The algorithm randomly chooses a secret message s, and for i ∈ [N ], encrypts the database as

Step[0].Simctdbi = Sim.CHRct(Step[0].Simpkdbi ,Step[0].SimTrdr, x∗i , s)

For i ∈ [τ ], encrypt the initial state as

Step[0].Simctsti = Sim.CHRct(Step[0].Simpksti ,Step[0].SimTrdr, 1, s)
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Next, it encrypt the auxiliary information as c0 = Sim.CHRct(Sim.pk0, I, 0, s), u1 = Sim.CHRct(Sim.pk
t
0,

Step[0].SimTrdr, 0, s) and initial list as Step[0].Simctlti = Sim.CHRct(Step[0].Simpklti ,
Step[0].SimTrdr, 0, s) for i ∈ [η]. Finally, choose a random vector ψ over the ciphertext space of
CHR.

Theorem 4.4. Assuming the security of CHR for controlled funcions F , the scheme ABE satisfies
the definition of ABE security (c.f. Definition 2.3).

Proof. Let Q be the number of key queries made by the adversary. We first describe a sequence of
hybrids as follows:

Hybrid H1: This corresponds to the real experiment.

• A specifies challenge attribute database D∗ and message µ.

• Challenger computes Setup(1λ) to obtain the public parameters pp and secret key msk. Then
challenger generates the challenge ciphertext ct∗ ← Enc(pp, D∗, µ). It sends ct∗ and pp to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the attribute keys for Pi, for i ∈ [Q], skPi ← KeyGen(msk, Pi). In more detail, skPi is generated
as follows:

– For every j ∈ [T ], compute

Step[j].KEYi ← Real.StepKey(pp,msk, {Step[j].TempKeyi}k∈[j])

– Set ski = ({Step[j].KEYi}j∈[T ]).

• Let b be the output of adversary. Output b.

Hybrid H2: H2 is the same as H1 except that it uses Sim.ABESetup(1λ, D∗) to generate Sim.pp
and msk.

• A specifies attribute D∗ and message µ.

• Challenger generates the setup Sim.ABESetup(1λ, D∗) to obtain the simulated public key Sim.pp
and master secret key msk. Then challenger generates the challenge ciphertext ct∗ ← Enc(Sim.pp, D∗, µ).
It sends ct∗ and Sim.pp to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the attribute keys for Pi, for i ∈ [Q], skPi ← KeyGen(msk, Pi). In more detail, skPi is generated
as follows:

– For every j ∈ [T ], compute

Step[j].KEYi ← Real.StepKey(Sim.pp,msk, {Step[k].TempKeyi}k∈[j])

– Set ski = ({Step[j].KEYi}j∈[T ]).
9

• Let b be the output of adversary. Output b.

Hybrid {H3,i∗,j∗}i∗∈[Q],j∗∈[T ]: Simply put, in hybrid H3,i,j , for i < i∗, the secret key for query Pi
is simulated. For query Pi∗ , upto the j∗-th step, the step keys are simulated, for step j > j∗,
the step keys are generated normally. For query Pi, where i > i∗, its step keys are all generated
normally. We describe it in details below:

9The subscript of Step[j].KEYi, i here, denotes for the i-th key query.
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• Adversary specifies attribute D∗ and message µ.

• Challenger generates the setup Sim.ABESetup(1λ, D∗) to obtain the simulated public key Sim.pp
and master secret key msk. Then challenger generates the challenge ciphertext ct∗ ← Enc(Sim.pp, D∗, µ).
It sends ct∗ and Sim.pp to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the secret key skPi = ({Step[j].KEY}j∈[T ]) for Pi, as follows:

– For i < i∗,

1. For every j ∈ [T ], compute

(Step[j].SimKEYi,Step[j + 1].SimTempKeyi)←Sim.StepKey(Sim.pp,

msk, {Step[k].SimTempKeyi}k∈[j], P
D∗
i )

And then replace the Step[j].Simrkouti in Step[j].SimKEYi using

Step[j].Simrkouti ← Sim.OutKey(Sim.pp, {Step[k].SimTempKeyi}k∈[j], P
D∗
i )

2. Set ski = ({Step[j].SimKEYi}j∈[T ]).

– For i = i∗,

1. For j < j∗, generate

(Step[j].SimKEYi,Step[j + 1].SimTempKeyi)←Sim.StepKey(Sim.pp,

msk, {Step[k].SimTempKeyi}k∈[j], P
D∗
i∗ )

2. For j = j∗, generate

(Step[j].KEYi, Step[j+1].TempKeyi)← Real.StepKey(Sim.pp,msk, {Step[j].SimTempKeyi}j∈[i])

3. For j > j∗, generate

Step[j].KEYi ← Real.StepKey(Sim.pp, {Step[k].SimTempKeyi}k∈[j∗], {Step[k].TempKeyi}
j
k=j∗+1,msk)

4. Set ski = ({Step[j].SimKEYi}j∈[T ],j<j∗ , {Step[j].KEYi}j∈[T ],j≥j∗).

– For i > i∗,

1. For every j ∈ [T ], generate

Step[j].KEYi ← Real.StepKey(Sim.pp,msk, {Step[k].TempKeyi}k∈[j])

2. Set ski = ({Step[j].KEYi}j∈[T ]).

• Let b be the output of adversary. Output b.

Hybrid {H̃3,i∗,j∗}i∗∈[Q],j∗∈[T ]: Simply put, hybrid H̃3,i∗,j∗ happens right after H3,i∗,j∗ , and the only

difference between these two consecutive hybrids is in H̃3,i∗,j∗ , the recoding key Step[j∗].Simrkouti∗

in Step[j∗].SimKEY∗i is generated using algorithm Sim.OutKey instead of using Sim.StepKey (in
hybrid H3,i∗,j∗).

Hybrid H4: In H4, the secret keys for all queries are simulated without using msk. Therefore, we
sample the anchor public key Sim.pk0 (with its trapdoor I) randomly from space Zn×mq .
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• Adversary specifies attribute D∗ and message µ.

• Challenger generates the setup Sim.ABESetup(1λ, D∗) to obtain the simulated public key Sim.pp.
Then challenger generates the challenge ciphertext ct∗ ← Enc(Sim.pp, D∗, µ). It sends ct∗ and
Sim.pp to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the attribute keys for Pi, for i ∈ [Q]. In more detail, skPi is generated as follows:

1. For every j ∈ [T ], generate

(Step[j].SimKEYi, Step[j+1].SimTempKeyi)← Sim.StepKey(Sim.pp, {Step[k].SimTempKeyi}k∈[j])

2. Set ski = ({Step[j].SimKEYi}j∈[T ]).

• Let b be the output of adversary. Output b.

Hybrid H5: H5 is the same as H4 except that it simulates challenge ciphertext.

• Adversary specifies attribute D∗ and message µ.

• Challenger generates the setup Sim.ABESetup(1λ) to obtain the simulated public key Sim.pp. It
sends Sim.pp to A.

• Challenger generates the simulated ciphertext Sim.ct∗ ← Sim.Enc(pp, D∗, µ). It sends Sim.ct∗

to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the attribute keys for Pi, for i ∈ [Q], skPi ← KeyGen(msk, Pi). In more detail, skPi is generated
as follows:

1. For every j ∈ [T ], generate

(Step[j].SimKEYi, Step[j+1].SimTempKeyi)← Sim.StepKey(Sim.pp, {Step[k].SimTempKeyi}k∈[j])

2. Set ski = ({Step[j].SimKEYi}j∈[T ]).

• Let b be the output of adversary. Output b.

Lemma 4.5. By the indistinguishability of setup property of CHR scheme (c.f. Definition 3.2), we

have H1
s
≈ H2.

Proof. The only difference between hybrid H1 and H2 is that in H2, the public parameters generated
by Sim.ABESetup(1λ, D∗) as described above. By the indistinguishability of setup property of CHR,

the distribution {Sim.pp} is statistically close to {pp}. Therefore, we have H1
s
≈ H2.

Lemma 4.6. The output distributions of hybrids H2 and H3,1,0 are identical.

Proof. As described above, hybrid H3,1,0 is obtained by simulating {Step[0].SimKEY1} and gener-
ating all other step keys normally. As {Step[0].SimKEY1} does not exists in sk1, therefore we have
that hybrids H2 and H3,1,0 are identical.

Lemma 4.7. By the indistinguishability of simulated keys property of CHR scheme (c.f. Defini-

tion 3.3) with respect to Eaux, we have H̃3,i∗,j∗
s
≈ H3,i∗,j∗+1, where j∗ ∈ [T − 1] and Eaux consists of

two cases:

• Eaux is the distribution of simulated keys produced by Sim.CHRSetup in the (j∗)th step.
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• Eaux is the distribution of simulated keys produced in 1st step, Sim.CHRkey

Proof. The difference between H̃3,i∗,j∗ and H3,i∗,j∗+1 is that in H3,i∗,j∗+1 the (j∗ + 1)-th step
key Step[j∗ + 1].SimKEYi∗ of query i∗ is simulated instead of normal generation. In algorithm
Sim.StepKey(Sim.pp, {Step[k].SimTempKeyi∗}k∈[j∗+1]), Step[i].Simrkout and the others in Step[j∗ +
1].SimKEYi∗ are computed as described above. By indistinguishability of simulated keys (c.f. Def-
inition 3.3), we have

{Step[j∗ + 1].SimKEYi∗ ,Step[j∗ + 2].SimTempKey}
s
≈ {Step[j∗ + 1].KEYi∗ , Step[j∗ + 2].TempKey}

Thus, we have {Step[j∗ + 1].SimKEYi∗}
s
≈ {Step[j∗ + 1].KEYi∗}, which means H̃3,i∗,j∗

s
≈ H3,i∗,j∗+1.

Lemma 4.8. By the indistinguishability of recoding keys property of CHR scheme (c.f. Defini-

tion 3.4) with respect to Eaux, we have H3,i∗,j∗
s
≈ H̃3,i∗,j∗, where j∗ ∈ [T − 1] and Eaux is the

distribution of public keys produced by Sim.CHRSetup in the (T − 1)th step.

Proof. The only difference between these two consecutive hybrids is in H̃3,i∗,j∗ , the recoding key
Step[j∗].Simrkouti∗ in Step[j∗].SimKEY∗i is generated using algorithm Sim.OutKey instead of using
Sim.StepKey (in hybrid H3,i∗,j∗). By the indistinguishability of recoding keys property of CHR
scheme (c.f. Definition 3.4), the distribution of recoding key Step[j∗].Simrkouti∗ is computationally

close to Step[j∗].rkouti∗ , thus we have H3,i∗,j∗
s
≈ H̃3,i∗,j∗ .

Lemma 4.9. The output distributions of hybrids H̃3,i∗,T and H3,i∗+1,0 are identical, when i∗ ∈ [Q].

Proof. The only difference between hybrids H̃3,i∗,T and H3,i∗+1,0 is that in hybrid H3,i∗+1,0, the step
key {Step[0].SimKEYi+1} is simulated. As {Step[0].SimKEYi+1} does not exists in ski+1, thus we

have that hybrids H̃3,i∗,T and H3,i∗+1,0 are identical.

Lemma 4.10. The output distributions of hybrids H̃3,Q,T and H4 are statistically close.

Proof. In hybrids H̃3,Q,T and H4, the only difference is that in H̃3,Q,T , the anchor public key pk0 is
generated along with sk0, using algorithm TrapGen, while in H4 the anchor public key pk0 is sampled

from random distribution. By Corollary 3.8, hybrids H̃3,Q,T and H4 are statistically close.

Lemma 4.11. By the pseudorandomness of ciphertexts of CHR scheme (c.f. Definition 3.5), we

have H4
c
≈ H5.

Proof. The only difference between H4
c
≈ H5 is that in H5 is challenge ciphertext is generated by

algorithm Sim.Enc(Sim.pp, D∗, µ), where CHR.Enc is used as a subroutine and a randomly chose
vector ψ is chosen over ciphertext space. By the pseudorandomness of ciphertexts of CHR, we have
that the ciphertexts of both hybrids are computationally close to the uniformly random distribution

over ciphertext space. Therefore, we have H4
c
≈ H5.

Combining the hybrids and lemmas proved above, we prove that our ABE construction is secure,
as defined in Definition 2.3.
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