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Abstract

In an anonymous subscription system (ASS), a subscribed user (SU)
is able to access the services of a service provider without having to reveal
its true identity. For a SU computing platform that is compliant with the
Trusted Platform Module (TPM) standard, direct anonymous attestation
(DAA) is an appropriate cryptographic protocol for realizing ASS, since
DAA enables privacy-preserving authentication of the SU platform. This
approach takes advantage of a cryptographic key that is securely embed-
ded in the platform’s hardware. Although the computing industry and
academia have made significant strides in developing secure and sound
DAA schemes, these schemes share a common drawback that may act as
a major obstacle to their widespread deployment. In all of the existing
schemes, the SU suffers from significant computational and communica-
tion costs that increase proportionally to the size of the revocation list.
This drawback renders the existing schemes to be impractical when the
size of the revocation list grows beyond a relatively modest size. In this
paper, we propose a novel scheme called Lightweight Anonymous Subscrip-
tion with Efficient Revocation (LASER) that addresses this very problem.
In LASER, the computational and communication costs of the SU’s sig-
nature are multiple orders of magnitude lower than the prior art. LASER
achieves this significant performance improvement by shifting most of the
computational and communication costs from the DAA’s online proce-

1



dure (i.e., signature generation) to its offline procedure (i.e., acquisition
of keys/credentials). We have conducted a thorough analysis of LASER’s
performance-related features and compared the findings to the prior art.
We have also conducted a comprehensive evaluation of LASER by im-
plementing it on a laptop platform with an on-board TPM. To the best
of our knowledge, the results presented in this paper represent the first
implementation and analysis of a scheme using an actual TPM cryptopro-
cessor that is compliant with the most recent TPM specification version
2.0. We have thoroughly analyzed the security of LASER in the random
oracle model.

1 Introduction

There has been a rapid growth in the online electronic subscription services
where the subscribed users (SUs) access contents (e.g., video) and/or resources
(e.g., software) made available by the service providers (SPs). In many subscrip-
tion services, the SUs have significant concerns for remaining anonymous and
preserving privacy so that the SPs cannot track their interests, usage patterns,
geographical locations, and other personal details. The notion of anonymity
in the subscription services has been further fueled by multiple data breaches
in the recent years [1]. Hence, there is a major research thrust to develop an
Anonymous Subscription System (ASS) in which the SPs provide access of their
services to the subscribed and authenticated, but anonymous SUs [2, 3, 4, 5].
Direct Anonymous Attestation (DAA) is the most appropriate cryptographic
protocol to realize the ASS as DAA enables privacy-preserving authentication
of a SU’s platform by utilizing the cryptographic key which is securely embedded
into the platform’s hardware [6].

A DAA scheme involves three entities—a platform, a verifier and an issuer.
We consider the SU as the platform’s user, and the SP as the verifier. The role
of the issuer is to generate and issue keys/credentials to platforms, and revoke
compromised or insecure platforms by updating and publishing revocation lists.
A platform (SU) consists of a host and a trusted platform module (TPM). The
TPM is a secure and dedicated cryptoprocessor which is designed to secure
the platform by integrating its cryptographic key into its hardware [7]. The
TPM generates the anonymous signature on the login request message sent by
the platform to the verifier. The host utilizes the credentials obtained from
the issuer to assist the TPM in the generation of the signature by performing
most of the computationally expensive operations. The verifier (SP) verifies the
validity of the signature received from the platform. As part of the verification
process, the verifier also checks the revocation status of the platform. In this
paper, the signature on the login request message is called a “login signature”.

The Trusted Computing Group (TCG) has standardized the elliptic curve
cryptography (ECC)-based DAA in the most recent TPM specification version
2.0 [7, 8, 9]. This TPM specification has also been published as the international
standard ISO/IEC 11889:2015 [10]. With a major thrust to standardize DAA
for the industry, Intel has incorporated 2.4 billion keys for Enhanced Privacy ID
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(EPID) in the chipsets and processors shipped between the years 2008 and 2016
[11, 12]. EPID is a revised DAA scheme with the support for signature-based
revocation (i.e., the ability of revoking a platform based on its malicious signa-
ture). Note that platforms with these chipsets also support other DAA schemes
similar to EPID [13]. Intel’s Software Guard Extensions (SGX) technology
which is utilized for secure remote computation and digital rights management
also provides support for DAA schemes [14].

Although the computing industry and academia have made noteworthy strides
in improving the security and efficacy of DAA schemes in recent years, all the
existing schemes in the literature still share a common critical drawback of
inefficient revocation check procedures that may hinder their widespread adop-
tion [8, 9, 13]. To support the revocation check procedure, the existing DAA
schemes employ a signature-based revocation list [8, 13]. This list contains tu-
ples retrieved from the malicious login signatures which are generated by the
malicious platforms. In these schemes, for each revoked tuple included in the
revocation list, a platform needs to generate a proof of non-revocation of its
secret key with respect to the tuple, and include it as a part of its signature.
Hence, two things increase linearly with the number of revoked platforms indi-
cated in the revocation list [15]: (1) the computational complexity of generating
the login signature; and (2) the communication overhead in terms of the length
of the login signature. These shortcomings are common to the existing DAA
schemes, and they pose a significant technical challenge in terms of the deploy-
ment of DAA in real-world applications—i.e., the computational complexity and
the communication overhead become unacceptably high for most applications
when the revocation list grows beyond a modest size (e.g., a few hundred). This
challenge also implies that the existing schemes are not appropriate for the sub-
scription systems that have stringent latency requirements. Note that several
hundreds of platforms are revoked per day in a network with a large number
(e.g., a million) of users [16, 17]. Also, in the case of a discovery of a severe
vulnerability, several thousands of TPM secret keys may need to be revoked at
once [18].

In this paper, we propose a novel ECC-based DAA scheme called Lightweight
Anonymous Subscription with Efficient Revocation (LASER) which addresses
the problem of revocation scalability in DAA. In LASER, the computational
complexity of the login signature generation procedure and communication over-
head of the login signature are multiple orders of magnitude lower than the prior
art. LASER achieves this significant performance improvement by shifting most
of the computational and communication costs (due to the revocation check pro-
cedure) from the DAA’s online procedure (i.e., login signature generation) to
its offline procedure (i.e., acquisition of keys/credentials). This strategy sig-
nificantly improves the practicality of DAA in real-world applications, because
the critical performance bottlenecks of those applications are determined by the
performance of the online procedure. Unlike legacy DAA schemes, LASER is
scalable, and can be deployed in the large subscription system which is expected
to have a long revocation list.

Further, in the existing DAA schemes, the login signatures generated by a
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platform satisfy the concept of absolute unlinkability (i.e., the signatures are
unlinkable by the issuer and the verifier). Here, linking two signatures means
that they are proved to be generated by the same platform. In addition to the
concept of absolute unlinkability, our design of LASER leads to a novel concept
of unlinkability called conditional unlinkability where the generated signatures
remain unlinkable by the verifier, but they may or may not be linkable by the
issuer. In this paper, we propose the notion of adaptable unlinkability which
implies that the platform is able to adaptably select one of the two concepts of
unlinkability of its login signatures. Our results exhibit that the notion of adapt-
able unlinkability enables LASER to provide the needed privacy in a flexible and
practical manner.

The paper’s main contributions are summarized below.
1. We propose a novel anonymous subscription scheme called LASER which

significantly reduces the computational and communication costs of the login
signature generation procedure compared to the prior art.

2. We design LASER using the existing TPM algorithms under the framework
of the TPM specification version 2.0. Hence, LASER can be readily deployed
in an existing network comprised of platforms with on-board TPM 2.0.

3. LASER and our strategy for designing it provide valuable insights into how
to address the open problem of reducing the costs of revocation in DAA.
Furthermore, we expect that the notion of adaptable unlinkability may pave
the way for designing practical and scalable DAA schemes.

4. We have validated our analytical results by implementing LASER on a laptop
platform with an on-board TPM. To the best of our knowledge, the results
presented in this paper represent the first implementation and analysis of an
anonymous authentication scheme using an actual TPM cryptoprocessor that
is compliant with the TPM specification version 2.0.

5. We have analyzed the security of LASER in the random oracle model un-
der the complexity assumptions which are widely utilized in analyzing the
security of DAA schemes.

2 Related Work

The anonymous authentication schemes (e.g., group signatures [19]) can pre-
serve the privacy of the SUs by decoupling their identities from their login
signatures communicated to the SPs. However, in these schemes, a malicious
SU can share its subscription keys with other SUs, and may facilitate autho-
rized access to unsubscribed users. Blanton proposed the first practical scheme
to realize the ASS [2]. In this scheme, a SP provides access of its services to
an authenticated SU in each authentication epoch such that two login requests
by the same SU in two different epochs remain unlinkable. The SP also ensures
that there is only one login during the epoch using the credential allotted to
the SU, and there is no sharing of credential. However, in this scheme, there
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exists a trade-off between the SP’s desire for a long epoch (to reduce SP-side
computations) and SU’s desire for a short epoch (so that it can “re-anonymize”
its different login requests). Lee et al. mitigate this trade-off by having short
epochs, and proposing an efficient re-authentication technique for the SUs who
do not need unlinkability between two epochs [3]. However, this scheme is lim-
ited by the lack of the revocation algorithm and the requirement of tight time
synchronization among all the entities in the ASS.

We assert that Direct Anonymous Attestation (DAA) is the most appropriate
cryptographic protocol for realizing ASS [6]. DAA enables privacy-preserving
authentication of a SU’s platform by utilizing the cryptographic key which is
securely embedded in the platform’s hardware. The embedded key cannot be
retrieved and distributed by the SU. The aforementioned trade-off related to
the authentication epochs does not exist in DAA. Also, no tight time synchro-
nization is required among the entities in DAA.

Brickell et al. proposed the first instantiation of RSA-based DAA for anony-
mous attestation of a computing platform [6]. This work has been followed
by a number of enhancements to DAA. The most notable RSA-based DAA
scheme is called the Enhanced Privacy ID (EPID) [12] which supplements DAA
with a revocation check procedure. Compared to RSA-based DAA schemes, the
ECC-based DAA schemes are significantly more efficient in terms of the com-
putational complexity and communication overhead [8, 13, 20, 21]. However,
in the schemes which support signature-based revocation, the revocation check
procedures are very inefficient in terms of the computational and communication
costs [22, 15, 23]. The computational complexity of the signature generation al-
gorithm at the platform, and the length of the signature increase linearly with
the number of revoked platforms. Hence, the existing DAA schemes are not
scalable—i.e., they are impractical to use for applications in which the length
of the revocation list is expected to grow beyond a modest size (e.g., a few
hundred).

To mitigate the high overhead of the revocation check procedure, Brickell and
Li [12], and Chen and Li [15] proposed a somewhat trivial solution—it requires
the issuer to “reset” the group that it is managing (i.e., replace all credentials
and keys of the platforms with new ones) when the number of tuples in the
revocation list exceeds a pre-determined threshold value. Note that in order to
reset a group, each platform needs to re-establish a communication link with the
issuer, obtain the credentials, and execute corresponding computations. Hence,
this approach is far from a panacea, and is impractical for a large network with
a large number of platforms. In this paper, LASER along with the proposed
notion of adaptable unlinkability addresses the open problem of reducing the
cost of revocation in DAA making it more practical to be used for the ASS.

In terms of implementation results in the prior art, either the functionality
of the TPM is only simulated in trusted execution environments, e.g., ARM
TrustZone [24], or the results are obtained from the implementation on TPM
version 1.2 [25]. Note that the simulation environment cannot correctly exhibit
the limitations of a real embedded TPM chip. The results in this paper represent
the first implementation and analysis using an actual TPM that is compliant
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with the most recent TPM specification version 2.0.

3 Overview of LASER

We propose a novel DAA scheme called Lightweight Anonymous Subscription
with Efficient Revocation (LASER) which mitigates the problem of revocation
scalability plaguing the existing DAA schemes. We formally define the compo-
nents of LASER as follows.

Definition 1. LASER is composed of the following protocols.

1. (gpk, isk)← Setup(1λ): This setup algorithm is run by the issuer. The input
to this algorithm is a security parameter 1λ, where λ ∈ N. Here, N represents
the set of natural numbers. This algorithm outputs an issuer’s secret key,
represented by isk, and a corresponding group public key, represented by
gpk. The isk is known only to the issuer, and gpk is published.

2. (tsk, hdl, tpk, mcl)← MemCreGen(gpk, isk,ms): To join the group created
by the issuer, the TPM and the host of the platform run this registration
protocol with the issuer. The inputs to the issuer are gpk and isk, the input
to the TPM is gpk, and the inputs to the host are gpk and ms ∈ N. Here,
ms represents the number of absolutely unlinkable credentials (discussed in
Section 4.2) allotted to each platform, and its value is set by the host based
on the unlinkability requirement of the platform. In this protocol, the TPM
generates a TPM’s secret key, represented by tsk, a corresponding TPM’s
public key, represented by tpk, and a key handle, represented by hdl. The
hdl specifies the location of the tsk in the secure memory of TPM. The
tsk is known only to the TPM, and tpk and hdl are forwarded to the host.
Further, the host acquires a membership credential, represented by memCrej,
for each j ∈ [1,ms], from the issuer. Finally, the host outputs a membership
credential list, represented by mcl = (memCre1, · · · , memCrems).

3. (ctl′, logCrej)← LogCreGen(gpk, isk, ctl, tsk, hdl, tpk, memCrej): The TPM
and the host run this login credential acquisition protocol with the issuer. In
this protocol, the inputs to the issuer are gpk, isk, and a credential token list,
represented by ctl, the inputs to the TPM are gpk and tsk, and the inputs
to the host are gpk, hdl, tpk, and memCrej. The ctl is securely stored and
maintained by the issuer. In this protocol, the issuer outputs an updated list
ctl′, and the host acquires a login credential, represented by logCrej, from
the issuer.

4. (logCrej, cul
′) ← SelectLogCre(lcl, cul, csr): This credential selection al-

gorithm is performed by the host. The inputs to the host are a login creden-
tial list, represented by lcl, a credential-usage list, represented by cul, and a
credential-selection rule, represented by csr. Before running this algorithm,
the TPM and the host run the LogCreGen protocol with the issuer for all
j ∈ [1,ms] to obtain the login credential list lcl = (logCre1, · · · , logCrems).
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Each instance of the LogCreGen protocol is initiated by the host after a
randomly selected time interval. To keep track of the utilized credentials
from lcl, the host maintains the credential-usage list cul. The host also
employs an application-based rule assignment for csr which takes one of
the two values, i.e., csr ∈ {absUnlink, conUnlink}, corresponding to the
application-based request to generate an absolutely unlinkable signature or
a conditionally unlinkable signature, respectively. In this algorithm, the host
selects the value of j ∈ [1,ms] based on the rule csr and the current usage
list cul. It outputs a login credential logCrej from lcl. It also outputs the
updated list cul′.

5. σs ← Sign(gpk, tsk, hdl, tpk, logCrej,M): This login signature generation
protocol is performed between the TPM and the host. The inputs to the
TPM are gpk and tsk, and the inputs to the host are gpk, hdl, tpk, logCrej
and a login request message, represented by M ∈ {0, 1}∗. This protocol
outputs a login signature σs.

6. valid/invalid ← Verify(gpk, σs,M, tRL, kRL): This verification algorithm
takes gpk, a purported login signature σs, a login request message M , a
token-based revocation list, represented by tRL, and a key-based revocation
list, represented by kRL, as inputs. The tRL and kRL are maintained and
published by the issuer. This algorithm verifies: (1) whether the signature
is honestly generated, (2) whether the login credential used to generate the
signature is not revoked, and (3) whether the TPM’s secret key is not revoked.
If all of these three verification steps are successful, this algorithm outputs
the value valid; otherwise, it outputs the value invalid.

7. Revoke: Using this algorithm, the issuer revokes the keys and credentials
of a compromised platform. The revocation can be driven by the verifier,
the issuer or the platform’s user. Hence, this algorithm comprises of three
sub-algorithms, and only one of these sub-algorithms is run based on the
available inputs.

(a) tRL′ ← RevokeSign(gpk, ctl, σs,M, tRL, kRL): This is the verifier-driven
signature-based revocation sub-algorithm which is utilized when the ver-
ifier provides a malicious signature from a platform to the issuer. It
takes gpk, ctl, a signature σs, a message M , tRL, and kRL, as inputs.
It updates the tRL, and outputs the updated list, tRL′.

(b) tRL′ ← RevokeTpk(gpk, ctl, cre, tpk, tRL): This is the platform’s user-
driven TPM’s public key-based revocation sub-algorithm which is uti-
lized when the platform cannot generate an honest signature on a mes-
sage (e.g., when the platform is stolen). It takes gpk, ctl, a membership
or login credential cre, tpk, and tRL, as inputs. It updates the tRL, and
outputs the updated list, tRL′.

(c) kRL′ ← RevokeTsk(gpk, cre, tsk, kRL): This is the issuer-driven TPM’s
secret key-based revocation sub-algorithm which is utilized when the
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issuer finds that the TPM’s secret key has been extracted from the
TPM, and published along with a valid membership or login credential.
It takes gpk, a membership/login credential cre, tsk, and kRL, as inputs.
It updates the kRL, and outputs the updated list, kRL′.

8. true/false ← Identify(gpk, σs,M, tsk∗): This signature tracing algorithm
is required to characterize the security properties. It takes gpk, a signature
σs, a message M , and a TPM’s secret key tsk∗ as inputs. It outputs the
value true if σs is proved to be generated using tsk∗; otherwise, it outputs
the value false.

We paraphrase the above definition of LASER as follows. In LASER, the
platform obtains two types of credentials—(1) membership credentials through
the MemCreGen protocol, and (2) login credentials through the LogCreGen pro-
tocol. In the MemCreGen protocol, the platform registers with the issuer using
the TPM’s secret key, and obtainsms membership credentials. In the LogCreGen
protocol, the platform utilizes a membership credential, and acquires a corre-
sponding login credential from the issuer. The platform executes the LogCreGen
protocol for ms number of times at random time intervals. This means that
multiple instances of LogCreGen protocol are performed with the issuer by mul-
tiple platforms within a time interval, and hence the issuer cannot learn the
relationship among the login credentials by the timing and cannot link the ac-
quired login credentials to a particular platform. Through the Sign protocol,
the platform utilizes a login credential to generate a signature on the login re-
quest message communicated to the verifier. Through the Verify algorithm, the
verifier checks the validity of the signature, and the revocation status of the
platform.

To support the revocation check procedure, the issuer publishes two revoca-
tion lists: (1) the token-based revocation list tRL which contains all the revoked
tokens, and (2) the key-based revocation list kRL which contains all the revoked
TPM’s secret keys. Also, the issuer includes a revocation token, represented
by yj , in each login credential. In the Sign protocol, the platform includes the
TPM’s secret key tsk and the revocation token yj as exponents over randomly
selected bases. In the Verify algorithm, the verifier determines the revocation
status of tsk corresponding to each revoked key included in kRL, and the revo-
cation status of yj corresponding to each revoked token included in tRL.

Recall that in the existing DAA schemes, for each revoked tuple included
in the revocation list, the platform needs to generate a proof of non-revocation
of its TPM’s secret key with respect to the tuple, and include it as a part
of its login signature [15]. Unlike the existing DAA schemes, in LASER, the
platform does not need to generate any proof of knowledge of non-revocation
of its TPM’s secret key. However, in LASER, the platform needs to obtain ms

login credentials by running the LogCreGen protocol for ms number of times.
In this way, most of the burden of the revocation check procedure in LASER
is shifted from the online login signature generation to the offline acquisition
of login credentials. This unique feature of LASER brings about two practical
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advantages. Firstly, during the login signature generation protocol, the TPM is
not burdened with any computations related to the revocation check procedure,
and this results in a significant reduction in the computational complexity of
login signature generation. Secondly, the length of the login signature generated
by the platform and communicated to the verifier is constant, and does not grow
proportionally with the length of the revocation list. These two advantages are
especially important when a DAA scheme needs to be deployed for the ASS
with a large number of SUs.

4 Security Definitions

Most of the ECC-based DAA schemes are proved secure in the game-based
security model presented by Brickell et al. [20]. Over the years, the game-
based security model for DAA has been further developed [25, 26]. However,
Camenisch et al. have identified specific shortcomings in the security models
utilized in the existing DAA schemes, and have presented a simulation-based
security model for DAA [13, 27]. In this paper, LASER utilizes the game-based
security model which does not suffer from the shortcomings mentioned in [13].
In the following discussions, we present the definitions of the security properties
of LASER.

4.1 Correctness

The correctness property implies that a signature generated using the login
signature generation protocol by an unrevoked platform is correctly verified
using the verification algorithm, and is correctly traced back to the platform,
as defined below.

Definition 2. For all λ, ms, ctl, cul, csr, M , tRL, and kRL, LASER satisfies
the correctness property if

(gpk, isk)← Setup(1λ),

(tsk, hdl, tpk, mcl)← MemCreGen(gpk, isk,ms),

(ctl′, logCrej)← LogCreGen(gpk, isk, ctl, tsk, hdl, tpk, memCrej),∀j ∈ [1,ms],

(logCrej, cul
′)← SelectLogCre(lcl, cul, csr), and

σs ← Sign(gpk, tsk, hdl, tpk, logCrej,M), then

valid← Verify(gpk, σs,M, tRL, kRL), and

true← Identify(gpk, σs,M, tsk).

4.2 Adaptable Anonymity

The notion of adaptable anonymity consists of the following two properties.

1. Anonymity : This property requires that no entity (including the issuer) is
able to identify the platform which has generated a given signature.
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2. Adaptable unlinkability : This notion requires that the platform is able to
adaptably control whether or not any two signatures can be linked by a
particular entity. This is a new notion of unlinkability in a DAA scheme
introduced in this paper. For any two signatures, the platform may select
one of the following two properties of adaptable unlinkability.

(a) Absolute unlinkability : The two signatures cannot be linked either by
the issuer or by the verifier.

(b) Conditional unlinkability : The two signatures cannot be linked by the
verifier, but they may or may not be linkable by the issuer.

The definition of adaptable anonymity follows the definitions of absolute and
conditional unlinkability as presented below.

Definition 3. For an adversary A and a challenger C, the absolute unlinkability
game is defined as follows.

1. Setup: C simulates the Setup algorithm, and provides A with the resulting
isk and gpk. C also creates mt platforms with identities Pi, ∀i ∈ [1,mt].
Further, C initializes a list of the corrupted platforms, cpl = ∅, and a list of
corrupted credentials, ccl = ∅. Here, ∅ represents an empty set.

2. MemCreGen: C acts as the platform, and simulates the protocol MemCreGen
with A which acts as the issuer. For all i ∈ [1,mt], C generates tski, and
acquires memCreij, ∀j ∈ [1,ms].

3. LogCreGen: C acts as the platform, and simulates the LogCreGen protocol
with A which acts as the issuer. For all i ∈ [1,mt] and j ∈ [1,ms], C acquires
logCreij.

4. Queries-Phase I : A queries C about the following.

(a) Sign: A requests C to generate a signature on a message M on behalf of
Pi. C runs the SelectLogCre with the credential-selection rule conUnlink
or absUnlink. If C utilizes the rule absUnlink, it appends logCreij to
ccl. Further, C simulates the Sign protocol, and responds to A with the
signature σs.

(b) TskCorrupt : A requests C to provide the TPM’s secret key of Pi. C
responds to A with tski, and appends Pi to cpl.

(c) MemCreCorrupt : A requests the jth membership credential of platform
Pi. C responds to A with memCreij, and appends the corresponding
logCreij to ccl.

(d) LogCreCorrupt : A requests the jth login credential of platform Pi. C
responds to A with logCreij, and appends logCreij to ccl.

5. Challenge: A submits to C a message M and two platforms Pi0 and Pi1
with the restriction that Pi0 , Pi1 /∈ cpl. C selects φ←$ {0, 1}. Here, ←$
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represents a random selection. Corresponding to Piφ , C selects logCreiφjφ
using the credential-selection rule absUnlink in the SelectLogCre algorithm
such that logCreiφjφ /∈ ccl. Further, C runs the Sign protocol, and responds
with the signature σs on M .

6. Queries-Phase II (Restricted Queries): After obtaining the challenge, A con-
tinues to probe C with the queries mentioned in Queries-Phase I, except for
the TskCorrupt queries for tski0 and tski1 , MemCreCorrupt queries for
memCrei0j0 and memCrei1j1 , and LogCreCorrupt queries for logCrei0j0 and
logCrei1j1 .

7. Output : A outputs a bit φ′ indicating its guess of φ.

A wins the game if φ′ = φ, and the advantage of A is defined as AdvabsA =
|Pr(φ′ = φ)−1/2|, where Pr represents the probability of an event. LASER with
the rule absUnlink satisfies the absolute unlinkability property if the advantage
of any probabilistic polynomial time (PPT) adversary on winning the absolute
unlinkability game is negligibly small.

Definition 4. For an adversary A and a challenger C, the conditional unlinka-
bility game is defined as follows.

1. Setup: C simulates the Setup algorithm, and provides A with the resulting
gpk. C does not reveal isk to A. C also creates mt platforms with identities
Pi, ∀i ∈ [1,mt]. Further, C initializes two lists cpl and ccl.

2. MemCreGen: C acts as the platform as well as the issuer, and simulates
MemCreGen protocol to generate tski, ∀i ∈ [1,mt], and memCreij, ∀i ∈
[1,mt], j ∈ [1,ms].

3. LogCreGen: C acts as the platform as well as the issuer, and simulates
LogCreGen protocol to generate logCreij, ∀i ∈ [1,mt] and ∀j ∈ [1,ms].

4. Queries-Phase I : A probes C with the queries defined in the Queries-Phase I
in the absolute unlinkability game. A probes C with the following additional
queries.

(a) Revoke: A requests C to revoke the login credential utilized to generate
a signature σ′s on a message M ′. C simulates the Revoke algorithm and
responds with the updated tRL′.

5. Challenge: A submits to C a message M and two platforms Pi0 and Pi1 with
the restriction that Pi0 , Pi1 /∈ cpl. C selects φ←$ {0, 1}. Corresponding to
Piφ , C selects logCreiφjφ using the credential-selection rule conUnlink in
the SelectLogCre algorithm such that logCreiφjφ /∈ ccl. Further, C runs the
Sign protocol, and responds with the signature σs on M .

6. Queries-Phase II (Restricted Queries): A probes C with the restricted queries
defined in the Queries-Phase II in the absolute unlinkability game.
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7. Output : A outputs a bit φ′ indicating its guess of φ.

A wins the game if φ′ = φ, and the advantage of A is defined as AdvconA =
|Pr(φ′ = φ) − 1/2|. LASER with the rule conUnlink satisfies the conditional
unlinkability property if the advantage of any PPT adversary on winning the
conditional unlinkability game is negligibly small.

Definition 5. LASER satisfies the adaptable anonymity property if LASER
satisfies the absolute unlinkability property for the signatures generated using
the credential-selection rule absUnlink, and the conditional unlinkability prop-
erty for the signatures generated using the credential-selection rule conUnlink.

4.3 Traceability

The traceability property implies that no colluding set of platforms can create
a valid signature that can not be traced back to any platform, as defined below.

Definition 6. For an adversary A and a challenger C, the traceability game is
defined as follows.

1. The Setup, MemCreGen, LogCreGen and Queries phases in this game are de-
fined in the same manner as the Setup, MemCreGen, LogCreGen and Queries
phases in conditional unlinkability game, respectively.

2. Output : A outputs a message M∗ and a signature σ∗ for given tRL∗ and
kRL∗.

A wins the above traceability game if:

1. valid← Verify(gpk, σ∗,M∗, tRL∗, kRL∗);

2. A did not obtain σ∗ by making a Sign query; and

3. ∀i ∈ [1,mt], false← Identify(gpk, σ∗,M∗, tski).

LASER satisfies the traceability property if for any PPT adversary, the proba-
bility on winning the traceability game is negligibly small.

4.4 Non-frameability

The non-frameability property implies that no colluding set of entities (including
the issuer) can forge a valid signature that can be traced back to a non-colluding
platform, as defined below.

Definition 7. For an adversary A and a challenger C, the non-frameability
game is defined as follows.

1. The Setup, MemCreGen, LogCreGen and Queries phases in this game are
defined in the same manner as Setup, MemCreGen, LogCreGen and Queries
phases in the absolute unlinkability game, respectively.
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2. Output : A outputs a message M∗ and a signature σ∗ corresponding to a
platform Pi∗ .

A wins the above non-frameability game if:

1. A did not obtain σ∗ by making a Sign query;

2. Pi∗ /∈ cpl; and

3. true← Identify(gpk, σ∗,M∗, tski∗), where tski∗ is the TPM’s secret key of
the platform Pi∗ .

LASER satisfies the non-frameability property if for any PPT adversary, the
probability on winning the non-frameability game is negligibly small.

Among the above properties, the adaptable unlinkability is an important
notion to consider in evaluating LASER with respect to other DAA schemes. In
the existing DAA schemes, the platform obtains a credential, and can generate
signatures which are unlinkable by both the verifier and the issuer, and hence
have absolute unlinkability. However, in LASER, we observe that the platform
obtains ms login credentials, and has the option to generate signatures in two
categories. In the first category, if a signature is generated using a login creden-
tial which was not utilized earlier to generate any other signature, neither the
issuer and nor the verifier is able to link this signature to any other signature
generated by the same platform. Hence, in LASER, the platform can generate
ms signatures which satisfy the absolute unlinkability property. In the second
category, if a signature is generated using a login credential which was also uti-
lized earlier, the issuer can link this signature to all the signatures generated
previously using the same login credential. But even in this second category, the
verifier is not able to determine whether any two signatures are generated using
the same login credential. Hence, the platform can generate a large number
(which is not limited by the parameter ms) of signatures which satisfy condi-
tional unlinkability property. Note that in the second category, if two signatures
are generated using two different login credentials, even the issuer is not able to
determine whether the two signatures are generated by the same platform.

Hence, in terms of security properties, there are two attributes of LASER
which distinguish it from all other DAA schemes. First, LASER enables the
platform to generate signatures which satisfy conditional unlinkability property.
This attribute makes LASER usable in applications which desire a trade-off be-
tween the absolute and no unlinkability properties. Second, LASER satisfies the
absolute unlinkability property in a limited sense, i.e., the number of absolutely
unlinkable signatures is limited by the number of the different login credentials.
LASER exploits this attribute to significantly reduce the large computational
complexity and communication overhead plaguing the existing DAA schemes.

5 Background and Assumptions

The schemes in the prior art [2, 3] and LASER are the cryptographic proto-
cols utilized by the SU (platform) for the acquisition of the key/credential from
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the issuer and generation of anonymous login signatures sent for verification
to the SP (verifier). A comprehensive anonymous subscription system requires
additional mechanisms (e.g., a network-anonymity service [28] and a private
information retrieval scheme [29]) to anonymize other aspects of the SU’s inter-
action with the SP. The discussion of these mechanisms is out of scope of this
paper.

We assume that each TPM has a secret endorsement key ST embedded into
it, and there is an associated public key PT . We also assume that the issuer
has a secret/public key pair (SI , PI). These keys are utilized for the secure
communication between the platform and the issuer. The discussions of the
procedures of establishing this secure channel are out of scope of this paper.

Let Z∗p represent the set of integers modulo p. Also, let there be a pair
of multiplicative cyclic groups of prime order p, (G1,G2), called a bilinear
group pair, such that there exists a group GT and a bilinear mapping func-
tion, e : G1 × G2 → GT . We utilize the Type 3 pairing which means that
G1 6= G2, and there does not exist any computable isomorphism from G1 to
G2 [30]. Further, we assume that there exists a collision resistant hash func-
tion Hz : {0, 1}∗ → Z∗p, which is treated as a random oracle. LASER uti-
lizes the BBS+ signatures for providing anonymous authentication [31, 32, 33].
We provide the definition of BBS+ signature in Appendix A. The definitions
of the group mapping function Hg, and the algorithms TPM2 CreatePrimary,
TPM2 Commit and TPM2 Mod Sign are presented in Appendix B. These con-
cise definitions have been extracted from the elaborate definitions included in
the TPM specification version 2.0 [7, 25].

The security of LASER is proved in the random oracle model based on
the discrete logarithm (DL) assumption, the decisional Diffie-Hellman (DDH)
assumption [34], and the q-strong Diffie-Hellman (q-SDH) assumption [35] which
are defined as follows.

Assumption 1 (G1-DDH Assumption). Given (P, P a, P b, P c) ∈ G4
1, where

a, b ∈ Z∗p, as input for each PPT algorithm A, the probability with which A is
able to differentiate whether c = a · b, or c←$Z∗p, is negligibly small.

Assumption 2 (q-SDH Assumption). Given a (q+3)-tuple
(
g1, g

γ
1 , · · · , g

γq

1 , g2, g
γ
2

)
,

where g1←$G1, g2←$G2, and γ←$Z∗p, as input for each PPT algorithm A, the

probability that A outputs a pair
(
g

1/(γ+z)
1 , z

)
, where z ∈ Z∗p, is negligibly small.

6 Details of LASER

In this section, we present the details of the algorithms and the protocols of
LASER. We provide the theorems corresponding to each of the four security
properties of LASER, and the comprehensive proofs of those theorems in Ap-
pendix C.
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6.1 Setup

We assume that there exists an asymmetric bilinear group pair (G1,G2) of prime
order p, a bilinear mapping function e : G1 × G2 → GT , and a hash function
Hz : {0, 1}∗ → Z∗p. The parameters for (G1,G2, e,Hz) are published.

(gpk, isk)← Setup(1λ)
This algorithm is run by the issuer. With the input 1λ, it outputs isk and

gpk. It proceeds as follows.

1. Select g1←$G1 and g2←$G2 such that g1 and g2 are the generators of G1

and G2, respectively.

2. Select h1, h2, h3←$G1, and γ←$Z∗p.

3. Compute ω = gγ2 ; and set isk = γ, and gpk = (g1, h1, h2, h3, g2, ω).

4. Output (gpk, isk).

6.2 Registration

(tsk, hdl, tpk, mcl)← MemCreGen(gpk, isk,ms)
This registration protocol is performed among the TPM, the host and the

issuer. The inputs to the issuer are gpk and isk, the input to the TPM is gpk,
and the inputs to the host are gpk and ms. In this protocol, the TPM generates
tsk, stores it in its secure memory, and outputs tpk and hdl. The host outputs
mcl. It proceeds as follows.

1. Upon the request of the host, the TPM runs the algorithm TPM2 CreatePrimary
(discussed in Appendix B.2), generates tsk = f , and forwards the outputs

hdl and tpk = I = hf1 , to the host.

2. The TPM and the host generate a registration-request signature σm on a
nonce nm←$ {0, 1}λ to present the signature proof of knowledge (SPK) of
tsk along with ms parameters u′1, u

′
2, · · · , u′ms ←$Z∗p. The σm is given as

σm ← SPK
{

(f, u′1, u
′
2, · · · , u′ms) : U1 = hf1 · h

u′1
2 ,

U2 = hf1 · h
u′2
2 , · · · , Ums = hf1 · h

u′ms
2

}
(nm). (1)

3. The host sends (nm, σm) to the issuer.

4. The issuer verifies the validity of signature σm. If the verification fails, the
issuer aborts; otherwise, the issuer proceeds as follows.

(a) For each j ∈ [1,ms], select u′′j , vj ←$Z∗p, and compute Jj =
(
g1 · Uj · h

u′′j
2

) 1
γ+vj

.

(b) Send (J1, u
′′
1 , v1, · · · , Jms , u′′ms , vms) to the host.
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5. The host performs the following.

(a) For each j ∈ [1,ms], compute uj = u′j + u′′j , and set a membership
credential memCrej = (Jj , uj , vj). Note that (Jj , uj , vj) is a BBS+ sig-
nature on f .

(b) Output mcl = (memCre1, · · · , memCrems).

6.3 Acquisition of Login Credential

We assume that the credential token list is represented as ctl = {(Ki, yi) : Ki ∈
G1, yi ∈ Z∗p,∀i ∈ [1,mtms]}, where mt represents the number of platforms in
the network.

(ctl′, logCrej)← LogCreGen(gpk, isk, ctl, tsk, hdl, tpk, memCrej)
This protocol is performed among the TPM, the host and the issuer. The

inputs to the issuer are gpk, isk and ctl, the inputs to the TPM are gpk and
tsk, and the inputs to the host are gpk, hdl, tpk and memCrej. In this protocol,
the issuer outputs the updated list ctl′, and the host outputs a login credential
logCrej. This protocol proceeds as follows.

1. The host and the TPM generate a login credential-request signature σg on
a nonce ng ←$ {0, 1}λ to present the SPK of tsk, uj , a parameter xj ←$Z∗p,
and a BBS+ signature (Jj , uj , vj) on f . The σg is given as

σg ← SPK {(f, uj , vj , xj) : Cg = Bfg , Kj = g
uj
1 , Lj = hf1 · h

xj
2 ,

e(Jj , ω · g
vj
2 ) = e(g1 · hf1 · h

uj
2 , g2)}(ng). (2)

2. The host sends (ng, σg) to the issuer.

3. The issuer verifies: (1) whether the signature is honestly generated, and
(2) whether the membership credential has not been utilized previously to
acquire a login credential. If both the verification steps (as shown below) are
successful, the issuer proceeds; otherwise it aborts.

(a) Verify the validity of σg.

(b) For the entries corresponding to Ki in the list ctl, verify that Kj /∈ ctl

by utilizing a conventional binary search algorithm.

4. The issuer proceeds as follows.

(a) Select yj , zj ←$Z∗p; and compute Aj =
(
g1 · Lj · h

yj
3

) 1
γ+zj .

(b) Append an entry of the tuple (Kj , yj) to the list ctl, and output the
updated list ctl′.

(c) Send (Aj , yj , zj) to the host.

5. The host outputs the login credential, logCrej = (Aj , xj , yj , zj). Note that
(Aj , yj , zj) is a BBS+ signature on (f, xj).
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6.4 Selection of Login Credential

After running the LogCreGen protocol for ms number of times, the host sets
the login credential list lcl = (logCre1, · · · , logCrems). Each entry in the
credential-usage list cul takes one of the three values, i.e., culj ∈ {unUsed,
absUsed, conUsed}, corresponding to the cases where logCrej has never been
utilized, has already been utilized to generate an absolutely unlinkable sig-
nature, or has already been utilized to generate one or more conditionally
unlinkable signatures, respectively. The credential-selection rule is given as
csr ∈ {absUnlink, conUnlink}.
(logCrej, cul

′)← SelectLogCre(lcl, cul, csr)
This selection algorithm is performed by the host. The inputs to this algo-

rithm are lcl, cul, and csr. This algorithm outputs a login credential logCrej
and an updated list cul′ as follows.

1. If csr = absUnlink, select j ∈ [1,ms] such that culj = unUsed, and set
culj = absUsed; otherwise, if csr = conUnlink, select j ∈ [1,ms] such that
culj = unUsed or culj = conUsed, and set culj = conUsed.

2. Select the login credential logCrej from lcl.

3. Output logCrej, and the updated list cul′.

6.5 Login Signature Generation

σs ← Sign(gpk, tsk, hdl, tpk, logCrej,M)
This login signature generation protocol is performed between the TPM and

the host. The inputs to the TPM are gpk and tsk, and the inputs to the host are
gpk, hdl, tpk, logCrej and a login request message M . This protocol outputs
a login signature σs which presents the SPK of tsk, a valid revocation token yj ,
and a BBS+ signature (Aj , yj , zj) on (f, xj). The σs is given as

σs ← SPK {(f, xj , yj , zj) : Cs = Bfs , Es = Dyj
s ,

e(Aj , ω · g
zj
2 ) = e(g1 · hf1 · h

xj
2 · h

yj
3 , g2)}(M). (3)

6.6 Login Signature Verification

We assume that the token-based revocation list tRL is represented as tRL = {yi :
yi ∈ Z∗p,∀i ∈ [1,mr]}, where mr is the number of revoked login credentials. The
key-based revocation list kRL is represented as kRL = {fi : fi ∈ Z∗p,∀i ∈ [1,mk]},
where mk is the number of revoked TPM’s secret keys.

valid/invalid← Verify(gpk, σs,M, tRL, kRL)
This verification algorithm takes gpk, a purported login signature σs, a login

request message M , tRL, and kRL as inputs. This algorithm verifies: (1) whether
the signature is honestly generated, (2) whether the login credential used to
generate the signature is not revoked, and (3) whether the TPM’s secret key
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is not revoked. If all of these three verification steps (as shown below) are
successful, this algorithm outputs the value valid; otherwise it outputs the
value invalid.

1. Verify the validity of the signature σs.

2. For each entry of yi in tRL, compute Ei = Dyi
s , and verify that Ei 6= Es.

3. For each entry of fi in kRL, compute Ci = Bfis , and verify that Ci 6= Cs.

6.7 Revocation

The revocation algorithm Revoke comprises of following three sub-algorithms,
and only one of these sub-algorithms is run based on the available inputs.

tRL′ ← RevokeSign(gpk, ctl, σs,M, tRL, kRL)
The inputs to this signature-based revocation sub-algorithm are gpk, ctl,

a signature σs, a message M , tRL and kRL. This sub-algorithm outputs the
updated revocation list, tRL′, using the following steps.

1. Verify that σs is an honestly generated signature, i.e.,
valid← Verify(gpk, σs,M, tRL, kRL). If the verification fails, abort.

2. For each entry of yi in the list ctl, compute Ei = Dyi
s , and find the index i

such that Ei = Es.

3. Append yi to tRL, and output the updated tRL′. This revokes the login
credential utilized to generate the signature σs.

tRL′ ← RevokeTpk(gpk, ctl, tpk, cre, tRL)
The inputs to this TPM’s public key-based revocation sub-algorithm are gpk,

ctl, tpk, a membership or login credential cre, and tRL. This sub-algorithm
outputs the updated revocation list, tRL′, as follows.

1. If cre is a membership credential,

(a) Verify that e(Jj , ω · g
vj
2 ) = e(g1 · hf1 · h

uj
2 , g2). If the verification fails,

abort.

(b) Compute Kj = g
uj
1 , and search for the index i in the entries correspond-

ing to Ki in the ctl for which Ki = Kj using conventional binary search
algorithm.

2. If cre is a login credential,

(a) Verify that e(Aj , ω · g
zj
2 ) = e(g1 · hf1 · h

xj
2 · h

yj
3 , g2). If the verification

fails, abort.

(b) Search for the index i in the entries corresponding to yi in the ctl for
which yi = yj using conventional binary search algorithm.
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3. Append the corresponding yi from the list ctl to the tRL. This revokes the
corresponding login credential.

kRL′ ← RevokeTsk(gpk, cre, tsk, kRL)
The inputs to this TPM’s secret key-based revocation sub-algorithm are gpk,

a membership or login credential cre, tsk, and kRL. This sub-algorithm outputs
the updated revocation list, kRL′, as follows.

1. If cre is a membership credential, verify that e(Jj , ω ·g
vj
2 ) = e(g1 ·hf1 ·h

uj
2 , g2).

If the verification fails, abort.

2. If cre is a login credential, verify that e(Aj , ω · g
zj
2 ) = e(g1 ·hf1 ·h

xj
2 ·h

yj
3 , g2).

If the verification fails, abort.

3. Append f to the kRL, and output the updated kRL′. This revokes the tsk.

Note that LASER enables practical and flexible revocation which is a de-
sirable characteristic in the context of the subscription system. The three sub-
algorithms mentioned above correspond to the following three cases. Firstly, if
only one of platform’s login credentials is compromised, then the issuer should
specifically revoke only the compromised login credential, and should not need
to revoke the platform. Hence, in LASER, using the RevokeSign sub-algorithm,
the issuer revokes only the login credential utilized to generate the signature
σs. Since the platform has ms login credentials, the platform is able to gen-
erate valid signatures using other unrevoked login credentials. Secondly, if the
host is compromised, the issuer should revoke all the login credentials without
knowing the tsk. Hence, in LASER, using the RevokeTpk sub-algorithm, the
issuer revokes the compromised login credentials which are provided to the is-
suer by the platform. In this case, if the SU needs to revoke the platform’s
login credentials after it is stolen, he/she needs to store tpk and mcl or lcl at
a device other than the platform, and provide them to the issuer [23]. Thirdly,
if the platform is completely compromised and the TPM’s secret key is pub-
lished, the issuer should revoke the platform such that the platform is not able
to generate valid signatures using any of the acquired login credentials. Hence,
using the RevokeTsk sub-algorithm, the issuer revokes tsk. Since the compro-
mise of a login credential is significantly more likely than that of an embedded
TPM’s secret key, we assume that the length of the token-based revocation list
tRL is significantly larger than that of the key-based revocation list kRL, i.e.,
mr >> mk.

Also, note that after the revocation of a login credential, all of the previous
signatures associated with the revoked login credential can be linked together
by the verifier. This drawback of backward-linkability is shared by all the anony-
mous authentication schemes which support verifier-local revocation [19]. This
drawback can be mitigated by utilizing either time-stamped parameters [36] or
accumulators [22]. However, discussions on such a countermeasure are beyond
the scope of this paper.
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6.8 Signature Tracing

true/false← Identify(gpk, σs,M, tsk∗)
This algorithm takes gpk, a signature σs, a message M , and a TPM’s secret

key tsk∗ as inputs. Through the following steps, this algorithm outputs the
value true if σs is proved to have been generated using tsk∗ = f∗; otherwise it
outputs the value false.

1. Verify that σs is an honestly generated signature, i.e.,
valid ← Verify(gpk, σs,M,∅,∅). If the verification fails, output the value
false.

2. Compute C∗ = Bf∗s , and verify that Cs = C∗. If the verification succeeds,
output the value true; otherwise output the value false.

7 Analytical Evaluation

In this section, we analytically evaluate the computational complexity and com-
munication overhead of LASER, and compare LASER’s performance with the
ECC-based DAA scheme proposed by Camenisch, Drijvers and Lehmann (CDL-
EPID) [13]. We utilize the same technique presented in [13] to generate the
SPKs presented in equations (1), (2) and (3). We select CDL-EPID with no
attributes as the benchmark scheme because similar to LASER, CDL-EPID: (1)
employs the notion of signature-based revocation, (2) splits the workload at the
platform between the TPM and the host, and (3) is traceable under the q-SDH
assumption. We do not consider the data storage requirements since the storage
capacity is assumed to be abundantly available at the host, the verifier and the
issuer, and the storage requirement is assumed to be the same at the TPM for
both the DAA schemes.

In the following discussion, we consider only the computationally expen-
sive operations—i.e., exponentiation in G1 and bilinear mapping. The time
taken to perform all other operations, e.g., multiplication, addition, inverse, bi-
nary search, etc., are significantly smaller than the time taken to compute an
exponentiation in G1, and hence are ignored. We represent the number of ex-
ponentiations in G1 and bilinear mappings by EG1

and BM , respectively. Also,
let the number of elements in G1 and Z∗p communicated between the entities be
represented by LG1 and LZp, respectively.

7.1 Computational Complexity

In a DAA scheme, we divide the operations at the TPM, the host, the verifier,
and the issuer into two classes—(1) offline, and (2) online. All the operations
which can be pre-computed or stored, and do not need to be generated in real
time are classified as offline operations. The offline operations include the com-
putations at the TPM, the host and the issuer for establishing the platform’s
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Table 1: Comparison of the number of the offline and online computational
operations in the DAA schemes.

CDL-EPID LASER

EG1
BM EG1

BM

offline

TPM 2 0 2 + 3ms 0

Host 0 0 16ms 0

Issuer 4 0 21ms 2ms

online

TPM 3 + 3mr 0 3 0

Host 8 + 5mr 0 14 0

Verifier 10 + 5mr 2 12 +mr 2

Table 2: Comparison of the number of elements in the offline and online com-
munication in the DAA schemes.

CDL-EPID LASER

LG1
LZp LG1

LZp

offline

p-i-sig 1 3 8ms 3 + 10ms

i-p-cre 1 2 2ms 4ms

i-p-rev 2mr 0 0 0

i-v-rev 2mr 0 0 mr

online p-v-sig 5 +mr 7 + 4mr 7 8

membership and/or login credentials. The operations which need to be per-
formed in real time are classified as online operations. The online operations
include the computations at the TPM and the host for generating the login
signature, and the computations at the verifier for verifying the signature.

Table 1 presents the number of computationally expensive offline and online
operations performed by each entity in the two DAA schemes. In LASER, the
total offline computational complexities are computed by summing the com-
putational complexities in the MemCreGen and the LogCreGen protocols. In
Table 1, we observe that the computational complexities of the offline oper-
ations in CDL-EPID and LASER are O(1) and O(ms), respectively. Most
importantly, in Table 1, we observe that the computational complexities of the
platform’s online operations are O(mr) in CDL-EPID as compared to O(1) in
LASER. Note that the computational complexity of verifier’s online operations
are O(mr) in CDL-EPID as well as LASER. However, in the context of the
subscriptions system, we assume that the verifiers (SPs) have access to servers
with large computational resources, and hence they are able to handle the large
computational cost of the revocation check procedure.

7.2 Communication Overhead

In a DAA scheme, we divide the communications at the platform, the verifier
and the issuer into two classes—(1) offline, and (2) online. All the communi-
cations which can be pre-shared and stored, and do not need to be performed
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in real time are classified as offline communications. The offline communication
overhead includes the communication from the platform to the issuer for send-
ing the signatures with requests for the membership and/or login credentials
(represented by p-i-sig). It also includes the communication from the issuer to
the platform for sending the membership and/or login credentials (represented
by i-p-cre), and the revocation list (represented by i-p-rev). Further, it includes
the communication from the issuer to the verifier for sending the revocation list
(represented by i-v-rev). The communications which need to be performed in
real time are classified as online communications. The online communication
overhead includes the communication between the platform and the verifier for
sending and receiving the login signature (represented by p-v-sig).

Table 2 presents the number of offline and online elements communicated
between the entities in the two DAA schemes. In LASER, the offline commu-
nication overheads are computed by summing the communication overheads in
the MemCreGen and the LogCreGen protocols. In Table 2, we observe that in
CDL-EPID, the sum of the offline communication overheads at the platform and
the verifier increase by O(mr). In LASER, the sum of the offline communication
overheads increases by O(ms) at the platform and O(mr) at the verifier. Most
importantly, in Table 2, we observe that the online communication overhead
increases by O(mr) in CDL-EPID as compared to O(1) in LASER.

8 Implementation Results

We present an illustrative application scenario where LASER is employed to
realize the ASS. We obtain the results by implementing the application scenario
on a laptop platform with an on-board TPM. To the best of our knowledge,
this is the first implementation and analysis of an anonymous authentication
scheme using an actual TPM cryptoprocessor that is compliant with the TPM
specification version 2.0. Note that the design of LASER under the framework
of the most recent specification also simplifies its adaptation and evaluation in
existing networks.

8.1 Illustrative Application Scenario

We assume that one million SUs are subscribed at the issuer in an online sub-
scription service. The SUs are required to renew their subscription every month
which consists of 30 days. Each SU (platform) sends login requests to ten SPs
(verifiers) per day, and generates one login signature corresponding to the re-
quest to each SP per day. This means that the total number of login signatures
generated per day by a SU is ten. Moreover, we assume that 0.2 percent of the
laptop platforms belonging to the SUs are revoked every month because they
are lost or stolen [17]. This means that over the period of a month, the number
of revoked platforms increases from 0 to 2000. In this illustrative scenario, we
consider and analyze the following four deployment cases of DAA.
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1. CDL-EPID: During subscription, each SU obtains the membership credential
using the offline procedure. Then, each SU generates absolutely unlinkable
signatures for the ten SPs per day through the online procedure.

2. LASER with absolute unlinkability (LASER-A): During subscription with
the issuer, through offline procedure, each SU obtains 300 membership cre-
dentials and corresponding login credentials (i.e., ms = 300). Using these
login credentials, each SU generates absolutely unlinkable signatures for the
ten SPs per day through the online procedure.

3. LASER with conditional unlinkability where the issuer can link some login
signatures (LASER-B): Through the offline procedure, the SU obtains 30
membership credentials and corresponding login credentials (i.e., ms = 30).
Each SU generates conditionally unlinkable signatures for the ten SPs per
day using a login credential through the online procedure. Any two signa-
tures generated on the same day remain linkable by the issuer, but any two
signatures generated on two different days remain unlinkable by the issuer.

4. LASER with conditional unlinkability where the issuer can link all the login
signatures (LASER-C): During subscription, each SU obtains only one mem-
bership credential and corresponding login credential (i.e., ms = 1). Each SU
generates conditionally unlinkable signatures through the online procedure.
Hence, the signatures generated throughout the month are unlinkable by the
SPs, but linkable by the issuer.

8.2 Details of the Prototype

We obtain the computational overheads in the above deployment cases by imple-
menting them on a Lenovo laptop with 2.6 GHz Intel i7 6600U CPU. We leverage
OpenSSL, the pairing-based cryptography (PBC) library [37], and IBM Trusted
Software Stack (TSS) for TPM 2.0 [38] to prototype CDL-EPID and LASER
in C. The prototypes of the TPM and the host in LASER comprise of 600 and
1800 lines of code, respectively. The total development time of the prototypes
is around 1000 man-hours. We utilize the Barreto-Naehrig (BN) curve which
is standardized for DAA by the TCG [39]. Specifically, we utilize the “Type
F” internal described in PBC library which is constructed on the curve of the
form y2 = x3 + 3 with embedding degree 12 where the lengths of an element in
Z∗p and G1 are 256 bits and 512 bits, respectively. With this curve, the DAA
provides 128 bits of security which is approximately the same level of security
as a symmetric key encryption with a key size of 128 bits, or an RSA signature
with a modulus size of 3072 bits.

Note that the TPM2 Sign algorithm in the TPM specification version 2.0
can be utilized as a Diffie-Hellman (DH) oracle which significantly reduces the
achievable level of security with the TPM [40]. Recently, multiple proposals
have been made to alleviate this vulnerability, but none of these has been ac-
cepted by the TCG yet [41, 42]. LASER utilizes the algorithm TPM2 Mod Sign
(discussed in Appendix B.4) to prevent the TPM interface from being used as
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primaryHandle = primaryHandle;
inSensitive.sensitive.data.t.size = 0;
inSensitive.sensitive.userAuth.t.size = 0;
inPublic.publicArea.type = TPM_ALG_ECC;
inPublic.publicArea.nameAlg = halg;
inPublic.publicArea.objectAttributes.val = 0;
inPublic.publicArea.objectAttributes.val |= TPMA_OBJECT_FIXEDTPM;
inPublic.publicArea.objectAttributes.val |= TPMA_OBJECT_FIXEDPARENT;
inPublic.publicArea.objectAttributes.val |= TPMA_OBJECT_SENSITIVEDATAORIGIN;
inPublic.publicArea.objectAttributes.val |= TPMA_OBJECT_USERWITHAUTH;
inPublic.publicArea.objectAttributes.val &= ~TPMA_OBJECT_ADMINWITHPOLICY;
inPublic.publicArea.objectAttributes.val |= TPMA_OBJECT_NODA;
inPublic.publicArea.objectAttributes.val &= ~TPMA_OBJECT_RESTRICTED;
inPublic.publicArea.objectAttributes.val &= ~TPMA_OBJECT_DECRYPT;
inPublic.publicArea.objectAttributes.val |= TPMA_OBJECT_SIGN;
inPublic.publicArea.authPolicy.t.size = 0;
inPublic.publicArea.parameters.eccDetail.symmetric.algorithm = TPM_ALG_NULL;
inPublic.publicArea.parameters.eccDetail.scheme.scheme = TPM_ALG_ECDAA;
inPublic.publicArea.parameters.eccDetail.curveID = TPM_ECC_BN_P256;
inPublic.publicArea.parameters.eccDetail.kdf.scheme = TPM_ALG_NULL;
inPublic.publicArea.parameters.eccDetail.kdf.details.mgf1.hashAlg = halg;
inPublic.publicArea.parameters.eccDetail.scheme.details.ecdaa.hashAlg = halg;
inPublic.publicArea.unique.ecc.x.t.size = 0;
inPublic.publicArea.unique.ecc.y.t.size = 0;
outsideInfo.t.size = 0;
creationPCR.count = 0;

Figure 1: Configuration parameters for TPM2 CreatePrimary.

a static DH oracle. This algorithm is presented in [41], and utilized in the most
recent DAA scheme [13]. However, an on-board TPM chip cannot perform this
algorithm as it is not part of the specifications and there is no available in-
terface to modify the existing algorithms. Hence, we are forced to utilize the
TPM2 Sign algorithm given in the specifications for obtaining the implementa-
tion results. This means that although the construction of LASER provides 128
bits of security, its prototype implementation in this paper offers only 85 bits
of security [42].

It is quite challenging to work with the TPM algorithms by jumping di-
rectly into the TPM standard [43]. Much of this complexity is abstracted away
by utilizing the IBM TSS. The TSS is a software package that can be linked
to the application to serve as a communication layer between the application
and the TPM. This functionality is extremely helpful and is utilized for writ-
ing applications that do not require lower-level access to read and write TPM
structures. The individual TPM algorithms can be run using the commands
from the TSS after setting the appropriate configuration parameters. However,
in our experience, the most challenging task of prototyping LASER using TSS
was to determine the configuration parameters which were needed for a given
TPM command. Due to the absence of any open-source illustration, we needed
to delve into the TPM specification version 2.0 to tackle this challenge. Fig-
ure 1 presents the configuration parameters utilized for the TPM2 CreatePrimary
algorithm which is discussed in Appendix B.2.

Note that running early-development phase codes directly on the TPM may
lock the platform or delete important information already stored in the TPM.

24



10
0

10
1

10
2

10
3

10
4

Number of revoked login credentials (m
r
)

10
0

10
2

10
4

10
6

10
8

C
o

m
p

u
ta

ti
o

n
a

l 
c
o

s
t 

(m
s
)

CDL-EPID, On-line

LASER-A, LASER-B and LASER-C, On-line

Figure 2: Comparison of the platform’s online computational costs in the DAA
schemes.

Hence, we utilized TPM 2.0 emulator [44], and developed the initial code with
the TSS to correctly interface with the TPM emulator. We optimized the code
using the conventional techniques, such as, computing multi-exponentiation in
G1. Further, we needed to modify the BIOS settings to enable the security chip
on the laptop platform. We installed and loaded the TPM device driver, and
verified that the hardware TPM was functional. Finally, we ported the emulator
implementation code to work with the hardware TPM.

8.3 Results

By averaging over 100 iterations, we obtain the running time in milliseconds (ms)
for different protocols in LASER and CDL-EPID. Figure 2 presents the curves
for the platform’s online computational costs in CDL-EPID, LASER-A, LASER-
B, and LASER-C vs. mr. We observe that the online computational cost in
CDL-EPID increases linearly with the increase in mr. However, the online
computational costs in LASER-A, LASER-B and LASER-C do not change with
mr. With mr = 1000, the time taken to generate a signature is only 348 ms in
LASER-A as compared to 342,112 ms in CDL-EPID. Further, in Table 3, we
present the monthly computational costs of the offline and online operations in
the four cases when the number of revoked platforms increases from 0 to 2000
over the month. In Table 3, we observe that the offline computational costs
in LASER-A and LASER-B are significantly higher than that in CDL-EPID,
while the offline computational cost in LASER-C is only slightly higher than
that in CDL-EPID. From Figure 2 and Table 3, we note that significantly lower
online computational cost in LASER-A, LASER-B and LASER-C as compared
to CDL-EPID is achieved at the cost of higher offline computational cost. This
trade-off between offline and online computational costs is very advantageous
because the online operations occur significantly more often than the offline
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Table 3: Comparison of the running time (in milliseconds) of the operations in
the DAA schemes.

CDL-EPID LASER-A LASER-B LASER-C

Offline

TPM 749 94,765 10,176 1,091

Host 11 13,811 1,391 57

Issuer 24 29,429 3,012 175

Online

TPM 93,637,299 94,008 94,008 94,008

Host 8,996,412 10,362 10,362 10,362

Verifier 1,236,690 327,909 327,909 327,909

Table 4: Comparison of the communication overhead (in bits) between the
entities in the DAA schemes.

CDL-EPID LASER-A LASER-B LASER-C

Offline

p-i-sig 1,280 1,997,568 200,448 7,414

i-p-cre 1,024 614,400 61,440 2,048

i-p-rev 2,048,000 0 0 0

i-v-rev 2,048,000 512,000 512,000 512,000

Online p-v-sig 462,105,600 1,689,600 1,689,600 1,689,600

operations.
Table 4 presents the monthly online and offline communication overheads in

the four cases in the aforementioned scenario. We observe that LASER-B and
LASER-C result in the same online communication cost, but significantly lower
offline communication costs when compared to LASER-A. We also observe that
LASER-A is more than two orders of magnitude more efficient than CDL-EPID
in terms of the online communication overhead.

From the above results, we observe that LASER-A incurs significantly lower
online overhead - in terms of both computation and communication - compared
to CDL-DAA at the cost of higher offline overhead. As the online procedure
require significantly lower latency than the offline procedure, LASER-A is more
practical than CDL-EPID when mr is large.

Another noteworthy attribute of LASER is its realization of the novel notion
that we refer to as adaptable unlinkability. LASER is capable of increasing
both the computational and communication efficiency of the underlying DAA
protocol by relaxing the notion of absolute unlinkability (which is provided by
LASER-A) to realize conditional unlinkability (which is provided by LASER-B
and LASER-C). Note that CDL-EPID cannot employ this notion of adaptable
unlinkability. The above illustrative scenario also demonstrates that absolute
unlinkability (adopted by the prior art) of all of the signatures is not necessary,
and the concept of adaptable unlinkability enables LASER to provide the needed
privacy attributes in a flexible and practical manner.
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9 Conclusion

In this paper, we propose a novel DAA scheme called Lightweight Anonymous
Subscription with Efficient Revocation (LASER) which can be utilized to realize
the anonymous subscription system. We show that the revocation is the primary
performance bottleneck of modern DAA schemes and that existing schemes do
not scale well to large networks because of the high computational and commu-
nication costs corresponding to their revocation check procedures. By using the
novel concept of adaptable unlinkability, LASER manages to significantly re-
duce the computational and communication burden of the SU platform’s online
protocol at the cost of increased burden of the SU platform’s offline protocol.
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A BBS+ Signature

The BBS+ signature is defined as follows [31, 32, 33].

1. (pk, sk)← BBS Setup(1λ): The input to this algorithm is the security param-
eter 1λ. This algorithm selects g1, h1, h2, h3←$G1, g2←$G2, γ←$Z∗p; and
computes ω = gγ2 . This algorithm sets the public key pk = (g1, h1, h2, h3, g2, ω),
and the secret key sk = γ. It outputs (pk, sk).

2. σb ← BBS Sign(pk, sk, f, x): The inputs to this algorithm are pk, sk, and
two messages f, x ∈ Z∗p. This algorithm selects y, z←$Z∗p, and computes

A = (g1 · hf1 · hx2 · h
y
3)1/(γ+z). It sets the signature σb = (A, y, z), and outputs

σb.

3. valid/invalid← BBS Verify(pk, σb, f, x): The inputs to this algorithm are
pk, a signature σb, and two messages f and x. This algorithm verifies that
e(A,ω ·gz2) = e(g1 ·hf1 ·hx2 ·h

y
3, g2). If the verification succeeds, this algorithm

outputs the value valid; otherwise, it outputs the value invalid.

B TPM: Functions and Algorithms

We present the functions and algorithms which are related to DAA and are
included in the TPM specification version 2.0 [25].
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B.1 Group Mapping

With the hash function Hz, a group mapping function Hg : Z∗p → Z∗p × G1, is
constructed as follows. We assume that the group G1 is constructed using the
elliptic curve y2 = x3 + acx+ bc, where ac and bc are constant parameters, and
the tuple (x, y) represents an element in G1. Here, x, y, ac, bc ∈ Z∗p. With an
input a0 ∈ Z∗p, the function Hg outputs a tuple (a1, b1, b2), where a1 ∈ Z∗p, and
(b1, b2) ∈ G1, as follows.

1. Set i = 0, where i is an integer.

2. Compute a1 = Hz(a0 ‖ i), x = Hz(a1), and z = x3 + acx + bc. Here, ‖
represents concatenation of two strings of bits.

3. Compute y =
√
z. If y does not exist, set i = i + 1, and start back from

Step (2).

4. Set b1 = x and b2 = y, and output (a1, b1, b2).

B.2 Key Generation

We assume that the TPM has an internal secret value DAAseed, and an internal
counter value cnt.

(hdl, tpk)← TPM2 CreatePrimary(PI): Given PI ∈ {0, 1}∗, this algorithm per-
forms the following steps.

1. Compute f = Hz(DAAseed ‖ cnt ‖ PI).

2. Set the TPM’s secret key tsk = f , store tsk, and generate a key handle hdl

which specifies its location in the secure memory of the TPM.

3. Compute I = hf1 , set tpk = I, and output (hdl, tpk).

B.3 Commitment Generation

(ctr, C, S1, S2) ← TPM2 Commit(hdl, a1, b2, h1): With the key handle hdl,
a1, b2 ∈ Z∗p, and h1 ∈ G1, as inputs, this algorithm performs the following.

1. Retrieve tsk = f using the key handle hdl.

2. Select rf ←$Z∗p.

3. If a1 = ∅, set C = ∅ and S1 = ∅; otherwise, perform the following.

(a) Compute b1 = Hz(a1), and set B = (b1, b2).

(b) Compute C = Bf , and S1 = Brf .

4. If h1 = ∅, set S2 = ∅; otherwise, compute S2 = h
rf
1 .

5. Store rf , and generate a counter value ctr which specifies its location in the
secure memory of the TPM.

6. Output (ctr, C, S1, S2).
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B.4 Signature Generation

(nt, ct, sf ) ← TPM2 Mod Sign(hdl, ctr, ch,M): With the key handle hdl, the
counter value ctr, ch ∈ Z∗p, and a message M ∈ {0, 1}∗ as inputs, this algorithm
performs the following.

1. Retrieve the TPM’s secret key tsk = f using the key handle hdl, and rf
using the counter value ctr.

2. Select a nonce nt←$ {0, 1}λ, compute ct = Hz(ch ‖ nt ‖ M) and sf =
rf + ct · f , and output (nt, ct, sf ).

C Detailed Proofs of Security

In this section, we provide the theorems corresponding to the security properties
discussed in Section 4, and provide comprehensive proofs for them.

Theorem 1. LASER satisfies the correctness property.

Proof. This follows from the specifications of the scheme.

Lemma 2. In the random oracle model, LASER with the credential-selection
rule absUnlink is absolutely unlinkable under the G1-DDH assumption.

Proof. Let there be an adversary A which succeeds to break the absolute unlink-
ability property of LASER with the credential-selection rule absUnlink with a
non-negligible probability. Given the G1-DDH instance, a simulator S intends
to find out whether c = a · b, or c←$Z∗p. To achieve this, S sets up the following
absolute unlinkability game to interact with A.

1. Setup: S simulates the Setup algorithm, sets h1 = P , and sends isk and gpk

to A. S creates mt platforms with identities Pi, ∀i ∈ [1,mt], and selects a
specific Pi∗ . Further, S initializes a list of the corrupted platforms, cpl = ∅,
and a list of corrupted credentials, ccl = ∅.

2. MemCreGen: S which acts as a platform, simulates MemCreGen protocol
with A which acts as the issuer. For each i ∈ [1,mt], S acquires the mem-
bership credentials memCreij, ∀j ∈ [1,ms] by generating the σm differently
for the following two cases.

(a) If i 6= i∗, S generates the secret key tski, and the corresponding signa-
ture σm.

(b) If i = i∗, S sets tpk∗ = I∗ = P a, and simulates the signature σm. S
backpatches the hash oracle to preserve consistency.

3. LogCreGen: S acts as the platform, and simulates the LogCreGen protocol
with A which acts as the issuer. For each i ∈ [1,mt], and j ∈ [1,ms], S
acquires a login credential logCreij by generating the signature σg differently
for the following two cases.
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(a) If i 6= i∗, S utilizes tski and generates signature σg.

(b) If i = i∗, S selects θg ←$Z∗p, computes Bg = P θg and Cg = (P a)θg , and
simulates all other elements of σg.

4. Queries-Phase I : A queries S as follows.

(a) Sign: A requests S to generate a signature σs on a message M for Pi,
and send σs. To respond to this query, S runs the SelectLogCre algo-
rithm with a random credential-selection rule. If S utilizes absUnlink,
it appends logCreij to ccl. Further, S simulates the Sign protocol
differently for the following two cases.

i. If i 6= i∗, S utilizes tski to generate signature σs.

ii. If i = i∗, S selects θs←$Z∗p, computes Bs = P θs and Cs = (P a)θs ,
and simulates all other elements of σs.

(b) TskCorrupt : A queries S for the TPM’s secret key of Pi. If i 6= i∗, S
responds to A with tski, and appends Pi to cpl. Otherwise, if i = i∗,
S aborts the game.

(c) MemCreCorrupt : A requests the jth membership credential of platform
Pi. S responds to A with memCreij, and appends the corresponding
logCreij to ccl.

(d) LogCreCorrupt : A requests the jth login credential of platform Pi. S
responds to A with logCreij, and appends logCreij to ccl.

5. Challenge: A submits a message M , and two platforms Pi0 and Pi1 to S
with the restriction that Pi0 , Pi1 /∈ cpl. If Pi∗ /∈ {Pi0 ,Pi1}, then S aborts
the game. Otherwise, S picks φ ∈ {0, 1} such that Pi∗ = Piφ . S selects
logCreiφjφ using the SelectLogCre algorithm with the rule absUnlink such
that logCreiφjφ /∈ ccl. Further, in the Sign protocol, S selects θs←$Z∗p,
computes Bs = (P b)θs and Cs = (P c)θs , and simulates all other elements of
σs. Finally, S sends the generated σs to A.

6. Queries-Phase II (Restricted Queries): After obtaining the challenge, A con-
tinues to probe S with the queries mentioned in Queries-Phase I, except for
the TskCorrupt queries for tski0 and tski1 , MemCreCorrupt queries for
memCrei0j0 and memCrei1j1 , and LogCreCorrupt queries for logCrei0j0 and
logCrei1j1 .

7. Output : A outputs φ′ ∈ {0, 1} as the guess for φ, or aborts. If φ = φ′, then
S outputs true, which means that c = a · b; otherwise, S outputs false,
which means that c←$Z∗p.

In the above framework, S does not abort the game with a non-negligible
probability which is represented by εabsS . Let AdvabsA be the non-negligible
advantage that A succeeds in breaking the absolute unlinkability property of
LASER with the rule absUnlink, given that S does not abort during the above
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game. On one hand, S generates the signatures in the MemCreGen, LogCreGen
and Queries phases by assuming the TPM’s secret key of the platform Pi∗ as
tsk∗ = a. On the other hand, S generates the signatures in the Challenge phase
by assuming the TPM’s secret key of the platform Pi∗ as tsk∗ = c/b. Hence, if
c = a ·b, then S simulates the game successfully, and A succeeds in breaking the
absolute unlinkability property of LASER with advantage AdvabsA . In the other
case, if c←$Z∗p, then S cannot simulate the game successfully, and A either
aborts the game or does not win with any non-negligible advantage. Therefore,
S has a non-negligible probability of at least εabsS · AdvabsA /2 in breaking the
G1-DDH assumption.

Lemma 3. In the random oracle model, under G1-DDH assumption, LASER
with the credential-selection rule conUnlink is conditionally unlinkable against
any adversary which does not know isk.

Proof. Let there be an adversary A which does not know isk, but succeeds to
break the conditional unlinkability property of LASER with the rule conUnlink
with a non-negligible probability. Given the G1-DDH instance, a simulator S
intends to find out whether c = a · b, or c←$Z∗p. To achieve this, S sets up the
following conditional unlinkability game to interact with A.

1. Setup: S simulates the Setup algorithm, sets h1 = P , and sends gpk to A. S
creates platforms Pi, ∀i ∈ [1,mt], selects a platform Pi∗ , and initializes cpl

and ccl.

2. MemCreGen and LogCreGen: S runs these phases as discussed in MemCre-
Gen and LogCreGen phases in the proof of Lemma 2, except S acts as the
platform as well as the issuer.

3. Queries-Phase I : A probes S with the queries discussed in the Queries-
Phase I in the proof of Lemma 2. A also probes S with the following addi-
tional queries.

(a) Revoke: A requests S to revoke the credential utilized to generate a
signature σ′ on a message M ′. S simulates the Revoke algorithm, and
responds with tRL′.

4. Challenge: A submits the challenge, and S picks φ ∈ {0, 1} and responds with
a signature as discussed in the Challenge phase in the proof of Lemma 2, ex-
cept S selects logCreiφjφ using the SelectLogCre algorithm with the credential-
selection rule conUnlink.

5. Queries-Phase II (Restricted Queries): After obtaining the challenge, A con-
tinues to probe S with the queries mentioned in Queries-Phase I with the
restrictions as discussed in Queries-Phase II in the proof of Lemma 2.

6. Output : A outputs φ′ ∈ {0, 1} as the guess for φ, or aborts. If φ = φ′, then
S outputs true, which means that c = a · b; otherwise, S outputs false,
which means that c←$Z∗p.
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In the above framework, S does not abort the game with a non-negligible
probability which is represented by εconS . Let AdvconA be the non-negligible ad-
vantage that A succeeds in breaking the conditional unlinkability property of
LASER with the rule conUnlink, given that S does not abort during the above
game. Hence, S has the non-negligible probability of at least εconS ·AdvconA /2 in
breaking the G1-DDH assumption.

Theorem 4. In the random oracle model, LASER is adaptably anonymous
under the G1-DDH assumption.

Proof. This follows from the proofs of Lemma 2 and 3.

Theorem 5. In the random oracle model, LASER is traceable under the q-SDH
assumption.

Proof. Let there be an adversary A that succeeds to break the traceability prop-
erty of LASER with a non-negligible probability. Also, let (g1, ρ1, · · · , ρq, g2, ω)

be the instance of the q-SDH assumption, where ρl = gγ
l

1 , ∀l ∈ [1, q], such that
q = 2 ·mt ·ms, and ω = gγ2 . Given this instance, a simulator S intends to break

the q-SDH assumption by generating a tuple
(
g

1/(γ+z)
1 , z

)
, where z←$Z∗p, with

a non-negligible probability. To achieve this, S sets up the following traceability
game to interact with A.

1. Setup: S simulates the Setup algorithm as follows.

(a) Create mt platforms with identities Pi, ∀i ∈ [1,mt].

(b) Select vîĵ , zîĵ ←$Z∗p, ∀î ∈ [1,mt],∀ĵ ∈ [1,ms].

(c) Define a polynomial F with variable γ such that

F (γ) =

mt∏
î=1

ms∏
ĵ=1

(
γ + vîĵ

)(
γ + zîĵ

)
=

q∑
l=0

αl · γl,

where αl ∈ Z∗p, ∀l ∈ [0, q], are the coefficients of the polynomial F (γ).
Note that these coefficients can be computed without the knowledge of
γ.

(d) Compute g̃1 = g
F (γ)
1 =

∏q
l=0 ρ

αl
l . Note that we denote ρ0 = g1.

(e) Select r1, r2, r3←$Z∗p; and compute h1 = g̃ r1
1 , h2 = g̃ r2

1 , and h3 = g̃ r3
1 .

(f) Set the group public key gpk = (g̃1, h1, h2, h3, g2, ω).

(g) Send gpk to A.

2. MemCreGen: For each i ∈ [1,mt] and j ∈ [1,ms], S simulates the MemCreGen
protocol as follows.

(a) Select fi←$Z∗p, and set the secret key tski = fi.
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(b) Define a polynomial Fm(γ) = F (γ)
(γ+vij)

=
∑q−1
l=0 βl · γl, where βl ∈ Z∗p,

∀l ∈ [0, q − 1], are the coefficients of the polynomial Fm(γ).

(c) Select uij ←$Z∗p, and compute

Jij =
(
g̃1 · hfi1 · h

uij
2

) 1
γ+vij

= g
Fm(γ)·(1+r1·fi+r2·uij)
1 =

q−1∏
l=0

ρ
βl·(1+r1·fi+r2·uij)
l .

(d) Set memCreij = (Jij , uij , vij).

3. LogCreGen: For each i ∈ [1,mt] and j ∈ [1,ms], S simulates the LogCreGen
protocol as follows.

(a) Define a polynomial Fg(γ) = F (γ)
γ+zij

=
∑q−1
l=0 δl · γl, where δl ∈ Z∗p,

∀l ∈ [0, q − 1] are the coefficients of the polynomial Fg(γ).

(b) Select xij , yij ←$Z∗p, and compute

Aij = (g̃1 · hfi1 · h
xij
2 · hyij3 )

1
γ+zij = g

Fg(γ)·(1+r1·fi+r2·xij+r3·yij)
1

=

q−1∏
l=0

ρ
δl·(1+r1·fi+r2·xij+r3·yij)
l .

(c) Set logCreij = (Aij , xij , yij , zij).

4. Queries: A queries S about the following.

(a) Sign: A requests S to generate a signature σs on a message M for Pi,
and send σs. S selects a login credential logCreij, simulates the Sign
protocol, and responds with the generated σs.

(b) TskCorrupt : A queries S for the TPM’s secret key of Pi. S responds to
A with corresponding tski.

(c) MemCreCorrupt : A requests S to send jth membership credential of
the platform Pi. S sends memCreij to A.

(d) LogCreCorrupt : A requests S to send jth login credential of the platform
Pi. S sends logCreij to A.

5. Output : If A succeeds to break the traceability property, it outputs a message
M∗ and a forged signature σ∗.

In the above framework, S succeeds whenever A succeeds. Hence, S obtains
a successful forgery with a non-negligible probability. Further, S rewinds the
framework to obtain two forged signatures on the same message, where the
commitments are the same, but the challenges and responses are different. S
then utilizes the knowledge extractor of the zero-knowledge proof to extract
(A∗, x∗, y∗, z∗, f∗), where

A∗ =
(
g̃1 · hf∗1 · h

x∗
2 · h

y∗
3

) 1
γ+z∗

= g
F (γ)·(1+r1·f∗+r2·x∗+r3·y∗)

γ+z∗
1 .
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S sets F (γ) · (1 + r1 · f∗ + r2 · x∗ + r3 · y∗) = (γ + z∗) · Fd(γ) + d∗, for some

polynomial Fd(γ) =
∑q−1
l=0 dl · γl, and constant d∗ ∈ Z∗p. It implies that

A∗ = g
Fd(γ)+ d∗

γ+z∗
1 =⇒ g

1
γ+z∗
1 =

(
A∗ · g−Fd(γ)

1

) 1
d∗
,

where g
Fd(γ)
1 =

∏q−1
l=0 ρ

dl
l . In this way, S generates

(
g

1
γ+z∗
1 , z∗

)
with a non-

negligible probability, and hence breaks the q-SDH assumption.

Theorem 6. In the random oracle model, LASER is non-frameable under the
G1-DL assumption.

Proof. Let there be an adversary A that succeeds to break the non-frameability
property of LASER with a non-negligible probability. Let (P, P a) ∈ G2

1, where
a ∈ Z∗p, be the instance of the G1-DL assumption. Given this instance, a
simulator S intends to break the G1-DL assumption by computing a with a non-
negligible probability. To achieve this, S sets up the following non-frameability
game to interact with A.

1. The Setup, MemCreGen, LogCreGen and Queries phases in this game fol-
low the same steps as discussed in the Setup, MemCreGen, LogCreGen and
Queries phases in the proof of Lemma 2, respectively. Basically, S generates
all the signatures corresponding to a specific platform Pi∗ by assuming that
its TPM’s secret key tsk∗ = a.

2. Output : A outputs a signature σ∗ on a message M∗ for a platform Pî. If

î 6= i∗, S aborts the game.

In the above framework, S does not abort the game with a non-negligible
probability. This means that S obtains a successful forgery with a non-negligible
probability. Further, S rewinds the above framework to obtain two forged
signatures on the same message, where the commitments are the same, but
the challenges and responses are different. Using the knowledge extractor of
the zero-knowledge proof, S extracts (A∗, x∗, y∗, z∗, f∗) utilized to generate the
forged signatures. Since the forged signatures belong to the platform Pi∗ , S
determines a to be equal to f∗. Hence, S breaks the G1-DL assumption with a
non-negligible probability.
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