
Fine-Grained Secure Computation

Matteo Campanelli and Rosario Gennaro

The City College of New York
matteo.campanelli@gmail.com and rosario@ccny.cuny.edu

Abstract. This paper initiates a study of Fine Grained Secure Com-
putation: i.e. the construction of secure computation primitives against
“moderately complex” adversaries. We present definitions and construc-
tions for Fully Homomorphic Encryption and Verifiable Computation
secure against (non-uniform) NC1 adversaries. We also present two ap-
plication scenarios for our model: (i) hardware chips that prove their
own correctness, and (ii) protocols against rational adversaries poten-
tially relevant to the Verifier’s Dilemma in smart-contracts transactions
such as Ethereum.

1 Introduction

Historically Cryptography has been used to protect information (either in transit
or stored) from unauthorized access. One of the most important developments
in Cryptography in the last thirty years, has been the ability to protect non only
information but also the computations that are performed on data that needs
to be secure. Starting with the work on secure multiparty computation [Yao82],
and continuing with ZK proofs [GMR89], and more recently Fully Homomor-
phic Encryption [Gen09], verifiable outsourcing computation [GKR08,GGP10],
SNARKs [GGPR13,BCI+13] and obfuscation [GGH+16] we now have crypto-
graphic tools that protect the secrecy and integrity not only of data, but also of
the programs which run on that data.

Another crucial development in Modern Cryptography has been the adoption
of a more “fine-grained” notion of computational hardness and security. The
traditional cryptographic approach modeled computational tasks as “easy” (for
the honest parties to perform) and “hard” (infeasible for the adversary). Yet
we have also seen a notion of moderately hard problems being used to attain
certain security properties. The best example of this approach might be the use of
moderately hard inversion problems used in blockchain protocols such as Bitcoin.
Although present in many works since the inception of Modern Cryptography,
this approach was first formalized in a work of Dwork and Naor [DN92].

In this paper we consider the following model (which can be traced back
to the seminal paper by Merkle [Mer78] on public key cryptography). Honest
parties will run a protocol which will cost1 them C while an adversary who

1 We intentionally refer to it as “cost” to keep the notion generic. For concreteness
one can think of C as the running time required to run the protocol.

wants to compromise the security of the protocol will incur a C ′ = ω(C) cost.
Note that while C ′ is asymptotically larger than C, it might still be a feasible
cost to incur – the only guarantee is that it is substantially larger than the work
of the honest parties. For example in Merkle’s original proposal for public-key
cryptography the honest parties can exchange a key in time T but the adversary
can only learn the key in time T 2. Other examples include primitives introduced
by Cachin and Maurer [CM97] and Hastad [Has87] where the cost is the space
and parallel time complexity of the parties, respectively.

Recently there has been renewed interest in this model. Degwekar et al.
[DVV16] show how to construct certain cryptographic primitives in NC1 [resp.
AC0] which are secure against all adversaries in NC1 [resp. AC0]. In conceptually
related work Ball et al. [BRSV17] present computational problems which are
“moderately hard” on average, if they are moderately hard in the worst case, a
useful property for such problems to be used as cryptographic primitives.

The goal of this paper is to initiate a study of Fine Grained Secure Compu-
tation. By doing so we connect these two major developments in Modern Cryp-
tography. The question we ask is if it is possible to construct secure computation
primitives that are secure against “moderately complex” adversaries. We answer
this question in the affirmative, by presenting definitions and constructions for
the task of Fully Homomorphic Encryption and Verifiable Computation in the
fine-grained model. We also present two application scenarios for our model:
i) hardware chips that prove their own correctness and ii) protocols against
rational adversaries including potential solutions to the Verifier’s Dilemma in
smart-contracts transactions such as Ethereum.

1.1 Our Results

Our starting point is the work in [DVV16] and specifically their public-key en-
cryption scheme secure against NC1 circuits. Recall that AC0[2] is the class of
Boolean circuits with constant depth, unbounded fan-in, augmented with parity
gates. If the number of AND gates of non constant fan-in is constant we say that
the circuit belongs to the class AC0

Q[2] ⊂ AC0[2].
Our results can be summarized as follows

– We first show that the techniques in [DVV16] can be used to build a some-
what homomorphic encryption (SHE) scheme. We note that because honest
parties are limited to NC1 computations, the best we can hope is to have a
scheme that is homomorphic for computations in NC1. However our scheme
can only support computations that can be expressed in AC0

Q[2].
– We then use our SHE scheme, in conjunction with protocols described in

[GGP10,CKV10,AIK10], to construct verifiable computation protocols for
functions in AC0

Q[2], secure and input/output private against any adversary

in NC1.

Our somewhat homomorphic encryption also allows us to obtain the following
protocols secure against NC1 adversaries: (i) constant-round 2PC, secure in the

2

presence of semi-honest static adversaries for functions in AC0
Q[2]; (ii) Private

Function Evaluation in a two party setting for circuits of constant multiplicative
depth without relying on universal circuits. These results stem from well-known
folklore transformations and we do not prove them formally.

The class AC0
Q[2] includes many natural and interesting problems such as:

fixed precision arithmetic, evaluation of formulas in 3CNF (or kCNF for any
constant k), a representative subset of SQL queries, and S-Boxes [BP11] for
symmetric key encryption.

Our results (like [DVV16]) hold under the assumption that ⊕L/poly (NC1,
a widely believed worst-case assumption on separation of complexity classes.
Notice that this assumption does not imply the existence of one-way functions
(or even P 6= NP). Thus, our work shows that it is possible to obtain “advanced”
cryptographic schemes2 such as somewhat homomorphic encryption and verifi-
able computation even if we do not live in Minicrypt3.

Comparison with other approaches. One important question is: on what
features are our schemes better than “generic” cryptographic schemes that after
all are secure against any polynomial time adversary.

One such feature is the type of assumption one must make to prove secu-
rity. As we said above, our schemes rely on a very mild worst-case complexity
assumption, while cryptographic SHE and VC schemes rely on very specific as-
sumptions, which are much stronger than the above.

For the case of Verifiable Computation, we also have information-theoretic
protocols which are secure against any (possibly computationally unbounded)
adversary. For example the “Muggles” protocol in [GKR08] which can compute
any (log-space uniform) NC function, and is also reasonably efficient in prac-
tice [CMT12]. Or, the more recent work [GR18], which obtains efficient VC
for functions in a subset of NC ∩ SC. Compared to these results, one aspect in
which our protocol fares better is that our Verifier can be implemented with a
constant-depth circuit (in particular in TC0, see Section 4) which is not possi-
ble for the Verifier in [GKR08,GR18]. Moreover our protocol is non-interactive
(while [GKR08,GR18] requires logarithmically many rounds of interaction) and
because our protocols work in the “pre-processing model” we do not require any
uniformity or regularity condition on the circuit being outsourced (which are
required by [GKR08] and [CMT12]).

Interactive proofs (again, we stress, with information-theoretic soundness)
with verification in constant depth are discussed in [GGH+07] (where the verifier
is in NC0). We point out that our schemes besides achieving non-interactive
constant-depth verification also has a verifier that runs in linear sequential time
on the input/output size (i.e. in O(λc(n+m)) where λ is the security parameter,
n the input and m the output sizes of the function being outsourced).

2 Naturally the security guarantees of these schemes are more limited compared to
their standard definitions.

3 This is a reference to Impagliazzo’s “five possible worlds” [Imp95].

3

1.2 Overview of our Techniques

In [DVV16] the authors already point out that their scheme is linearly homo-
morphic. We make use of the re-linearization technique from [BV14] to construct
a leveled homomorphic encryption.

Our scheme (as the one in [DVV16]) is secure against adversaries in the
class of (non-uniform) NC1. This implies that we can only evaluate functions
in NC1 otherwise the evaluator would be able to break the semantic security of
the scheme. However we have to ensure that the whole homomorphic evaluation
stays in NC1. The problem is that homomorphically evaluating a function f
might increase the depth of the computation.

In terms of circuit depth, the main overhead will be (as usual) the compu-
tation of multiplication gates. As we show in Section 3 a single homomorphic
multiplication can be performed by a depth two AC0[2] circuit, but this requires
depth O(log(n)) with a circuit of fan-in two. Therefore, a circuit for f with
ω(1) multiplicative depth would require an evaluation of ω(log(n)) depth, which
would be out of NC1. Therefore our first scheme can only evaluate functions with
constant multiplicative depth, as in that case the evaluation stays in AC0[2].

We then present a second scheme that extends the class of computable func-
tions to AC0

Q[2] by allowing for a negligible error in the correctness of the scheme.

We use a result by Razborov [Raz87] on approximating AC0[2] circuits with
low-degree polynomials – the correctness of the approximation (appropriately
amplified) will be the correctness of our scheme.

1.3 Application Scenarios

The applications described in this section refer to the problem of Verifying Com-
putation, where a Client outsources an algorithm f and an input x to a Server,
who returns a value y and a proof that y = f(x). The security property is that it
should be infeasible to convince the verifier to accept y′ 6= f(x), and the crucial
efficiency property is that verifying the proof should cost less than computing f
(since avoiding that cost was the reason the Client hired the Server to compute
f).

Hardware Chips That Prove Their Own Correctness Verifiable Com-
putation (VC) can be used to verify the execution of hardware chips designed
by untrusted manufacturers. One could envision chips that provide (efficient)
proofs of their correctness for every input-output computation they perform.
These proofs must be efficiently verified in less time and energy than it takes to
re-execute the computation itself.

When working in hardware, however, one may not need the full power of
cryptographic protection against any malicious attacks since one could bound
the computational power of the malicious chip. The bound could be obtained
by making (reasonable and evidence-based) assumptions on how much compu-
tational power can fit in a given chip area. For example one could safely assume
that a malicious chip can perform at most a constant factor more work than the

4

original function because of the basic physics of the size and power constraints.
In other words, if C is the cost of the honest Server in a VC protocol, then in
this model the adversary is limited to O(C)-cost computations, and therefore
a protocol that guarantees that succesful cheating strategies require ω(C) cost,
will suffice. This is exactly the model in our paper. Our results will apply to the
case in which we define the cost as the depth (i.e. the parallel time complexity)
of the computation implemented in the chip.

Rational Proofs. The problem above is related to the notion of composable
Rational Proofs defined in [CG15]. In a Rational Proof (introduced by Azar and
Micali [AM12,AM13]), given a function f and an input x, the Server returns
the value y = f(x), and (possibly) some auxiliary information, to the Client.
The Client in turn pays the Server for its work with a reward based on the
transcript exchanged with the server and some randomness chosen by the client.
The crucial property is that this reward is maximized in expectation when the
server returns the correct value y. Clearly a rational prover who is only interested
in maximizing his reward, will always answer correctly.

The authors of [CG15] show however that the definition of Rational Proofs
in [AM12,AM13] does not satisfy a basic compositional property needed for the
case in which many computations are outsourced to many servers who compete
with each other for rewards (e.g. the case of volunteer computations [ACK+02]).
A “rational proof” for the single-proof setting may no longer be rational when a
large number of “computation problems” are outsourced. If one can produce T
“random guesses” to problems in the time it takes to solve 1 problem correctly, it
may be preferable to guess! That’s because even if each individual reward for an
incorrect answer is lower than the reward for a correct answer, the total reward
of T incorrect answers might be higher (and this is indeed the case for some of
the protocols presented in [AM12,AM13]).

The question (only partially answered in [CG15,CG17] for a limited class of
computations) is to design protocols where the reward is strictly connected, not
just to the correctness of the result, but to the amount of work done by the
prover. Consider for example a protocol where the prover collects the reward
only if he produces a proof of correctness of the result. Assume that the cost to
produce a valid proof for an incorrect result, is higher than just computing the
correct result and the correct proof. Then obviously a rational prover will always
answer correctly, because the above strategy of fast incorrect answers will not
work anymore.

While the application is different, the goal is the same as in the previous
verifiable hardware scenario.

The Verifier’s Dilemma. In blockchain systems such as Ethereum, transac-
tions can be expressed by arbitrary programs. To add a transaction to a block
miners have to verify its validity, which could be too costly if the program is too
complex. This creates the so-called Verifier’s Dilemma [LTKS15]: given a costly
valid transaction Tr a miner who spends time verifying it is at a disadvantage
over a miner who does not verify it and accept it “uncritically” since the latter
will produce a valid block faster and claim the reward. On the other hand if

5

the transaction is invalid, accepting it without verifying it first will lead to the
rejection of the entire block by the blockchain and a waste of work by the uncrit-
ical miner. The solution is to require efficiently verifiable proofs of validity for
transactions, an approach already pursued by various startups in the Ethereum
ecosystem (e.g. TrueBit4). We note that it suffices for these proofs to satisfy the
condition above: i.e. we do not need the full power of information-theoretic or
cryptographic security but it is enough to guarantee that to produce a proof of
correctness for a false transaction is more costly than producing a valid trans-
action and its correct proof, which is exactly the model we are proposing.

1.4 Future Directions

Our work opens up many interesting future directions.
First of all, it would be nice to extend our results to the case where cost is the

actual running time, rather than “parallel running time”/“circuit depth” as in
our model. The techniques in [BRSV17] (which presents problems conjectured to
have Ω(n2) complexity on the average), if not even the original work of Merkle
[Mer78], might be useful in building a verifiable computation scheme where if
computing the function takes time T , then producing a false proof of correctness
would have to take Ω(T 2).

For the specifics of our constructions it would be nice to “close the gap”
between what we can achieve and the complexity assumption: our schemes can
only compute AC0

Q[2] against adversaries in NC1, and ideally we would like to

be able to compute all of NC1 (or at the very least all of AC0[2]).
Finally, to apply these schemes in practice it is important to have tight

concrete security reductions and a proof-of-concept implementations.

2 Preliminaries

For a distribution D, we denote by x ← D the fact that x is being sample
according to D. We remind the reader that an ensemble X = {Xλ}λ∈N is a family
of probability distributions over a family of domains D = {Dλ}λ∈N. We say two
ensembles D = {Dλ}λ∈N and D′ = {D′λ}λ∈N are statistically indistinguishable if
1
2

∑
x

|D(x)−D′(x)| < neg(λ). Finally, we note that all arithmetic computations

(such as sums, inner product, matrix products, etc.) in this work will be over
GF(2) unless specified otherwise.

Definition 2.1 (Function Family). A function family is a family of (possibly

randomized) functions F = {fλ}λ∈N, where for each λ, fλ has domain Df
λ and

co-domain Rfλ. A class C is a collection of function families.

In most of our constructions Df
λ = {0, 1}d

f
λ and Rfλ = {0, 1}r

f
λ for sequences

{dfλ}λ, {dfλ}λ.

4 TrueBit: https://truebit.io/

6

In the rest of the paper we will focus on the class of C = NC1 of functions
for which there is a polynomial p(·) and a constant c such that for each λ, the
function fλ can be computed by a Boolean (randomized) fan-in 2, circuit of size
p(λ) and depth c log(λ). In the formal statements of our results we will also
use the following classes: AC0, the class of functions of polynomial size and con-
stant depth with AND,OR and NOT gates with unbounded fan-in; AC0[2], the
class of functions of polynomial size and constant depth with AND,OR,NOT
and PARITY gates with unbounded fan-in; TC0, the class of functions of poly-
nomial size and constant depth with AND,OR,NOT and MAJORITY gates with
unbounded fan-in. Given a function f , we define multiplicative depth of f as the
degree of the lowest-degree polynomial in GF(2) that evaluates to f .

Limited Adversaries. We define adversaries also as families of randomized
algorithms {Aλ}λ, one for each security parameter (note that this is a non-
uniform notion of security). We denote the class of adversaries we consider as
A, and in the rest of the paper we will also restrict A to NC1.

Infinitely-Often Security. We now move to define security against all ad-
versaries {Aλ}λ that belong to a class A.

Our results achieve an ”infinitely often” notion of security, which states that
for all adversaries outside of our permitted class A our security property holds
infinitely often (i.e. for an infinite sequence of security parameters rather than
for every sufficiently large security parameter. We inherit this limitation from
the techniques of [DVV16].

Definition 2.2 (Infinitely-Often Computational Indistinguishability).
Let X = {Xλ}λ∈N Let Y = {Yλ}λ∈N be ensembles over the same domain family,
A a class of adversaries, and Λ an infinite subset of N. We say that X and Y
are infinitely often computational indistinguishable with respect to set Λ and the
class A, denoted by X ∼Λ,A Y if there exists a negligible function ν such that
for any λ ∈ Λ and for any adversary A = {Aλ}λ ∈ A

|Pr[Aλ(Xλ) = 1]− Pr[Aλ(Yλ) = 1]| < ν(λ)

When A = NC1 we will keep it implicit and use the notation X ∼Λ Y and say
that X and Y are Λ-computationally indistinguishable.

In our proofs we will use the following facts on infinitely-often computa-
tionally indistinguishable ensembles. We skip their proof as, except for a few
technicalities, it is analogous to the corresponding properties for standard com-
putational indistinguishability5.

Lemma 2.1 (Facts on Λ-Computational Indistinguishability).

– Transitivity: Let m = poly(λ) and X (j) with j ∈ {0, . . . ,m} be ensembles.
If for all j ∈ [m] X (j−1) ∼Λ X (j), then X (0) ∼Λ X (m).

– Weaker than statistical indistinguishability: Let X ,Y be statistically
indistinguishable ensembles. Then X ∼Λ Y for any infinite Λ ⊆ N

– Closure under NC1: Let X ,Y be ensembles and {fλ}λ∈N ∈ NC1. If X ∼Λ Y
for some Λ then fλ(X) ∼Λ fλ(Y).

5 We refer the reader to [Gol01].

7

2.1 Public-Key Encryption

A public-key encryption scheme
PKE = (PKE.Keygen,PKE.Enc,PKE.Dec) is a triple of algorithms which operate
as follow:

– Key Generation. The algorithm (pk, sk)← PKE.Keygen(1λ) takes a unary
representation of the security parameter and outputs a public key encryption
key pk and a secret decryption key sk.

– Encryption. The algorithm c← PKE.Encpk(µ) takes the public key pk and
a single bit message µ ∈ {0, 1} and outputs a ciphertext c. The notation
PKE.Encpk(µ; r) will be used to represent the encryption of a bit µ using
randomness r.

– Decryption. The algorithm µ∗ ← PKE.Decsk(c) takes the secret key sk and
a ciphertext c and outputs a message µ∗ ∈ {0, 1}.

Obviously we require that µ =PKE.Decsk(PKE.Encpk(µ))

Definition 2.3 (CPA Security for PKE). A scheme PKE is IND-CPA se-
cure if for an infinite Λ ⊆ N we have

(pk,PKE.Encpk(0)) ∼Λ (pk,PKE.Encpk(1))

where (pk, sk)← PKE.Keygen(1λ).

Remark 2.1 (Security for Multiple Messages). Notice that by a standard hybrid
argument and Lemma 2.1 we can prove that any scheme secure according to
Definition 2.3 is also secure for multiple messages (i.e. the two sequences of
encryptions bit by bit of two bit strings are computationally indistinguishable).
We will use this fact in the proofs in Section 4, but we do not provide the formal
definition for this type of security. We refer the reader to 5.4.2 in [Gol09].

Somewhat Homomorphic Encryption A public-key encryption scheme is
said to be homomorphic if there is an additional algorithm Eval which takes a
input the public key pk, the representation of a function f : {0, 1}l → {0, 1} and
a set of l ciphertexts c1, . . . , cl, and outputs a ciphertext cf .

We proceed to define the homomorphism property. The next notion of C-
homomorphism is sometimes also referred to as “somewhat homomorphism”.

Definition 2.4 (C-homomorphism). Let C be a class of functions (together
with their respective representations). An encryption scheme PKE is C-homomorphic
(or, homomorphic for the class C) if for every function fλ where fλ ∈ F{fλ}λ∈N ∈
C and respective inputs µ1, . . . , µl ∈ {0, 1} (where l = l(λ)), it holds that if
(pk, sk)← PKE.Keygen(1λ) and ci ← PKE.Encpk(µi) then

Pr[PKE.Decsk(Evalpk(F, c1, . . . , cl)) 6= F (µ1, . . . , µl)] = neg(λ),

As usual we require the scheme to be non-trivial by requiring that the output
of Eval is compact:

8

Definition 2.5 (Compactness). A homomorphic encryption scheme PKE is
compact if there exists a polynomial s in λ such that the output length of Eval is
at most s(λ) bits long (regardless of the function f being computed or the number
of inputs).

Definition 2.6. Let C = {Cλ}λ∈N of arithmetic circuits in GF(2). A scheme
PKE is leveled C-homomorphic if it takes 1L as additional input in key genera-
tion, and can only evaluate depth-L arithmetic circuits from C. The bound s(λ)
on the ciphertext must remain independent of L.

2.2 Verifiable Computation

In a Verifiable Computation scheme a Client uses an untrusted server to compute
a function f over an input x. The goal is to prevent the Client from accepting
an incorrect value y′ 6= f(x). We require that the Client’s cost of running this
protocol be smaller than the cost of computing the function on his own. The
following definition is from [GGP10] which allows the client to run a possibly
expensive pre-processing step.

Definition 2.7 (Verifiable Computation Scheme).
A verifiable computation scheme VC = (VC.KeyGen,VC.ProbGen,VC.Compute,VC.Verify)

consists of the four algorithms defined below.

1. VC.KeyGen(f, 1λ)→ (pkW, skD): Based on the security parameter λ, the ran-
domized key generation algorithm generates a public key that encodes the
target function F , which is used by the Server to compute F . It also com-
putes a matching secret key, which is kept private by the Client.

2. VC.ProbGenskD(x) → (qx, sx): The problem generation algorithm uses the
secret key skD to encode the function input x as a public query qx which
is given to the Server to compute with, and a secret value sx which is kept
private by the Client.

3. VC.ComputepkW(qx) → ax: Using the Client’s public key and the encoded
input, the Server computes an encoded version of the function’s output y =
F (x).

4. VC.VerifyskD(sx, ax)→ y ∪{⊥}: Using the secret key skD and the secret “de-
coding” sx, the verification algorithm converts the worker’s encoded output
into the output of the function, e.g., y = f(x) or outputs ⊥ indicating that
ax does not represent the valid output of F on x.

The scheme should be complete, i.e. an honest Server should (almost) always
return the correct value.

Definition 2.8. Completeness A delegation scheme VC = (VC.KeyGen,VC.ProbGen,VC.Compute,VC.Verify)
has overwhelming completeness for a class of functions C if there is a function
ν(n) = neg(λ) such that for infinitely many values of λ, if fλ ∈ F ∈ C, then for
all inputs x the following holds with probability at least 1 − ν(n): (pkW, skD) ←
VC.KeyGen(fλ, λ) (qx, sx) ← VC.ProbGenskD(x) and ax ← VC.ComputepkW(qx)
then y = fλ(x)← VC.VerifyskD(sx, ax).

9

To define soundness we consider an adversary who plays the role of a mali-
cious Server who tries to convince the Client of an incorrect output y 6= f(x).
The adversary is allowed to run the protocol on inputs of her choice, i.e. see the
queries qxi for adversarially chosen xi’s before picking an input x and attempt
to cheat on that input. Because we are interested in the parallel complexity of
the adversary we distinguish between two parameters l and m. The adversary is
allowed to do l rounds of adaptive queries, and in each round she queries m in-
puts. Jumping ahead, because our adversaries are restricted to NC1 circuits, we
will have to bound l with a constant, but we will be able to keep m polynomially
large.

Experiment ExpVerif
A [VC, f, λ, l,m]

(pkW, skD)← VC.KeyGen(f, λ);
I ← ∅;
For i = 1, . . . , i = l;
{x(i−1)m, . . . xim−1} ← Aλ(pkW, I);
{(qj , sj) : (qj , sj)← VC.ProbGenskD(xj), j ∈ {(i− 1)m, . . . , im}}
I ← I ∪ {x(i−1)m, . . . xim−1} ∪ {q(i−1)m, . . . qim−1};

â← Aλ(pkW, I);
ŷ ← VC.VerifyskD(slm, â)
If ŷ 6= ⊥ and ŷ 6= f(xlm), output 1, else 0.

Remark 2.2. In the experiment above the adversary ”tries to cheat” on the last
input presented in the last round of queries (i.e. xlm). This is without loss of
generality. In fact, assume the adversary aimed at cheating on an input presented
before round l, then with one additional round it could present that same input
once more as the last of the batch in that round.

Definition 2.9 (Soundness). We say that a verifiable computation scheme is
(l,m)-sound against a class A of adversaries if there exists a negligible function
neg(λ), such that for all A = {Aλ}λ ∈ A, and for infinitely many λ we have that

Pr[ExpVerif
A [VC, f, λ, l,m] = 1] ≤ neg(λ)

Assume the function f we are trying to compute belongs to a class C which
is smaller than A. Then our definition guarantees that the ”cost” of cheating
is higher than the cost of honestly computing f and engaging in the Verifiable
Computation protocol VC. Jumping ahead, our scheme will allow us to compute
the class C = AC0[2] against the class of adversaries A = NC1.

Efficiency The last thing to consider is the efficiency of a VC protocol. Here
we focus on the time complexity of computing the function f . Let n be the
number of input bits, and m be the number of output bits, and S be the size of
the circuit computing f .

– A verifiable computation scheme VC is client-efficient if circuit sizes of
VC.ProbGen and VC.Verify are o(S). We say that it is linear-client if those
sizes are O(poly(λ)(n+m)).

10

– A verifiable computation scheme VC is server-efficient if the circuit size of
VC.Compute is O(poly(λ)S).

We note that the key generation protocol VC.KeyGen can be expensive, and
indeed in our protocol (as in [GGP10,CKV10,AIK10]) its cost is the same as
computing f – this is OK as VC.KeyGen is only invoked once per function, and
the cost can be amortized over several computations of f .

3 Fine-Grained SHE

We start by recalling the public key encryption from [DVV16] which is secure
against adversaries in NC1.

The scheme is described in Figure 1. Its security relies on the following result,
implicit in [IK00]6. We will also use this lemma when proving the security of our
construction in Section 3.

Lemma 3.1 ([IK00]). If ⊕L/poly (NC1 then there exist distribution Dkg
λ over

{0, 1}λ×λ, distribution Dfλ over matrices in {0, 1}λ×λ of full rank, and infinite
set Λ ⊆ N such that

Mkg ∼Λ Mf

where Mf ← Dfλ and Mkg ← Dkg
λ .

The following result is central to the correctness of the scheme PKE in Figure
1 and is implicit in [DVV16].

Lemma 3.2 ([DVV16]). There exists sampling algorithm KSample such that

(M,k) ← KSample(1λ), M is a matrix distributed according to Dkg
λ (as in

Lemma 3.1), k is a vector in the kernel of M and has the form
k = (r1, r2, . . . , rλ−1, 1) ∈ {0, 1}λ where ri-s are uniformly distributed bits.

Theorem 3.1 ([DVV16]). Assume ⊕L/poly (NC1. Then, the scheme PKE =
(PKE.Keygen,PKE.Enc,PKE.Dec) defined in Figure 1 is a Public Key Encryp-
tion scheme secure against NC1 adversaries. All algorithms in the scheme are
computable in AC0[2].

3.1 Leveled Homomorphic Encryption for AC0
Q[2] Functions Secure

against NC1

We denote by x[i] the i-th bit of a vector of bits x . Below, the scheme PKE =
(PKE.Keygen,PKE.Enc,PKE.Dec) is the one defined in Figure 1.

Our SHE scheme is defined by the following four algorithms:

6 Stated as Lemma 4.3 in [DVV16].

11

– PKE.Keygensk(1
λ) :

1. Sample (M,k)← KSample(1λ);
2. Output (pk = M, sk = k).

– PKE.Encpk=M(µ)) :
1. Sample r←$ {0, 1}λ;
2. Let tᵀ = (0 . . . 0 1) ∈ {0, 1}λ;
3. Output cᵀ = rᵀM + µtᵀ.

– PKE.Decsk=k(c) :
1. Output 〈k , c〉

Fig. 1. PKE construction [DVV16]

– HE.Keygensk(1
λ, L) : For key generation, sample L+1 key pairs (M0,k0), . . . ,M0,kL)←

PKE.Keygen(1λ), and compute, for all ` ∈ {0, . . . , L−1}, i, j ∈ [λ], the value

a`,i,j ← PKE.EncM`+1
(k`[i] · k`[j]) ∈ {0, 1}λ

We define A := {a`,i,j}`,i,j to be the set of all these values. t then outputs
the secret key sk = kL, and the public key pk = (M0,A). In the following
we call evk = A the evaluation key.
We point out a property that will be useful later: by the definition above,
for all ` ∈ {0, . . . , L− 1} we have

〈k`+1 ,a`+1,i,j〉 = k`[i] · k`[j] . (1)

– HE.Encpk(µ)) : Recall that pk = M0. To encrypt a message µ we compute
v ← PKE.EncM0(µ). The output ciphertext contains v in addition to a
“level tag”, an index in {0, . . . , L} denoting the “multiplicative depth” of
the generated ciphertext. The encryption algorithm outputs c := (v, 0).

– HE.DeckL(c) : To decrypt a ciphertext7 c = (v, L) compute PKE.DeckL(v),
i.e.

〈kL ,v〉

– HE.Evalevk(f, c1, . . . , ct) : where F : {0, 1}t → {0, 1}: We require that f is rep-
resented as an arithmetic circuit in GF(2) with addition gates of unbounded
fan-in and multiplication gates of fan-in 2. We also require the circuit to be
layered, i.e. the set of gates can be partitioned in subsets (layers) such that
wires are always between adjacent layers. Each layer should be composed
homogeneously either of addition or multiplication gates. Finally, we require
that the number of multiplications layers (i.e. the multiplicative depth) of f
is L.
We homomorphically evaluate f gate by gate. We will show how to perform
multiplication (resp. addition) of two (resp. many) ciphertexts. Carrying out

7 We are only requiring to decrypt ciphertexts that are output by HE.Eval(· · ·)

12

this procedure recursively, we can homomorphically compute any circuit f
of multiplicative depth L.

Ciphertext structure during evaluation. During the homomorphic eval-
uation a ciphertext will be of the form c = (v, `) where ` is the “level tag”
mentioned above. At any point of the evaluation we will have that ` is be-
tween 0 (for fresh ciphertexts at the input layer) and L (at the output layer).
We define homomorphic evaluation only among ciphertexts at the same level.
Since our circuit is layered we will not have to worry about homomorphic
evaluation occurring among ciphertexts at different levels. Consistently with
the fact a level tag represents the multiplicative depth of a ciphertext, ad-
dition gates will keep the level of ciphertexts unchanged, whereas multipli-
cation gates will increase it by one. Finally, we will keep the invariant that
the output of each gate evaluation c = (v, `) is such that

〈k` ,v〉 = µ (2)

where µ is the correct plaintext output of the gate.

Homomorphic Evaluation of gates:

• Addition gates. Homomorphic evaluation of an addition gates on inputs
c1, . . . , ct where ci = (vi, `) is performed by outputting

cadd = (vadd, `) :=
(∑

i

vi, `
)

Informally, one can see that

〈k` ,vadd〉 = 〈k` ,
∑
i

vi〉 =
∑
i

〈k` ,vi〉 =
∑
i

µi

where µi is the plaintext corresponding to vi. This satisfies the invariant
in Eq. 2.

• Multiplication gates. We show how to multiply ciphertexts c, c′ where c =
(v, `) and c′ = (v′, `) to obtain an output ciphertext cmult = (vmult, `+1).

The homomorphic multiplication algorithm will set

vmult :=
∑
i,j∈[λ]

hi,j · a`+1,i,j

where hi,j = v[i] · v′[j] for i, j ∈ [λ].

The final output ciphertext will be

cmult := (vmult, `+ 1).

13

This satisfies the invariant in Eq. 2 as

〈k`+1 ,vmult〉 = 〈k`+1 ,
∑
i,j∈[λ]

hi,j · a`+1,i,j〉

=
∑
i,j∈[λ]

(hi,j · 〈k`+1 ,a`+1,i,j〉)

=
∑
i,j∈[λ]

(hi,j · k`[i] · k`[j])

=
∑
i,j∈[λ]

(v[i] · v′[j] · k`[i] · k`[j])

=
(∑
i∈[λ]

v[i] · k`[i]
)
·
(∑
j∈[λ]

v′[j] · k`[j]
)

= 〈k` ,v〉 · 〈k` ,v′〉

= µ · µ′

where in the third and fourth equality we used respectively Eq. 1 and
the definition of hi,j , and µ, µ′ are the plaintexts corresponding to v v′

respectively.

3.2 Security Analysis

Theorem 3.2 (Security). The scheme HE is CPA secure against NC1 adver-
saries (Definition 2.3) under the assumption ⊕L/poly (NC1.

Proof. We are going to prove that there exists infinite Λ ⊆ N such that (pk, evk,HE.Encpk(0)) ∼Λ
(pk, evk,HE.Encpk(1)).

When using the notations Mkg and Mf we will always denote matrices to
respectively distributed according to Df

λ and Dkg, where Df
λ and Dkg are the

distributions defined in Lemma 3.1.
We will define the (randomized) encoding procedure E : {0, 1}λ×λ → {0, 1}λ

defined as
E(M, b) = rᵀM + (0 . . . 0 b)

ᵀ
,

where r is uniformly distributed in {0, 1}λ. The functions we will pass to E
will be distributed either according to Mkg or Mf. Notice that: (i) E(Mkg, b) is
distributed identically to HE.Encpk(b); (ii) E(Mf, b) corresponds to the uniform
distribution over {0, 1}λ because (by Lemma 3.1) Mf has full rank and hence
rᵀMf must be uniformly random.

We will denote with Mkg
1 , . . . ,M

kg
L the matrices M1, . . . ,M` used to con-

struct the evaluation key in HE.Keygen (see definition). Recall these matrices
are distributed according to Dkg as in Lemma 3.1.

We will also define the following vectors:

αkg
` := {E(Mkg

`+1,k`[i]·k`[j]) | i, j ∈ [λ]} αf
` := {E(Mf

`+1,k`[i]·k`[j]) | i, j ∈ [λ]} ,

14

where k` is defined as in HE.Keygen and the matrices in input to E will be clear
from the context. Notice that all the elements of αkg

` are encryptions, whereas
all the elements of αf

` are uniformly distributed.
We will use a standard hybrid argument. Each of our hybrids is parametrized

by a bit b. This bit informally marks whether the hybrid contains an element
indistinguishable from an encryption of b.

– Eb := (Mkg
0 ,E(Mkg

0 , b), α
kg
1 , . . . , α

kg
L) where Mkg

0 corresponds to the pub-

lic key of our scheme. Notice that αkg
` ≡ {a`,i,j | i, j ∈ [λ]} where a`,i,j

is as defined in HE.Keygen. This hybrid corresponds to the distribution
(pk, evk,HE.Encpk(b)).

– Hb0 := (Mf
0,E(Mf, b), αkg

1 , . . . , α
kg
L). The only difference from E is in the first

two components where we replaced the actual public key and ciphertext with
a full rank matrix distributed according to Df

λ and a random vector of bits.
– For ` ∈ [L] we define

Hb` := (Mf
0,E(Mf, b), αf

1, . . . , α
f
`, α

kg
`+1, . . . , α

kg
L) .

We will proceed proving that

E0 ∼Λ H0
0 ∼Λ H0

1 ∼Λ . . . ∼Λ H0
L ∼Λ H1

L ∼Λ . . . ∼Λ H1
1 ∼Λ H1

0 ∼Λ E1

through a series of smaller claims. In the remainder of the proof Λ refers to the
set in Lemma 3.1.

– E0 ∼Λ H0
0: if this were not the case we would be able to distinguish Mkg

0

from Mf
0 for some of the values in the set Λ thus contradicting Lemma 3.1.

– H0
`−1 ∼Λ H0

` for ` ∈ [L]: assume by contradiction this statement is false for
some ` ∈ [L]. That is

(Mf
0,E(Mf

0, b), α
f
1, . . . , α

f
`−1, α

kg
` , . . . , α

kg
L) 6∼Λ (Mf

0,E(Mf
0, b), α

f
1, . . . , α

f
`, α

kg
`+1, . . . , α

kg
L) .

Recall that, by definition, the elements of αkg
` are all encryptions whereas

the elements of αf
` are all randomly distributed values. This contradicts the

the semantic security of the scheme PKE (by a standard hybrid argument
on the number of ciphertexts).

– H0
L ∼Λ H1

L: the distributions associated to these two hybrids are identical.
In fact, notice the only difference between these two hybrids is in the second
component: E(Mf, 0) in H0

L and E(Mf, 1) in H1
L. As observed above E(Mf, b)

is uniformly distributed, which proves the claim.

All the claims above can be proven analogously for E1,H1
0 and H1

` -s. ut

3.3 Efficiency and Homomorphic Properties of Our Scheme

Our scheme is secure against adversaries in the class NC1. This implies that we
can run HE.Eval only on functions f that are in NC1, otherwise the evaluator

15

would be able to break the semantic security of the scheme. However we have
to ensure that the whole homomorphic evaluation stays in NC1. The problem is
that homomorphically evaluating f has an overhead with respect to the ”plain”
evaluation of f . Therefore, we need to determine for which functions f , we can
guarantee that HE.Eval(F, . . .) will stay in NC1.

In terms of circuit depth, the main overhead when evaluating f homomor-
phically is given by the multiplication gates (addition, on the other hand, is
“for free” — see definition of HE.Eval above). A single homomorphic multipli-
cation can be performed by a depth two AC0[2] circuit, but this requires depth
Ω(log(n)) with a circuit of fan-in two. Therefore, a circuit for f with ω(1) multi-
plicative depth would require an evaluation of ω(log(n)) depth, which would be
out of NC1. On the other hand, observe that for any function f in AC0[2] with
constant multiplicative depth, the evaluation stays in AC0[2]. This because there
is a constant number (depth) of homomorphic multiplications each requiring an
AC0[2] computation.

We can now state the following result, derived from the observations above
and the fact that the invariant in Eq. 2 is preserved throughout homomorphic
evaluation.

Theorem 3.3. Let AC0
CM[2] the family of circuits in AC0[2] with constant mul-

tiplicative depth. The scheme HE is leveled AC0
CM[2]-homomorphic. Key genera-

tion, encryption, decryption and evaluation are all computable in AC0
CM[2].

3.4 Beyond Constant Multiplicative Depth

In the previous section we saw how our scheme is homomorphic for a class of
constant-depth, unbounded fan-in arithmetic circuits in GF(2) with constant
multiplicative depth, i.e. polynomials in GF(2) of constant degree. We now show
how to overcome this limitation by slightly changing our scheme and using a
result (implicit in [Raz87]) on approximating AC0[2] circuits with low-degree
polynomials.

Definition 3.1 (Quasi-Constant Multiplicative Depth). Let C ∈ AC0[2]
be a circuit. Let S be the number of AND gates of non constant fan-in. If S =
O(1) we say that C has quasi-constant multiplicative depth. We denote with
AC0

Q[2] the class of circuits with such property.

Lemma 3.3 ([Raz87]). Let C be an AC0
Q[2] circuit of depth d. Then there

exists a randomized circuit C ′ ∈ AC0
CM[2] such that, for all x,

Pr[C ′(x) 6= C(x)] ≤ ε ,

where ε = O(1). The circuit C ′ uses O(n) random bits and its representation
can be computed in NC1 from a representation of C.

Below is a variation of our homomorphic scheme that can evaluate all cir-
cuits in AC0

Q[2] in NC1. This time, in order to evaluate circuit C, we perform

16

several homomorphic evaluations of the randomized circuit C ′ (as in Lemma
3.3). To obtain the plaintext output of C we can decrypt all the ciphertext out-
puts and take the majority result. Notice that this scheme is still compact. As
we use a randomized approach to evaluate F , the scheme HE′ will be implic-
itly parametrized by a soundness parameter s. Intuitively, the probability of a
function F being evaluated incorrectly will be upper bounded by 2−s.

We define the following auxiliary functions for our scheme:

Definition 3.2 (Auxiliary Functions for HE′).
Let f : {0, 1}t → {0, 1} be represented as an arithmetic circuit as in HE and
pk a public key for the scheme HE that includes the evaluation key. Let s be a
soundness parameter. We denote by f ′ the randomized function approximating
f as in Lemma 3.3; let t′ = O(t) be the number of additional random bits f ′ will
take in input.

– GenApproxFun(f) :

1. Computes and returns the representation of the approximating function
f ′.

– SampleAuxRandomnesss(pk, f
′) :

1. We assume f ′ is the randomized function approximating f as in Lemma
3.3; let t′ = O(t) be the number of additional random bits f ′ will take in
input.

2. Sample s · t′ random bits r
(1)
1 , . . . , r

(1)
t′ , . . . , r

(s)
1 , . . . , r

(s)
t′ ;

3. Compute r̂aux := {r̂(i)j | r̂
(i)
j ← HE.Encpk(r

(i)
j), i ∈ [s], j ∈ [t′]};

4. Output r̂aux.

– EvalApproxs(pk, f
′, c1, . . . , ct, r̂aux) :

1. Let r̂aux = {r̂(i)j | i ∈ [s], j ∈ [t′]}.
2. For i ∈ [s], compute couti ← HE.Evalevk(f

′, c1, . . . ct, r̂
(i)
1 , . . . , r̂

(i)
t′) .

3. Output c = (cout1 , . . . , couts)

The new scheme HE′ with soundness parameter s follows.

– Key generation and encryption are the same as in HE.
– HE′.Evalpk(f, c1, . . . , ct):

1. Compute f ′ ← GenApproxFun(f);
2. Compute r̂aux ← SampleAuxRandomnesss(pk, f

′);
3. Compute c← EvalApproxs(pk, f

′, c1, . . . , ct, r̂aux);
4. Output c = (cout1 , . . . , couts).

– HE′.Decsk(c):
1. Decrypt all couti -s in c and output the majority bit.

17

Remark 3.1. Given in input a function f not necessarily of constant multiplica-
tive depth, GenApproxFun returns a function f ′ of constant multiplicative depth
that approximates it. As stated in Lemma 3.3, GenApproxFun is computable in
uniform NC1. Notice that this is the only component of HE′.Eval that is not
computable in AC0

CM[2]. In fact, SampleAuxRandomness is clearly in AC0
CM[2]

and EvalApprox makes parallel invocations to HE.Eval which is computable in
AC0

CM[2] when provided in input a function in AC0
CM[2] (Theorem 3.3). This

fact will be useful when showing the completeness of our verifiable computation
schemes in Section 4.

Theorem 3.4. Let AC0
Q[2] the family of circuits in AC0[2] with quasi-constant

multiplicative depth as in Definition 3.1. The scheme HE′ above with sound-
ness parameter s = Ω(λ) is leveled AC0

Q[2]-homomorphic. Key generation and

encryption can be computed in AC0[2]. Evaluation is computable in (uniform)
NC1. Decryption is computable in AC0[2] with a single, unbounded fan-in major-
ity gate at the root.

4 Fine-Grained Verifiable Computation

In this section we describe our private verifiable computation scheme. Our con-
structions are heavily based on the techniques in [CKV10] to obtain (reusable)
verifiable computation from fully homomorphic encryption. In order to guarantee
that these techniques also work within NC1 we prove that: (i) the constructions
can be computed in low-depth; (ii) the reductions in the security proofs can be
carried out in low-depth.

The Scheme from [CKV10]. To derive Verifiable Computation from Homo-
morphic Encryption, [CKV10] follows this approach. The Client, in the expensive
preprocessing phase, selects a random input r, encrypts it cr = E(r) and homo-
morphically compute cf(r) an encryption of f(r). During the online phase, the
Client, on input x, computes cx = E(x) and submits the ciphertexts cx, cr in
random order to the Server, who homomorphically compute cf(r) = E(f(r)) and
cf(x) = E(f(x)) and returns them to the Client. The Client given the message
c0, c1 from the Server, checks that cb = cf(r) (for the appropriate bit b) and if
so accepts y = D(cf(x)) as y = f(x). The semantic security of E guarantees
that this protocol has soundness error 1/2 (which can be reduced by parallel
repetition). This scheme is however one-time, as a malicious server can figure
out which one is the test ciphertext cf(r) if it is used again.

To make this scheme “many time secure”, [CKV10] uses the paradigm intro-
duced in [GGP10] of running the 1-time scheme “under the covers” of a different
homomorphic encryption key each time.

4.1 A One-time Verification Scheme

Before we present our variant of the one-time construction in [CKV10], we
present two auxiliary lemmas that guarantee that our protocols are computable
in AC0[2]. We refer the reader to [Hag91,MV91] for the proof Lemma 4.1.

18

Lemma 4.1. [Hag91,MV91] There are uniform AC0 circuits C : {0, 1}poly(l) →
[l]l of size poly(l) and depth O(1) whose output distribution have statistical dis-
tance ≤ 2−l from the uniform distribution over permutations of [l].

Lemma 4.2. There are uniform AC0[2] circuits C : [l]l × {0, 1}l → {0, 1}l of
size O(l2) where C(π, (x1, . . . , xl)) = (π(1), . . . , π(l)) and π is a permutation.

Proof. Let x = (x1, . . . , xl) the bits to permute and let π be a permutation If π is
represented as a permutation matrix with rows r1, . . . , rl, we can permute x by
simply performing l parallel inner products 〈x , ri〉-s, which is in AC0[2]. We now
describe how to generate the permutation matrix from a binary representations
x1, . . . , xlg(l) of the integers in [l]. Let fi : {0, 1}lg(l) → {0, 1}l be the function that
computes the i-th row of the permutation matrix. We can define fi as follows:

fi(x1, . . . , xlg(l)) := eq([i− 1]2, (x1, . . . , xlg(l)) ,

where [i − 1]2 is the binary representation of i − 1 and eq returns 1 if its two
inputs (each of lenght lg(l)) are equal. The function fi is clearly in AC0[2]. ut

The following is an adaptation of the one-time secure delegation scheme
from [CKV10]. We make non-black box use of our homomorphic encryption
scheme HE′ (Section 3.4) with soundness parameter s = λ. Notice that. during
the preprocessing phase, we fix the “auxiliary randomness” for EvalApprox (and
thus for HE′.Eval) once and for all. We will use that same randomness for all the
input instances. This choice does not affect the security of the construction. We
remind the reader that we will simplify notation by considering the evaluation
key of our somewhat homomorphic encryption scheme as part of its public key.

If x is a vector of bits x1,←, xn, below we will denote with HE′.Enc(x) the
concatenation of the bit by bit ciphertexts HE′.Enc(x1), . . . ,HE′.Enc(xn). We
denote by HE′.Enc(0̄) the concatenation of n encryptions of 0, HE′.Enc(0).

Remark 4.1 (On deterministic homomorphic evaluation). As pointed out in [CKV10],
one requirement for the approach above to work is for the homomorphic evalu-
ation to be deterministic. We point out that once r̂aux are fixed once and for all
the homomorphic evaluation in VC.Compute is deterministic.

Remark 4.2 (On including f ′ in pkW). In the construction above we included
f ′ in the public key lengthening the size of the key. We point out this is not
necessary and that f ′ can be computed by the worker on her own during the
execution of VC.Compute. However this would not allow us to simply homomor-
phically evaluate VC.Compute in the definition of VC in Section 4.2. This because
the complexity of VC.Compute would go from AC0

CM[2] to NC1, which our ho-
momorphic schemes cannot handle. We point out that it would still be possible
to modify the construction of VC not including f ′ in pkW to obtain the same
completeness and soundness properties. However this would come at a cost of a
more complex transformation in Figure 3. Including f ′ in pkW allowed us to kept
the transformation as simple and close to the original description in [CKV10] as
possible.

19

Let f : {0, 1}n → {0, 1}m be a function and GenApproxFun, SampleAuxRandomness
and EvalApprox as in Definition 3.2.

– VC.KeyGen(1λ, f)→ (pkW, skD): We assume function F represented as
1. Generate a pair of keys (pk, sk)← HE′.Keygen(1λ).
2. Generate the approximating function f ′ ← GenApproxFun(f);
3. Generate the ciphertext of the auxiliary random input for homomorphic

evaluation r̂aux ← SampleAuxRandomnessλ(pk, f ′)
4. Compute t independent encryptions r̂i = HE′.Encpk(0̄) and the homomor-

phic evaluations ŵi = f̂(r̂i) = EvalApproxs(pk, f
′, r̂i, r̂aux) for i ∈ [t].

5. pkW ← (pk, f ′, r̂aux), skD ← {(r̂i, ŵi)i∈[t]}.
– VC.ProbGenskD(x)→ (qx, sx):

1. Compute t independent encryptions r̂i+t = HE′.Encpk(x) for i ∈ [t].
2. Sample a random permutation π←$S2t.
3. qx ← (ẑπ(1), . . . , ẑπ(2t)) = (r̂1, . . . , r̂2t); sx ← π

– VC.ComputepkW(qx)→ ax:

1. Compute ŷi = f̂(ẑi) = EvalApproxs(pk, f
′, ẑi, r̂aux) for i ∈ [2t].

2. ax = (ŷ1, . . . , ŷ2t).
– VC.VerifyskD(sx, ax):

1. Check if ŵi = ŷi for all i ∈ [t].
2. Check if HE′.Decsk(ŷπ(t+1)) = · · · = HE′.Decsk(ŷπ(2t)).
3. If either of the two tests above fails, return ⊥; otherwise return

HE′.Decsk(ŷπ(t+1)).

Fig. 2. One-Time Delegation Scheme

20

Lemma 4.3 (Completeness of VC). The verifiable computation scheme VC
in Figure 2 has overwhelming completeness (Definition 2.8) for the class AC0

Q[2].

Proof. The proof is straightforward and stems directly from the homomorphic
properties of HE′ (Theorem 3.4). In fact, by construction and by definition of
HE′ (Section 3.4), the distribution of the ŵi-s is identical to HE′.Evalpk(F, r̂i).
Analogously, the distribution of ŷi-s is identical to HE′.Evalpk(F, ẑi). ut

Remark 4.3 (Efficiency of VC). In the following we consider the verifiable com-
putation of a function F : {0, 1}n → {0, 1}m computable by an AC0

Q[2] circuit of
size S.

– VC.KeyGen can be computed by an NC1 circuit of size O(poly(λ)S);
– VC.ProbGen can be computed by an AC0[2] circuit of size O(poly(λ)(m+n));
– VC.Compute can be computed by an NC1 circuit of size O(poly(λ)S);
– VC.Verify can be computed by a TC0 circuit of size O(poly(λ)(m + n)) and

whose (constant) depth is independent of the depth of F .

Lemma 4.4 (One-time Soundness). Under the assumption that ⊕L/poly (
NC1 the scheme in Figure 2 is (1, 1)-sound (one time secure) against NC1 ad-
versaries whenever t is chosen to be ω(log(λ)).

Proof. We follow the same proof structure as in the proof of Lemma 12 in
[CKV10]. We will keep part of the analysis informal, emphasizing why this proof
still works for low-depth circuits. We refer the reader to [CKV10] for further
details.

The following observation will be crucial in the rest of the proof. Notice that,
by construction and by definition of HE′ (Section 3.4), the distribution of the ŵi-
s is identical to HE′.Evalpk(F, r̂i). Analogously, the distribution of ŷi-s is identical
to HE′.Evalpk(F, ẑi).

Consider an NC1 adversary A∗ that cheats with non-negligible probability
in the one-time security experiment ExpVerif

A [VC, f, λ, 1, 1] (Definition 2.9). Let
(r̂1, . . . , r̂t) be the independent copies of HE′.EncpkW(0̄) and (r̂t+1, . . . , r̂2t) the
t independent copies of HE′.EncpkW(x) as above. Whenever the verification al-
gorithm accepts, the adversary must have responded correctly on r̂1, ..., r̂t and
incorrectly (and consistently) on r̂t+1, . . . , r̂2t. Our goal is to bound the proba-
bility that the adversary succeeds in doing that.

First, notice that the view of the adversary is (pkW, r̂1, . . . , r̂2t), and identical
to (pkW,HE

′.EncpkW(0̄)t,HE′.EncpkW(x)t). By semantic security of the homomor-
phic encryption scheme, there exists an infinitely large set of parameters Λ such
that (pkW,HE

′.EncpkW(0̄)t,HE′.EncpkW(x)t) ∼Λ (pkW,HE
′.EncpkW(0̄)2t). Consider

a modified game where the adversary receives (pkW,HE
′.EncpkW(0̄)2t). Denote by

p the probability that the adversary succeeds in this game. By computational
indistinguishability we have

Pr[A∗ is correct on (r̂1, . . . , r̂t) and incorrect on (r̂t+1, . . . , r̂2t)] ≤ p+ neg(λ)

for all λ ∈ Λ. This inequality holds because we can test in NC1 whether A∗
cheats only on (r̂t+1, . . . , r̂2t). Therefore, if the adversary’s behavior differed

21

significantly between the two games, one would be able to break the semantic
security of the homomorphic scheme. Here we made use of the third fact in
Lemma 2.1.

We now proceed to upper bound p. Observe that

p = Pr[A∗ is correct on (ẑπ(1), . . . , ẑπ(t)) and incorrect on (ẑπ(t+1), . . . , ẑπ(2t))]

where the ẑπ(i)-s are defined as in Figure 2. Because of Lemma 4.1 that the dis-
tribution of π is statistically indistinguishable from that of a uniformly random
permutation. Also, observe that the answers ŷi of the adversary are independent
of π. We can then conclude that p ≤ 1

(2t
t)

+ neg(t), which concludes the security

analysis. ut

4.2 A Reusable Verification Scheme

We now describe how to obtain a reusable verification scheme VC applying the
transformation in [CKV10] from one-time sound verification schemes through
fully homomorphic encryption. The core idea behind the transformation in [CKV10]
is to encapsulate all the operations of a one-time verifiable computation scheme
through homomorphic encryption. We instantiate this transformation with the
one-time verifiable construction VC, described in Figure 2, and the simplest of
our two somewhat homomorphic encryption schemes, HE (defined in Section
3.1).

Let VC be the verifiable computation scheme defined in Fig-
ure 2. The reusable verifiable computation scheme VC =
(VC.KeyGen,VC.ProbGen,VC.Compute,VC.Verify) is defined as follows.

– VC.KeyGen(1λ, f) → (pkW, skD): The key generation stage is the same as in
VC.

– VC.ProbGenskD(x)→ (qx, sx):
1. (qx, sx)← VC.ProbGenskD(x);
2. Compute a fresh pair of keys (pkx, skx)← HE.Keygen(1λ);
3. Compute q̂x ← HE.Encpkx(qx);
4. qx ← (pkx, q̂x); sx ← (sx, skx)

– VC.ComputepkW(qx)→ ax:
1. âx ← HE.Evalpkx(VC.Compute(·, f), q̂x).
2. ax ← âx.

– VC.VerifyskD(sx, ax):
1. ax ← HE.Decskx(âx).
2. return VC.VerifyskD(sx, ax).

Fig. 3. Transformation from one-time VC scheme to a reusable VC scheme

22

Corollary 4.1 (Completeness of VC). The verifiable computation scheme VC
in Figure 3 has overwhelming completeness (Definition 2.8) for the class AC0

Q[2].

Proof. The completeness of the scheme above follows directly from the com-
pleteness of VC and the homomorphic properties of HE. Notice that we can use
HE.Eval to homomorphically compute VC.Compute as the latter carries out a
computation in AC0

CM[2] (although it is approximating a computation in AC0
Q[2]).
ut

Remark 4.4 (Efficiency of VC). The efficiency of VC is analogous to that of VC
with the exception of a circuit size overhead of a factor O(λ) on the problem gen-
eration and verification algorithms and of O(λ2) for the computation algorithm.
All algorithms in VC are computable by constant depth circuit (of unbounded
fan-in) and the depth of the verification algorithm is independent of the function
F .

Theorem 4.1. Under the assumption that ⊕L/poly (NC1 the scheme VC in
Figure 3 is (O(1), poly(λ))-sound (many-times secure) against NC1 adversaries
whenever t is chosen to be ω(log(λ)) in the underlying scheme VC.

Proof. By Lemma 4.4 there exists an infinite set Λ ⊆ N of security parameters
for which VC “is secure”. By the proof of Lemma 4.4, this set is also the set
of parameters where the somewhat homomorphic encryption scheme HE “is se-
cure”. We will show that for all values in this same set Λ, the probability of
success of any NC1 adversary in ExpVerif

A [VC, f, λ,O(1), poly(λ)] is negligible.
Assume by contradiction there exists an NC1 adversary A∗ that achieves

non-negligible advantage in ExpVerif
A [VC, f, λ,O(1), poly(λ)] for some λ ∈ Λ.

Claim: If VC is not secure for some λ∗ ∈ Λ then we can break the
one-time security of VC. Let l = O(1) be the number of rounds in the many-
time soundness experiment for VC. Consider the following NC1 adversary A1 for
the experiment ExpVerif

A [VC, f, λ, 1, 1]:

– A1 obtains a pair a public key pkW and sends it to A∗;
– For all rounds i ∈ {1, . . . , l − 1}, A1 replies to A∗ queries by generating a

fresh pair of keys (pk, sk) and sending back encryptions of HE.Encpk(0̄);
– At round l, A1 responds to all input queries but the last one as above. This,

by experiment definition, is the input where A∗ will try to cheat; we denote
this input by x∗. Now A1 sends x∗ as the only input query in the one-time
security experiment and will receive back q∗. It will then obtain a fresh pair
of keys (pk∗, sk∗) and send HE.Encpk∗(q

∗) to A∗.
– A∗ will respond with â∗ and A1 will send HE.Decsk∗(â) to the challenger for

one-time security experiment.

The advantage of A1 depends on how likely is A∗ can successfully cheat in
that interaction. Let p be the advantage of A1 in the one-time security exper-
iment. Clearly, if p is close to the advantage of A∗ in the many-times security
experiment A1 breaks the security of the one-time scheme.

23

Claim: the advantage of A1 is negligibly close to that of A∗ in the
many-time security game for security parameter λ∗. We can prove this
by relying on the semantic security of the homomorphic encryption and on a
hybrid argument.

Let L = lm, the total number of input queries in the many-times security
experiment. We now define the hybrids H(j) with j ∈ {0, . . . , L}. We define
H(0) to be the exactly the many-time security experiment. For j ∈ [L] we define
H(j) to be an experiment where we respond to input queries with HE.Encpkf (0̄)
where pkf is a fresh public key up to input query j and behaves the many-time

security experiment from input query j+ 1 on. Notice that H(L) corresponds to
the interaction with A1 above.

Denote by A(j) the output distribution of A∗ when interacting with H(j).
Intuitively, if the advantage of the A1 in the one-time experiment is significantly
different from the advantage of A∗ in the many-times security games, then A(0)

and A(L) are not Λ-computationally indistinguishable.
Therefore (by Lemma 2.1), there exists j ∈ [L] such that A(j−1) 6∼Λ A(j).
Claim: If there exists j ∈ [L] such that A(j−1) 6∼Λ A(j) then we can

break the semantic security of HE. Consider the following NC1 adversary
ACPA which receives in input a “challenge” public key pk∗. ACPA will interact
with A∗ simulating H(j) until receiving input query xj . At this point it will
compute qj from VC.ProbGen(xj) and send to the CPA challenger (see Remark
2.1) qj and 0̄, receiving back an encryption c∗ of either message under the public
key pk∗. ACPA will now send (pk∗, c∗) to A∗ and continue simulating H(j) till
the end of the experiment. The adversary ACPA will check whether A∗ cheated
successfully at the end of the experiment and output (in the multiple-message
CPA experiment) 1 if that is the case and 0 otherwise. This would allow ACPA

to have a noticeable advantage in the experiment thus breaking the semantic
security of HE. ut

References

[ACK+02] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. SETI@home: an experiment in public-resource computing.
Communications of the ACM, 45(11):56–61, 2002.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to
soundness: Efficient verification via secure computation. In International
Colloquium on Automata, Languages, and Programming, pages 152–163.
Springer, 2010.

[AM12] Pablo Daniel Azar and Silvio Micali. Rational proofs. In Proceedings of
the forty-fourth annual ACM symposium on Theory of computing, pages
1017–1028. ACM, 2012.

[AM13] Pablo Daniel Azar and Silvio Micali. Super-efficient rational proofs. In Pro-
ceedings of the fourteenth ACM conference on Electronic commerce, pages
29–30. ACM, 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail Os-
trovsky. Succinct non-interactive arguments via linear interactive proofs. In

24

Amit Sahai, editor, Theory of Cryptography, pages 315–333, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[BP11] Joan Boyar and Rene C Peralta. A depth-16 circuit for the aes s-box. IACR
Cryptology ePrint Archive, 2011(IACR Cryptology ePrint Archive), 2011.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
Average-case fine-grained hardness. In Electronic Colloquium on Computa-
tional Complexity (ECCC), volume 24, page 39, 2017.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) lwe. SIAM Journal on Computing, 43(2):831–
871, 2014.

[CG15] Matteo Campanelli and Rosario Gennaro. Sequentially composable ratio-
nal proofs. In International Conference on Decision and Game Theory for
Security, pages 270–288. Springer, 2015.

[CG17] Matteo Campanelli and Rosario Gennaro. Efficient rational proofs for space
bounded computations. In International Conference on Decision and Game
Theory for Security, pages 53–73. Springer, 2017.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P Vadhan. Improved dele-
gation of computation using fully homomorphic encryption. In CRYPTO,
volume 6223, pages 483–501. Springer, 2010.

[CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-
bounded adversaries. In Burton S. Kaliski, editor, Advances in Cryptology
— CRYPTO ’97, pages 292–306, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical
verified computation with streaming interactive proofs. In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference, pages 90–
112. ACM, 2012.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. In Annual International Cryptology Conference, pages 139–147.
Springer, 1992.

[DVV16] Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan.
Fine-grained cryptography. In Annual Cryptology Conference, pages 533–
562. Springer, 2016.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. Stanford University,
2009.

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and
Guy N Rothblum. Verifying and decoding in constant depth. In Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing, pages
440–449. ACM, 2007.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. SIAM Journal on Computing, 45(3):882–
929, 2016.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In Advances in
Cryptology–CRYPTO 2010, pages 465–482. Springer, 2010.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, pages 626–645. Springer, 2013.

25

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating
computation: interactive proofs for muggles. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pages 113–122. ACM,
2008.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM Journal on computing, 18(1):186–
208, 1989.

[Gol01] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cam-
bridge University Press, 2001.

[Gol09] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge university press, 2009.

[GR18] Oded Goldreich and Guy N Rothblum. Simple doubly-efficient interac-
tive proof systems for locally-characterizable sets. In LIPIcs-Leibniz Inter-
national Proceedings in Informatics, volume 94. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

[Hag91] Torben Hagerup. Fast parallel generation of random permutations. In
Proceedings of the 18th International Colloquium on Automata, Languages
and Programming, pages 405–416, New York, NY, USA, 1991. Springer-
Verlag New York, Inc.

[Has87] Johan Hastad. One-way permutations in nc0. Information Processing Let-
ters, 26(3):153–155, 1987.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In Foun-
dations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, pages 294–304. IEEE, 2000.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Struc-
ture in Complexity Theory Conference, 1995., Proceedings of Tenth Annual
IEEE, pages 134–147. IEEE, 1995.

[LTKS15] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystify-
ing incentives in the consensus computer. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages
706–719. ACM, 2015.

[Mer78] Ralph C Merkle. Secure communications over insecure channels. Commu-
nications of the ACM, 21(4):294–299, 1978.

[MV91] Yossi Matias and Uzi Vishkin. Converting high probability into nearly-
constant time - with applications to parallel hashing. In Proceedings of the
Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91,
pages 307–316, New York, NY, USA, 1991. ACM.

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits
over a complete basis with logical addition. Mathematical Notes of the
Academy of Sciences of the USSR, 41(4):333–338, 1987.

[Yao82] Andrew C Yao. Protocols for secure computations. In Foundations of Com-
puter Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 160–164.
IEEE, 1982.

26

