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Abstract

In this position paper, we initiate a systematic treatment of reaching consensus in a permis-
sionless network. We prove several simple but hopefully insightful lower bounds that demon-
strate exactly why reaching consensus in a permissionless setting is fundamentally more diffi-
cult than the classical, permissioned setting. We then present a simplified proof of Nakamoto’s
blockchain which we recommend for pedagogical purposes. Finally, we survey recent results in-
cluding how to avoid well-known painpoints in permissionless consensus, and how to apply core
ideas behind blockchains to solve consensus in the classical, permissioned setting and meanwhile
achieve new properties that are not attained by classical approaches.

1 Introduction

Distributed systems have been historically analyzed in a closed, so-called permissioned, setting
in which both the number of participants in the system, as well as their identities, are common
knowledge, and communication among the participants take place over authenticated channels.

A departure from this model started with the design of peer-to-peer systems, such as e.g. Napster
and Gnutella for file sharing. The success of those systems led to systems such as CAN [33],
Chord [36], and Pastry [34] which offered redundant file storage, distributed hashing, selection of
nearby servers, and hierarchical naming. A novel aspect of these peer-to-peer systems is that they
are permissionless: anyone can join (or leave) the protocol execution (without getting permission
from a centralized or distributed authority), and authentication mechanisms are not available.
Additionally, participants may join and leave the system at will.

The permissionless setting. The permissionless setting differs from permissioned in the fol-
lowing ways:

• Open participation and unauthenticated communication: Anyone can join the protocol
execution (without getting permission from a centralized or distributed authority), and commu-
nication among the parties is unauthenticated.

• Late spawning: Protocol participants can arbitrarily drop off, and new participants may
arbitrarily join, and we expect the security properties to still hold for newly joined/spawned
nodes.

• Uncertainty in the number of players: The protocol participants may be uncertain about
the exact number of players that currently are participating in the protocol.
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The above-mentioned systems, however, provide no guarantee that one participant’s experience
with the system is consistent with another’s: Two participants requesting the same file may end
up receiving different versions and never know that they did. Resolving this issue requires using a
consensus protocol.

Consensus. Consensus protocols are at the core of distributed computing. We here focus on
consensus protocols for realizing a “linearly ordered log” abstraction, often referred to as state
machine replication in the distributed systems literature. Roughly speaking, participants maintain
a growing ordered log of transactions and any participant can add transactions to the end of the log.
A bit more precisely, in a consensus protocol, each participant maintains is own log of transaction,
and we require the protocol to satisfy two important properties, namely, consistency and liveness:

• Consistency: at any point in the execution, all honest participants have consistent logs—that
is, either their logs are identical, or one participant’s log is a prefix of the other’s.

• Liveness: any honest protocol participant can propose to add a transaction; this transaction is
then guaranteed to get incorporated into their logs within some fixed (small) amount of time;
additionally, whenever a participant sees some transaction in their log, the same transaction will
appear in every other participant’s log within some fixed (small) amount of time.

In essence, these properties mean that from the view of the participants, they are essentially com-
municating with a trusted third party that maintains a global, ordered, and immutable ledger/log
of transactions that anyone can simply add to (but not remove from), and the log that I see has
either already been seen by others, or will shortly be seen by everyone.

At first sight one may think that we can simply use standard, off-the-shelf protocols (e.g., [7,23])
to resolve permissionless consensus. The problem, however, is that traditional consensus protocols
were designed only to work in a permissioned setting—in fact, it is easy to see that they completely
break down in the permissionless setting. The key challenge with the permissionless setting is that
an attacker can trivially mount a so-called “sybil attack”—it simply spawns lots of players (that it
controls) and can thus easily ensure that it controls a majority of all the players.

Permissionless consensus: Nakamoto’s blockchain. In 2008, Nakamoto [26] proposed his
celebrated “blockchain protocol” which claims to achieve consensus in a permissionless setting. An
amazing aspect is that not only does Nakamoto’s blockchain implement a “global ledger” (from
which we can only add, but not remove, transactions), but this ledger is also public—since anyone
can join the protocol!

Indeed, the first application of a blockchain is the Bitcoin digital currency [5, 26] which relies
on the consistency property to prevent fraud and double-spending attacks. A number of follow-up
digital currencies [24,37], micro-payment schemes [2,27], time-stamping [1], naming [25], fair secure
computation [6] and secure messaging and PKI applications [10] are based on blockchains as well.
Additionally, financial firms have announced intentions of using the blockchain to lower transaction
costs, remove geopolitical barriers to transferring assets, and reconcile differences between systems.

To overcome the aforementioned sybil attack, Nakamoto’s blockchain protocol relies on “com-
putational puzzles”—a.k.a. moderately hard functions or proofs of work—put forth by Dwork and
Naor [15]: roughly speaking, the participants are required to solve the computational puzzle of
some well-defined difficulty in order to confirm transactions—this is referred to as mining. Next,
rather than attempting to provide security whenever the majority of the participants are honest
(since participants can be easily spawned in the permissionless setting), Nakamoto’s goal was to
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provide security under the assumption that a majority of the computing power is held by honest
participants.

Recent works by Garay et al. [19] and Pass et al. [28] formally proved that Nakamoto’s blockchain
satisfies the above-mentioned consistency and liveness properties under different network assump-
tions, as long as the puzzle difficulty (referred to as the mining hardness) is appropriately set as
a function of the maximum delay in the network, and that the attacker controls a minority of the
computing power in the network.

The price of permissionless consensus? Thus, permissionless consensus is possible, but comes
at a price: in Nakamoto’s protocol, we need to use proofs-of-work (and thus “waste computation”),
the protocol needs to be properly parametrized by an a-priori upper bound on the network’s delay,
and transactions get confirmed slower than this network delay upper-bound (even if the actual delay
may be smaller). Additionally, we need to assume that a majority of the participants (technically,
the majority of the computing power) is under honest control.

In contrast, in the “classic” (permissioned) setting, assuming the existence of a public-key
infrastructure, all of these issues can be overcome:

• Consensus tolerating any number of corrupt players can be achieved if the protocol can be
parametrized with an upper bound on the network’s delay [13].

• Consensus is possible in a fully asynchronous model of computation (where the message delay
may be arbitrary, and confirmation times are only a function of the actual message delay),
assuming that more than 2/3 of the players are honest [7, 14].

In this work, we systematically analyze consensus in the permissionless setting, attempting to
answer the following question:

Is consensus in the permissionless setting inherently mode “difficult” than consensus in
the permissioned setting, and if so, what properties of the permissionless model introduce
these difficulties?

We show that all the “deficiencies” Nakamoto’s protocol turn out to be necessary.

• (Thm 1: Proofs-of-work are needed without authentication) Even without late spawning, even
if all players know the exact number of protocol participants, and even if all messages get
delivered in the next time step (i.e., no network delays), consensus is impossible without using
proofs-of-work (unless communication is authenticated).

• (Thm 2: Proofs-of-work must be performed infinitely often in the presence of late spawning.)
If we also want to support late spawning, we can never stop using proofs-of-work—the protocol
needs to continue using proofs-of-work indefinitely—even if all players know the exact number
of protocol participants, and even if all messages get delivered in the next time step.

• (Thm 3: Honest-majority of computing power is needed in the presence of late spawning.)
Even if all players know the exact number of protocol participants, and even if all messages
get delivered in the next time step, if nodes can spawn late, then honest majority (in terms of
compute-power) is necessary for achieving consensus (even with proofs-of-work).

• (Thm 4: Protocol must know an upper bound of the network’s delay if uncertain of the number
of players.) Even without late spawning, the consensus protocol needs to be parametrized by
the maximum message transmission delay if how many players will show up is uncertain by a
factor of 2.
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We present the proof of all these relatively simple (but hopefully insightful) impossibility results.
We additionally present a somewhat simplified proof of the analysis of Nakamoto’s blockchain from
Pass et al. [28] (with slightly worse parameters) which we believe is useful for didactic purposes.
Finally, we point out some widely criticized painpoints related to Nakamoto’s blockchain (e.g.,
selfish mining, slow confirmation, waste of energy), and survey several recent works that aim to
address these painpoints. We also discuss what lessons we can learn from blockchain-style consensus
for the classical permissioned setting.

2 Preliminaries and Definitions

2.1 Modeling a Permissionless Network

A permissionless network is distinct from classical models considered in the distributed systems
and cryptography literature in the following respects:

1. nodes can join and leave the protocol freely at any time, and participation is open, i.e., there is
no access control mechanism that decides who can join and who cannot;

2. nodes are not aware of other protocol participants a-priori, and the network delivery mechanism
does not provide sender authentication, i.e., there is no authenticated channels;

3. the protocol may not even be aware of the exact the number of nodes participating in the
protocol; and

4. more generally, the number of nodes may vary over time.

In our paper, we will first focus on the former three properties (as mentioned above) for the
permissionless model. In particular, we will show how each property of the permissionless model
leads to several simple but interesting lower bounds (Section 3) — these lower bounds tell us that
consensus and protocol design in the permissionless model is fundamentally different than in the
classical, permissioned model. We will also prove how Nakamoto’s blockchain protocol realizes
consensus in a permissionless model satisfying the first 3 properties (Section 5) by leveraging a
proof-of-work random oracle. Finally, in Section 6, we will survey recent results in this space and
in particular mention results pertaining to the forth property (i.e., varying number of nodes over
time).

In this section, we first formalize such a permissionless execution model which will set up a
formal context for our discussions below.

Round-based protocol execution. A protocol refers to an algorithm for a set of interactive
Turing Machines (also called nodes) to interact with each other. The execution of a protocol Π that
is directed by an environment Z(1κ) (where κ is a security parameter), which activates a number of
nodes as either honest or corrupt nodes. Honest nodes faithfully follow the protocol’s prescription,
whereas corrupt nodes are controlled by an adversary A which reads all their inputs/message and
sets their outputs/messages to be sent.

A protocol’s execution proceeds in rounds that model atomic time steps. Henceforth we use the
terms round and time interchangeably. At the beginning of every round, honest nodes receive inputs
from an environment Z; at the end of every round, honest nodes send outputs to the environment
Z.

The environment Z is a terminology often used in the cryptography literature — one can regard
the environment Z a catch-all term that encompasses everything that lives outside the “box” defined
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by the protocol. For example, as mentioned later, part of the environment Z’s job is to provide
inputs to honest nodes and receive outputs from them. This models the fact that the inputs to the
protocol may originate from external applications and the protocol’s outputs can be consumed by
external applications where any external application or other protocols running in the system are
viewed as part of Z.

Spawning, corrupting, and killing nodes. We now describe how the environment can spawn,
corrupt, and kill nodes during the execution.

• The environment Z can spawn new nodes that are either honest or corrupt any time during the
protocol’s execution.

• At any point, Z can corrupt an honest node j which means that A gets access to its local state
and subsequently, A controls node j.

• At any point, Z can kill either an honest or a corrupt node — at this moment, the node is
removed from protocol execution. The adversary A does not know the state of honest nodes
prior to being killed, but it knows the state of corrupt nodes prior to being killed.

Henceforth in the paper, unless otherwise noted, an honest node refers to one that has been
spawned to be honest, and has not been corrupted or killed; a corrupt node refers to a node that
has been spawned to be corrupt, or one that was spawned to be honest but has been corrupt since,
but has not been killed.

Communication model. We assume that honest nodes can broadcast messages to each other. A
is responsible for delivering all messages sent by honest nodes to all other nodes. A cannot modify
the content of messages broadcast by honest players, but it may delay or reorder the delivery of
a message as long as it eventually delivers all messages sent by honest nodes. Henceforth in this
paper, we assume that each message sent by an honest node takes at least 1 round to deliver, but
the adversary can possibly delay messages for longer — later, we shall consider restrictions on the
delivery time. The identity of the sender is not known to the recipient. The adversary A can send
messages to any subset of honest nodes.

2.2 Notations

We introduce some useful notations.

Conventions. Unless otherwise noted, all variables are functions of the security parameter κ; if
a variable const is independent of κ, we will explicitly note it as a constant. When we say that
var1 ≥ var2 (or var1 ≥ 0), we mean that for every κ ∈ N, var1(κ) ≥ var2(κ) (or var1 ≥ 0). A function
negl(·) is said to be negligible if for every polynomial function p(·), there exists some κ0 such that
negl(κ) ≤ 1/p(κ0) for all κ ≥ κ0.

Notations for randomized execution. A protocol’s execution is randomized, where the ran-
domness comes from honest players as well as the adversary denoted A that controls all corrupt
nodes, and the environment Z that sends inputs to honest nodes during the protocol execution.
We use the notation view←$EXEC

Π(A,Z, κ) to denote a randomly sampled execution trace, and
|view| denotes the number of rounds in the execution trace view. More specifically, view is a random
variable denoting the joint view of all parties (i.e., all their inputs, random coins and messages
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received, including those from the random oracle) in the above execution; note that this joint view
fully determines the execution.

Compliant executions. Henceforth in the paper, we require that our protocols retain specific
security properties for all but a negligible (in the security parameter κ) fraction of execution traces
(i.e., views). A protocol may retain its security properties only if (A,Z) abides by certain con-
straints, e.g., corrupting not too many nodes, delivers messages not too slowly.

Let ρ,∆, N∗, and χ be functions of the security parameter κ and possibly of other parameters.
We say that N∗ is a χ-approximate upper bound estimate of N iff N∗

χ ≤ N ≤ N∗. We say that

(A,Z) is (ρ,∆, N∗, χ)-respecting iff for every view in the support of EXECΠ(A,Z, κ), Z inputs
parameters (ρ,∆, N∗) to all honest nodes prior to the start of execution, and moreover there is
some N such that N∗ is a χ-approximate upper bound estimate of N and the following holds:

• Number of nodes. In every round in view, there are N nodes that have been spawned but not
killed;

• Resilience. In every round in view, there are at most dρNe corrupt nodes;

• ∆-bounded delivery. For any message sent by an honest node at time t, at time t′ ≥ t + ∆,
every node honest at time t′ will have received the message (including nodes that that may have
spawned after t).

2.3 State Machine Replication

State machine replication has been a central abstraction in the 30 years of distributed systems
literature. In a state machine replication protocol, a set of nodes seek to agree on an ever-growing
log over time. We require two critical security properties: 1) consistency, i.e., all honest nodes’
logs agree with each other although some nodes may progress faster than others; 2) liveness, i.e.,
transactions received by honest nodes as input get confirmed in all honest nodes’ logs quickly. We
now define what it formally means for a protocol to realize a “state machine replication” abstraction.
Henceforth in this paper, whenever we refer to “permissionless consensus” or “consensus”, we
specifically mean state machine replication (although the term consensus is also commonly used in
the distributed systems literature to mean single-shot consensus).

Syntax. In a state machine replication protocol, in every round, an honest node receives as input
a set of transactions txs from Z at the beginning of the round, and outputs a LOG collected thus
far to Z at the end of the round.

Security. Let Tconfirm be a polynomial function in the security parameter κ and possibly other
parameters of the execution such as the number of nodes participating, the corrupt fraction, the
network delay, etc.

Definition 1. We say that a state machine replication protocol Π satisfies consistency (or Tconfirm-
liveness resp.) w.r.t. some (A,Z), iff there exists a negligible function negl(·), such that for any
κ ∈ N, except with negl(κ) probability over the choice of view ← EXECΠ(A,Z, κ), consistency (or
Tconfirm-liveness resp.) is satisfied:

• Consistency: A view satisfies consistency iff the following holds:
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– Common prefix. Suppose that in view, an honest node i outputs LOG to Z at time t, and an
honest node j outputs LOG′ to Z at time t′ (i and j may be the same or different), it holds that
either LOG ≺ LOG′ or LOG′ ≺ LOG. Here the relation ≺ means “is a prefix of”. By convention
we assume that ∅ ≺ x and x ≺ x for any x.

– Self-consistency. Suppose that in view, a node i is honest during [t, t′], and outputs LOG and
LOG′ at times t and t′ respectively, it holds that LOG ≺ LOG′.

• Liveness: A view satisfies Tconfirm-liveness iff the following holds: if in some round t ≤ |view| −
Tconfirm, some node honest in round t either received from Z an input set txs that contains some
transaction tx or has tx in its output log to Z in round t, then, for any node i honest at any
time t′ ≥ t+ Tconfirm, let LOG be the output of node i at time t′, it holds that tx ∈ LOG.

Intuitively, liveness says that transactions input to an honest node get included in honest nodes’
LOGs within Tconfirm time; and further, if a transaction appears in some honest node’s LOG, it
will appear in every honest node’s LOG within Tconfirm time.

We say that a state machine replication protocol Π is secure in (ρ,∆, N, χ)-environments, and
has transaction conformation time Tconfirm iff for any p.p.t. (A,Z) that is (ρ,∆, N, χ)-respecting,
Π satisfies consistency and Tconfirm-liveness w.r.t. (A,Z).

2.4 Modeling Proofs-of-Work

Later, to model state machine replication protocols that leverage proofs-of-work, we need to extend
the protocol execution model with a random oracle. In an execution with security parameter κ,
we assume all nodes have access to a random function H : {0, 1}∗ → {0, 1}κ which they can
access through two oracles: H(x) simply outputs H(x) and H.ver(x, y) output 1 iff H(x) = y and 0
otherwise. In any round r, the nodes (as well as A) may make any number of queries to H.ver. On
the other hand, in each round r, an honest node can make only a single query to H, and an adversary
A controlling q parties, can make q sequential queries to H. (This modeling is meant to capture the
assumption that we only “charge” for the effort of finding a solution to a “proof of work” [15], but
checking the validity of a solution is cheap. We discuss this further after introducing Nakamoto’s
protocol.) We emphasize that the environment Z does not get direct access to the random oracle
(but can instruct A to make queries).

3 Limits of the Permissionless Model

In this section, we present some simple but interesting lower bounds which formally capture why the
“permissionless” model fundamentally departs from the classical “permissioned” model adopted in
the traditional distributed systems and cryptography literature; and why some of the intuitions and
insights we have gained about the permissioned model are no longer applicable to the permissionless
model. A subset of these lower bounds were proved in earlier works [30]. Since the permissionless
model differs from classical models in several respects (e.g., no authentication, no exact knowledge
of number of nodes, nodes dynamically joining), below in our description, we make it explicit
exactly which permissionless assumption leads to each lower bound.

Although not explicitly noted, all of our lower bounds in this section apply even to a weaker
execution model in which corruption must be static, i.e., Z cannot corrupt an honest node after it
is spawned.
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3.1 Proof-of-Work is Necessary Absent Authentication

If the underlying network model provides no authentication of the sender, then the adversary is
free to impersonate any number of nodes. For example, in a voting based protocol, a corrupt
node can launch a Sybil attack and cast many votes. In this setting, intuitively, consensus should
not be possible unless there is a rate-limiting mechanism that limits the extent to which such
Sybil attacks are successful. One possible rate-limiting mechanism is through proof-of-work. We
formalize this intuition in the following lower bound which states that proof-of-work (assuming no
other rate limiting mechanism in place) is indeed necessary for reaching consensus in a network
without authentication, even when all nodes are honest (but the adversary can insert messages into
the network). This lower bound holds even in a static corruption environment and when Z must
spawn all nodes upfront prior to execution start.

Early spawning. We say that (A,Z) respects early spawning w.r.t. Π, iff for every view in the
support of EXECΠ(A,Z, κ), Z spawns all nodes prior to the protocol’s execution and does not
spawn more nodes after the execution starts. Henceforth, we say that a state machine replication
protocol Π satisfies consistency and Tconfirm liveness in (ρ,∆, N, χ)-early-spawning environments if
for any p.p.t. (A,Z) that is (ρ,∆, N, χ)-respecting and moreover respects early spawning w.r.t. Π,
Π satisfies consistency and Tconfirm-liveness w.r.t. (A,Z).

Theorem 1 (Proof-of-work is necessary absent authentication). Let Π denote a protocol whose
protocol instructions never query the proof-of-work oracle. Then, for any N ≥ 3, any polyno-
mial Tconfirm(κ), Π cannot simultaneously satisfy consistency and Tconfirm-liveness in (ρ = 0,∆ =
1, N, χ = 1)-early-spawning environments.

Proof roadmap. The proof is reminiscent of the classical and elegant proof by Fischer et al. [17]
who showed that no deterministic protocol can realize weak byzantine agreement1 under 1

3 or
more fraction of corrupt nodes (and their proof [17] is a simplification of the original proof of the
same statement by Lamport [22]). Here, we use similar techniques, but we show a proof for an
unauthenticated network — and since in such a network the adversary can impersonate any honest
node, a lower bound of similar nature holds even when all nodes are honest but the adversary can
insert messages into the network. We stress also that in contrast to the 1/3 lower bound for weak
byzantine agreement, our lower bound proof rules out even randomized protocols.

The proof. We construct the following p.p.t. pair (A,Z) that is (ρ = 0,∆ = 1, N, χ = 1)-
respecting and respects early spawning. Specifically, Z spawns N honest nodes upfront prior to
the start of the execution. Without loss of generality we shall assume that N is even. Let P ∗

and R∗ each denote a disjoint set of N/2 honest nodes. Henceforth we can consider P ∗ and R∗

as super-nodes. We only care about messages transmitted in between super-nodes but not within.
Let M(κ) be an appropriate parameter to be determined later. Now, the adversary simulates in
its head M super-nodes (each containing N/2 simulated nodes executing the honest protocol), and
the execution is depicted in the following graph where the starred nodes denote the honest nodes,
and every other super-node is simulated by A (note that A can do this without corrupting node
since it can inject messages into the network).

1Weak byzantine agreement has a weaker validity requirement: validity is only required if all nodes remain honest
and all nodes receive the same input bit b; in this case, every node is required to output b.
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P-R-P-...-R-P*-R*-P-...-R-P-R 1: tx1

| |

R-P-R-...-P-R’-P’-R-...-P-R-P 2: tx2

2 2

Now (A,Z) samples tx1, tx2 from some high-entropy distributionD such that tx1, tx2 are different
except with negl(κ) probability. Z input {tx1} to every honest node in P ∗ and R∗ in every round.
For simulated super-nodes P ′ and R′, all nodes within these super-nodes act as if they receive the
input {tx2} in every round. All other nodes (besides P ∗, R∗, P ′ and R′) act as if they receive the
dummy input tx = ⊥ from Z in every round. We now consider such an execution EXECΠ(A,Z, κ)
as depicted above.

Henceforth, if in some view in the support of EXECΠ(A,Z, κ), a node outputs a log that contains
tx1 first before tx2 appears in the log, then we say that the node outputs tx1 first in view. Otherwise
if a node outputs a log that contains tx2 first before tx1 appears in the log, then we say that the
node outputs tx2 first in view.

Claim 1. Suppose that the protocol Π satisfies Tconfirm-liveness and consistency in (ρ = 0,∆ =
1, N, χ = 1)-early-spawning environments. Then, except with negl(κ) probability over the choice
of view← EXECΠ(A,Z, κ), if any real or simulated super-node outputs txb first for b ∈ {1, 2}, then
all other super-nodes must output txb first.

The above claim holds regardless of the choice of M .

Proof. For every adjacent pair of super-nodes (either real or simulated) henceforth denoted P and
R respectively, P and R’s view in the above execution is identically distributed as an execution in
which P and R are spawned to be honest, and every other super-node is simulated by the adversary
A, and where each node receives input in a way as said above. Then, by our assumption on Π,
except with negligible probability over the choice of view, P and R should output the same txb first
where b ∈ {1, 2}. The remainder of the proof follows by taking a union bound over the number of
adjacent pairs in the figure.

Claim 2. Suppose that the protocol Π satisfies Tconfirm-liveness in (ρ = 0,∆ = 1, N, χ = 1)-early-
spawning environments, and that M > 3Tconfirm(κ). Then it holds that except with negligible
probability over the choice of view, P ∗ and R∗ must output tx1 first; and P ′ and R′ must output
tx2 first.

Proof. Let X be a super-node; and let viewtX be a random variable denoting the joint view of all
nodes in the super node X’s by the end of round t. Since it takes exactly 1 round to deliver each
message, suppose that two super-nodes X and Y are r distance away from each other in the above
graph. Then, it is not hard to see that viewtX is independent of Y ’s input received from Z as
long as t < r. This means that by time Tconfirm, the views of P ∗ and R∗’s are independent of tx2.
Now, since tx2 is chosen from a high-entropy distribution as mentioned earlier, it is not hard to see
that tx2 cannot be in P ∗ and R∗’s output log except with negligible probability over the choice of
view. On the other hand, by the liveness assumption on Π, we know that except with negligible
probability over the choice of view, tx1 must be in the output logs of P ∗ and R∗ by time Tconfirm.
In other words, P ∗ and R∗ must output tx1 first except with negligible probability.

The claim now follows by observing that a symmetric argument holds for P ′ and R′: except
with negligible probability, P ′ and R′ must output tx2 first.
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Proof of Theorem 1. Straightforward from Claims 1 and 2.

3.2 Limits Due to Late Spawning

When nodes may spawn dynamically, a few interesting lower bounds arise. First, we show that not
only is proof-of-work necessary, any secure state machine replication protocol must in fact perform
proof-of-work infinitely often. Second, we show that honest majority is necessary to achieve state
machine replication in a network that allows dynamic spawning of nodes. We now formally state
the following lower bounds — both of these lower bounds hold even when assuming the existence
of a proof-of-work oracle, assuming static corruption, that all honest messages are delivered within
a single round, and that the protocol knows the exact number of nodes N .

Let ρ,∆, N, χ be polynomially bounded (or inverse polynomially bounded) in κ. We say that
a protocol Π stops proof-of-work early in (ρ,∆, N, χ)-environments iff for any p.p.t. (A,Z) that is
(ρ,∆, N, χ)-respecting, there exists some polynomial T (·), such that in every view in the support
of EXECΠ(A,Z, κ), honest nodes stop querying the proof-of-work oracle after T (κ) time. The
following theorem was proved in our earlier work [30].

Theorem 2 (Proof-of-work must be performed infinitely often [30]). Let N ≥ 3 be polynomially
bounded in κ and let Π be a protocol that stops proof-of-work early in (ρ = 0.01,∆ = 1, N, χ = 1)-
environments. Then, for any polynomial Tconfirm(κ), Π cannot simultaneously satisfy consistency
and Tconfirm-liveness in (ρ = 0.01,∆ = 1, N, χ = 1)-environments.

Proof. Suppose for the sake of contradiction that there is a protocol Π that stops proof-of-work
early in (0.01, 1, N, 1)-environments; and moreover Π satisfies both consistency and Tconfirm-liveness
in (0.01, 1, N, 1)-environments for some polynomial Tconfirm.

We now construct the following p.p.t. (A,Z) pair that is (ρ = 0.01,∆ = 1, N, χ = 1)-respecting:
Z spawns N nodes upfront, d0.01Ne fraction of which are corrupt and the remaining honest. Till
time T (κ) corrupt nodes participate honestly in the protocol. By assumption, at time T (κ) and
after honest nodes stop making queries to the proof-of-work oracle.

At time T , A relies on corrupt nodes to simulate an alternate execution in its head from scratch.
This would require that corrupt nodes query the proof-of-work oracle; but otherwise the corrupt
nodes still continue to play honestly in the real-world execution.

It is not difficult to see that at time t∗ = T + 100T + Tconfirm + 1, the simulated execution
can simulate as many rounds as the real execution. Z generates two random transactions tx0 and
tx1 from {0, 1}κ. For honest nodes in the real execution, Z inputs {tx0} for every round. For the
simulated execution, the simulated honest nodes act as if Z inputs {tx1} in every round. Suppose
also that at time t∗, Z kills an existing honest node and spawns a new honest node i∗ (in the real
execution). At this moment, A relays messages from both the real- and the simulated executions
to i∗. Whenever i∗ sends a message, the message is relayed to nodes (or simulated nodes) in both
the real and simulated executions.

Now by the end of round t∗ − 1, let LOG0 be some honest node’s log in the real execution. By
liveness, it holds that tx0 ∈ LOG0 except for a negligible fraction of the views. By a symmetric
argument, except for a negligible fraction of views, for the simulated execution, at simulated time
t∗ − 1, it must be that tx1 ∈ LOG1 where LOG1 denotes the log of some simulated honest node at
simulated time t∗ − 1. Since tx0 and tx1 are generated from a high-entropy distribution, except
with negligible probability over the choice of view, it must be that tx0 /∈ LOG1 and tx1 /∈ LOG0

since both LOG0 and LOG1 are of polynomial length.
Let LOG∗ denote the log of node i∗ by the end of round t∗. If we consider the real execution,

except for a negligible fraction of views where either consistency or liveness fails, we have that
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tx0 ∈ LOG∗ due to liveness; and due to consistency, it must be that LOG∗ ≺ LOG0 or LOG0 ≺ LOG∗.
Taking a union bound, except with negligible probability over the choice of view, either tx0 appears
before tx1 in LOG∗ or tx1 does not appear at all in LOG∗.

Since the view of node i∗ in the real execution and the simulated execution are identically
distributed, by a symmetric argument, except with negligible probability over the choice of view,
either tx1 appears before tx0 in LOG∗ or tx0 does not appear in LOG∗. Thus we have reached a
contradiction.

Theorem 3 (Honest majority is necessary for late spawning). For any polynomial Tconfirm(κ),
and any N ≥ 3, no protocol Π can simultaneously satisfy consistency and Tconfirm-liveness in
(ρ = 0.5,∆ = 1, N, χ = 1)-environments.

Proof. Suppose for the sake of contradiction that there is a protocol Π that satisfies both consistency
and Tconfirm-liveness (ρ = 0.5,∆ = 1, N, χ = 1)-environments for some N ≥ 3 and some polynomial
Tconfirm. We can construct the following p.p.t. (A,Z) pair that is (0.5, 1, N, 1)-respecting: Z spawns
N nodes upfront among which exactly d0.5Ne nodes are corrupt. Now, corrupt nodes do not
participate in the real execution, but instead simulate an alternate execution among themselves.
Z generates two random inputs tx0 and tx1 from {0, 1}κ, and inputs {tx0} to every honest node in
the real execution in every round. Every simulated honest node in the simulated execution acts as
if {tx1} is received from Z in every round.

At some time after Tconfirm, suppose that Z kills an existing honest node from the real execution;
and similarly a simulated node is killed from the simulated execution. At the same time Z spawns a
new node i∗. A relays messages from both the real- and the simulated executions to i∗. Whenever
i∗ sends a message, the message is relayed to nodes (or simulated nodes) in both the real and
simulated executions. The rest of the proof follows due to the same reasoning as the proof of
Theorem 2 such that we can reach a contradiction.

We note that late spawning is also necessary for the above lower bounds to hold. Interestingly,
if we assume no late spawning of nodes, i.e., all nodes must be spawned upfront prior to protocol
execution, state machine replication is known to be possible against an arbitrary corrupt fraction
and without having to call proofs-of-work infinitely often (assuming full network synchrony). In
particular, Miller et al. [20] showed that assuming the existence of a proof-of-work oracle, there
exists a protocol Π that realizes a “pseudonymous PKI” in (ρ,∆ = 1, N, χ = 1)-environments for
any ρ and N . From a pseudonymous PKI, one can easily realize “pseudonymous broadcast” and in
turn realize state machine replication simply by spawning one instance of pseudonymous broadcast
per round where in the i-th instance, the (i mod N)-th pseudonym acts as the sender. A similar
result was shown by Andrychowicz et al. [3].

Remark 1. Finally, we remark that the lower bound stated in the above Theorem 3 (i.e., honest
majority is necessary even if there is a single late-spawning node) and its proof still hold even in
a permissioned model and even if assuming PKI — the permissioned version of this thereom was
proven in our recent work [31].

3.3 Limits due to Uncertainty in Number of Nodes

Another feature of the permissionless model is that the protocol may not know upfront the exact
number of nodes that will show up. Our earlier paper [30] showed that if this is the case, then state
machine replication is not possible under partially synchronous or asynchronous network models
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— even when the protocol is given an a-priori estimate of the number of nodes that is accurate to
a factor of 2, and even when assuming that Z must spawn all nodes upfront and all nodes must
be honest (but A controls network delivery). We capture this intuition in the following theorem,
which, intuitively, states that if some protocol Π knowing an estimate N∗ can achieve liveness when
only N∗

2 honest nodes show up, then Π cannot guarantee consistency if N∗ nodes actually show up.
Formally, we say that a protocol Π is partially synchronous if Π’s instructions do not depend

on the ∆ value received from Z prior to protocol start. The following theorem was proved in our
earlier work [30].

Theorem 4 (Impossibility of partial synchrony and asynchrony due to uncertainty in number [30]).
Let N(·) and ρ(·) be polynomial functions in κ and let Tconfirm(·, ·) be a polynomial function in κ
and the actual maximum delay of a view. For any N ≥ 2, any ρ and any Tconfirm, there exists
a polynomial function ∆ such that no partially synchronous protocol Π can simultaneously achieve
consistency and Tconfirm-liveness in (ρ,∆, 2N, 2)-early-spawning environments.

Proof. For any N ≥ 2 and any polynomial Tconfirm, we construct a p.p.t. (A,Z) pair that is
(ρ = 0,∆, 2N,χ = 2)-respecting for some polynomial ∆ > Tconfirm(κ, 1) and moreover respects
early spawning. We show that for any partially synchronous protocol Π, if Π satisfies Tconfirm-
liveness w.r.t. (A,Z), then Π cannot satisfy consistency w.r.t. (A,Z).

Upfront Z spawns 2N nodes all of which honest, and informs honest nodes of the parameters
(0,∆, 2N). These 2N nodes are divided into two partitions each containing N honest nodes, and A
delivers messages within each partition within 1 round; however, for messages in between partitions,
they are delayed for ∆ > Tconfirm(κ, 1). Z samples two random transactions tx1 and tx2 from {0, 1}κ.
For honest nodes in the first partition, Z inputs {tx1} in every round; and for honest nodes in the
second partition, Z inputs {tx2} in every round.

Clearly by time Tconfirm(κ, 1), the view of honest nodes in the first partition is identically
distributed as an alternate execution EXECΠ(A′,Z ′, κ) where (A′,Z ′) is also (ρ = 0,∆, 2N,χ = 2)-
respecting and moreover respects early spawning, but now 1) Z ′ spawns only N honest nodes
upfront; 2) A′ always delivers honest messages immediately in the next round; and 3) Z ′ inputs
transactions in the same way Z inputs transactions to the first partition. Intuitively, this is saying
honest nodes cannot tell whether the other partition has not been spawned or whether delay is large.
Let LOG1 denote the log of some honest node in the first partition by the end of round Tconfirm(κ, 1).
By liveness of the alternate execution EXECΠ(A′,Z ′, κ), except with negligible probability over the
choice of view, tx1 ∈ LOG1. By a symmetric argument, let LOG2 denote the log of some honest node
in the second partition by the end of round Tconfirm(κ, 1) — then except with negligible probability
over the choice of view, tx2 ∈ LOG2. Since tx1 and tx2 are sampled at random from a high entropy
distribution, it must hold that except with negligible probability over the choice of view, tx2 /∈ LOG1

and tx1 /∈ LOG2. Thus, we conclude that Π cannot satisfy consistency w.r.t. (A,Z).

Remark 2. Finally, we remark that the above partial synchrony lower bound stated in Theorem 4
and its proof still hold even in a permissioned model and even if assuming PKI, as long as the
number of players is uncertain — the permissioned version of this theorem was originally proven
in our recent work [31].

4 Abstract Blockchain Protocols

A blockchain protocol can be regarded as a way to realize state machine replication. We now
formally define what it means for a protocol to realize to a blockchain abstraction.
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Blockchain notations. Henceforth we often use the notation chain to denote an abstract blockchain.
The notation chain[: −`] denotes the entire chain except the trailing ` blocks; chain[: `] denotes the
entire chain upto the block at length `; chain[−` :] denotes the trailing ` blocks of chain; and
chain[` :] denotes all blocks at length ` or greater.

Syntax. In a blockchain protocol, in every round, an honest node receives an input txs from Z
at the beginning of the round, and outputs an abstract blockchain chain to Z at the end of the
round. Each chain[i] where i ∈ [|chain|] is referred to as an abstract block.

Security. A blockchain protocol should satisfy chain growth, chain quality, and consistency. In-
tuitively, chain growth requires that honest nodes’ blockchains grow steadily, neither too fast nor
too slow. Chain quality requires that in any honest node’s chain, any sufficiently long window of
consecutive blocks contains a certain fraction of blocks that are mined by honest nodes. Consistency
requires that all honest nodes’ chains agree with each other except for the trailing few blocks.

We now define these security properties formally. Henceforth if an honest node outputs some
chain to Z in some round r in view, we say that chain is an “honest chain” in round r in view.

Definition 2. We say that a blockchain protocol Π satisfies (T, g0, g1)-chain growth, (T, µ)-chain
quality, and T -consistency in (ρ,∆, N∗, χ)-environments iff for any (ρ,∆, N∗, χ)-respecting p.p.t.
(A,Z), there exists a negligible function negl(·), such that for every κ ∈ N, except with negl(κ)
probability over the choice of view← EXECΠ(A,Z, κ), the following hold for view:

• (T, g0, g1)-chain growth. A view satisfies (T, g0, g1)-chain growth iff the following hold:

– Consistent length: If in round r some honest chain is of length `, then in round r + ∆, all
honest chains must be of length at least `.

– Growth lower bound: For any r and t such that g0(t − r) ≥ T , let chainr and chaint denote
two honest chains in round r and t respectively, it holds that

|chaint| − |chainr| ≥ g0(t− r)

– Growth upper bound: For any r and t such that g1(t − r) ≥ T , let chainr and chaint denote
two honest chains in round r and t respectively, it holds that

|chaint| − |chainr| ≤ g1(t− r)

• (T, L, µ)-chain quality. A view satisfies (T, L, µ)-chain quality iff the following holds: for any
honest chain denoted chain in view, for any T consecutive blocks chain[j + 1..j + T ], more than
µ fraction of the blocks in chain[j + 1..j + T ] are mined by honest nodes at most L blocks ago
— here we say that a block chain[i] is “mined by an honest node at most L blocks ago” iff Z
input the contents of chain[i] to some honest node when its last output to Z contains the prefix
chain[: i− L] (here if i− L < 0, we round it to 0).

• T -consistency. A view satisfies T -consistency iff the following hold: for any two honest chains
chainr and chaint in round r and t ≥ r respectively, it holds that

chainr[: −T ] ≺ chaint

We stress that since chainr and chaint can possibly belong to the same node, the above definition
also implies “future self consistency” except for the trailing T blocks.
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Blockchain implies state machine replication. Given any blockchain protocol Πblockchain,
it is easy to construct a state machine replication protocol where 1) nodes run an instance of
Πblockchain; 2) an honest node broadcasts all newly seen transactions to each other; and 3) in every
round, nodes remove the trailing κ blocks from the present chain and output the truncated chain to
the environment Z [30,31]. It is not difficult to see that consistency (of the resulting state machine
replication protocol) follows directly from consistency of the blockchain; and liveness follows from
chain quality and chain growth. The above intuition has been formalized in our earlier works [30,31].

5 Nakamoto’s Blockchain

5.1 Nakamoto’s Blockchain Protocol

We describe (a simplified variant of) Nakamoto’s blockchain [26] referred to as Πnak(p). Πnak(p)
takes in a puzzle difficulty parameter p that denotes the probability that each player mines a
block in a single round. As we mention later, for the protocol to retain consistency, this difficulty
parameter p must be chosen based on the total mining power and the maximum network delay,
such that on average, it takes significantly more time for the entire network to mine a block than
the maximum network delay.

Protocol. In Πnak, each honest node maintains a blockchain denoted chain at any point of time.
Each chain[i] is referred to as a (mined) block and is of the format chain[i] := (h−1, η, txs, h),
containing the hash of the previous block denoted h−1, a nonce η, a record txs, and a hash h.

We use chain := extract(chain) to denote the sequence of records contained in the sequence of
blocks chain. Honest nodes then output the sequence of extracted records chain to the environment
Z — in other words, chain is an abstract blockchain (i.e., a linearly ordered log) stripped of all
protocol-specific metadata.

The Πnak protocol works as follows:

• Nodes that are newly spawned start with initial chain containing only a special genesis block:
chain := (0, 0,⊥,H(0, 0,⊥)).

• In every round: a node reads all incoming messages (delivered by A). If any incoming message
chain ′ is a valid sequence of blocks that is longer than its local blockchain chain, replace chain
by chain ′. We define what it means for a chain to be valid later. Checking the validity of chain ′

can be done using only H.ver queries.

• Read an input record txs from the environment Z. Now parse chain[−1] := ( , , , h−1), pick
a random nonce η ∈ {0, 1}κ, and issue query h = H(h−1, η, txs). If h < Dp, then append the
newly mined block (h−1, η, b, h) to chain and broadcasts the updated chain. More specifically,
Dp = p(κ) · 2κ such that for all (h, txs), Prη[H(h, η, txs) < Dp] = p. In other words, Dp is
appropriately parametrized such that the probability that any player mines a block in a round
is p. We will describe shortly how the Πnak protocol sets the parameter p based on the input
parameters ρ,∆, N∗ it receives from Z.

• Output chain := extract(chain) to the environment Z. Note that the notation chain extracts only
the sequence of records from chain removing all other metadata that are not needed by external
applications.
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Valid chain. We say a block chain[i] = (h−1, η, txs, h) is valid with respect to (a predecessor block)
chain[i− 1] = (h′−1, n

′, txs′, h′) if two conditions hold: h−1 = h′, h = H(h−1, η, txs), and h < Dp. A
chain of blocks chain is valid if a) chain[0] = (0, 0,⊥,H(0, 0,⊥)) is the genesis block, and b) for all
i ∈ [`], chain[i] is valid with respect to chain[i− 1].

5.2 Parameters and Notations

Setting the protocol’s difficulty parameter. Henceforth, we assume that the protocol Πnak is
parametrized by a constant φ whose meaning will become obvious later. As mentioned earlier, the
protocol Πφ

nak receives as input the parameters (ρ,∆, N∗). Based on these parameters, we assume

that the protocol Πφ
nak will choose an appropriate difficulty parameter p (i.e., the probability that

each mining attempt is successful) satisfying the following relations:

a) ν := 2pN∗∆ < 1; and

b) Honest nodes must outnumber corrupt nodes by an appropriate constant margin, or formally,

1− ρ
ρ
≥ 1 + φ

1− ν
(1)

It is not hard to see that for any positive constants ρ < 1
2 and φ, for any ∆, N∗, such a p can be

efficiently determined.

Additional notations. Henceforth without loss of generality, we use the notation N to denote
the actual number of nodes during an execution. If (A,Z) is (ρ,∆, N∗, χ)-respecting, it must hold
that N∗

χ ≤ N ≤ N∗. We may assume that every round has exactly NH := (1 − ρ)N number of
honest nodes and exactly NC := ρN corrupt nodes — since if there are more honest nodes in a
round, we can always imagine that some of the honest nodes are corrupt nodes that simply follow
the honest protocol (and our proof works for any corrupt behavior).

Let α = p ·NH denote the expected number of honest nodes that mine a block in each round.
Let β = p ·NC denote the expected number of corrupt nodes that mine a block in each round.

5.3 Main Theorem for Nakamoto’s Blockchain

Theorem 5 (Nakamoto’s blockchain). For any T that is super-logarithmic in κ, any constant ρ <
1
2 , any ∆, N∗, χ, any positive constant φ > 0, Πφ

nak satisfies the following properties in (ρ,∆, N∗, χ)-
environments where p is chosen according to the rules defined in Section 5.2 based on ρ,∆, N∗,
and φ:

• (T, g0, g1)-chain growth where g0 = (1− ε)(1− 2pN)α, and g1 = (1 + ε)Np where N denotes the
actual number of nodes in each round;

• (T, 1, µ)-chain quality where µ = 1− 1+ε
1+φ ; and

• T -consistency.
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5.4 Ideal-World Protocol

To prove the security properties of Nakamoto’s blockchain, it helps to think of an ideal protocol
denoted Πφ

ideal that captures the nature of the randomized process behind Πφ
nak. In this ideal

protocol, nodes mine blocks by interacting with an ideal functionality Ftree which keeps track of
all the blockchains mined thus far. Below we first describe the ideal protocol Πideal, and then we
explain to prove the security properties of Πnak, it is sufficient to prove the same properties for
Πideal.

Ideal functionality Ftree. One may think of the ideal functionality Ftree(p) as a trusted party in
the ideal protocol Πideal. The ideal functionality Ftree is parametrized with an appropriate difficulty
parameter p such that each mining attempt is successful with probability p — choice of p is made
in the same manner as for the real-world protocol Πnak (see Section 5.2).
Ftree keeps track of the set (denoted tree) of all abstract blockchains mined thus far. Initially,

the only blockchain in the set tree is genesis. Ftree allows honest and corrupt nodes to mine blocks
and verify the validity of (abstract) blockchains through the following interfaces:

• Upon receiving extend(chain, txs): Ftree checks if chain is a valid blockchain in tree. If so, Ftree

flips a coin that comes up heads with probability p. If the coin flip is successful, Ftree records
chain||txs in the set tree, and returns success.

• Upon receiving verify(chain): Ftree checks if chain is a valid blockchain in tree; if so, return
true; else return false.

Ideal protocol Πideal. The ideal protocol Πφ
ideal chooses a difficulty parameter p in the same

fashion as Πφ
nak based on input parameter (ρ,∆, N∗) received from Z, and then the protocol works

as follows where Ftree := Ftree(p):

• Every node maintains a longest abstract blockchain seen thus far denoted chain.

• In every round, every honest node first receives all incoming messages on the network. For any
received message chain′: If Ftree.verify(chain′) = 1 and chain′ is longer than the current local
chain, then let chain := chain′ and broadcast chain′.

• In every round, every honest node receives a record txs from the environment Z, and then queries
Ftree.extend(chain, txs). If this mining query is successful, the node broadcasts chain||txs and
replaces its chain with chain := chain||txs.

Real emulates ideal. The main difference between the real-world protocol Πnak and the ideal-
world protocol Πideal is that in the real world, the possibility of hash collisions may allow the
adversary to perform attacks that are not relevant in the ideal world — however, intuitively, as-
suming that the proof-of-work function H is a random oracle, the probability of having a hash
collision is negligible. Pass et al. [28] has formally proved that the real-world protocol securely
emulates the ideal-world:

Proposition 1 (Real emulates ideal [28]). For any p.p.t. adversary A, there exists a p.p.t. simulator
S, such that for any p.p.t. Z,

{viewZ(EXECΠφideal(S,Z, κ))}κ∈N
c≡ {viewZ(EXECΠφnak(A,Z, κ))}κ∈N

where
c≡ denotes computational indistinguishability; and moreover, if (A,Z) is (ρ,∆, N, χ)-respecting

w.r.t. Πnak(p) for any ρ,∆, N, χ), then (S,Z) is (ρ,∆, N, χ)-respecting w.r.t. Πideal.
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The implication of the above proposition is that if a real-world adversary can break the security
properties of Πnak with probability ε, then there is an ideal-world adversary that can break the
security properties of Πideal with probability ε − negl(κ) where negl(·) is some negligible function.
We refer the reader to Pass et al. [28] for the proof of this proposition — in essence the proof
reasons that 1) the probability of hash collision is negligible in the real world; and 2) any real-world
attack that does not exploit hash collisions would translate to an ideal-world attack.

Due to the above proposition, to prove Theorem 5, it suffices to prove the relevant security
properties (i.e., consistency, chain quality, and chain growth) for the ideal protocol Πideal — this
will be our focus in the remainder of this section.

5.5 Proof Roadmap

Related works. Several prior works analyzed the security of Nakamoto’s blockchain protocol
under the assumption that the adversary controls only minority of the total mining power. An
elegant work by Sompolinsky and Zohar shows that Nakamoto’s blockchain retains consistency
against certain restricted attacks [35]. Garay, Kiayas and Leonardos [19] were the first to show that
Nakamoto’s blockchain retains consistency against an arbitrarily malicious adversary that controls
a minority of the mining power, as long as the adversary must deliver messages immediately. Pass
et al. [28] were the first to prove the security of Nakamoto’s blockchain when the adversary can
reorder and delay messages arbitrarily, as long as any message sent by honest nodes is delivered
with a maximum of ∆ rounds.

Our proof. We present a simplified version of the proof by Pass et al. [28] suitable for pedagogical
purposes.

Shorthand notation. Henceforth in our proofs, we adopt the following shorthand notation:
whenever we say “Except with negligible probability over the choice of views some event ev(view)
holds”, we formally mean that for any positive constants φ and ρ < 1

2 , any ∆, N∗, χ, for any p.p.t.
(A,Z) pair that is (ρ,∆, N∗, χ)-respecting, there exists some positive constant η such that for any
κ ∈ N,

Pr
[
view←$EXEC

Πφnak(A,Z, κ) : ev(view)
]
≥ 1− exp(−ηκ)

In particular, this means that in our proofs, whenever we refer to a negligible function, we mean a
strongly negligible function that is exponentially small in the security parameter.

5.6 Convergence Opportunities

We now define a useful pattern called convergence opportunities [28], which we shall later use in
both our chain growth lower bound proof as well as consistency proof. Intuitively, a convergence
opportunity is a ∆-period of silence in which no honest node mines a block, followed by a time step
in which a single honest node mines a block, followed by another ∆-period of silence in which no
honest node mines a block. We formalize this notion below.

Convergence opportunity. Given a view, suppose T ≤ |view| −∆, we say that [T −∆, T + ∆]
is a convergence opportunity iff

• For any t ∈ [max(0, T −∆), T ), no honest node mines a block in round t;

• A single node honest at T mines a block in round T ;
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• For any t ∈ (T, T + ∆], no node honest in round t mines a block.

Let T denote the time in which a single honest node mines a block during a convergence
opportunity. For convenience, we often use T to refer to the convergence opportunity. We say that
a convergence opportunity T is contained within a window [t′ : t] if T ∈ [t′ : t].

Henceforth, we use the notation C(view)[t′ : t] to denote the number of convergence opportuni-
ties contained within the window [t′ : t] in view.

Convergence opportunities are common. We now show that convergence opportunities hap-
pen sufficiently often.

Lemma 1 (Number of convergence opportunities). For any positive constants η and ε, except
with negligible probability over the choice of view, the following holds: for any t0, t1 ≥ 0 such that
t := t1 − t0 > εκ

α , we have that

C(view)[t0 : t1] > (1− η)(1− 2pN∆)αt

where α := p ·NH denotes the expected number of honest nodes that mine a block in each round.

Proof. It suffices to prove the lemma for any fixed choice of t0 and t — if we can do so, the lemma
then follows by taking a union bound over polynomially many choices of t0 and t. We now focus
on the coins Ftree flips for honest nodes upon their extend queries — henceforth we refer to these
coins as honest coins for short.

• Let X denote the total number of heads in all the honest coins during [t0, t1]. Due to the Chernoff
bound (see Appendix A), for any constant 0 < ε < 1, it holds that

Pr[X < (1− ε) · αt] ≤ exp(−Ω(αt))

Henceforth, let L := (1− ε) · αt for a sufficiently small constant ε.

• Let Yi = 1 iff after the i-th heads in the honest coin sequence during [t0, t1], there exists a heads
in the next NH∆ coin flips. Notice that all of the Yi’s are independent — to see this, another
way to think of Yi is that Yi = 0 iff the i-th coin flip and the (i + 1)-th coin flip are at least
NH∆ apart from each other.

Let Y :=
∑L

i=1 Yi. We have that

E[Y] ≤ (1− (1− p)NH∆) · L ≤ pNH∆ · L = α∆L

By Chernoff bound, it holds that for any ε0 > 0,

Pr[Y > α∆L+ ε0L] ≤ exp(−Ω(L)) = exp(−Ω(αt))

More concretely, the inequality above arises from the Chernoff bound (see Appendix A); there
are 2 cases:

– If δ := ε0
α∆ < 1, we have that Pr[Y > α∆L + ε0L] ≤ exp(−δ2α∆L/3) = exp(

ε20L
3α∆). Thus

the above inequality follows from the fact that ε0 < α∆ < 1.

– If δ := ε0
α∆ ≥ 1, we have that Pr[Y > α∆L+ ε0L] ≤ exp(−δα∆L/3) = exp(−ε0L/3).
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• Let Zi = 1 iff before the i-th heads in the honest coin sequence during [t0, t1], there exists a
heads in the previous NH∆ coin flips. Similarly as before, all of the Zi’s are independent. Let
Z :=

∑L
i=1 Zi. We have that

E[Z] ≤ (1− (1− p)NH∆) · L ≤ pNH∆ · L = α∆L

By the Chernoff bound, it holds that for any ε0 > 0,

Pr[Z > α∆L+ ε0L] ≤ exp(−Ω(L)) = exp(−Ω(αt))

• Observe that for any view,

C(view)[t0 : t1] ≥ X(view)−Y(view)− Z(view)

Recall that our compliance rule implies that α∆ ≤ pN∆ < 1
2 . For any view where the aforemen-

tioned relevant bad events do not happen, we have that for any η > 0, there exist sufficiently
small positive constants ε0 and ε such that the following holds:

X−Y − Z ≥ (1− 2α∆− 2ε0)L

=(1− 2α∆− 2ε0) · (1− ε) · αt ≥ (1− η)(1− 2α∆) · αt
≥(1− η)(1− 2pN∆) · αt

The proof concludes by observing that there are at most exp(−Ω(αt)) fraction of bad views that
we could have ignored in the above.

The above lemma bounds the number of convergence opportunities for any fixed window. By
taking a union bound, we can conclude that except for a negligible fraction of bad views, in all good
views, it must hold that any sufficiently long window has many convergence opportunities.

5.7 Chain Growth Lower Bound

To prove the chain growth lower bound, we observe that for any view, whenever there is a conver-
gence opportunity, the shortest honest chain must grow by at least 1 (see Fact 1). Since earlier, we
proved that except with negligible probability over the choice of view, there are many convergence
opportunities, it naturally follows that honest chains must grow rapidly. We now formalize this
intuition.

Fact 1. For any view, any t0, any t1 ≥ t0, and any honest chains chaint0 and chaint1 in rounds t0
and t1 respectively, it holds that

C(view)[t0 + ∆ : t1 −∆] ≤ |chaint1 | − |chaint0 |

Proof. By definition, if t is a convergence opportunity in view, then the shortest honest chain at
the end of round t + ∆ must be longer than the longest honest chain at the beginning of round
t−∆. The remainder of the proof is straightforward.
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Lemma 2 (Chain growth lower bound). For any positive constants ε0, ε
′, except with negligible

probability over the choice of view, the following holds: for any t0 and any t ≥ ε0κ
α , let chaint0 be

any honest chain at time t0 and let chaint0+t be any honest chain at time t0 + t, then

|chaint0+t| − |chaint0 | ≥ (1− ε′)(1− 2pN∆)αt

Proof. It suffices to prove the above lemma for any fixed t0 and t since if so, we can take a union
bound over the polynomially many choices of t0 and t. Ignore the negligible fraction of views where
bad events pertaining to Lemma 1 take place. For every remaining good view, due to Fact 1 and
Lemma 1, it holds that for every positive constant ε′, there is a sufficiently small positive constant
ε such that for sufficiently large κ,

|chaint0+t| − |chaint0 |
>(1− ε)(1− 2pN∆)α(t− 2∆)

=(1− ε)(1− 2pN∆)αt− 2(1− ε)(1− 2pN∆)α∆

≥(1− ε′)(1− 2pN∆)αt

where the last inequality is due to the fact α∆ < 2pN∆ < 1, and moreover αt = Θ(κ).

5.8 Chain Quality

Intuitively, we will prove chain quality by comparing the number of adversarially mined blocks with
the honest chain growth lower bound. If corrupt nodes mine fewer blocks than the minimum honest
chain growth, we can thus conclude that there cannot be too many corrupt blocks in an honest
node’s chain. We formalize this intuition below. Below, if an honest node called Ftree.extend(chain[:
−2], chain[−1]) and the query was successful, we say that chain[−1] is mined by an honest node (or
an honest block). Otherwise, we say that chain[−1] is mined by the adversary (or is an adversarial
block).

Fact 2 (Total block upper bound). For any positive constants ε, ε′, except with negligible proba-
bility over the choice of view, the following holds: for any r and t such that Np(t − r) ≥ ε′κ, the
total number of blocks successfully mined during (r, t] by all nodes (honest and corrupt alike) is
upper bounded by (1 + ε)Np(t− r).

Proof. For any fixed choice of r and t, as long as Np(t− r) ≥ ε′κ, the above statement holds by a
straightforward application of the Chernoff bound. The fact then holds by applying a union bound
over all possible choices of r and t.

Upper bound on adversarial blocks. Given a view, let A(view)[t0 : t1] denote the number
of blocks mined by corrupt nodes during the window [t0 : t1]. Let At(view) denote the maximum
number of adversarially mined blocks in any t-sized window in view.

Fact 3 (Upper bound on adversarially mined blocks). For any positive constant ε0, for any constant
0 < ε < 1, except with negligible probability over the choice of view, the following holds: for any
t ≥ ε0κ

β , At(view) ≤ (1 + ε)βt.

Proof. It suffices to prove that for any fixed t0, for any positive constant ε, except with negligible
probability, it holds that A(view)[t0 : t0 + t] ≤ (1 + ε)βt — if we can show this, the rest of the
proof follows by taking a union bound over the choice of t0. To prove the above for any fixed t0, it
suffices to apply the Chernoff bound in a straightforward manner.
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Lemma 3 (Chain quality). For any positive constant ε0, ε, except with negligible probability over
the choice of view, the following holds for µ := 1 − 1+ε

1+φ : for any honest chain in view and any
consecutive T ≥ ε0κ blocks chain[j + 1..j + T ] blocks in chain, at least µ fraction of these T blocks
are mined by honest nodes.

Proof. Let r be any round, let i be any node honest at r ≤ |view|. Consider an arbitrary honest
chain chain := chainri (view), and an arbitrary sequence of T blocks chain[j + 1..j + T ] ⊂ chainri ,
such that chain[j] is not adversarial (either an honest block or genesis); and chain[j + T + 1] is not
adversarial either (either an honest block or chain[j + T ] is end of chainri ). Note that if a sequence
of blocks is not sandwiched between two honest blocks (including genesis or end of chain), we can
always expand the sequence to the left and right to find a maximal sequence sandwiched by honest
blocks (including genesis or end of chain). Such an expansion will only worsen chain quality.

As we argued above, without loss of generality we may assume that chain[j + 1..j + T ] is
sandwiched between two honest blocks (or genesis/end-of-chain). By definition of the ideal-world
protocol, all blocks in chain[j+ 1..j+T ] must be mined between r′ and r′+ t, where r′ denotes the
round in which the honest (or genesis) block chain[j] was mined, and r′ + t denotes the round in
which chain[j + T + 1] is mined (or let r′ + t := r if chain[j + T ] is end of chainri ).

We ignore the negligible fraction of bad views where bad events related to chain growth lower
bound, adversarial block upper bound, or total block upper bound take place.

• Now, due to chain growth lower bound, for any positive constant ε0, we have that

t <
T

(1− ε0)(1− 2pN∆)α

• Due to total block upper bound (Fact 2), it holds that t ≥ Θ( κ
Np). Due to the adversarial block

upper bound (Fact 3), for any positive constant ε′′ > 0, there exist sufficiently small positive
constants ε′ and ε0, such that

A[r′ : r′ + t] ≤ A

[
r′ : r′ +

T

(1− ε0)(1− 2pN∆)α

]
≤ (1 + ε′)βT

(1− ε0)(1− 2pN∆)α
≤ (1 + ε′)(1− 2pN∆)T

(1− ε0)(1− 2pN∆)(1 + φ)

≤(1 + ε′′)T

1 + φ

• Therefore, the fraction of honest blocks in this length T sequence is lower bounded by

1− 1 + ε′′

1 + φ

5.9 Consistency

Fact 4 (Adversary must expend work to deny a convergence opportunity). Let t ≤ |view| − ∆
denote a convergence opportunity in view in which a single honest node mines a block denoted B∗

at length `. It holds that for any honest chain chain at time t′ ≥ t + ∆ in view, chain must be at
least ` in length; and moreover if no corrupt node mines a block at length ` by time t′ in view, it
must hold that chain[`] = B∗.
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Proof. By the definition of a convergence opportunity, no honest node will mine blocks at length `
after t+ ∆, and no honest node could have mined a block at length ` before t−∆ since otherwise
the honest block mined during the convergence opportunity must be at length at least `+1. Finally,
since B∗ is the only honest block mined during [t−∆, t+ ∆], it holds that there is no other honest
block at length ` in view.

Lemma 4 (Consistency). For any positive constant ε, except with negligible probability over the
choice of view, the following holds: for any round r and any round t ≥ r in view, let chainr be any
honest chain in round r and let chaint be any honest chain in round t; then it must hold that

chainr[: −εκ] ≺ chaint

Proof. Suppose for the sake of reaching a contradiction that chainr[: −εκ] is not a prefix of chaint.
Let chainr[: −`] be the longest common prefix of chainr and chaint where ` > εκ. Let chainr[: i] ≺
chainr[: −`] be the longest prefix that ends at an honestly mined block, i.e., chainr[i] is the first
honest block to the left of chainr[−`] (and including chainr[−`]); and let s−1 be the round in which
chainr[i] was mined. It holds that all blocks in chainr[i + 1 :] and chaint[i + 1 :] must be mined in
or after round s.

Observe that all convergence opportunities that come in or after round s must be at length
greater than i and moreover they must be at different lengths. Combining this observation and
Fact 4, it must be the case that C[s : r −∆](view) ≤ A[s : r](view), since otherwise, there must be
an honest block B mined during a convergence opportunity between [s, r−∆], and B must appear
in both chainr and chaint. Below we prove that except with negligible probability over the choice
of view, it must be that C[s : r − ∆](view) > A[s : r](view) — if we can do so, then we reach a
contradiction, and thus we can conclude the proof.

Below we ignore the negligible fraction of views where relevant bad events take place. Let
τ := r − s. By total block upper bound, it must be that τ > εκ

2pN .
By Lemma 1, for any positive constant εc, it holds that

C[s : r −∆](view) > (1− εc)(1− 2pN∆)α(τ −∆)

By Fact 3, for any positive constant εa, it holds that

A[s : r](view) < (1 + εa)βτ

Thus for any positive constants φ, ε, and 0 < ν < 1 (see Section 5.2 for the definition of ν),
there exist sufficiently small constants εc, εa, ε1 such that the following holds for sufficiently large
κ:

C[s : r −∆](view) > (1− εc)(1− ν)α(τ −∆) (2)

>(1− ε1)(1− ν)ατ (3)

>(1− ε1)(1 + φ)βτ (4)

>(1 + εa)βτ > A[s : r](view) (5)

where (3) stems from the fact that ατ = Θ(κ) and α∆ = O(1); and (4) stems from the fact that
honest nodes outnumber corrupt by a constant margin (see Equation (1) earlier).
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5.10 Chain Growth Upper Bound

Lemma 5 (Chain growth upper bound). For any positive constants ε0, ε except with negligible
probability over the choice of view, the following holds: for any t0 and any t ≥ ε0κ

α , let chaint0 be
any honest chain at time t0 and let chaint0+t be any honest chain at time t0 + t, then

|chaint0+t| − |chaint0 | ≤ (1 + ε)Npt

Proof. Suppose for the sake of contradiction that there exist positive constants ε and ε′, such that
for a polynomial fraction of views, we can find t0 and t ≥ ε′κ

α such that for some honest chains
chaint0 and chaint0+t at times t0 and t0 + t respectively, |chaint0+t| − |chaint0 | > (1 + ε)Npt. Among
these polynomial fraction of views, for any sufficiently small constant η′ except for a negligible
fraction of views where relevant bad events happen, the following hold for the remaining views.

Let chain0 denote the shortest honest chain at time t0 and let chain1 denote the longest honest
chain at time t1 = t0 + t. By our assumption, it holds that |chain1| − |chain0| > (1 + ε)Npt. Let
`0 := |chain0|. Suppose that chain1[`0] and chain1[−1] are mined in rounds r0 and r1 respectively.
By definition of the honest protocol, it must hold that r1 ≤ t1.

• Notice that all the (1 + ε)Npt or more blocks in chain1[`0 :] must be mined during [r0, r1]. By
total block upper bound, there must exist a positive constant η ≥ ε such that r1− r0 ≥ (1 + η)t,
since otherwise, all these (1 + ε)Npt or more blocks in chain1[`0 :] cannot all be mined during
[r0, r1].

• Since r1 ≤ t0 + t, it must hold that r0 ≤ t0 + t− (1 + η)t ≤ t0 − ηt ≤ t0 − εt.

• By chain quality, there must be an honest block in chain1[`0 − η′κ : `0].

• The above means that there exists an honest node whose chain length is at least `0−η′κ at some
time r′ < r0. We also know that there is an honest node whose chain length is `0 at t0 — this
means that the minimum honest chain growth between [r0, t0] is at most η′κ. But recall that at
least εt time has elapsed between r0 and t0 — by chain growth lower bound, for a sufficiently
small constant η′ (w.r.t. ε and ε′), this cannot happen.

6 Survey of Recent Results

Despite its enormous success, Nakamoto’s blockchain has several well-known and widely criticized
drawbacks [11]. First, due to a selfish mining attack [16], it is well-known that the selfish miners
can harm the fairness of the eco-system. Second, the transaction confirmation is very slow, and
requires waiting for multiple blocks. Third, proofs-of-work are enormously wasteful. We now survey
recent results that aim to address these well-known drawbacks. We also discuss the feasibility of
permissionless consensus when the number of players can vary over time.

6.1 Thwarting Selfish Miners and Achieving Fairness

As is well-known, since participants need to expend costly computation in Bitcoin mining, it is
important to create incentives for participation. Therefore Bitcoin issues rewards to those who
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mine blocks where the rewards come from two sources: a miner collects a block reward for having
mined a block; additionally it also collects transaction fees paid by transactions contained in the
block.

As stated in Theorem 5, for sufficiently small choices p and ε, Nakamoto’s blockchain achieves
approximately 1 − ρ

1−ρ chain quality where ρ denotes the fraction of corrupt mining power. For

example, suppose that the adversary wields roughly ρ = 1
3 mining power (and additionally controls

network delivery), then the adversary controls roughly 1
2 of the blocks! Moreover, if the adversary

wields close to 1
2 mining power, then it can own almost all of the blocks. This is alarming: it says

that a minority coalition can earn an unfair proportion of rewards and thus harm the remaining
honest participants.

Selfish mining and degraded chain quality. What leads to such unfairness is a well-known
selfish mining attack [16]: when a corrupt node mines a block — let chain∗ denote the adversary’s
private chain at this point: the adversary need not release chain∗ immediately as honest nodes
would have. Instead, the adversary withholds chain∗ until it observes that some honest node has
mined a chain denoted chainH of equal length — at this moment, the adversary performs a rushing
attack and delivers chain∗ ahead of chainH to all honest nodes. Now, all honest nodes will extend
the adversary’s fork chain∗, and thus the honest work expended in mining chainH has been wasted.
Since the adversary can perform this attack for every block it mines, effectively out of the 1 − ρ
fraction of honest mining power, the adversary can erase a ρ fraction. This explains why Nakamoto’s
chain quality is only 1− ρ

1−ρ whereas “ideal chain quality” would have been 1− ρ.

Achieving fairness. A natural question arises: can we achieve fairness in permissionless con-
sensus and how do we define fairness? Our recent work Fruitchains [29] answered this question.
Specifically, we show that there is a blockchain protocol (called Fruitchains) that achieves 1−(1−ε)ρ
chain quality for an arbitrarily small constant ε (i.e., almost ideal chain quality) where ρ denotes
the corrupt fraction. Interestingly, Fruitchains makes use of Nakamoto’s blockchain in a blackbox
manner. Conceptually, Fruitchains has two separate mining processes — in reality the two mining
processes are piggybacked on top of each other such that no additional computation is required —
one for mining blocks, and one for mining fruits. In Fruitchains, the blocks contain fruits and the
fruits in turn contain transactions. We leverage the underlying blockchain’s liveness to ensure that
no honest work in mining fruits can be erased by the adversary, thus attaining almost perfect “fruit
quality” — thus in Fruitchains, one should think of the “fruits” as the new “blocks”. In Fruitchains,
we also define a new notion of fairness and describe a mechanism for distributing rewards and trans-
action fees, such that the resulting protocol achieves a coalition-resilient ε-Nash equilibrium. We
refer the reader to our paper [29] for details. The ideas proposed in Fruitchains were later adopted
in the context of proof-of-stake applications [12,21] to achieve incentive compatibility.

6.2 Responsiveness in Permissionless Consensus

Blockchain protocols are often criticized for being slow in transaction confirmation. Our analysis
shows that for Nakamoto’s blockchain to retain security, the block interval must be set to be a
constant factor larger than the network’s maximum delay ∆; and moreover, to obtain sufficient
security one must wait for multiple blocks for confirmation. A natural question arises: can we
achieve permissionless consensus with low response time? To understand this question, we must
first more precisely define what “low response time” means. A natural definition is due to the elegant
work of Attiya et al. [4] who defined a notion of responsiveness. In our context of state machine
replication, informally speaking, responsiveness requires transactions get confirmed as fast as the
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network delivers messages. More precisely, a state machine replication protocol satisfying Tconfirm-
liveness is said to be responsive if Tconfirm is a function only of the actual maximum network delay,
and not of the upper bound parameter ∆ that the protocol receives as input. By this definition
and our reasoning above, Nakamoto’s blockchain does not satisfy responsiveness.

In the classical distributed consensus literature, protocols in the partial synchronous or asyn-
chronous models naturally achieve the aforementioned notion of responsiveness since a partially
synchronous (or asynchronous) protocol does not have a-priori knowledge of an upper bound ∆ of
the network’s delay. Unfortunately, recall that in Section 3, we showed that in a permissionless
model where the number of nodes is uncertain, it is not possible to have a partially synchronous
(or asynchronous) permissionless consensus protocol (even when all nodes are honest).

We stress, however, that interestingly, the infeasibility of partial synchrony (i.e., when the
protocol does not know any delay upper bound ∆) in the permissionless setting does not rule out
the possibility of achieving responsiveness when the protocol knows a network delay upper bound
∆. Specifically, in a couple of recent works [30,32], we show the following results (informally stated
below):

• Assuming that it takes a short while for an adversary to corrupt and kill honest nodes, then
for any ρ = 1

3 − ε where ε is an arbitrarily small constant, there exists a state machine replica-
tion protocol in the proof-of-work model (referred to as Hybrid Consensus [30]) that achieves
responsive transaction confirmation (after a non-responsive warmup period) and tolerates up to
ρ fraction of corrupt nodes.

• Moreover, hybrid consensus is almost tight in terms of resilience: we also show that even as-
suming the existence of a proof-of-work oracle, there is no responsive state machine replication
protocol that can tolerate 1

3 or more fraction of corrupt nodes — even when (A,Z) must respect
early spawning and static corruptions [30].

• Finally, in a more recent work called Thunderella [32], we show that protocols that aim to
achieve responsiveness only in the “optimistic” case need not be subject to the aforementioned
1
3 lower bound. In particular, we show that there exists a permissionless consensus protocol Π
that provides consistency and “slower blockchain performance” as long as the adversary controls
only minority and it takes a while to corrupt nodes; however, when a larger fraction of nodes are
honest and stick around for some time before dropping offline, the protocol achieves responsive
transaction confirmation.

6.3 What Can We Learn for Permissioned Consensus?

From a mathematical perspective [19, 28, 31], the way blockchains reach consensus fundamentally
departs from classical consensus. The following questions naturally arise: Can we apply the ideas
behind blockchains to solve the classical, permissioned consensus problem? Can we remove the
wasteful proof-of-work in a permissioned setting? Blockchain protocols are commonly believed to
be more robust than classical consensus. Exactly what robustness properties does a blockchain-style
protocol offer that classical consensus does not?

In a recent work [31], we were the first to phrase and explore these questions. We propose the
Sleepy consensus protocol [31], and show that one can apply core ideas behind blockchains to solve
consensus in a classical, permissioned setting while dispensing with expensive proofs-of-work. In
the permissioned setting, we also observe that blockchain-style protocols (without proofs-of-work)
can reach consensus even when 1) the number nodes that will show up is unknown a-priori; 2) the
number of nodes in each round can change rapidly; and 3) the nodes that show up in adjacent
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rounds can be completely disjoint — as long as among the nodes who do show up in each round,
majority are honest. We refer to such a model with sporadic participation as the “sleepy” model
— interestingly, no classical consensus protocol can reach consensus in such a “sleepy” model, even
when we are guaranteed that 99% of those who show up are honest. Note that in the “sleepy”
model, nodes that are honest but have crashed are not treated as faulty — unlike the modeling
approach in classical distributed computing where crashes typically count towards the corruption
budget.

Several recent works including Algorand [9], Snow White [12], and Ouroboros [21] showed how
to leverage a permissioned, synchronous state machine replication protocol to build a proof-of-
stake application. In a proof-of-stake consensus protocol, roughly speaking, users have voting
power proportional to their amount of stake in the system. Among various differences in protocol
details, these works differ primarily in the choice of the underlying synchronous state machine
replication protocol. Algorand [9] constructs a new synchronous state machine replication protocol;
Ourosboros [21] constructs a blockchain-style protocol without proof-of-work but their protocol
achieves only classical properties similar to those of Algorand [9]; and finally Snow White adopts a
blockchain-style protocol like Sleepy consensus [31] that is tolerant of “sleepiness”.

6.4 Permissionless Consensus with Varying Number of Players

For conceptual simplicity, most of our paper has focused on the case that the number of players N
stays fixed throughout the execution. However, as we point out at the beginning of the paper, in a
truly permissionless model the number of nodes can also vary over time. Thus, a natural question
arises: can we achieve permissionless consensus when the number of nodes varies over time?

A couple recent works [8, 18] have (partially) answered this question in the affirmative: these
works show that state machine replication is indeed possible in a permissionless model where the
number of nodes may vary over time, as long as 1) the protocol knows an upper bound on the initial
number of players; and 2) the number of nodes does not “abruptly” increase (we refer the reader
to Chan et al. [8] for a more precise technical characterization of “abruptly”). In particular, Garay
et al. [18] show a feasibility result assuming a constrained adversary that does not delay messages
and must commit to the number of nodes in each round upfront — these restrictions were later
removed in the work by Chan et al. [8] who also presented a proof with tighter parameters.
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A Additional Preliminary: Chernoff Bound

We use the following version of Chernoff bound.

Theorem 6. Let X :=
∑n

i=1 Xi where each Xi = 1 with probability pi and Xi = 0 with probability
1− pi. Further, all Xi’s are independent. Let µ :=

∑n
i=1 pi. Then, we have the following:
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• Upper tail: Pr [X ≥ (1 + δ)µ] ≤ exp(− δ·min{δ,1}·µ
3 ) for all δ > 0;

• Lower tail: Pr [X ≤ (1− δ)µ] ≤ exp(− δ2µ
2 ) for all 0 < δ < 1.
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