
Geosocial�ery with User-Controlled Privacy
Peizhao Hu

Department of Computer Science
Rochester Institute of Technology

New York, USA
ph@cs.rit.edu

Sherman S.M. Chow
Dept. of Information Engineering

�e Chinese University of Hong Kong
Shatin, N.T., Hong Kong
sherman@ie.cuhk.edu.hk

Asma Alou�
Department of Computer Science
Rochester Institute of Technology

New York, USA
ama9000@rit.edu

ABSTRACT
Geosocial applications collect (and record) users’ precise location
data to perform proximity computations, such as notifying a user
or triggering a service when a friend is within geographic prox-
imity. With the growing popularity of mobile devices that have
sophisticated localization capability, it becomes more convenient
and tempting to share location data. But the precise location data
in plaintext not only exposes user’s whereabouts but also mobility
pa�erns that are sensitive and cannot be changed easily. �is pa-
per proposes cryptographic protocols on top of spatial cloaking to
reduce the resolution of location and balance between data utility
and privacy. Speci�cally, we interest in the se�ing that allows users
to send periodic updates of precise coordinates and de�ne privacy
preferences to control the granularity of the location, both in an
encrypted format. Our system supports three kinds of user queries
— “Where is this user?”, “Who is nearby?”, and “How close is this
user from another user?”. Also, we develop a new algorithm to
improve the multidimensional data access by reducing signi�cant
masking error. Our prototype and various performance evaluations
on di�erent platforms demonstrated that our system is practical.
ACM Reference format:
Peizhao Hu, Sherman S.M. Chow, and Asma Alou�. 2017. Geosocial �ery
with User-Controlled Privacy. In Proceedings of WiSec ’17 , Boston, MA, USA,
July 18-20, 2017, 10 pages.
DOI: 10.1145/3098243.3098245

1 INTRODUCTION
A popular application of location-based services (LBS) is geosocial
service, i.e., location-driven features over online social networks
(e.g., locating a user’s nearby friends within a geographic area,
disseminating targeted recommendation within a city). Collecting
whereabouts of users is crucial for enabling LBS. Most applications
periodic collect updated GPS coordinates of users in plaintexts.
To maintain social connection and enjoy the geosocial features,
users are tempted to share their location with family members,
friends, or even strangers in the vicinity and o�en disregard the
potential privacy implications [3]. Fine-grained location data is
highly sensitive [25]. Some geosocial networks even collect exact
locations in real time [38]. Aggregating the collected coordinates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’17 , Boston, MA, USA
© 2017 ACM. 978-1-4503-5084-6/17/07. . .$15.00
DOI: 10.1145/3098243.3098245

reveals mobility trajectories and can infer where users live, work,
shop, play, and much more. While some LBSs allow the user to be
anonymous [38], these pa�erns make re-identi�cation easier. Some
even store a history of the location for each user. Data leaks can
lead to severe loss of user privacy, especially when users cannot
change their association with a location or routine easily.

In general, users are more comfortable with sharing coarse-
grained location, such as simply the city or a larger geographic
area, without fear of discovery [10, 32]. Users would demand the
ability to control the granularity according to whom to share with,
i.e., relationships between users. For example, parents can have
access to the precise coordinates, but it becomes at the city level
for colleagues. Some applications such as Facebook allow users to
specify such a preference, yet, it is the server which controls the
selective disclosure. �at means the server learns both the most
�ne-grained location and the view on relationships of each user.

1.1 Spatial Cloaking
Spatial cloaking [20] reduces the resolution of location data by
masking based on user preferences. It preserves locality while
changing the level of detail. It produces an area that hides not only
the user location but also the trajectories of movement within the
masked area, as illustrated in Fig. 1 (a). �e risk of being discovered
and tracked reduces as we increase the size of the masking area [4].

If a user moves out from the masked area, a new masking area
will be generated. For spatial cloaking, the masking areas are non-
overlapping. �e transition, in this case, incurs a privacy risk
since it is for sure that the user just moves across two �xed areas.
Speci�cally, the user must have passed through a point over the
shared edge between the two masking areas.

Another potential privacy risk is the co-location problem [32, 38].
Fig. 1 (b) illustrates that in the general case for overlapping masking
areas. Even for the speci�c case of spatial cloaking, if a user reports
being co-located with another user, an adversary can infer that both
are within the overlapped area which can be signi�cantly smaller
than the user speci�ed masking area [32].

To avoid exposing user location through co-location problem,
we investigate a new spatial cloaking technique that produces a
geometric area which encloses the two users, as shown in Fig. 1 (d).
�is common bounding box, without disclosing user locations, can
be used to compute the rough proximity between two users. �e
maximum distance between the two users will be the length of the
diagonal of the bounding box. �is proximity information can be
useful for some social applications which provide services without
requiring precise user location and distance measurement between
users. In addition, a user can specify a geographic boundary and
query the list of nearby friends, as shown in Fig. 1 (c). Ideally, we

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Peizhao Hu, Sherman S.M. Chow, and Asma Aloufi

(a) Relationship dependent location masking

I’m	with	

A

BI’m	in	

I’m	in	

co-location of A and B

(b) Risk of co-location

Who	are
in	 ?

A

(c) Nearby query

I’m	happy	to
expose	

I’m	happy	to	
expose

Common bounding box

A

B

(d) Proximity of users

Figure 1: Di�erent scenarios for user controllable location privacy

would like to perform this nearby query without revealing locations
of the parties involved and their relationships.

1.2 Hiding both Location and Preferences
We propose new algorithms for achieving user controllable privacy
when sharing location data. We aim to support the following three
kinds of queries: (i) Bob may ask “where is Alice?” (ii) Alice may ask
“which of my friends are nearby?” (iii) A social app may query “how
close geographically are Alice and Bob?” �ese queries are common
in many geosocial applications, such as Google Latitude, Facebook
Nearby Friends, Foursquare, Loopt, etc.

�e research community has been studying privacy-preserving
LBS mechanisms [25, 36, 38]. For example, mix zones in which user
identities are anonymized and disassociated from the location of
identi�cation [15], and statistical privacy in which location data is
obfuscated but statistical computation is still possible [11]. Many of
these solutions require a trusted server to perform anonymization,
obfuscation, or resolution reduction via spatial cloaking [17, 33].

We pose to ourselves three requirements: 1) Both the location
data and the user preferences of data granularity are encrypted,
such that we can reduce the trust requirement on the server to
an honest-but-curious one. 2) �e granularity of location data is
controlled (by masking) according to the user preference before
processing any query for ensuring security even when users collude.
3) �e system can scale with a large number of users who share
and periodically update their encrypted location data (and perhaps
occasional updates of their encrypted preference). In particular, it
does not require a user to send di�erent copies of his/her location
data for di�erent parties. �at is, every user will still periodically
send precise location data to a service provider but in the form of
encrypted coordinates; the server will perform computations to
ful�ll the three queries mentioned above and reply an encrypted
result that a user can decrypt using a private key.

To preserve user privacy, we investigate how to use and extend
homomorphic encryption (HE) to realize e�cient spatial cloaking
on encrypted location data. HE schemes o�er primitive arithmetic
operations on the encrypted data, such as homomorphic addition
and multiplication. Fully homomorphic encryption (FHE) allows
any computation over encrypted data. However, the state-of-the-art
FHE solutions are still not practical enough for processing big data.
Our proposed approach instead uses somewhat HE (SWHE) which
is more e�cient than FHE but with a limit on the number of con-
secutive multiplications that can be carried out on a ciphertext. For
computing the location of a particular user (for answering “Where

is Alice?”), over the encrypted user preference and location, our sys-
tem just extends the very e�cient ElGamal encryption scheme [12]
which is multiplicatively homomorphic. We will also show to use
block-ciphers, such as AES, on top of HE schemes to reduce com-
munication overhead. We show how to support computation over
data encrypted under di�erent keys.

Apart from the technical contribution (of our spatial cloaking
technique, twisting ElGamal encryption for supporting encryption
of zeros without losing security, etc.), our experiments show that
the proposed system is e�cient across various mobile platforms.

2 PRELIMINARIES
2.1 Geo-Hashing with Z-Order Curve
Geo-hashing reduces the dimensionality of coordinates while pre-
serving locality of points. If two points are close to each other,
for most cases they are also close a�er the transformation. In this
paper, we employ geo-hashing using Z-order curve as the space-
�lling curve [16]. It transforms the two-dimensional coordinates
into an array of concatenated numbers. Each number corresponds
to a particular level of detail at which there is a bounding box
that encloses the point. Fig. 2 shows the �rst three levels of map-
ping in Microso�’s Bing Maps tile system. Many applications use
geo-hashing to index satellite images for e�cient retrieval.

When using Z-order curve, the indexing keys (the concatenated
numbers) are represented in Z4, hence the name quad-key. To
increase one level of detail, we divide a bounding box into four
equal sub-boxes, with each assigned a new quad-key appended to
the existing quad-key string (also see Fig. 2). Essentially, the longer
the common pre�x between the quad-keys of two points, the closer
they are. Also, a longer quad-key provides a more precise reference
to the original coordinates. �e details of the transformation steps
are described in [37]. Once the coordinates are transformed, another
step in spatial cloaking is to reduce the granularity of location data
by masking away some precisions in the quad-key.

Given the two-dimensional GPS coordinates (x ,y) of a location
in the WGS84 encoding, one can compute the quad-key QKd =
{q1, ..,qd } where d is the level of detail. As an example, the quad-
key of (x ,y) = (43.584474,−77.675472) at d = 5 is QK5 = 03023.
We can also transform the quad-keys into binary-keys, like BK10 =
0011001011. Here we only show the quad-keys at a limited level.
�e maximum level of detail in the form of quad-keys is 22 (or 44
in binary-keys), which corresponds to the exact GPS coordinates.

Geosocial �ery with User-Controlled Privacy WiSec ’17 , July 18-20, 2017, Boston, MA, USA

Figure 2: Z-order curve used in Microso�’s Bing Maps

2.2 SomeWhat Homomorphic Encryption
Our proposed system can be instantiated by most of the recent
SWHE schemes that support plaintext space R5 (further discussed
below). �ere are a series of e�cient la�ice-based SWHE schemes
that rely their security on the learning-with-error (LWE) prob-
lem or its extension as the ring-LWE problem [5–7, 13]. For self-
containedness, we describe the core operations of Naehrig-Lauter-
Vaikuntanathan [29] (hereina�er referred as NLV) as an example.

Given a positive integer d , we de�ne R = Z[x]/(Φd (x)) as the
ring of polynomials with integer coe�cients modulo the d-th cyclo-
tomic polynomial Φd (x) ∈ Z[x], and we use Φd (x) = xn + 1 where
d = 2n is a power of 2. We use R as the underlying ring structure
to de�ne two �nite rings: the plaintext space is Rt = Zt [x]/(Φ(x)),
where Zt are integers modulo t , and the ciphertext space is Rq =
Zq [x]/(Φ(x)), where q is a prime and t is much smaller than q. We
also use a Gaussian distribution χe on R which we use to introduce
noise (error term) into the ciphertexts.

�e NLV scheme is based on the ring-LWE assumption [27]: If
we uniformly sample s and ai from a ring Rq = Zq [x]/(Φ(x)) and
ei from a Gaussian distribution χe , such that bi = ais +ei for i ∈ N,
then bi is computationally indistinguishable from elements that
are uniformly sampled from Rq . In layman terms, we hide secret s
covering it with a normal distribution of elements in Rq .

Key Generation. For a secret key SK = s , we sample its coef-
�cients from a Gaussian distribution χk , denoted by s ← χk , a
random element a1 ∈ Rq , and an error term e ← χe . It is a rela-
tively small private key [27]. To improve security, χk is di�erent
from χe in mean and/or standard deviation. We set the public key
to be PK = (a0,a1), where a0 = −(a1s + te) and t is the modulus of
the plaintext space. s,a0,a1, and e are all elements of ring Rq .

Encryption. Given a plaintextm ∈ Rt = Zt [x]/(Φ(x)) and PK =
(a0,a1), Enc(m, PK) = (c0, c1) = (a0e1+te2+m,a1e1+te3) ∈ (Rq)2,
where ei , i = 1, 2, 3 are noises sampled independently from the
Gaussian distribution χe .

Decryption. While any fresh encryption will produce a ciphertext
with two components C = (c0, c1) ∈ (Rq)2, homomorphic multipli-
cation (described below) will increase the number of elements in
the ciphertext beyond two. Hence, we represent the ciphertext as

C = (c0, . . . , cξ) ∈ (Rq)ξ+1. �e decryption function is de�ned as
Dec(C, SK) = m̃ = ∑ξ

i=0 cis
i ∈ Rq .

Homomorphic Operations. Given two ciphertextsC = (c0, . . . , cξ)
and C ′ = (c ′0, . . . , c

′
η), the homomorphic addition is a straightfor-

ward component-wise addition. C +C ′ = (c0 + c ′0, . . . , cξ + c
′
η) ∈

(Rq)max(ξ ,η)+1, where we might need to pad the ciphertexts by 0’s
to match the length of the longer ciphertext.

Homomorphic multiplication is more di�cult, because of the
growth of elements, C ⊗ C ′ = (ĉ0, . . . , ĉξ+η), where ĉi are appro-
priate convolutions de�ned in [7]. In a nutshell, homomorphic
multiplication introduces terms with si , for i > 1. Take the case
of multiplying two ciphertexts of length two: C = (c0, c1) and
C ′ = (c ′0, c

′
1). We want Dec(C ⊗ C ′, SK) = mm′ + temult so that

we get backmm′ (mod t) wherem andm′ are the corresponding
messages, and emult is the error resulting from multiplying two ci-
phertexts. Working backward, we know thatm = c0 + c1s (mod t)
andm′ = c ′0 + c

′
1s (mod t), we thus have:

mm′ + temult = (c0 + c1s)(c ′0 + c
′
1s) (mod t)

= c0c
′
0 + (c0c

′
1 + c1c

′
0)s + c1c

′
1s

2 (mod t).

�usC⊗C ′ = (ĉ0, ĉ1, ĉ2)where ĉ0 = c0c ′0, ĉ1 = c0c ′1+c1c ′0, ĉ2 = c1c ′1.
A new term to be multiplied by s2 is introduced. A “relinearization”
technique can reduce the number of ciphertext terms [29].

3 RELATEDWORK
Many studies aim to preserve location privacy in di�erent senses [4].
Our approaches are closely related to those applying location trans-
formation, cryptographic protocols, or a combination of both. Most
work focuses on proximity test, i.e., whether the distance between
two parties is less than a threshold, or retrieving information asso-
ciated with a location, without revealing the location.

Spatial cloaking transforms an exact location to a cloaked area
(e.g., rectangle or circle). Hashem and Kulik [20] proposed to com-
pute the cloaked area by coordinating with nearby peers over wire-
less ad-hoc networks. �is distributed approach does not require
a trusted server, yet depends greatly on the availability of crowd-
sourcing participants within the close vicinity. Peng et al. [34]
proposed a centralized transformation approach which requires a
trusted anonymizer. Khoshgozaran and Shahabi [23] proposed the
use of Hilbert curves (similar to Z-order curve) and a one-way trap-
door function to transform a location into a cloaked area containing
a precomputed set of places-of-interest stored in a look-up table.
We also adopt and extend spatial cloaking, but our use of proba-
bilistic encryption ensures that the location data remains private.
Hu et al. [22] have a�empted to transform location points from
WGS84 system to a 2-dimensional Cartesian coordinate system
(UTM projection) and compute the Euclidean distance between two
points. �e UTM projection will introduce localization errors that
increase as the two points become far apart. �ere are also other
cloaking techniques such as semantic cloaking [2], where physical
locations are abstracted to semantic locations.

Narayanan et al. [30] proposed to mask users’ precise location
data with overlapping hexagonal grids and developed a multiparty
protocol to check whether two users are nearby. Nielsen et al. [31]

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Peizhao Hu, Sherman S.M. Chow, and Asma Aloufi

strength the security of the proximity test against an active adver-
sary with zero-knowledge proofs [14]. Saldamli et al. [36] incorpo-
rated geometrical properties to reduce the number of encryption
needed [30]. �ese three solutions essentially answer queries about
whether two users are within the same �xed-sized cell.

Zhong et al. [41] proposed three protocols for proximity testing.
�e proximity was determined by computing the Euclidean dis-
tance which depends on grid-based location transformation. Also,
their protocol uses an additively homomorphic variant of ElGamal
which requires solving discrete logarithm for decryption and hence
only supports a small range of coordinates. Khoshgozaran and
Shahabi [24] propose a symmetric-key based mechanism for range
and k nearest neighbor queries among a set of peers who have
pre-shared a group key. In the same pre-shared secret key se�ing,
Pu�aswamy et al. [35] provide privacy-aware information retrieval
from or near a coordinate, rather than a way for the user to share
location data with di�erent granularities. Masce�i et al. [28] also
support proximity query with privacy preferences. Yet, it translates
proximity query to a membership test of all nearby locations, while
the privacy preferences are simply enforced by asking the user to
report location at di�erent granularities to di�erent friends. In our
solution, each user only reports one location, but to be masked
di�erently according to a friend-speci�c preference. Instead of
exhausting all possible locations, our proximity test is based on a
direct computation.

Finally, homomorphic encryption is also used in other privacy-
preserving applications enabling LBS. For example, Zhang et al. [40]
leverage additively HE to realize wi-� �ngerprinting indoor local-
ization, such that the requester users do not reveal their locations
while the server does not need to reveal its �ngerprints database.

4 COMPUTING ON ENCRYPTED LOCATION
Now we present our geosocial query systems. For simplicity, we
assume everything is encrypted by an SWHE scheme. �e public
key for SWHE is from the user who shares the location data and
speci�es privacy preference. �e ciphertext encryptingm is denoted
by [m]. In Section 6, we will extend it with a hybrid encryption
approach and an additional key setup to allow computation across
ciphertexts of di�erent users, yet the user does not need to help in
the decryption of the �nal query result.

Consider three users, Alice (A) and her friends Bob (B) and Eva
(E). All of them periodically transform their GPS coordinates (x ,y)
into the quad-key representation QK = QK22 = (q1, · · · ,q22);qi ∈
Z4 using the Z-order curve geo-hashing technique and send the
ciphertexts [QK] = ([q1], · · · , [q22]) to the service provider (SP).
In addition, every user generates a list of encrypted protection bit-
masks for other users depending on their friendship, e.g., [MB] =
([mB

1], · · · , [m
B
d]);mi ∈ Z2 and [ME] for Bob and Eva respectively.

�ese bit-masks are sent to SP and only updated when there is a
change of preference. In this design, only users’ current position is
updated periodically.

4.1 �ery 1: Where is Alice?
When Bob requests the location of Alice, SP homomorphically
multiplies [QKA] with [MB] as illustrated in Fig. 3 (a). �e bit-
masking works �ne except 0 in the masked results is ambiguous

[MB], [ME], … Req_Location(A)

Req_Location(A)

Periodic update of [QKA] [QKA] ⨂ [MB]

[QKA] ⨂ [ME]

Service Provider

A’s preferences:
B: [MB]
E: [ME]
….

Encrypted

Alice Bob

Eva

(a)�ery 1: Where is Alice?

(b) Bob (building) (c) Eva (suburb) (d) Others (city)

Figure 3: System design and resulting masked views for dif-
ferent parties: Bob (d = 18), Eva (d = 12), and Others (d = 10)

since it can represent either a valid result or a forbidden retrieval
due to the masking. As an example, QKA = 2300 with MB = 1100
and ME = 1111 yields the same result. We address this problem by
transferring each element of QK from Z4 into {1, 2, 3, 4} before the
encryption. �e resulting QK will be converted back to Z4 a�er
decryption on the client device.

�is query requires a multiplicative depth of one. For higher
e�ciency, we also prototype our proposed algorithm using the stan-
dard ElGamal scheme over a group of prime order p to individually
encrypt the location data. Yet, for the bit-mask, an ElGamal encryp-
tion of 0 results in a ciphertext 0, which fails to protect the privacy of
the user preference. To circumvent this inconvenience, we employ
a trick to encode 0 as a random number from Zp but excluding ev-
erything that might lead to the multiplication result in {0, 1, 2, 3, 4},
i.e., Zp \ {0, 1, 2−1, 3−1, 4−1, 2, 2 · 3−1, 3, 3 · 2−1, 3 · 4−1, 4, 4 · 3−1}.

A�er this encoding, a bit-mask element of 1 will preserve the
location data while a random number will mask it. In the decrypted
results, we remove any number that is not an element of {1, 2, 3, 4}
and produce a masked quad-key string that corresponds to a bound-
ing box with the desired level of data granularity.

Before any additional query computation, the server applies the
masking to preserve privacy even when the friends of the user
form a coalition. Fig. 3 (b)-(d) show the resulting bounding boxes
based on Alice’s privacy preferences, who is at the GPS coordinates
(43.08460614021896,−77.67964549827582). �ese bounding boxes
not only hide users’ positions but also their mobility pa�erns.

4.2 �ery 2: Who is nearby?
Alice may want to retrieve a list of friends who are within a ge-
ographic area. To do this, she prepares a query bit-mask [MQ]
according to her idea of proximity and sends it to SP as illustrated
in Fig. 4. Note that this bit-mark is for querying instead of the afore-
mentioned “encrypted location bit-masks” which are for protecting
the level of granularity of the location to be shared.

Geosocial �ery with User-Controlled Privacy WiSec ’17 , July 18-20, 2017, Boston, MA, USA

[MB], [ME], …

Periodic update of [QKA]

Service Provider

A’s preferences
B’s preferences
E’s preferences
….

Encrypted

Alice

Bob

Eva

[MA], [ME], …

[MA], [MB], …

Periodic update of {QKB}B

Periodic update of [QKE]

Nearby([MQ])

([uB], [uE], …)

Figure 4: �ery 2: Who is nearby?

�e location should be protected by the protection bit-mask
specifying the granularity level according to the friend-speci�c
preference. Also, by only taking into account the locations up to
the granularity level speci�ed by the query bit-mask, the decision
of proximity can already be made. With these, apart from applying
the self-speci�ed protection bit-mask on the location data as usual,
SP also applies the protection bit-mask of the counterparty to the
ciphertext of each other. Finally, the same query-bit mask is also
applied on these post-processed and (further-)masked location of
both Alice and her friends. Note that the bit masks are applied by
the “AND” operations and hence they are commutative.

Slightly abusing the notation, suppose the ciphertexts a�er the
above processing are denoted by [QK ′A] for Alice and [QK ′j] for the j-
th friend of Alice. �en, SP performs a coordinate-wise subtraction
[QK ′A] − [QK

′
j], where j iterates through all Alice’s friends.

When both Alice and her j-th friend are at proximity according to
the query (bit-mask) of Alice, the corresponding components up to
the proximity level will be all zero. SP then rerandomizes the vector
and homomorphically sums up the components of the resulting
vector. �ese computations will produce [uj] an encryption of a
single number that is either 0 implying a user is near Alice or a
non-zero positive integer implying this user is not near to Alice.

If two users have the same quad-key values a�er the maskings,
they are within the same area. �is is similar to the proximity
testing in existing work [30, 31, 36]. SP then sends the individually
computed result with Alice’s friend list ([uB], [uE], · · ·) to Alice for
decryption. Given this list of randomized results, even Alice will
only learn whether a friend is close by or not, but nothing else.

4.3 �ery 3: How close is Alice and Bob?
To answer proximity between two users, we propose an algorithm
to compute a bounding box that encloses the two users. For brevity,
our description below just operates on QKA, which can always be
masked and encrypted beforehand.

Observe that computing such a bounding box is the same as
determining the common pre�x (CP) from the corresponding two
quad-keys (e.g., QKA and QKB). �e highlighted square in Fig. 2
containing 130, 131, 132, 133 is an example. Since the maximum
distance between any two points in the bounding box is the length
of the diagonal, we know the upper bound of how far apart the two
points are without giving away their exact positions. �e amount
of noise is controlled by the user-de�ned preferences.

We construct an arithmetic circuit to homomorphically compute
the common pre�x mask (CPM). See Alg. 1 for the pseudocode.
Given two (encrypted and masked) quad-keys QKA and QKB , we
produce the corresponding binary-key vectors BKA and BKB . For
brevity, they are denoted byA and B below.

Bob

Alice

(a) Results analysis

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 17 18 19 20 21 22

B
o
u
n
d
in

g
 B

o
x
 S

iz
e
 (

m
2
)

Level of details

(b) Ratio of bounding box size

Figure 5: Result and observation for�ery 2

We apply a coordinate-wise XNOR to the two vectors. It re-
turns 1 if the corresponding bit values are the same; otherwise, it
returns 0. Lines 3-4 perform a pre�x mask puri�cation step in which
bit value a�er the le�most 0 is reset to 0. �is process requires
consecutive homomorphic multiplications which increase the mul-
tiplicative depth1. Relinearization is thus needed [29]. XNOR
shares similar computation time pro�le with the existing (homo-
morphic) equality operator [8] EQU (X,Y) = ∧ni=1(1 ⊕ xi ⊕ yi)
whereX = (x1, · · · ,xn) andY = (y1, · · · ,yn), ∧ and ⊕ are bitwise
AND and XOR. We believe our solution is relatively e�cient.

Algorithm 1: Given the location data of users Alice and Bob,
compute the Common Pre�x Mask (CPM)
1 function CPM (A,B);
Input :Users’ geo-hashed binary vectorsA = (a1, · · · ,an)

and B = (b1, · · · ,bn)
Output : the common pre�x maskM

2 дi = aibi + āi b̄i ; . G = XNOR(A,B) = (д1, · · · ,дn);
3 m1 = д1; .M = (m1, · · · ,mn);
4 mi =m(i−1)дi ;

Once we obtain the common pre�x maskM, we can compute
the common pre�x by coordinate-wise homomorphic multiplica-
tionsA ⊗M. Finally, the common pre�x is used to compute the
appropriate bounding box (as described in [37]), whose encryption
will be returned to the requester.

Yet, this approach could generate unnecessarily large bounding
boxes for points that are close but lay in di�erent quadrants since
geo-hashing requires each point to fall into one quadrant at each
level. For example, computing common pre�x for two neighboring
points from regions 122 and 211 at level 3 in Fig. 2 will result in
a bounding box of the whole world at level 1 because the two
neighboring points lay in di�erent quadrants at level 1. But it will
be more appropriate to produce a bounding box containing regions
122, 211, 033, and 300. �is is a common problem in solutions that
are based on similar geo-hashing techniques [31].

We have tried some heuristics that reduce masking noise by one
level, similar to some existing a�empts [23] which hashing with
di�erent rotations in special cases. Fig. 5(a) shows two bounding
boxes: the outer shaded box is the result of this approach, and
1Product of one homomorphic multiplication is used in another homomorphic
multiplication.

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Peizhao Hu, Sherman S.M. Chow, and Asma Aloufi

00 01

10 11

yx yx
y=0

y=1

x=0 x=1

0 1
2 3

(a) Coordinate

0

1

Ay

By

2

3

3

1

4

4

Le
ve

l o
f d

et
ai

l

Ay=(ay1, …, ayn)=1011…
By=(by1, …, byn)=1101…

CPM=1000…
ECPM=1110…

0

1

0

1 0

1
0
10

1

(b) Running example

Figure 6: Example of exploiting the coordinates’ properties

the inner shaded box is the result generated using a new set of
heuristics. �is corresponds to 1.20E+13m2 reduction in area size.
Even with the improved version, the area size is unnecessarily large.
Fig. 5 (b) shows why reducing the masking noise is necessary as it
grows exponentially with each decrease in the level of details. We
ask ourselves the following question:

“Can we further reduce the masking noise?”

4.4 Improved�ery 3
When the quad-keys are converted into binary-keys, each bit repre-
sents the position of a point on the corresponding axis. As shown
in Fig. 6 (a), we can use one bit on the x-axis to determine if a point
is on the le�- or right-half of the box. Similarly, the bit value on
y-axis determines whether a point is on the top- or bo�om-half.

�e above properties can be applied at any level of detail, which
allows us to develop an algorithm that can substantially reduce the
masking noise. Alg. 2, 3, and 4 describe the pseudocode. Fig. 6 (b)
illustrates a running example of two binary-key vectors Ay =

(ay1, · · · ,ayn) = 1011 · · · and By = (by1, · · · ,byn) = 1101 · · · .
�ese two vectors are the y-axis only binary vectors extracted from
the two input binary-keysA andB when calling the ECPM(A,B)
function. We explain the operations acting on the y-axis vectors.
�e same operations will be applied separately to the x-axis vectors.

Upon receiving a request to compute a bounding box using
ECPM , which splits the coordinatesA and B into the correspond-
ing x-axis and y-axis vectors. For each pair, we compute the pair-
wise common pre�x mask PCPM in Alg. 3. In PCPM , we �rst
compute the common pre�x mask, CPM(P,Q) for P and Q cor-
responding toAy and By respectively (similar process applies to
Ax and Bx). We then �nd the le�most position where the two
vectors di�er and store this information asC and S. Suppose it is at
the j position, we extract the bit value homomorphically at ayj and
byj . �en, we use ayj (in EPM) to check with the bit value at ayk
where k = (j + 1, · · · ,n). If ayk , ayj , we move to check ayk+1;
otherwise, we knowAy will only match up to level (k − 1). Same
operations will be performed on By vector using the byj bit value.
Fig. 6 (b) illustrates that Ay and By is logically matched up to
level 3 because ay4 , ayj , but by4 = byj . In contrast, if we only use
theCPM(A,B), then the two points are matched only up to level 1;
because when j = 2, ayj = 0, and byj = 1. In essence, if two points
are close, they should be close to each other when we increase the
level of detail in both axes. We obtain the common pre�x mask
betweenAy and By by a simple coordinate-wise multiplication,
as shown in Line 6 of Alg. 2.

Algorithm 2: Given the location data of users Alice and Bob,
compute the Extended Common Pre�x Mask (ECPM)
1 function ECPM (A,B);
Input :Users’ geo-hashed binary vectorsA = (a1, · · · ,an)

and B = (b1, · · · ,bn)
Output : the extended common pre�x maskM

2 Ax [i] = A[2i] = (a2, · · · ,an);
Ay [i] = A[2i − 1] = (a1, · · · ,an−1);

3 Bx [i] = B[2i] = (b2, · · · ,bn);
By [i] = B[2i − 1] = (b1, · · · ,bn−1);

4 X = PCPM(Ax ,Bx); .X = (x1, · · · ,xn);
5 Y = PCPM(Ay ,By); . Y = (y1, · · · ,yn);
6 M = XY; . Bitwise

Algorithm 3: Given pairs of vectors for the x-axis (Ax ,Bx)
and y-axis (Ay ,By), compute the Pairwise Common Pre�x
Mask (PCPM)
1 function PCPM (P,Q);
Input :Two vectors (P,Q) = (Ax ,Bx) or

(P,Q) = (Ay ,By)
Output : the pairwise common pre�x maskW

2 C = CPM(P,Q); . C = (c1, · · · , cn);
3 si = c̄i−1 + c̄i ; . S = (s1, · · · sn) indicates the le�most position

where P and Q di�er. c̄i is complement of ci ;
4 U = EPM(P,C,S); . U = (u1, · · · ,un);
5 V = EPM(Q,C,S); . V = (v1, · · · ,vn);
6 W = UV; . Bitwise

Algorithm 4: Given a vector from the pairs (Ax ,Bx) or
(Ay ,By), generate an Extended Pre�x Mask (EPM)

1 function EPM (R,C,S);
Input :�ree vectors: R = P orR = Q, C and S are the

same as in Alg. 3
Output :An extended pre�x mask E generated using the

input vectors
2 d = ⊕ni=1(siri); . Calculate the bit value inR at the le�most

position where P and Q di�er
3 дi = d ⊕ ri ;∀i = 1, · · · ,n; . G = (д1, · · · ,дn);
4 hi = дi c̄i ;∀i = 1, · · · ,n; .H = (h1, · · · ,hn); c̄i is complement

of ci
5 ti = ci + si + hi ;∀i = 1, · · · ,n; . T = (t1, · · · , tn); ci ∈ C;

si ∈ S;
6 e1 = t1; . E = (e1, · · · , en);
7 ei = ei−1ti ;∀i = 2, · · · ,n;

To elaborate, given two vectorsA and B, Alg. 2 describes the
matching operations in which vectors on x- and y-axis are extracted
accordingly (in lines 2 and 3) for the PCPM algorithm. Alg. 4
describes the operations performed on vectorsAy orBy using the
inputs of common pre�x between them, C, and a selector mask S
generated in Alg. 3. In Alg. 4, we �rst compute the corresponding
bit values at the le�most position j where vectors P and Q di�er.

Geosocial �ery with User-Controlled Privacy WiSec ’17 , July 18-20, 2017, Boston, MA, USA

We achieve the subsequent operations using a concept of a binary
multiplexer. Finally, we merge all masks and run a pre�x mask
puri�cation step (also used in line 6 of Alg. 1) to reset the bit values
a�er le�most 0 to 0. We develop homomorphic functions for all
these operations. �e results are validated using a plaintext version.

�e result from this query is a bounding box that encloses both
the requesting and responding users for a third-party (e.g., geosocial
app). As illustrated in Fig. 8 (d), a third-party will not learn the
exact location of either user within the resulting bounding box. As
intermediate results for individual users, smaller bounding boxes
(illustrated in Fig. 8 (b-c)) will not reveal the exact location of users
due to the masking process.

5 EVALUATION AND DISCUSSION
5.1 Implementation and Evaluation Platforms
We instantiate our proposed framework using NLV [29] scheme.
We use C++ with the support of polynomial operations from the
Number �eory Library (NTL), which depends on the GNU Multiple
Precision Arithmetic Library (GMP). We veri�ed the correctness of
our implementation through extensive validations, and compared
our performance results with the data reported by Naehrig et al [29].

We conducted our performance evaluations on four platforms:
Raspberry Pi model B+ (ARM1176JZF-S, 700 MHz, 512 MB memory),
ODROID-C2 (Cortex-A53, 2 GHz, 2 GB), MacBook Pro (Intel core
i5, 2.6 GHz, 2 GB), and Amazon EC2 (Xeon E5-2670, 2.5 GHz, 1 GB).
�ese platforms run Raspbian, Ubuntu 16.04, or Mac OSX El Capitan
with the standard installation of packages. �e speci�cations of
these platforms represent di�erent classes of devices; from low-end
smartphones to the resource-rich cloud computing environments.
�e ODROID board is speci�cally designed for Android application.

5.2 Evaluation Results
For HE, parameter selection determines the correctness, security,
and performance. For the prototype implementation, we used the
parameter se�ings given in Table 1: t is the plaintext space modulus,
n is the degree of the polynomial Φ(x), dlog2 qe is the bit-length of
q, and L is the required level of homomorphic multiplications. We
selected the parameters similar to the NLV paper [29].

Table 1: Parameter settings
Parameter HE Test �eries 1, 2 �eries 3, 4

t 2 5 2
n 64 1024 54

dlog2 qe 128 38 1300
L 1 1 44

We repeat each experiment 100 times on various platforms and
record the average computation time of each operation as well as
the standard deviation of the mean (which was relatively small). In
our applications, most of the homomorphic operations are to be
executed in the cloud environment, so we mainly focused on the
performance of Amazon EC2. We can expect be�er performance
if we run our experiments on faster cloud service con�gurations,
rather than the restricted service that was we used. �e perfor-
mance results of the other platforms also demonstrated that the
proposed approaches are feasible on common mobile devices.

5.2.1 Common homomorphic operations. Using the parameter
se�ings in Table 1, Fig. 7 (a) shows the computation time of all ho-
momorphic operations (addition, multiplication, and multiplication
with relinearization) and public-key operations (key generation,
encryption, and decryption). As expected, the computation time
depends mainly on the CPU clock speed of the respective platform.
For the same experiment, Raspberry Pi takes a signi�cantly longer
time than the other platforms. For example, one homomorphic mul-
tiplication took 34.12ms on the Pi, but it took 1.73ms on Amazon
EC2. If consecutive multiplication is required, it took 107.68ms for
Amazon EC2 to perform the multiplication and the relinearization
step. Note also that the times are plo�ed in log-scale. Our results
conform the expectation that homomorphic multiplication takes
more time (longer if the relinearization step is included) compared
to other HE operations [21].

5.2.2 Our proposed approaches. Fig. 7 (b) shows the feasibility
study results of the spatial cloaking with HE schemes. Homomor-
phic encryption, masking, and decryption of a vector take approx-
imately 0.7s on the MacBook Pro laptop and approximately 1.6s
on the ODROID C2 board. �ese operations take about 10s on the
RaspberryPi, which is reasonable. One interesting observation is
that, di�erent from the other two sets of experiments, Amazon EC2
takes longer than the MacBook Pro for all three operations. �is
is because spatial cloaking with HE involves sequential homomor-
phic multiplication of vector elements, and the MacBook Pro laptop
results in faster computation time due to the high clock speed. How-
ever, once the complexity increases in each homomorphic operation
the Amazon EC2 will outperform the laptop. For example, the total
run time for �ery 1 is 1.23s for the laptop and 0.71s for the EC2
instance. Similarly, the total run time for �ery 2 is 2.51s and 1.43s
respectively. We also implemented the ElGamal-based algorithm
for performing �ery 1, the total run time is around 76ms on the
MacBook Pro.

Fig. 7 (c) shows the computation time of di�erent common pre�x
mask extraction processes (related to �ery 3 and the improved
�ery 3). �e computation time for the plaintext version (CPM
and ECPM) serves as a reference to show the ratio of computa-
tion time increase. We can observe similar complexity increase
in the ciphertext version using HE (HE-CPM and HE-ECPM). �e
HE-ECPM uses signi�cantly more homomorphic operations, which
increases the level of homomorphic multiplication with relineariza-
tion. However, the time increase is still reasonable. �e best average
computation time for the HE-ECPM approach is 15.52s, which is
achieved in the Amazon EC2 environment. �e HE-CPM approach
on the same platform is 3.27s. �e set of homomorphic operations
on RaspberryPi took longer time. �e Pi took 257.41s and 947.31s
for computing HE-CPM and HE-ECPM respectively. Taking more
than one minute to perform a common pre�x mask may seem a bit
too long, yet the users can control how their private data is used.
We expect that many of the bit-wise operations could be signif-
icantly improved with parallel processing techniques. As in our
current prototype demo system, the computation time for multiple
requests will be a multiple of the individual HE operation’s run
time shown in Fig. 7. Exploring parallel processing architectures to
speed up the computation will be a future work.

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Peizhao Hu, Sherman S.M. Chow, and Asma Aloufi

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

G
en(PK)

Encrypt

D
ecrypt

C
 + C

’

C
 x C

’

C
 x
R
elin C

’

T
im

e
 (

s
)

RaspberryPi
ODROID C2

MacBook Pro
Amazon EC2

(a) Homomorphic operations

10
-1

10
0

10
1

10
2

Enc(vec)

M
ask(vec)

D
ec(vec)

Q
uery1

Q
uery2

T
im

e
 (

s
)

RaspberryPi
ODROID C2

MacBook Pro
Amazon EC2

(b)�ery 1 and�ery 2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
PM

EC
PM

H
E-C

PM

H
E-EC

PM

T
im

e
 (

s
)

RaspbeeryPi
ODROID C2

MacBook Pro
Amazon EC2

(c)�ery 3 and Improved�ery 3

Figure 7: Computation timesmeasurement of di�erent homomorphic operations: [Gen(PK)] public key generation; [Encrypt]
encryption; [Decrypt] decryption; [C +C ′] addition; [C ⊗ C ′] multiplication; [C ⊗Relin C ′] multiplication with relinearization;
[Enc(vec)] encryption of the user location vector; [Mask(vec)] apply user de�ned mask on user location vector; [Dec(vec)]
decryption of the user location vector; [CPM] common pre�x mask (in plaintexts); [ECPM] extended common pre�x mask
(in plaintexts); [HE-CPM] common pre�x mask with HE; [HE-ECPM] extended common pre�x mask with HE.

Bob

Alice

(a) Alice’s view

Bob

Alice

(b) Bob’s view (c) Combined view

Figure 8: Bounding boxes produced by our demo system: these boxes are generated using location data of Alice and Bob; the
outer bounding box is generated by the HE-CPM approach and is added for comparison.

Fig. 8 shows examples of bounding boxes generated by our demo
system for di�erent parties. In all three �gures, the outer bounding
box is generated by the HE-CPM approach and it is added for com-
parison. In Fig. 8 (b) and (c), users can see their current coordinate
point as well as the cloaked area of the other user. �ese bounding
boxes are generated by the HE-ECPM approach. Compared to the
outer bounding box, the HE-ECPM approach produces bounding
boxes which are two level smaller for the two example coordi-
nates used in these experiments; this corresponds to 1.40E+13m2

reduction in area size as shown in the �gure. For these example
coordinates, the reduction in area size in HE-ECPM is more signi�-
cant than the HE-CPM with heuristic rules. If both users are happy
for the cloud server to release their masked location, their bounding
boxes can be shared with third-party applications. Alternatively,
we can generate a combined view with slightly larger cloaking area,
as shown in Fig. 8 (d).

6 EXTENSION TO A PRACTICAL SETTING
�e description of our system assumes SWHE is used directly. How-
ever, due to ciphertext expansion, SWHE produces very large cipher-
texts which are costly to transmit; especially, for the periodically
updated location data. Moreover, since the data is encrypted in a
public-key manner, each user (the “owner” of the location data)
needs to help in the decryption of the �nal encrypted result.

We present an extension that adapts a block-cipher to reduce
the overhead and leverage the non-colluding assumption between
SP and users to support transformation of ciphertexts. Our goal is
to free the data owners from decryption for every single encrypted
result for querying their location data, by a one-time setup with
each friend.

We will use AES to instantiate the block-cipher. Recall that
[·]A denotes an SWHE ciphertext for Alice. In the following, {·}A
denotes an AES ciphertext under the secret key of Alice.

Geosocial �ery with User-Controlled Privacy WiSec ’17 , July 18-20, 2017, Boston, MA, USA

6.1 Key Setup
When a user is �rst registered to the system, an AES key is generated
and stored securely. When two users, say Alice and Bob, become
friends, they set up a public key PKAB jointly owned by them.
�is key can be set up, for example, by a distributed coin-�ipping
protocol to agree with the randomness, then using it to derive the
private key of the underlying SWHE scheme. Now, both of them
send this joint public key and an SWHE encryption of his or her
own AES key under such a joint key. �is will allow SP to convert
user data into the HE domain.

6.2 Hybrid SWHE
We adopt a hybrid encryption approach [26, 29], such that the users
only use block-cipher to encrypt their preferences and the periodi-
cally updated location data. Most of the more expensive public-key
/ homomorphic operations are le� to the more powerful SP.

Recall that in the one-time setup, each user will send a list of
HE encryption of the AES key for each friend and a list of AES
encrypted bit-masks as privacy preferences for the friends. For
example, Alice uploads [kA]AB , · · · and {MB }A, · · · to SP. In addi-
tion, each user periodically sends an AES encryption of the location
data in the form of quad-key; that is, {QKA}A for the case of Alice.
�is signi�cantly improves the performance at the client slide and
reduces the communication overhead.

In SP, the AES encrypted location data {QKA}A is transformed
into a ciphertext [QKA]AB encrypted by SWHE using the homAES-
dec() function [18, 19]. Note that all ciphertexts are either encrypted
under corresponding symmetric keys for AES or public-keys for
SWHE.

6.3 Computing on Data Encrypted under
Multiple Keys

Upon receiving a user query, SP transforms the encrypted and
masked location data from an encryption under an individual sym-
metric key to a public-key jointly owned between the two involving
users. As an example, an AES ciphertext QKAA for Alice will be
�rst transformed into [QKA]AB which is an encryption under a
joint key between Alice and Bob, then it can be easily masked (as
described in Section 4.2 and becomes [QK ′A]AB .

6.4 Key Revocation
Simply put, revocation can always be done by generating a new key
and re-encrypting everything. When a user Alice wants to revoke
her AES key, she can safely do that by generating a new key and
encrypt new data using it. She will update her key by sending a
new encrypted [kA]AB to SP just like when she has newly acquired
a friend. Without the new AES key, SP will not be able to perform
the required homomorphic computations for the new location data.
Hence, she can safely revoke the AES key at need. To renew and
revoke a public-key, it can also be done in a similar manner.

6.5 Security Analysis
We adopt a semi-honest threat model. �e server follows the pro-
tocol speci�cations but is curious to infer the locations or privacy
preferences of users from the data collected through our system.
Here, we consider these two possible coalitions.

When SP remains honest, our systems o�er protection by mask-
ing user locations. As described in Section 4.1, SP �rst masks user
location data before any query computation, with the data gran-
ularity is supplied by the user who owns the location data. Any
user coalition can only learn the location up to the �nest level that
assigned to the “best” corrupted friend since only the friends of a
user can get the decryption of the �nal query result returned by SP.

If SP deviates from the protocol, SP can skip the masking step and
directly send the precise (encrypted) location data to the requesting
user. In other words, the risk here is that the user loses the control
of granularity. It is because we separated the location data from
the granularity control. In other words, our system makes a trade-
o� for the uploading bandwidth requirement of the user and the
e�ciency of periodic updates.

If SP colludes with a corrupt user, any corrupt user who is trusted
by the victim has the private key (corresponding to the public joint
key) to recover the AES key of and hence the precise locations of
the victim user. �is is similar to the above threat. Again, under
our e�ciency constraint, there is not much security we can hope
for since it is SP who enforces the masking and performs the com-
putation. In other words, SP can skip the masking as we discussed,
and not perform the computation but just return the (encrypted)
result to the corrupt user. �e corrupt user can for sure decrypt the
result since that is part of the guarantee on the correct functionality.
One can employ multi-key threshold homomorphic encryption [1]
instead, yet it will involve the data owner to help in decryption for
every query results.

We leave upgrading the security under such a malicious adver-
sary model while keeping a similar level of e�ciency as a future
work. A possible approach is to resort to a non-colluding two-party
computation model [9, 39].

7 CONCLUSIONS
We designed cryptographic algorithms based on homomorphic en-
cryption for three major kinds of queries in a geosocial network.
Users can specify privacy preference to control the data granular-
ity when sharing the location data with other parties. Both the
location data and the preferences are encrypted. Location privacy
is protected by masking user location data according to the user
preference. We also designed a new spatial cloaking algorithm that
not only addresses the co-location problem but reduces error signi�-
cantly. We implemented these algorithms based on recent advances
in somewhat homomorphic encryption. We developed a demo sys-
tem for proof-of-concept validation and conducted performance
evaluations on mobile devices with di�erent speci�cations.

ACKNOWLEDGEMENT
�e authors are grateful for the comments of Cristina Nita-Rotaru,
Russell W.F. Lai, Siyu Zhu, and other anonymous reviewers.

Sherman Chow is supported in part by General Research Fund
(Grant No. 14201914) and the Early Career Award from Research
Grants Council, Hong Kong.

REFERENCES
[1] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. 2012. Multiparty Computation with Low Com-
munication, Computation and Interaction via �reshold FHE. In EUROCRYPT.

WiSec ’17 , July 18-20, 2017, Boston, MA, USA Peizhao Hu, Sherman S.M. Chow, and Asma Aloufi

Springer-Verlag.
[2] Omer Barak, Gabriella Cohen, and Eran Toch. 2016. Anonymizing mobility

data using semantic cloaking. Pervasive and Mobile Computing, Special Issue on
Security and Privacy in Mobile Clouds 28 (2016), 102–112.

[3] A.R. Beresford and F. Stajano. 2003. Location Privacy in Pervasive Computing.
Pervasive Computing, IEEE 2, 1 (Jan 2003), 46–55.

[4] Claudio Be�ini and Daniele Riboni. 2015. Privacy Protection in Pervasive Sys-
tems: State of the Art and Technical Challenges. Pervasive and Mobile Computing
17, Part B (2015), 159 – 174.

[5] Joppe W. Bos, Kristin Lauter, Jake Lo�us, and Michael Naehrig. 2013. Improved
Security for a Ring-Based Fully Homomorphic Encryption Scheme. In Cryptog-
raphy and Coding. LNCS, Vol. 8308. Springer Berlin Heidelberg, 45–64.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) Fully
Homomorphic Encryption without Bootstrapping. In Innovations in �eoretical
Computer Science (ITCS). 309–325.

[7] Zvika Brakerski and Vinod Vaikuntanathan. 2011. E�cient Fully Homomorphic
Encryption from (Standard) LWE. In FOCS. IEEE Computer Society, 97–106.

[8] Jung Hee Cheon, Miran Kim, and Kristin Lauter. 2015. Homomorphic Com-
putation of Edit Distance. In Workshop on Encrypted Computing and Applied
Homomorphic Cryptography (WAHC). ACM, Isla Verde, Puerto Rico.

[9] Sherman S. M. Chow, Jie-Han Lee, and Lakshminarayanan Subramanian. 2009.
Two-Party Computation Model for Privacy-Preserving �eries over Distributed
Databases. In Network and Distributed System Security Symposium (NDSS).

[10] Sunny Consolvo, Ian E. Smith, Tara Ma�hews, Anthony LaMarca, Jason Tabert,
and Pauline Powledge. 2005. Location Disclosure to Social Relations: Why, when,
& What People Want to Share. In Human Factors in Computing Systems (CHI).
ACM, New York, NY, USA, 81–90.

[11] Cynthia Dwork. 2006. Di�erential Privacy. In ICALP (LNCS), Vol. 4052. Springer
Verlag, Venice, Italy, 1–12.

[12] Taher El Gamal. 1985. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In CRYPTO. Springer-Verlag New York, Inc., Santa
Barbara, California, USA, 10–18.

[13] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-
morphic Encryption. (2012).

[14] Uriel Feige, Amos Fiat, and Adi Shamir. 1988. Zero-Knowledge Proofs of Identity.
J. Cryptology 1, 2 (June 1988), 77–94.

[15] Julien Freudiger, Maxim Raya, Márk Félegyházi, Panos Papadimitratos, and Jean-
Pierre Hubaux. 2007. Mix-Zones for Location Privacy in Vehicular Networks. In
Proceeding of Win-ITS’07. Vancouver, British Columbia.

[16] Volker Gaede and Oliver Günther. 1998. Multidimensional Access Methods. ACM
Comput. Surv. 30, 2 (June 1998), 170–231.

[17] B Gedik, Kun-Lung Wu, P S Yu, and Ling Liu. 2006. Processing Moving �eries
over Moving Objects using Motion-adaptive Indexes. IEEE Transactions on
Knowledge and Data Engineering 18, 5 (2006), 651–668.

[18] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2015. Homomorphic Evaluation
of the AES Circuit (Updated Implementation). In Cryptography ePrint Archive.
LNCS, Vol. 7417. Springer Berlin Heidelberg, 850–867. Last Updated on 2015.
Originally appeared in CRYPTO 2012.

[19] Shai Halevi and Victor Shoup. 2014. Algorithms in HElib. In CRYPTO. Springer,
554–571.

[20] Tanzima Hashem and Lars Kulik. 2011. “Don’t trust anyone”: Privacy Protection
for Location-Based Services. Pervasive & Mobile Computing 7, 1 (2011), 44 – 59.

[21] Peizhao Hu, Tamalika Mukherjee, Alagu Valliappan, and Stanislaw Radziszowski.
2016. Evaluation of Homomorphic Primitives for Computations on Encrypted
Data for CPS systems. In IEEE CPSWeek Smart City Security and PrivacyWorkshop
(SCSP-W). Vienna, Austria.

[22] Peizhao Hu, Tamalika Mukherjee, Alagu Valliappan, and Stanislaw Radziszowski.
2016. Homomorphic Proximity Computation in Geosocial Networks. In BigSecu-
rity, an INFOCOM workshop.

[23] Ali Khoshgozaran and Cyrus Shahabi. 2007. Blind Evaluation of Nearest Neighbor
�eries Using Space Transformation to Preserve Location Privacy. In SSTD.
Springer-Verlag, 239–257.

[24] Ali Khoshgozaran and Cyrus Shahabi. 2009. Private Buddy Search: Enabling
Private Spatial �eries in Social Networks. In Social Intelligence and Networking
(SIN), Computational Sci and Engg. (CSE) - Vol. 04. IEEE Comp. Society, 166–173.

[25] John Krumm. 2009. A Survey of Computational Location Privacy. Personal
Ubiquitous Comput. 13, 6 (Aug. 2009), 391–399.

[26] Tancrede Lepoint and Michael Naehrig. 2014. A Comparison of the Homomorphic
Encryption Schemes FV and YASHE. In AfricaCrypt. Springer, 318–335.

[27] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. On Ideal La�ices and
Learning with Errors over Rings. J. ACM 60, 6, Article 43 (Nov. 2013), 35 pages.

[28] Sergio Masce�i, Dario Freni, Claudio Be�ini, X. Sean Wang, and Sushil Jajodia.
2011. Privacy in Geo-social Networks: Proximity Noti�cation with Untrusted
Service Providers and Curious Buddies. �e VLDB Journal 20, 4 (2011), 541–566.

[29] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can Homo-
morphic Encryption be Practical?. In Cloud Comp. Sec. Ws. (CCSW). 113–124.

[30] Arvind Narayanan, Narendran �iagarajan, Mugdha Lakhani, Michael Hamburg,
and Dan Boneh. 2011. Location Privacy via Private Proximity Testing. In Network

and Distributed System Security Symposium (NDSS).
[31] Janus Dam Nielsen, Jakob Illeborg, and Michael Bladt Stausholm. 2012. Location

Privacy via Actively Secure Private Proximity Testing. In PerCom Workshop.
Lugano, Switzerland, 381–386.

[32] Alexandra-Mihaela Olteanu, Kévin Huguenin, Reza Shokri, and Jean-Pierre
Hubaux. 2014. �antifying the E�ect of Co-location Information on Location
Privacy. Privacy Enhancing Technologies 8555, Chapter 10 (2014), 184–203.

[33] Femi Olumo�n, Piotr K Tysowski, Ian Goldberg, and Urs Hengartner. 2010.
Achieving E�cient �ery Privacy for Location Based Services. In Privacy En-
hancing Technologies Symposium (PETS). Springer-Verlag, 93–110.

[34] Tao Peng, Qin Liu, and Guojun Wang. 2013. Privacy Preserving for Location-
Based Services Using Location Transformation. CSS 8300, Chap. 2 (2013), 14–28.

[35] Krishna P. N. Pu�aswamy, Shiyuan Wang, Troy Steinbauer, Divyakant Agrawal,
Amr El Abbadi, Christopher Kruegel, and Ben Y. Zhao:. 2014. Preserving Location
Privacy in Geosocial Applications. IEEE Trans. Mob. Comput. (2014), 159–173.

[36] Gokay Saldamli, Richard Chow, Hongxia Jin, and Bart Knijnenburg. 2013. Private
Proximity Testing with an Untrusted Server. In ACM WiSec. ACM, 113–118.

[37] Joe Schwartz. 2012. Bing Maps Tile System. h�ps://msdn.microso�.com/en-
us/library/bb259689.aspx. (2012).

[38] Carmen Ruiz Vicente, Dario Freni, Claudio Be�ini, and Christian S. Jensen. 2011.
Location-Related Privacy in Geo-Social Networks. IEEE Internet Computing 15, 3
(2011), 20–27.

[39] Boyang Wang, Ming Li, Sherman S. M. Chow, and Hui Li. 2014. A tale of two
clouds: Computing on data encrypted under multiple keys. In IEEE Communica-
tions and Network Security (CNS). 337–345.

[40] Tao Zhang, Sherman S. M. Chow, Zhe Zhou, and Ming Li. 2016. Privacy-
Preserving Wi-Fi Fingerprinting Indoor Localization. In Advances in Information
and Computer Security (IWSEC). 215–233.

[41] Ge Zhong, Ian Goldberg, and Urs Hengartner. 2007. Louis, Lester and Pierre -
�ree Protocols for Location Privacy. In Privacy Enhancing Technologies. 62–76.

	Abstract
	1 Introduction
	1.1 Spatial Cloaking
	1.2 Hiding both Location and Preferences

	2 Preliminaries
	2.1 Geo-Hashing with Z-Order Curve
	2.2 SomeWhat Homomorphic Encryption

	3 Related work
	4 Computing on encrypted location
	4.1 Query 1: Where is Alice?
	4.2 Query 2: Who is nearby?
	4.3 Query 3: How close is Alice and Bob?
	4.4 Improved Query 3

	5 Evaluation and Discussion
	5.1 Implementation and Evaluation Platforms
	5.2 Evaluation Results

	6 Extension to a Practical Setting
	6.1 Key Setup
	6.2 Hybrid SWHE
	6.3 Computing on Data Encrypted under Multiple Keys
	6.4 Key Revocation
	6.5 Security Analysis

	7 Conclusions
	References

