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Abstract

We apply Smith’s construction [9] to generate four-dimensional GLV
curves with fast arithmetic in the group law as well as in the base field.
As Costello and Longa did in [5] for a 128-bit security level, we obtained
an interesting curve for fast GLV scalar multiplication, providing a high
level of security (254 bits). Our curve is defined over a well-known finite
field: F,2 where p = 2255 _19. We finally explicit the two endomorphisms
used during GLV decomposition.

Introduction

In 2001, Gallant, Lambert and Vanstone introduce in [6] a new method named
GLV!, to compute the scalar multiplication on certain elliptic curves. These
curves are defined over IF, and have an endomorphism ¢, acting as a fast scalar
multiplication by its eigenvalue A on a subgroup G C E(F,) of order N. To
compute [k]P, they decompose

k=ky +Xks mod N

with k1, ko half the size of k, and then compute [k]P = [k1]P + [ko]o(P) with
a multi-exponentiation. It becomes interesting to use the GLV method if the
endomorphism evaluation is not too expensive. This latter criterion makes the
GLV curves very rare among the elliptic curves, and [6] gives only few examples
of such curves.

In 2013, Smith gives in [9] families of curves with two endomorphisms ¢, 1
acting on a subgroup of E(F,). Theses curves are defined over F,> and come
from reduction of Q-curves. This construction is interesting because it gives a
larger number of curves. Analogously, decomposing k with the eigenvalues gives

LGallant-Lambert-Vanstone method



KIP = k1P + [kJio(P) + ksl o(P) + [kalip o (P) with log(kr), .. ., log(ks) =
log(k)/4.

In 2015, Costello and Longa use in [5] the Mersenne prime p = 2127 — 1
to generate a Smith curve with 127 bits of security. The arithmetic of this
special field, added to the four-dimensional GLV method, gives an efficient scalar
multiplication on the subgroup of the curve.

The idea of this preprint is to search for a Q-curve as in [5] but at a higher
security level (256-bit security level). We also want a fast finite field arithmetic,
hence we choose among primes with special binary decomposition. These condi-
tions permit a fast scalar multiplication using a four-dimensional GLV method.
For modularity and to re-use efficient hardware implementation, we searched
for secure Q-curves over the Curve25519 prime p = 22%° — 19.

1 Generating four-dimensional GLV curves

We follow the method described by Smith in [9] to generate elliptic curves
endowed with two endomorphisms. The curves arise from Q-curves taken from
the Hasegawa article [7].

1.1 Q-curves

Hasegawa presents in [7] families of Q-curves Eq a s of prime degree d, defined
over a quadratic extension of Q, say K = Q(v/A). We note o the conjugation
of the quadratic field K. These curves are parametrized by a square-free integer
A and a rational s:

Ed,A,s : y2 =z + Ad,A(S).’E + Bd,A(S)

The explicit values of Aga(s) and Bga(s) can be found in [9]. A Q-curve of
degree d has an isogeny ¢ : £ — “E of degree d, defined over QWA, v—d).
Setting 1 := %% o ¢, we obtain an endomorphism of E, of degree d?, which is

[+d].

1.2 Reducing a Q-curve modulo p

In order to obtain a curve defined over a finite field, we reduce our Q-curve
mod a prime p. It makes sense if we define E on the integer ring Ok, and then
consider Ok /pOk. We want to keep the Q-curve structure so p needs to satisfy
some conditions:

e pis inert in Ok, i.e (%) — 1.

If pOk is prime, O /pOx ~F,[X]/(X? — A) ~ F,[/A mod p] ~ F,e.

o Ap:=123(4A4A(s)> +27Bg,a(s)?) Z0 mod p.
To get an elliptic curve over the finite field, we choose p such that the
curve is not singular. p is said to be of good reduction for F.



e ged(p,d) = 1.
We want to keep the d-isogeny in the reduction curve.

Under these conditions, the p-Frobenius (p) : F,2 — F,2 is the reduction of
o: K — K. We also need to choose (p) to be the reduction of

5: Q(VA,V—=d) — Q(WA,vV—d)
that means that &(v/—d) = (_—d) V—d.

P
We obtain the following reduced curves and isogenies:

Reduction mod p

E/Q(VA) E/Fy

G o @) 0

Reduction mod p

E/Q(VA,V~=d)

Note that if E : y? = 23 + Az + B, the reduction mod p of °E is P E : y2 =
z3 + APz + BP. We note m, : (z,y) +— (zP,y?) the p-Frobenius. It defines a
p-isogeny from PV E to E. We also note 7 = 2. Composing mp With ¢, we
get 1 1= m, o ¢ € End(FE), of degree pd. The GLV method is efficient only if ¢
is easy to evaluate. Computing % is as difficult as computing ¢ because 7, is
just? the conjugacy in F,2. ¢ is defined with Vélu’s formulas, by polynomials
of degree about d and so Smith considers Hasegawa Q-curves of small degree d:

Eyns:y? =2+ Aoa(s) + Baa(s)  Esas:y®=a"+ Asal(s) + Bsals)

Es 1s:y° =2+ A5 1(s)+ Bs—1(s)  Eras:y® =2+ A7 a(s)+ Bra(s)
The values of the coefficients are computed in SageMath [10] in http://bit.
1y/2BTCY8v.

The following results give the eigenvalue for i (where tg is the trace of the
curve E):

Theorem 1 (Smith, [9]). ¢ satisfies ? = [e,d|m . There exists v € 7 such that
dr? = 2p + eptp, for which [rly) = [p] + epmp. The ¢ characteristic polynomial
is Py(T) =T? — rdT + dp.

Corollary 2 (Smith, [9]). Let E be an ordinary elliptic curve. If G C E(F2)

is a cyclic subgroup of order N such that ¥(G) C G, then the eigenvalue of
on G is

P E JFp2

p+eé

Ay = mod N

This latter result gives a GLV decomposition in dimension 2 for some families
of curves. In order to get a four-dimensional GLV method, we look for CM curves
among them.

2only one multiplication by —1 because (a + b\/Z)p =a—b/A


http://bit.ly/2BTCY8v
http://bit.ly/2BTCY8v

1.3 Q-curves with complex multiplication

1.3.1 Complex multiplication method

We are looking for ordinary CM curves. Their endomorphism ring is an order

Op (of discriminant D = —Dgf?) in an imaginary quadratic field. We follow
[9, §9]. The method is based on the Hilbert polynomial:

Hp(X):== | (X-ij®)

E/End(E)=0p

Hp € Z[X] is monic and irreducible over Z.

We note that Op =: End(E4 A s) = End(°Eg a,s) to deduce that j(Eqa,s) and
J(°Eq n,s) are two conjugated roots of Hp. Since Hp is irreducible over Z, there
is no other j-invariant possible, and Hp has degree 1 or 2. Furthermore, there
is a finite number of possible D where deg(Hp) € {1,2}:

Dy 3 3 3 4 4 7 7 8 11 19 43 67 163
7 1 2 3 1 2 1 2 1 1 1 1 1 T
D —3 | —12 | —27 | —4 | —16 | —7 | —28 | —8 | —11 | —19 | —43 | —67 | —163

Discriminant D = —Dy - f? for deg(Hp) = 1

Dy 3 3 3 4 1 1 7 3 3 11 15 15
7 4 5 7 3 4 5 4 2 3 3 1 2
D —48 | —75 | —147 | —36 | —64 | —100 | —112 | —82 | —72 | —99 | —15 | —60
Dg 20 24 35 40 51 52 88 o1 115 123 148 187
7 1 1 1 T 1 1 1 T 1 1 T 1
D —20 | —24 | —35 | —40 | —51 | —52 | —88 | —91 | —115 | —123 | —148 | —187
Dy 232 235 267 403 427
7 1 1 T 1 1
D —232 | —235 | —267 | —403 | —427

Discriminant D = —Dy - f? for deg(Hp) = 2

From the list of possible D, we compute Hp and factorize it to find the possible
j-invariants:

—Dg - f2 | j-invariant
—Dgq - f2 | j-invariant —3 .42 40500(35010 + 20213+/3)
—3.12 0 —3.52 884736(—369830 + 165393/5)
—3.22 24 .33 .53 —3.72 331776000(—52518123 + 114603941/21)
—3.32 —215.3.53 —4.32 192(399849 + 230888v/3)
—4.12 26 . 33 —4.42 54(761354780 + 538359129+/2)
—4.22 23 .33 . 113 —4.52 1728(12740595841 + 5697769392+/5)
—7.12 —33 .53 —7.42 3375(40728492440 + 15393923181/7)
—7.22 33 .53 . 173 —8.22 1000(26125 + 18473v/2)
—8.12 26 .53 —8.32 8000(23604673 + 96365361/6)
—11-12 —215 —11-32 180224 (—104359189 + 18166603v/33)
—19 .12 —215 .33 —15 .12 135/2(—1415 + 637/5)
—43 .12 —218 33 .53 —15 .22 135/2(274207975 + 122629507/5)
—67-12 | —215.33 .53 .113 —20-12 | 320(1975 + 884V/5)
—163-12 | —218 .33 .53 233293 —24 .12 1728(1399 + 988v/2)
—35-12 | 163840(—360 =+ 161v/5)




—Dq - f2 | j-invariant

—40 - 12 8640(24635 + 11016/5)

—51-12 | 442368(—6263 + 1519v17)

—52.12 216000(15965 + 4428/13)

—88 .12 216000(14571395 + 10303524/2)

—91 .12 884736(—5854330 + 1623699v/13)

—115 - 12 | 4423680(—48360710 + 21627567/5)

—123 .12 110592000(—6122264 + 956137/41)

—148 - 12 | 216000(91805981021 + 15092810460v/37)

—187 - 12 | 940032000(—2417649815 + 586366209/17)

—232 12 | 216000(1399837865393267 + 259943365786104+/29)

—235 .12 | 5887918080(—69903946375 + 31261995198+/5)

—267 - 12 | 55296000(—177979346192125 + 18865772964857/89)

—403 .12 | 110592000(—11089461214325319155 + 3075663155809161078v/13)
—427 - 12 | 147197952000(—53028779614147702 + 67896394884446311/61)

Each discriminant D gives one (or two) j-invariant of curves with endomor-
phisms ring Op. These tables are computed using the construct_CM_j_roots
function from http://bit.1ly/2BTCY8v.

1.3.2 CM Hasegawa Q-curves
Our Q-curves are parametrized by d,s and A. Their j-invariant are given by

123 44,0(s)
o 4Ad’A(S)3 + 27Bd)A(S>2

J(Ean.s)

We solve j(Eqa,s) = j for j in the latter table, with the conditions s € Q,
A square-free, and d € {2,3,5,7}. This algorithm is computed in SageMath
[10] at http://bit.1ly/2BTCY8v. It gives sometimes a solution for which a CM
Hasegawa Q-curve Eg A s arises:

Degree 2 Degree 3
sVA D sVA D Degree 7
5 2 2
! 0 —3-2
9

0 —8.12 572 | 81 ;\/% 3D12
7 2 1 2 - o
360 - 9 e i\/fg —3.32
2V6 | —-8-3? wV5 | —3-5° Y e
V5 | —20-12 221 =372 1779 | —19.12
V2 | —24.12 W5 | —15-12 17| 7.2
V6 | —40-12 Lv5 | —-15-22 i\/g 3512
2V13 | —52-12 V2 | —24.12 113 | —o1. 12
oV2 | —88-12 IVIT | —51-12 261 | —ao7.12
$0V/37 | —148- 12 V4l | —123. 12 39
502029 | —232-1% | | £5V/89 | —267-1°

In degree 5, [9] explains that we need to fix A to get a family of curves. We
choose here A = —1 as |9] did. We only get two curves for s = 1 and —9/13,
with j-invariant 662, and with End(E) of discriminant —4 - 22.
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2 Systematic search of curves

We now look for good primes for the reduction. Recall that p must be inert in
Q(v/A), coprime to d and must not divide Ag.

2.1 Secure cardinality

Elliptic curve cryptography requires a subgroup of E(IF,2) of prime order. That
is why we look for curves with #F(FF,2) with a large prime factor.

Ordinary and supersingular curves

Smith shows in [9] that if E4 A s is supersingular, #Eg a s(F,2) = (p £+ 1)? and
so the prime factors are too small for us. That is why we look for ordinary
elliptic curves.

We can distinguish ordinary and supersingular curves with the ideal (p?).
It always factorizes in (p?) = (f)(f) in End(E) because of the Frobenius. Owver
finite fields, End(F) is an order in an imaginary quadratic field or in a quaternion
algebra depending on whether if F is ordinary or supersingular. It means that
given an order Op corresponding to a curve E with End(F) 2 Op,

pisinert in Op <= F is supersingular
p splits in Op <= FE is ordinary

The case p ramified does not occur in our case: in quadratic fields, a prime
ramifies when it divides D, and we use curves with small discriminant and large
primes.

The inert and splitting primes are in the same proportion so a CM curve
over a number field reduces for half of the primes into a supersingular elliptic
curve.

Computing the cardinality

For each prime p, we compute the trace of the curve ¢tr in order to get the
cardinality #E(F,2) = p* + 1 — tp. The trace tg is also the trace of the p?-
Frobenius §, seen as an algebraic integer. We compute the Frobenius using the
CM property of the curve:

We factorize the ideal (p) = (p, 7)(p,7) in Op, and then write

(»*) = (p,7)(p, 7)(p, ) (p, 7)

From (p,7), we compute the ideal (p,7)? which is exactly the principal ideal
(f). Unfortunately, the generator given by Cornacchia’s algorithm [4, page 36]
is not always f: it can be af for o a unity of Op. We need to distinguish three
possibilities:

1. If Op = Z[j]. Then, the generators are +f, +5f, £72f. We get the sextic
twisted curves with each generator. It is the case for the j = 0 curves.



2. If Op = Z][i]. Then, the generators are +f, +if. We get the quartic twisted
curves with each generator. It is the case for the j = 1728 curves.

3. Otherwise, there are two generators: £f. We get the curve and its quadratic
twist.

The computation code in SageMath [10] is available at http://bit.1y/2BTCY8v.

Finding a secure cardinality

Best attacks on elliptic curves are in O(v/N) operations, where N is the prime
order of the elliptic curve (sub-)group. We use a 256 bits prime to obtain a
base-field Fp2 and an elliptic curve with approximately 2°'? elements, in order
to get 256 bits of security. Given #FE(FF,2), we factorize it and store the curve if
it has a big prime factor. We also store the twisted curves cardinalities because
we look for twist-security. The twisted curves traces are given by the other
generators of ().

2.2 Special base fields

The arithmetic in the base-field is very important to get an efficient scalar
multiplication in practice. That is why we look for special primes, for which the
arithmetic is known to be fast:

2256:|:kj:€ OSkSS _212S6§212

Prooler-1,.- €] =2+ Y 2™ ¢ € {0,£1}
0<i<k

We chose to explore the primes such that:
e n := kw is approximately 256.

e w is taken equal to or a bit less than the machine word size 32 or 64, to
allow efficient arithmetic or carry-free multiplications.

e k is kept minimal, as the complexity of a multiplication modulo a prime
heavily depends on the number of words: we consider k from 8 to 10 words
around 32 bits, or 4 to 5 words of size about 64 bits.

The values used are summarized in the following table:

n || 256 | 252 | 255 | 260 | 265 | 256 | 252 | 260
k 4 4 5 5 5 8 9 10
w| 64 | 63 | 51 | 52 | 53 | 32 | 28 | 26

We are particularly interested in the well-known primes p25519 2%2%% — 19
and NISTp256 2256 + 296 — 1 = pys6.32[00001002], and we also include some
primes of the compact form ¢" + ¢ (¢ = 6,7,8,9, ¢ < 10) recommended in [3].
These patterns lead to the study of 1543 primes, whose generation is available
at http://bit.1ly/2BTCY8v.
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2.3 Search results

Among theses families of curves, reduced over these special primes, we get 88
curves with cofactor < 28. We encode ¢; € {0,+1} as an integer mod 3, so
that 2 represents —1. The following tables list all possible GLV4-curves for the
explored primes. The cofactor of the curve is given in column labelled h, and
column TS indicates whether the twist is secure.

Prime Curve h | Ts
pg,32[22121212] E2,13,5/18 18 no
P9,28[2012101] Es 29,1820/9801 | 8 | no
p9?28 [20002122] E2,571/2 2 no
p928[12001102] E2,571/2 2 no
Po,28[12010221] E713,1/3 133 | no
p9,28[201000211] E3,571 12 no
p9,28[201000211] E375)11/25 12 no
P9,28 [100221021] E7,61,5/39 7 no
p9,28[110122201] E27377/12 18 no
P9,28[110122201] Es 5.161/360 18 | no
P10,26(2120112] Es 37,145,882 | 158 | no
P10,26 [22020001] E3,89’53/500 177 no
p10,26[20011222] E7,13,1/3 47 no
p10726[21211102] E7761,5/39 25 no
p10,26[12102112] E3’5’1 36 no
p10726[12102112] E3’5’11/25 36 no
p10726[10012011] E2,5,161/360 34 no
p10,26[201112011} E7,13,1/3 252 no
p10,26[21212100” E2,377/12 18 no
pl(),26[210002212} E771371/3 28 no
P10,26[211010022] Es 37,145/882 2 no
p10,26[121111012} E3’17’1/4 147 no
p10,26[100110211} E2)3’7/12 18 no
p10,26[101200201} E3,17,1/4 27 no
p10,26[111202212} E2,13,5/18 14 no
P10,26 [2221210212] E2,37,145/882 98 no
P10,26 [2000220102] E7)571 9 no
P10,26 [2001212212] E7,571 189 no
P10,26[2012002102] Es17.1/4 132 | no
P10,26[2121211122] | Ej5 29 182079801 | 8 | no
P10,26[1202222101] | Ep57/1 18 | no
P10,26[1012100212] | Ey 15515 126 | no
p10726[1012101001] E3,571 12 no
p10,26[1012101001] E375)11/25 12 no
P10.26[1010120022] Ess5.4/0 56 | no
pl(),26[1122121]-11] E27377/12 18 no
P10,26[1110020002] Eas51/2 2 | no
P10,26[1110020002] | Ej 29 182079801 | 248 | no




Prime Curve h TS Prime Curve

W=

TS
2043003 | Epgruss | 86 | mo | 2767 —1251 [ Egy 5 yes

2256 £ 3003 | B3, 145 | 86 | mo | 2261 —1629 FE35.1 12 | no

» 882 19y

274155 | Eyp35 | 34 | no || 291 —1629 | Ez5u 12 | no
225743981 | Eypm | 124 | no || 221 —1339 | Eyp9 1520 | 4 | no
22%5-19 | E;p 10 4 | no || 2143879 | Ezg9 55 | 12 | no

1500

2258 1 529 | Ers: 9 | yes 2262 71 Bsq71 | 12 | mo
2258 + 2467 Es 4 5 9 no 2262 + 3205 E;,1 24 | no
2% 42973 | Eppr | 4 | mo | 2743243 | Eyp | 172 | no
2258 + 2973 E2729 1820 188 no 263 + 2169 E2 5 161 34 no
2258 13397 | Ey3 1 2 | no | 2%%%-3097 | Ey3, 45 | 2 | mo

7882

2254 _ 1497 E2729 1820 4 no 2263 4 3725 E2’57% 2 no
2254 1 9913 Ey 5 161 2 no 2263 4 3033 E3,89, 58 12 no

2203807 | Epjpa | 63 | mo | 221975 Eysz | 2 | mo

112

2259 — 2605 | Eyy51 54 | no 2249 _ 75 By 5 161 2 | no

12 360

2259 4 3111 | Eygo s | 12 | no | 2249 —1959 | Eyg9 s | 12 | no

* 500 1500

2%9 43279 | By 14 | no || 2*%-2109 | Ey;35 | 22 | no
2260995 | E,4 1 2 | no || 2%44841 | Eyg9 5 | 36 | no

112 500

2200 — 2147 | Ey3 1 34 | no 2264 — 1257 | Ejpg 1520 | 8 no

9801

2°60 42083 | Byy3s | 98 | no | 27043113 | E751 1 | no
2260 —3995 | Espz | 36 | mo | 2°04-3695 | E,y .z | 18 | no
2260 _ 3995 EQ,QQ 1820 4 no 9248 + 483 E2713 5 22 no

19801 718

2252 + 421 E273 7 2 no 2248 + 1527 E775,1 9 no

112

2252 — 749 Eys1 18 | no 798 —2 Ezy31 | 76 | mo
2% —3609 | Ey5s | 56 | no 2292 +13 Eysz | 2 | mo
2%°% 44093 | FByiq1 3 | no 2320 4 27 By 1 54 | no

Certain curves have some good properties:
e One curve has prime order N of 528 bits for p = 2264 — 3113:

N = 87869410049671804351768330228241833181048771841834309
24024913227757495274747154733622024848806303376940523
20110703912930098196981893481301728517785874307577441

Its twist is unfortunately not secure.
e Two curves are secure and twist-secure (both orders have cofactor < 2%):

— E75.1 for p =225 4+ 529. Its cofactor is 9 and its twist is prime.
— E341,5/32 for p= 2261 _ 1251, Its cofactor is 3 and its twist 5.
e Curves with special primes known to have a fast arithmetic: three curves

defined over the primes 798 —2, 2292413, 23204927 and the curve presented
in the following section, for p = 22%% — 19.



3 The 4Q'Ed curve

— 2255

We obtain a four-dimensional GLV curve with p — 19. The curve comes

from the reduction of the Q-curve Ej 3 70/99:

14
E(Fp2):y2—z3+<—30+110-\@>x+(56—51610-f2>

This curve is not twist-secure, but we chose to favour efficient base field
arithmetic and group law rather than twist-security; in particular, the base field
arithmetic implementation can rely on the same implementation than for curve
Ed25519, providing extra concision for two levels of security. Moreover, most
cryptographic schemes do not depend on twist-security; still, the twist of this
curve has a cardinality divisible by two primes of size above 200 bits, and the
curve itself has a minimal cofactor of only 4.

3.1 High security
The cardinality #E(F,2) factorizes in 4 - N with N prime of 508 bits:
HAE(F,) =4-N

N = 837987995621412318723376562387865382967460363 787024
586107722590232610251879073047955441365222409345448
472682727742170061679779878946355915266474990239807

It means that we get 254 bits of security, and we can use the twisted Edwards
model to get a more efficient group law. To our knowledge, no public four-
dimensional GLV curve has been proposed with 256 bits of security.

3.2 Twisted Edwards form

Our curve can be represented in twisted Edwards form. We follow [9] to get the
new representation of the curve.

3.2.1 From Weierstrass to twisted Edwards form
A twisted Edwards form of our curve is
E,: (124 2By) 2® + 3> = 1+ (12 — 2Byy) 2%y
—— ——
a d

where By = /203 a(s) and C2 A(s) =9+ 9svVA.
The isomorphisms between the two representations of the curve is given by:

te
E — Ef,

x—4 xz—4—By )

('ray) — Ty ' z—44 By

B, — B
(z,y) — (4*BM%,*BM%)

10



3.2.2 An efficient twisted Edwards form
The efficient twisted Edwards form is given by
Ef V22 +y? =1+ d'2%°
where
a =2
d’'=3573088016646614954480418932420406244859581372259686051269315845535794557597-1/2
+3473749962157088117213622815292986398536428998352053700108297286112825423766

The maps between the Weierstrass and the efficient twisted Edwards form are

given by:
te
E — Ef.
axz—4 x—4—By
(z,y) ? Py ’x—4+BM)

Et? d’ — E

a k)

_ 1ty 1ty
As explained in [2], each pair (a’,d’) such as Z—i = g give two isomorphic
curves E}°; and EY ;, and the maps between them are given by:

Ef;’d — Efﬁ’d,

(x,y) — (Va/dz,y)

te te
ES s — By
(,y) — (Vd'/ax,y)
In order to get an efficient group law, we choose a’ of minimum size. Un-
fortunately, all isomorphic curves to our curve are bound to non-square a’s,

therefore we fix a’ = /2. We stress that multiplication by a’ is completely
straightforward, resorting to a swap and a multiplication by 2. We deduce

d =dd/a:

d'=3573088016646614954480418932420406244859581372259686051269315845535794557597-v/2

+3473749962157088117213622815292986398536428998352053700108297286112825423766

3.3 A well-known base field arithmetic

Our curve is defined over F,» where p = 2255 _ 19 is the Curve25519 prime.
The prime field IF,, is intensively used in practice, and has a fast implementation,
given by Daniel J. Bernstein. See [1] for details.

11



3.4 Computing the endomorphisms
Computing v

As a Q-curve of degree 2, E is endowed with an endomorphism 1 = [v/2] of a
subgroup of E(Fy2):

e (- (1 (£ o)

Choosing

V—2=19681161376707505956807079304988542015446066515923890162744021073123829784752-1/2
¥ acts as [A] with

A =3506297578596165759345628933926506463904106805826089265978646
6960308360374607013470707020131196354707775231872550763080227
1381792284325778231258805621048 mod N

and evaluating this endomorphism costs 2 inversions, 10 multiplications and
14 additions in F ..

Computing ¥

The curve has also a second endomorphism ¥ = [\/—22] because of its endomor-
phism ring Z[v/—22]. We compute it in SageMath [10] with the Stark algorithm
[8, page 157] The resulting expression is a rational fraction of polynomials of
degree 22 and 21, which is too expensive. Since on E(F,2) we have an endo-
morphism /2, we can compute another endomorphism, [/—11] which is much
less expensive. As suggested by Aurore Guillevic, we use a similar method as
for the construction of :

e The division polynomial P;; generates the 11-torsion group
E[11] ~Z/11Z x ZJ11Z

of order 121. This polynomial is of degree (112 —1)/2 = 60 and factorizes
over [F )2 in two polynomials of degree 5 and 55. The first irreducible factor
of Py; generates a subgroup G of order 11 of E[11].

e We use the Vélu’s formulas to get the 11-isogeny f : E — E/G.

e The curve F/G is isomorphic to P)E. We denote g : F/G — (P)E this iso-
morphism. It has the form (z,y) — (u?z,u®y) where u = VAgc/AE =

{/Be/a/BE-

o Finally, we use the Frobenius 7, : ) — E to get the endomorphism

[V—11l]=m,ogo f
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This second endomorphism acts as [u] where

n = 686246467133965114535845324701724742860090894377617
498271263771018744928543579046480086807222028697558
756550712915407298895104196897923792276170496367948
mod N

and its evaluation costs 1 inversion, 42 multiplications and 33 additions in .
Its complete expression is given in Appendix A.

Conclusion

We computed the Smith method in SageMath [10] in order to find curves with
high security, combined with a four-dimensional GLV. After searching over some
interesting primes, we found couples of curves that can be used in practice.
Among them, one seems to be very efficient: 4Q'Ed. We describe its endo-
morphisms used for the four-dimensional GLV method, and express its twisted
Edwards form.
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A Computing /—11
[V-11]=mog0 f

where

mpla+b-V2c+d-V2)=(a—b-vV2,c—d-V2)
g(z,y) = (Wz,u’y)
with:

1=17048639620362878853615386438258801088262380274051614841274467045891723895160--v/2

_ (pi(@)gs(z)rs(x)  s5(@)ts(@)us(@)
flay) = v5(x)? ’ vs(2)3

p1(x) = po + x with

po =38275801280003584244414328566062472603812973029016836004751458613804085439085 - V2
+ 898578218329846369454066874754356751789769322511291129458116214933309266486

=2°+ Z?:o ¢;x* with

g4 =20836077483202599229642265035805532028066799526144631562081474462199808839091 - V2
+ 19984852802444363430649121922706769540233406465891809506690680709173110297255

q3 =46942396086131417481305513893594603539418111478284570080947424796068765736948 - V2
+ 11662962956071875238053825824181586612879966232442490682652842449826014511944

gqp =28070927367604263208812040216032297786391720385463092545266114816746189412848 - V2
+ 45023418001293663479768936177038537939769079345761359735792261148001281245690

q1 =21336635906730707225613666810331945227179080217308680697354158436447272061478 - V2
+ 40806047395922549355245800854321397130530154061717740407736765302551301799534

qp =49645866484416460979311626652818635183385616538855988674227466155518658694358 - V2
+ 13943022910141592953045356728268013562274454864252820449362394557945024453391

=2°+ Z?:o rizt with

r4 =56680210474110011949514391406819903221390212110479096472624650931909235361756 - V2
+ 37012613597883887911682303706882827634611816544417181383579995079850145256208

r3 =8208669343569473918303359687864149687232450536144631271808465509225973954234 - V2
+ 797615358534484479551333341886157358873753379140782471243873583964797200562

ro =49231339724014934873699263883118506136612936073664341567736653812211497697503 - V2
+ 341704645865841901083250011290930317215890779482717533165751213695487824486

r1 =48519087285741807468788663910008161223445066722226919647066440802719296211489 - V2
+ 2054861017456370915625036542761178630216191658490998509405064877452678347259

rg =18069026743071610882866223930374191865741365027175038468355958241797621031056 - V2
+ 27713001949210587339617062138197513394403867313660943722763639518608739669703

=a2°+ E?:o sz with

vy =17 - V2

vg =36842937484600607634772586139127970680585904211794724921645594911608723067225 - V2
+ 204
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vy =10526553567028745038506453182607991623024544060512778549041598546173920876938 - V2
+ 52632767835143725192532265913039958115122720302563892745207992730869604381558

v =26316383917571862596266132956519979057561360151281946372603996365434802190387 - V2
+ 37321417192192823318341061283791970299814292578181669401147485754616628563274

vg =20574627426465274393444431220551983626820699754638612618581306249339936259275 - V2
+ 48065461535399848213015003168519961749760831350688513622689943774885051934639

s5(z) = 2° + Y7, szt with

s4 =16008688261727522996013065652219254486405871289723488232208527764762277541252 - V2
+ 15315387355970619090944851794859556751834865300171403826164568244009313305295

s3 =15186842253257712524866655016326918725461423925759472695795074349138598859959 - V2
+ 62767429318733179444146932946206591272733530025546893197458787444100114613

s9 =37385334186929753400766011209585094875481575733461982151463940826096061569607 - /2
+ 9458249835759025941143694542472028672136182637019254210414537249743777968129

51 =2201647554582509067489596817617256479547527852727127320314425401109706999933 - V2
+ 38866354183945959698016413970458324494489746910665797434433767850132032599295

sp =32839196677481465673549991544405871823069027091285810245848350589163393816065 - V2
+ 41721349339161290861205954630034623685220146549671119230937774653130983038193

ts(z) = 2 + Y i_, tix' with

tq =41887356356930574715772426852124699440229121043096793787520264239194287278731 - V2
+ 42580657262687478620840640709484397174800127032648878193564223759947251514674

t3 =602988097285405032893024757585068709075392165009695127767323470122282454798 - V2
+ 57833277189339364532341345571397747335362258802794735126531333216512464705792

to =57353647916328951945792067433886829731739320811153024789910446089469226318879 - V2
+ 37911241215870326732135344779263933631474265635288249260272656208038865977070

t] =13588182795960608490270082956294730954989288238042040503247972418151174316952 - V/2
+ 7546177452498961608125675061949638570663924628867817077249643921634800358750

tp =23142929110807769303961600381282083626652411775986693855872878042761549027776 - V2
+ 40577160366699806712571770252173310822062652468883331243387450344228761997627

us () = 2° + Z?:o u;z’ with

ug =17 V2
+ 57896044618658097711785492504343953926634992332820282019728792003956564819929

ug =57896044618658097711785492504343953926634992332820282019728792003956564819749 - V2
+ 284

ug =1132 - V2
+ 15789830350543117557759679773911987434536816090769167823562397819260881312917

u] =36842937484600607634772586139127970680585904211794724921645594911608723064225 - V/2
+ 15789830350543117557759679773911987434536816090769167823562397819260881318777

up =43063173683299411521162763019759965730554952974825003155170175870711494497222 - V2
+ 21053107134057490077012906365215983246049088121025557098083197092347841748396
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