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Abstract

We present a variation on the CM method that produces elliptic curves over prime fields
with nearly prime order that do not admit many efficiently computable isogenies. Assuming the
Bateman-Horn conjecture, we prove that elliptic curves produced this way almost always have a
large embedding degree, and thus are resistant to the MOV attack on the ECDLP.

1 Introduction

The security of elliptic curve cryptosystems is based on the difficulty of the elliptic curve discrete
logarithm problem (ECDLP). For an elliptic curve E over a prime field Fp, the best known
generic attack on the ECDLP takes roughly

√
p operations. Suppose that a new algorithm X

was found that could solve the ECDLP on a subset W of elliptic curves over Fp faster than
all previously known algorithms. Given an instance of the ECDLP on E, if an attacker could
construct an isogeny ϕ : E → E′ with E′ ∈W , then they could transfer the instance to E′ where
they could use X . The total time for this attack is bounded below by the time m that it takes to
compute ϕ. If m ≥ √p, then this attack is no faster than generic algorithms, no matter how fast
X is. Let T denote the set of curves E′ such that an isogeny ϕ : E → E′ can be computed in
less than

√
p time. We will assume that the probability that a random curve in T lies in W , is

roughly the ratio ε of |W | to the number of elliptic curves over Fp. For a random E, we expect
that |T | ≈ √p, which in practice is ≈ 2128. However, it is possible for |T | to be much smaller, so
that E is resistant to this attack. For example, if ε ≈ 2−50 and |T | ≤ 1000, then the probability
that the ECDLP on E can be efficiently transfered to some E′ ∈W is about 2−40. In this case,
we call E isolated (a precise definition is given below). In this paper, we give an algorithm based
on the complex multiplication (CM) method to generate isolated elliptic curves that are suitable
for cryptography.

Remark 1.1. The hypothetical attack outlined above is motivated by the case of elliptic curves
over composite degree extensions of prime fields (usually F2). In that case, Weil descent can
sometimes be used to solve the ECDLP significantly faster than generic methods on a small but
non-negligible proportion of curves [25,26].

The conductor gap (see Definition 3.1) between two elliptic curves measures the difficulty of
constructing an isogeny between them. If the conductor gap between E and E′ is L, then the
fastest known algorithm for computing an isogeny between E and E′ takes roughly L3 time. We
say an elliptic curve E is (L, T )-isolated if there are at most T curves whose conductor gap with
E is at most L. For example, if E is (p1/6, 1000)-isolated, then there are at most 1000 curves E′

for which it would be feasible to construct an isogeny E → E′. Thus E is most likely resistant
to the hypothetical attack described above.

In addition to being resistant to the hypothetical attack above, isolated curves should be
resistant to known attacks on the ECDLP, such as the MOV attack, named after the authors
of [27]. The MOV attack reduces the ECDLP on an elliptic curve E/Fp to F×

pk
. The smallest

possible k is called the embedding degree. This reduction is only practical if k is < log2 p. Our
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main theorem shows that, under the Bateman-Horn conjecture, curves produced by our algorithm
almost always have embedding degree larger than log2 p.

Theorem 1.2. Assume the Bateman-Horn conjecture. There is an algorithm that takes as input
a bound M , and returns an elliptic curve E over a prime field Fp such that the following hold:

(i) M/2 ≤ p ≤M
(ii) #E(Fp) = rf where r is prime and f | 24

(iii) E is (
√
p/50− 100, 8)-isolated.

The expected running time of the algorithm is O(log3M) multiplied by the time required to test
if an integer of size M is prime. If M is sufficiently large, then the probability that the returned
curve has an embedding degree less than log2 p, is bounded above by

C
log8M√

M

for some effectively computable constant C.

Remark 1.3. The Bateman-Horn conjecture is used to estimate how often several polynomials
are simultaneously prime. While the conjecture gives an asymptotic formula for any collection of
polynomials, we only require a big-Ω statement for how often three particular polynomials are
simultaneously prime (see Problem 6).

Remark 1.4. Experimentally, our algorithm works well when M ≈ 2256. After several thousand
iterations, it never produced a curve with embedding degree > log2 p and finished within the
expected time (see Section 6.4). However, we are unable prove an explicit lower bound for what
“sufficiently large” is, nor can we give a computable upper bound for the implicit constant in
the big-O notation for the run time. In Section 6, we discuss these points as well as provide a
reasonable assumption to solves these issues.

Theorem 1.2 should be compared with the generic probability that a curve with prime order
has embedding degree < log2 p.

Theorem 1.5 (Balsubramanian and Koblitz [1, Thm. 2]). Let p be a uniformly random prime
in the interval [M/2,M ], and E a random elliptic curve over Fp of prime order. The probability
that the embedding degree of E is less than log2 p, is bounded above by

C
log9M(log logM)2

M
,

for some effectively computable constant C.

Remark 1.6. When giving a conditional theorem in cryptography, it is important to avoid
contrived conjectures that are custom built to fill gaps in security proofs [21], [19, Sec. 1.4.2].
The Bateman-Horn conjecture is of independent interest. It predates elliptic curve cryptography,
and is a generalization of the well-known hypothesis H from Schinzel [32]. It is supported by
substantial theoretical and numerical evidence. For this reason we feel that the use of the
conjecture is justified.

The rest of the paper is organized as follows. In Section 2 we briefly review background
material as well as set notation for the rest of the paper. In Section 3 we define isolated curves,
and in Section 4 we outline a method for generating them. In Section 5 we show that our
algorithm has a high probability of producing curves that are resistant to the MOV attack,
and prove Theorem 1.2. In Section 6, we explain some limitations of our results and give some
heuristics suggesting that these limitations do not appear in practice.
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2 Background and Notation

Let E be an elliptic curve over a prime field Fp. We will primarily consider primes on the order
of 2256. Let N = |E(Fp)| be the number of points, and t = p+ 1−N . If t ≡ 0 mod p then E is
vulnerable to the MOV attack [27], so we will only consider the case when t 6≡ 0 mod p. In this
case E is called ordinary.

An isogeny is a surjective morphism of elliptic curves with finite kernel. The set of isogenies
E → E defined over the algebraic closure Fp of Fp, together with the 0 map form the endomophism
ring EndE = EndFp

E. If E is ordinary then EndE is isomorphic to an order in an imaginary
quadratic field K.

Let π ∈ EndE denote the Frobenius endomorphism, which on the level of points takes
(x, y) 7→ (xp, yp). We identify π with an element of K. Then trπ = t and Norm(π) = p [35, Ch. V].

This means that we can identify π = t+c
√
−d

2 , where −d = discK and c > 0. Notice that Z[π] is
the order in K of conductor c, and that

4p = t2 + dc2. (1)

Given an elliptic curve E, there is an associated number j(E) which determines the isomorphism
type of E over Fp. j(E) is called the j-invariant of E. Throughout the rest of the paper, unless
otherwise noted, E will represent an ordinary elliptic curve over the prime field Fp.

2.1 Isogeny Classes

Definition 2.1. The isogeny class I of E is the set of isomorphism classes (over Fp) of elliptic
curves that are isogeneous (over Fp) to E.

The isogeny class of E is uniquely determined by N = #E(Fp). This follows from Tate’s
isogeny theorem, which says that two elliptic curves over Fp are isogeneous if and only if they
have the same number of points [35, Exercise. 5.4]. For every integer N in the Hasse interval
[p+ 1− 2

√
p, p+ 1 + 2

√
p], there is an elliptic curve with N points. Thus by Tate’s thereom,

there are about 4
√
p isogeny classes. One can show using the j-invariant that there are roughly

2p isomorphism classes of elliptic curves over Fp. This means that on average, each isogeny class
has about

√
p/2 curves.

An `-isogeny is an isogeny of degree `. We will only consider `-isogenies with ` a prime other
than p. Such isogenies are separable and have a kernel of size `. Any separable isogeny between
elliptic curves factors into a composition of isogenies of prime degree.

2.2 Endomorphism Classes

The isogeny class I of E can be partitioned into endomorphism classes. Let IO denote the set of
curves in I whose endomorphism ring is isomorphic to O, an order in an imaginary quadratic
field. We call IO the endomorphism class of O in I.

Proposition 2.2. The endomorphism classes in I are precisely those associated to orders in
the quadratic imaginary field Q(π) that contain Z[π]. For any O ⊇ Z[π], the size of IO is equal
to the class number h(O).

Proof. See Theorems 4.3 and 4.5 from [33].
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Endomorphism classes have O(
√
p log d) curves. To see this, let c′ be the conductor of an

order appearing in I. Recall that the class number of an order of conductor c′ is approximately
hc′ (see [9, Thm. 7.24] for a precise formula). The class number h is bounded above by
1
π

√
d log d [6, Excercise 5.27b]. We also know that c′ divides c because every order appearing in

I contains the Frobenius ring Z[π]. It follows from (1) that hc′ ≤ hc ≤ c
π

√
d log d < 2

π

√
p log d.

For a random curve E over Fp for a random prime p, we expect that c is close to 1 [16, Sec. 6].
Because the endomorphism classes in I correspond to divisors of c, we do not expect to find
many endomorphism classes. Thus on average, we should expect that IEndE usually has roughly√
p curves.

2.3 Bateman-Horn Conjecture

We will be interested in how often several polynomials are simultaneously prime. For a single
polynomial of degree one, we have the prime number theorem and Dirichlet’s theorem on primes
in arithmetic progressions. Bateman and Horn made the following conjecture based on heuristics
derived from the prime number theorem.

Definition 2.3. We say that a polynomial f ∈ Z[x] satisfies Bunyakovsky’s property if
gcda∈Z f(a) = 1.

Warning 2.4. In order for f to satisfy Bunyakovsky’s property, it is necessary that the coefficients
of f are relatively prime. This condition is not sufficient, for example gcda∈Z(a2 + a) = 2.

Conjecture 2.5 (Bateman-Horn Conjecture [2]). Let f1, . . . , fk ∈ Z[x] be distinct irreducible
polynomials such that their product

∏
fi satisfies Bunyakovsky’s property. Let

Pf1,...,fk(N) = {a ∈ Z : 1 ≤ a ≤ N and fi(a) is prime for all i = 1, . . . , k} .

Then

|Pf1,...,fk(N)| ∼ C

D

N

logkN
. (2)

Here D =
∏

deg fi, C =
∏
` prime

1−ω(`)/`
(1−1/`)k , and ω(`) denotes the number of roots of

∏
fi in F`.

Remark 2.6. There is a large amount of theoretical and numerical evidence for the Bateman-Horn
conjecture. It reduces to Dirichlet’s theorem on primes in arithmetic progressions for a single
polynomial of degree 1. It also agrees with the twin prime conjecture and the Sophie Germain
prime conjecture [34, Ch. 5.5]. More recently, an analog of the conjecture has been proven for
function fields [10].

2.4 The MOV Attack

The MOV attack transfers a discrete log from E(Fp) to F×
pk

for some positive integer k. The idea
is to leverage sub-exponential time algorithms for solving discrete logs in the multiplicative group
of a finite field. A necessary condition for this transfer is that |E(Fp)| divides pk−1. The smallest
possible k is called the embedding degree1 of E. This is the same as the multiplicative order of p
in (Z/NZ)× where N = |E(Fp)|. For more on the MOV attack see [27]2 or [35, Ch. XI.6].

If k > log2 p, then the MOV attack will not be faster than trying to solve the discrete log on
E directly [1]. Therefore we are primarily interested in curves with embedding degree > log2 p.

1The embedding degree may also refer to the multiplicative order of p in (Z/rZ)× where r is the largest prime
factor of N . This is because cryptosystems are usually constructed using the largest prime order subgroup of the
elliptic curve group, rather than the entire group. We will only be interested in curves with nearly prime order, so the
difference between using N or r is not important. Also implicitly we are avoiding anomalous curves where N = p, i.e.
t = 1. Anomalous curves are extremely rare but should be avoided as there are known attacks against them [36].

2Technically, the attack of [27] requires that N be relatively prime to p− 1. But, if this is not the case then there is
an attack described by Frey and Rück [12] which also transfers the ECDLP to F×

pk
. We will not differentiate between

the two since both attacks require a small embedding degree.
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3 Isolated Curves

Definition 3.1. The conductor gap of two orders in a fixed quadratic imaginary field is the
largest prime dividing the conductor of one and not the other. The conductor gap between two
isogenous elliptic curves is defined to be the conductor gap of their endomorphism rings. If the
curves are not isogeneous, then their conductor gap is ∞. The L-conductor-gap class of a curve
E is the set of all curves E′ such that the conductor gap between E and E′ is less than L.

Proposition 3.2. Let ϕ : E → E′ be an `-isogeny for some prime `. If O and O′ are the
endomorphism rings of E and E′ respectively, then one of the following holds:

[O : O′] = `, [O′ : O] = `, O = O′.

Proof. [22, Prop. 21].

In the first two cases of Proposition 3.2, we say that ϕ is vertical ; otherwise ϕ is horizontal.
Horizontal isogenies stay inside the same endomorphism class while vertical ones move to a
new class. The main implication of Proposition 3.2 is that if two endomorphism classes have
conductor gap a prime `, then any isogeny between them factors through an `-isogeny. Unless
otherwise noted, throughout the rest of the paper ` will denote a prime not equal to p.

Definition 3.3. Let E be an elliptic curve over Fp. We will say E is isolated with gap L and
set-size T , or (L, T )-isolated, if the L-conductor-gap class of E has at most T curves.

Remark 3.4. The observation that isolated curves are resistant to isogeny based attacks has
been noted before in the literature. This idea is discussed in [20, Sec.11.2], [17, Sec. 7.1],
and [25, Rem. 6]. This idea has also been applied to Jacobians of curves of genus 2 [39].

3.1 Computational Complexity of Isogenies

The computational complexity of an isogeny depends on its degree, but the complexity is different
for horizontal and vertical isogenies. The fastest known method [22] for constructing a vertical
isogeny from E involves constructing the modular polynomial Φ`. Finding Φ` mod p is the most
expensive step and the best known methods take Õ(`3) time and Õ(`2) space [4] (recall that

Õ(f) means O(f logk f) for some integer k). Φ` is a polynomial of degree `+ 1 in two variables,
so any method which involves computing Φ` must take Ω(`) time and space. Moreover, because
we represent `-isogenies using either polynomials of degree `, or a list of points in the kernel; any
algorithm which computes an `-isogeny will need at least Ω(`) space.

For horizontal isogenies where the endomorphism ring has a small discriminant, there are
much faster algorithms which are polynomial in log ` [3, 18]. These methods do not extend to
vertical isogenies crossing a large conductor gap. Therefore we can only effectively transport the
ECDLP to another endomorphism class when the conductor gap is less than p1/6.

The best algorithm known for solving the ECDLP on a general elliptic curve takes Õ(
√
p)

time [28]. If ` ≥ p1/6, then computing a vertical `-isogeny takes similar time to solving the
ECDLP. If two endomorphism classes have a conductor gap of at least p1/6, then there is no
significant benefit in transferring the ECDLP across the gap.

3.2 Examples

Example 3.5. Let E be the elliptic curve y2 = x3+6x over Fp where p = 12475737285765000161 ≈
263.4. Note that EndE ∼= Z[i] has class number 1, so E is the only curve in its endomor-
phism class. The Frobenius endomorphism π generates an order Z[π] with prime conductor
c = 2559154831 ≈ 231.2. This means that the isogeny class of E has two endomorphism classes:
One which contains only E, and another which contains h(Z[π]) = 1279577416 ≈ 230.2 curves.
Because the conductor gap between the classes is c ≈ √p, this shows that E is isolated with gap
231 and set-size 1.
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Example 3.6. Let E be the elliptic curve y2 = x3 + 350x over Fp where p = 122501. As in
the previous example, the endomorphism class of E has only one curve. However, in this case
Z[π] has conductor 1, so the isogeny class of E contains only E, and E is (∞, 1)-isolated. This
example is highly atypical because the trace t = 700 =

⌊
2
√
p
⌋

is at the extreme end of the Hasse
bound.

4 Generating Isolated Curves

In this section we give an algorithm to generate isolated elliptic curves. We will apply some
slight modifications to the algorithm presented here in order to prove Theorem 1.2. For use in
cryptography, we would like to generate prime ordered curves. However there are some basic
obstructions to a curve having prime order. For example, consider equation 1. In order for p to
be an odd prime, if d is even then t must be even. It follows that N = p+ 1− t is also even. In
this case, the choice of d forced a factor of 2 to divide N . Fortunately, the only obstructions to
N being prime are a few factors of 2 and 3.

For any integer a ≡ 0, 3, 4 mod 8, define3 the cofactor to be

cofa = 2ν2 · 3ν3 , (3)

where

ν2 =


0 if a ≡ 3, 11, 19, 27 mod 32

1 if a ≡ 4, 8, 20, 24 mod 32

2 if a ≡ 0, 12, 16 mod 32

3 if a ≡ 28 mod 32,

ν3 =

{
0 if a 6≡ 2 mod 3

1 if a ≡ 2 mod 3.

Algorithm 1 Isolated Curve

Input: a positive integer M and fundamental discriminant −d < 0.
Output: an elliptic curve defined over Fp where dM

16 < p < dM
4

1: repeat steps 2-5

2: t← random integer in
[
−
√
M,
√
M
]
\ {0, 1, 2}

3: c← random integer in
[√

M
2 ,
√
M
]

4: p← t2+dc2

4
5: N ← p+ 1− t
6: until p, N/ cofdc2 are integers and p, c,N/ cofdc2 are prime
7: j ← root of the Hilbert class polynomial for Q(

√
−d) mod p

8: E ← elliptic curve over Fp with j(E) = j and |E(Fp)| = N
9: return E

Remark 4.1. Algorithm 1 is not optimized for efficiency. For example, if d ≡ 0 mod 4 then t
must be even. Thus by choosing only even values of t in step 2, we expect the runtime to be
reduced by a factor of 2. We present the unoptimized version for simplicity.

Remark 4.2. The reason for removing 0, 1, 2 from possible values of t is to avoid the attacks
described in [36], [27], and [12].

3The value of cofa was calculated by considering the equation 4N = (t− 2)2 + a modulo powers of 2 and 3. Here a
represents dc2 from equation 1.
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Remark 4.3. One drawback4 of using the CM method is that we do not have full control over
the prime p. That is, we can not choose p arbitrarily and then construct an isolated curve over
Fp. This makes it more difficult to find p with special properties, such as a small Hamming
weight (which can lead to more efficient implementations). However, we can lower the Hamming
weight of p with the following modifications. Instead of choosing c randomly, fix c to be a large
prime of small Hamming weight. Also, restrict the search for t to integers with small Hamming
weight. Because p is given by a simple expression in t and c, the resulting value of p will likely
have small Hamming weight.

First we will explain the last steps of the algorithm. The following facts are the basis of the
well known CM method [7, Ch. 18.1]:

(i) The Hilbert class polynomial of K = Q(
√
−d) has a root in Fp by construction.

(ii) There exists an elliptic curve E/Fp with N points and j(E) = j.

An efficient algorithm for finding E, given j and N can be found in [31]. Since j(E) is a root of
the Hilbert class polynomial mod p, it follows that EndE ∼= OK [37, Sec. 2.8]. If the choice of d
is bounded by a constant, then steps 7 and 8 in the algorithm have a running time of O(1). The
main factor in the running time comes from the loop in steps 2 through 5.

Proposition 4.4. If the main loop of Algorithm 1 terminates, then the curve E returned by the

algorithm is isolated with gap
√
M
2 and set-size 1

π

√
d log d.

Proof. We are assuming p, c,N/ cofdc2 are prime and we want to show that E is isolated. Let
K = Q(

√
−d). By the explanation above, EndE ∼= OK . Let π ∈ EndE denote the Frobenius

endomorphism of E. In OK , π corresponds (up to conjugation) to t+c
√
−d

2 . We also know that
c = [OK : Z[π]]. Because c was chosen to be prime, there are two endomorphism classes in the
isogeny class of E corresponding to OK and Z[π]. The endomorphism class of OK contains

h(OK) ≤ 1
π

√
d log d curves. Therefore, E is isolated with gap c ≥

√
M
2 and set-size 1

π

√
d log d.

Remark 4.5. It is easy to alter Algorithm 1 to produce curves that are (∞, 1)-isolated, meaning
that the entire isogeny class contains a single curve, similar to Example 3.6. To do this, we
choose d such that Q(

√
−d) has class number 1, and fix c = 1. However, we do not know how to

prove that curves generated this way usually have an embedding degree > log2 p. This is because
there are too few values of t such that p and N/ cofd are simultaneously prime. Even though the
Bateman-Horn conjecture gives an asymptotic formula, it is not enough to prove a bound on the
embedding degree using the methods in Section 5. Moreover, due to their rarity, one could argue
that (∞, 1)-isolated curves are too special for cryptography, and that there may not be sufficient
randomness in their selection.

5 Improbability of the MOV Attack on Isolated Curves

5.1 Notation

In [1], Balasubramanian and Koblitz proved that a random prime order elliptic curve over a
random prime field almost always has a large embedding degree. Their work has been extended
in several ways [8, 24]. We want to emulate the main theorem of [1] for isolated curves. The
main difference is that in [1], the authors were able to vary the prime and the number of points
subject only to the Hasse bound. There is less flexibility in our case due to restrictions on the
conductor c and the discriminant d.

We will use the following notation:

−d = fixed small (< 100) fundamental discriminant of a quadratic imaginary field

4We would like to thank the referee for pointing out this drawback.
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p = p(t, c) =
t2 + dc2

4
, N = N(t, c) = p+ 1− t,

cof = cof(c) = cofcd2 as defined in Section 4, r = r(t, c) =
N

cof
.

Remark 5.1. Note that r is not a polynomial in t, c because cof(c) depends only on the valuation
of dc2 at 2 and 3. We will apply a linear change of variables in c in order to fix the cofactor.

Define the following sets:

SM =
{

(t, c) ∈
[
1,
√
M
]
×
[√

M/2,
√
M
]

: p, r, c are prime
}

SM,K =
{

(t, c) ∈ SM : the order of p in (Z/rZ)
×

is at most K
}

SM (t) = {c : (t, c) ∈ SM}
SM,K(t) = {c ∈ SM (t) : (t, c) ∈ SM,K} .

SM represents possible pairs t, c that Algorithm 1 could use to generate an isolated curve. In

particular, the expected number of pairs t, c sampled by Algorithm 1 is |SM |
M . SM,K represents

those pairs which result in a curve with embedding degree at most K. SM (t) and SM,K(t)
represent pairs with a fixed t value.

5.2 Main Results

Our goal for this section is to find an upper bound for
SM,K(t0)
SM (t0)

for a fixed integer t0. This is

roughly the probability that Algorithm 1 returns a curve with embedding degree at most K
given that t = t0.

First we give an upper bound for SM,K(t0).

Proposition 5.2. Let K,M be any positive integers. Then there is a universal constant A1

such that for any integer t0 with |t0| > 1,

|SM,K(t0)| < A1K
2 log |t0|.

Proof. Let Lk =
{

primes ` : ` | (t0 − 1)k − 1
}

. By construction r | pk − 1⇔ r | (p−N)k − 1 =

(t0 − 1)k − 1. Hence there is a map ϕ : SM,K(t0)→
⋃K
k=1 Lk given by c 7→ r(t0, c).

Next we will show that |ϕ−1(`)| ≤ 16. Note that N(t0, c) is a quadratic polynomial in c, so
there are at most 2 values of c such that N(t0, c) is the same. There are 8 possible values of cofc,
hence there are at most 16 values of c which could give the same value of r(t0, c). Therefore

|SM,K(t0)| =

∣∣∣∣∣ϕ−1
(

K⋃
k=1

Lk

)∣∣∣∣∣ ≤ 16

∣∣∣∣∣
K⋃
k=1

Lk

∣∣∣∣∣ .
It remains to bound the Lk. The number of prime divisors of (t0 − 1)k − 1 is bounded by

log2 |t0 − 1|k ≤ k log2(|t0|+ 1). Hence∣∣∣∣∣
K⋃
k=1

Lk

∣∣∣∣∣ ≤
K∑
k=1

|Lk| ≤
K∑
k=1

k log2(|t0|+ 1) =
K(K + 1)

2
log2(|t0|+ 1) ≤ 2.4K2 log(|t0|).

The last inequality holds for all |t0| ≥ 2, so we may take A1 = 2.4.

Next we will to bound SM (t0) from below. Because t0 is fixed, we will be able to apply the
Bateman-Horn conjecture. However, in order to apply the conjecture, we first need a change of
coordinates which makes p and r into polynomials satisfying Bunyakovsky’s property.

Lemma 5.3. Let −d be a fundamental discriminant for a quadratic imaginary field such that
d < 100. Then there are computable constants m1, b1,m2, b2 ∈ Z≥0, such that the linear change
of variables t′ = t′(t) = m1t+ b1 and c′ = c′(c) = m2c+ b2 satisfy:
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(i) fd(c′)2 is constant as a function of c.

(ii) p′ = p(t′, c′) and r′ = r(t′, c′) are integer polynomials in t and c.

(iii) For any t ∈ Z, the product p′ · r′ · c′/ gcd(m2, b2) satisfies Bunyakovsky’s property as a
polynomial in c.

Remark 5.4. In condition (iii) of Lemma 5.3, we include c′/ gcd(m2, b2) rather than just c′

because of the case d ≡ 7 mod 8. In this case, p = t2+dc2

4 is an odd integer only if t and c are
even. In particular, we cannot have both c′ and p′ simultaneously prime when d ≡ 7 mod 8.

Proof of Lemma 5.3. We will prove the claim in detail for d = 4 by showing t′ = 3840t and
c′ = 2c+ 1 satisfy properties (i)-(iii). The other cases are similar, and the corresponding change
of coordinates are given in Table 1.

(i) For any c, we have that d(c′)2 ≡ 4 mod 32 and d(c′)2 6≡ 2 mod 3. Hence cofd(c′)2 = 2 for
all c.

(ii) To show p′ and r′ are integer polynomials, we just have to expand out the definitions:

p′ = p(t′, c′) = 3686400t2 + 4c2 + 4c+ 1

r′ = r(t′, c′) = N(t′, c′)/2 = 1843200t2 + 2c2 − 1920t+ 2c+ 1.

(iii) Let g(t, c) = p′·r′·c′ ∈ Z[t, c] and t0 ∈ Z. To show that g(t0, c) ∈ Z[c] satisfies Bunyakovsky’s
property, it is sufficient to check that gcd{g(t0, 0), . . . , g(t0, 5)} = 1 as g(t0, c) is a degree 5
polynomial in c.5

A direct computation6 shows that

3g(t, 0) + 4g(t, 1) + 17g(t, 2)− 36g(t, 3) + 23g(t, 4)− 5g(t, 5) = 960.

Therefore

gcd{g(t0, 0), . . . , g(t0, 5)} = gcd{g(t0, 0), . . . , g(t0, 5), 960}
= gcd{g(0, 0), g(0, 1), . . . , g(0, 5)}
= 1.

The second to last equality follows from the fact that t′ ≡ 0 mod 960 by construction.
The last equality follows from the fact that g(0, 0) = 1.

Remark 5.5. We expect Lemma 5.3 to hold for all d with many different possibilities for mi, bi.

Proposition 5.6. Assume the Bateman-Horn conjecture and that d < 100 and d 6≡ 7 mod 8.
Let m1, b1 be the constants from Lemma 5.3. For any integer t0, there are constants A2,B2 such
that for all M > B2,

|SM (m1t0 + b1)| > A2

√
M

log3M
.

The constants A2,B2 depend on t0. Moreover, the constant A2 is effectively computable.

Proof. Let t′(t) = m1t+b1 and c′(c) = m2c+b2 be the change of coordinates given by Lemma 5.3.
Then p′ = p(t′(t0), c′), r′ = r(t′(t0), c′), and c′ are integer polynomials in Z[t, c], and satisfy
Bunyakovsky’s property. Moreover, p′ and r′ are irreducible because their roots are linear
combinations of the roots of p(t0, c), N(t0, c) respectively. The latter are complex as long as

5This condition is also sufficient, see [5, Exercise 1.3].
6This computation was done by constructing the matrix with rows given by the coefficients of the g(t, i), and then

computing the Hermite normal form using Sage.

9



d t′ c′

3 2160 t + 1 2 c + 1
4 3840 t 2 c + 1
7 94080 t + 10 4 c
8 46080 t + 6 6 c + 1
11 87120 t + 15 6 c + 1
15 432000 t + 34 4 c
19 86640 t + 1 2 c + 1
20 288000 t + 24 6 c + 1
23 82270080 t + 10 12 c
24 138240 t + 10 2 c + 1
31 1845120 t + 10 4 c
35 882000 t + 3 6 c + 1
39 2920320 t + 10 4 c
40 384000 t + 6 2 c + 1
43 443760 t + 1 2 c + 1
47 343543680 t + 10 12 c
51 624240 t + 1 2 c + 1
52 648960 t + 4 2 c + 1
55 5808000 t + 18 4 c
56 2257920 t + 6 6 c + 1
59 2506320 t + 15 6 c + 1
67 1077360 t + 1 2 c + 1
68 3329280 t + 12 6 c + 1
71 783976320 t + 10 12 c
79 11982720 t + 10 4 c
83 4960080 t + 3 6 c + 1
84 1693440 t + 40 2 c + 1
87 14532480 t + 10 4 c
88 1858560 t + 6 2 c + 1
91 1987440 t + 1 2 c + 1
95 1403568000 t + 34 12 c

Table 1: Choices of t′,c′ in Lemma 5.3 found using Sage.
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t′(t0) 6= 0, 2. Thus p′, r′, and c′ satisfy the hypothesis of the Bateman-Horn conjecture as
polynomials in Z[c].

Let S′M (t0) denote the set of c0 such that c′(c0) ∈ SM (t′(t0)), and

Pp′,r′,c′(
√
M) =

{
c0 ∈ [1,

√
M ] : p′(c0), r′(c0), and c′(c0) are prime

}
.

By above, we can apply the Bateman-Horn conjecture to the polynomials p′, r′, and c′. This
means that there is a constant C, depending on the polynomials p′, r′, and c′ (which depend
only on d and t0), such that ∣∣∣Pp′,r′,c′(√M)

∣∣∣ ∼ C √
M

log3
√
M
.

Notice that S′M (t0) = Pp′,r′,c′(
√
M) ∩ J(

√
M) where J(M) = [ 1

m1
( 1
2

√
M − b1), 1

m1
(
√
M − b1)].

We will assume M � max{m2
1, 16b21} so that

|S′M (t0)| =
∣∣∣∣P ( 1

m1

(
1

2

√
M − b1

))∣∣∣∣− ∣∣∣∣P ( 1

m 1

(√
M − b1

))∣∣∣∣
∼ C

1
m1

( 1
2

√
M − b1))

log3 1
m1

( 1
2

√
M − b1))

− C
1
m (
√
M − b1))

log3 1
m1

(
√
M − b1))

≥ C
2m1

√
M − 2b1

log3M

>
C

4m1

√
M

log3M
.

Thus there is some constant B2 such that |S′M (t0)| > C
4m1

√
M

log3M
for all M > B2. Note that the

constant B2 depends on t0. The map c0 7→ c′(c0) gives us an inclusion S′M (t0) ↪→ SM (t′(t0)).
Therefore the inequality in the claim holds with A2 = C

4m1
.

It remains to show that the constant C given in the Bateman-Horn conjecture is computable.7

Let
g1 = t20 + dc2, g2 = (t0 − 2)2 + dc2, g3 = c, and G = g1 · g2 · g3.

Define ωi(p) to be the number of roots of gi mod p and ω(p) to be the number of roots of G
mod p. Then G differs from p′ · r′ · c′ by a linear change of coordinates and scaling. It follows
that the constant C differs from the product

C2 =
∏
p≥5

1− ω(p)/p

(1− 1/p)
3

in at most a finite number of factors. So it is sufficient to show C2 is computable. Notice that for
any prime p ≥ 5:

g1(c) ≡ g2(c) ≡ 0 mod p ⇒ p | t0 + 2,

g1(c) ≡ g3(c) ≡ 0 mod p ⇒ p | t0,
g2(c) ≡ g3(c) ≡ 0 mod p ⇒ p | t0 − 2.

Let S denote the set of primes dividing 6dt0(t0 − 2)(t0 + 2). Then for any prime p 6∈ S,

ω(p) = ω1(p) + ω2(p) + ω3(p).

7The proof of convergence for the constant in the Bateman-Horn conjecture only relies on the Chebotarev density
theorem. Hence by using an effective version [23], one can show that the constant is always effectively computable.
However, we present this more direct proof which offers a more concrete picture of the constant.
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Let χ(p) = 1 if −d is a square mod p and −1 otherwise. Then one can show that for any p 6∈ S
we have that

ω1(p) = ω2(p) = χ(p) + 1

therefore
ω(p) = 2(χ(p) + 1) + 1.

Note that the product

∏
p

1− (2(χ(p) + 1) + 1)/p

(1− 1/p)
3 = C3

∏
p

(
1− χ(p)

p

)2

where C3 is an effectively computable constant. By Dirichlet’s analytic formula,

∏
p

(
1− χ(p)

p

)2

=

(
k
√
d

2πh

)2

where k, h are the number of roots of unity and class number of Q(
√
−d) respectively.

Theorem 5.7. Assume the Bateman-Horn conjecture and that d < 100, and suppose d 6≡ 7
mod 8. Let m1, b1 be the constants from Lemma 5.3, which depend only on d. For any fixed
integer t0, there are constants A3,B3 such that the probability that c ∈ SM,K(m1t0 + b1) given
that c ∈ SM (m1t0 + b1) is bounded above by

A3
K2 log4M√

M

for all M > B3. The constant A3 is computable.

Proof. We have to bound
SM,K(m1t0+b1)
SM (m1t0+b1)

above. This follows immediately from the previous

propositions. Proposition 5.2 gives an upper bound for SM,K(m1t0 + b1), and Proposition 5.6
gives a lower bound for SM (m1t0 + b1).

Warning 5.8. We do not have a computable upper bound for the constant B3.

5.3 Proof of the Theorem 1.2

We can now prove Theorem 1.2 using a modified version of Algorithm 1. In order to apply
Theorem 5.7, we need to modify Algorithm 1 so that t lies in an interval independent of the
input bound M .
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Algorithm 2 Isolated Curve

Input: positive integer M
Output: isolated (with gap

√
p/50− 100 and set-size 8) elliptic curve defined

over Fp with M/2 ≤ p ≤M .
1: −d← fundamental discriminant such that 1 ≤ d ≤ 100 and d 6≡ 7 mod 8
2: m1, b1,m2, b2 ← constants from Lemma 5.3
3: t← integer such that 3 ≤ t ≤ 100 and t ≡ b1 mod m1

4: repeat steps 5-7

5: c ← random integer in
[√

(2M − t2)/d,
√

(4M − t2)/d
]

with c ≡ b2

mod m2

6: p← t2+dc2

4
7: N ← p+ 1− t
8: until p, c, and N/ cof(dc2) are prime
9: j ← root of the Hilbert class polynomial for Q(

√
−d) mod p

10: E ← elliptic curve over Fp with j(E) = j and |E(Fp)| = N
11: return E

Proof of Theorem 1.2. We will show that Algorithm 2 satisfies the claims in Theorem 1.2.
By the Bateman-Horn conjecture and Lemma 5.3, for any fixed d, t as chosen in the algorithm,

the number of possible values of c ≤
√
M such that p, c,N/ cof(dc2) are simultaneously prime, is

Ω
(√

M/log3M
)

. Because there is a finite number of possibilities for t, d, which are independent

of M , this implies that the expected number of iterations of the main loop of Algorithm 2 is
O
(
log3M

)
.

The probability that the embedding degree of the returned curve is less than log2 p follows
from Theorem 5.7 using K = log2M . Note that here we are using that t, d are bounded
independently of M , in order to average the result of Theorem 5.7 for all values of t in the
interval [3, 100].

The resulting curve E has N points, where N = r · cof(dc2) and r is prime. Recall that
cof(dc2) | 24 by definition (see Equation 3). Also, E is isolated with gap c and set-size 8 because
c is prime, and the bound d ≤ 100 implies that the class number of Q(

√
−d) is at most 8. The

lower bound c ≥
√
p/50− 100 follows from a straightforward computation.

Remark 5.9. The bound on t in Algorithm 2 is mostly arbitrary. It is important that the upper
bound on |t| is independent of M . The lower bound t ≥ 3 is for the same reason as the restriction
on t in Algorithm 1.

6 Extending the Results

The goal of this section is to discuss the following issues with Theorem 1.2:

• The algorithm used in the proof (Algorithm 2) places a restriction on t, limiting the amount
of randomness in the selection of an isolated curve.

• It does not give a computable bound lower bound for what “sufficiently large” is.

Recall that the main idea of both Algorithm 1 and Algorithm 2 is to search for integers t, c
such that three functions (p(t, c), r(t, c) and c) are simultaneously prime. Algorithm 2 imposes a
restriction on t that allowed us to reduce to the one variable case and apply the Bateman-Horn
conjecture. We expect that the restriction on t is unnecessary, and that the following properties
hold:

(i) The expected number integers t, c sampled in Algorithm 1 is O(log3M).
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(ii) The probability that a curve returned by Algorithm 1 has an embedding degree < log2M

is O
(

log8M√
M

)
.

(iii) The implied constants in these estimates are computable.

In the notation of Section 5, all three properties reduce to giving computable bounds for SM and
SM,K . Recall that the expected number of iterations of the main loop of Algorithm 1 is roughly
|SM |
M and the probability of an embedding degree less than K is about

|SM,K |
|SM | . For Theorem 1.2,

we fixed t and gave bounds for SM,K(t) and SM (t) in Proposition 5.2 and Proposition 5.6
respectively. We would like to extend those bounds to SM,K and SM .

Proposition 6.1. There is a computable constant A4 such that for any positive integers M and
K,

|SM,K | ≤ A4K
2
√
M logM.

Proof. By definition |SM,K | ≤
∑√M
t=1 |SM,K(t)|. Then by Proposition 5.2,

|SM,K | ≤

√
M∑

t=1

A1K
2 log t ≤ A1K

2
√
M log

√
M,

where A1 is the constant from Proposition 5.2. Hence we may take A4 = A1

2 .

Problem. Find a computable number A5, depending only on the fundamental discriminant d,
such that for any positive integer M ,

|SM | > A5
M

log3M
.

Remark 6.2. A solution to Problem 6 would be useless in practice if A5 is too small (e.g. 2−100).
Hence we implicitly require that A5 lies within a reasonable range, such as A5 > 2−20.

6.1 An Alternative Conjecture

Even under the Bateman-Horn conjecture we are unable to solve Problem 6. This is because
the Bateman-Horn conjecture only gives an asymptotic formula; it does not provide information
about the error term.8 However, there is another natural conjecture one may consider related to
the Bateman-Horn conjecture.

Conjecture 6.3. Let f1, . . . , fk ∈ Z[x, y] be such that every fi is irreducible and gcda,b∈Z
∏
fi(a, b) =

1. Let Pf1,...,fk(N) denote the number of pairs a, b such that 0 ≤ a, b ≤ N and f1(a, b), . . . , fk(a, b)
are simultaneously prime. Then for any N0 > 0, there exists a computable constant C (depending
on N0 and the fi) such that

Pf1,...,fk(N) > C
N2

logkN
for all N > N0.

Remark 6.4. As stated, the constant C in Conjecture 6.3 depends on N0. We could have
equivalently stated the conjecture with C independent of N0. However, in practice we usually
avoid small values of N .

Recall that before the prime number theorem was proven, Chebyshev showed that π(N) ≥
log 2
2

N
logN for all N ≥ 2 [34, Thm. 5.3]. In a way, Conjecture 6.3 is to the Bateman-Horn

conjecture as Chebyshev’s inequality is to the prime number theorem. Conjecture 6.3 is weaker
than the Bateman-Horn conjecture in the sense that it only asks for a lower bound, not an
asymptotic formula. In fact, Conjecture 6.3 would follow from the Bateman-Horn conjecture if it
had included a clause about the error term.

8We do know that any error bound would necessarily depend on the polynomials by [13, Thm. 1].
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6.2 Heuristic Evidence

The same heuristics used to justify the Bateman-Horn conjecture suggest that Pf1,...,fk in
Conjecture 6.3 has the right order of magnitude. Let f(x, y) ∈ Z[x, y] such that gcdx,y∈Z f(x, y) =
1. If we pretend that f(x, y) acts like a random number, then the probability that f(x, y) is
prime should be roughly 1

log |f(x,y)| . If x, y are chosen independently from a uniform distribution

on [0, N ], then the probability that f(x, y) is prime should be roughly 1
d logN where d is the

degree of f (i.e. the highest total degree of any monomial in f). Given multiple polynomials
f1, . . . , fk satisfying the hypothesis in Conjecture 6.3, we expect that the probability that they are
simultaneously prime is the product of the probabilities for each fi, up to some constant correction

factor. This suggests that Pf1,...,fk = Θ
(

N2

logk N

)
, but gives no insight into the constants.

6.3 Theoretical Evidence

Conjecture 6.3 also differs from the Bateman-Horn conjecture in that it applies to polynomials
in two variables. There are many cases where the conjecture can be proven. For example, we can
apply the prime number theorem for quadratic fields to estimate how often certain quadratic
forms are prime [15, Thm. 21.1]. The Friedlander-Iwaniec theorem [14] gives an asymptotic
density of primes of the form x2 + y4. More recently considered were pairs x, y such that
x2 − xy + y2 and 2x − y are both prime [29]. One the examples closest to Problem 6 is the
following result of Fouvry and Iwaniec.

Theorem 6.5 (Fouvry and Iwaniec [15, Thm. 20.3], [11]). Let Λ be the von Mangoldt function
defined by

Λ(n) =

{
log p if n = pk for some prime p

0 otherwise.

Then ∑
x2+y2≤N

Λ(x)Λ(x2 + y2) =
πH

4
N +O

(
N

log1/4N

)

where the sum is over positive integer, H =
∏
p

(
1− χ(p)

p−1

)
, and

χ(p) =


1 p ≡ 1 mod 4

−1 p ≡ 3 mod 3

0 p = 2.

Corollary 6.6. Let Px,x2+y2(N) denote the number of pairs x, y ∈ [0, N ] such that x and x2 +y2

are simultaneously prime. Then

Px,x2+y2(N) = Ω

(
N2

log2N

)
.

Proof. First notice that

Px,x2+y2(N) =
∑

x,x2+y2prime
0<x,y<N

1

≥
∑

x,x2+y2prime
0<x2+y2<N2

1

≥ 1

2 log2N

∑
x,x2+y2prime
0<x2+y2<N2

Λ(x)Λ(x2 + y2).
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The only difference between the last sum and the sum in Theorem 6.5, is that the latter includes
prime powers. The number of prime powers less than N2 is bounded above by log(N)π(N) < 2N .
For each prime power pk less than N , there are at most 4(k+ 1) pairs x, y such that x2 + y2 = pk.
This is because there are at most k + 1 ideals in Z[i] with norm pk, and each has at most 4
distinct generators. Therefore

Px,x2+y2(N) ≥ 1

2 log2N

∑
x2+y2≤N2

Λ(x)Λ(x2 + y2)− 4N

logN
.

The claim now follows from Theorem 6.5.

If we restrict to even values of t, then for d = 4 we have that p(t, c) =
(
t
2

)2
+ c2. Hence the

corollary above implies that for d = 4 we have

#

{
t, c : p =

t2 + dc2

4
and c are prime and p ≤M

}
= Ω

(
M

log2M

)
.

This agrees with our heuristics because we have two polynomials and the probability both are
prime is roughly 1

log2M
when choosing t, c randomly in [0,

√
M ]. We expect the same principal

term for other values of d. Furthermore, adding the requirement that r(t, c) is prime should
change the principle term by a factor of 1

logM . It is unclear if the methods used in the proof
of Theorem 6.5 could extend to cover pairs t, c such that all three functions p, r, and c are all
simultaneously prime.

6.4 Numerical Evidence

We implemented Algorithm 1 with d = 4 using a few modifications for efficiency, such as only
choosing odd values of c and even values of t. For a few values of M , we counted the number of
iterations the main loop ran until the algorithm returned. Equivalently, this is the number of
pairs t, c chosen at random until p, r, and c were simultaneously prime. The number of iterations
was always below log3M as shown in Figure 1.

We also computed the embedding degree of a curve returned by Algorithm 1 with M = 298.
In 10000 runs we observed 0 curves with embedding degree < log2(M). This should be compared

with the bound log8(M)√
M
≈ 0.80527.

7 Conclusion

We acknowledge that a solution to Problem 6 may not be as mathematically interesting as
proving an asymptotic formula with an optimal error bound for a generalized, two variable
Bateman-Horn conjecture. However, a solution to Problem 6 would be enough to:

(i) Prove the efficiency of an algorithm to generate an isolated curve with large embedding
degree.

(ii) Prove that the space of isolated curves is large enough to provide sufficient randomness in
parameter selection.

These facts are enough to show that isolated curves provide cryptosystems resistant to the
isogeny based attacks described in the introduction.
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