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Abstract. Discrete Gaussian Sampling is a fundamental tool in lattice

cryptography which has been used in digital signatures, identify-based

encryption, attribute-based encryption, zero-knowledge proof and fully

homomorphic cryptosystem. As a subroutine of lattice-based scheme, a

high precision sampling usually leads to a high security level and also

brings large time and space complexity. In order to optimize security and

efficiency, how to achieve a higher security level with a lower precision

becomes a widely studied open question. A popular method for address-

ing this question is to use different metrics other than statistical distance

to measure errors. The proposed metrics include KL-divergence, Rényi-

divergence, and Max-log distance, and these techniques are supposed to

achieve 2p security with p
2

precision or even less. However, we note that

error bounds are not universal but depend on specific sampling meth-

ods. For example, if we use the popular rejection sampling, there will

be large gaps between some existing results and practical experiments

in terms of error bounds. In this paper, we make two novel observa-

tions about practical errors. As an application of the observations, we

consider convolution theorem of discrete Gaussian sampling by using Re-

jection method and reformulate it into a practical one with much more

accurate error bounds. We describe a rigorous proof of it and demon-

strate that the bounds are tightly matched by our experiments. It seems

that the statistical distance is a better metric to distinguish distributions

by looking at characteristic functions of probabilities. Our bounds under

KL-divergence, Rényi-divergence and Max-log distance using Rejection

sampling may have no influence on estimating security level, but this

successful application reveals the proposed observations are very effec-

tive in analyzing practical probabilities. Moreover, some technical tools

including several improved inequalities for discrete Gaussian measure are

developed.
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1 Introduction

In recent years, research in lattice-based cryptography has attracted consider-

able attention. This is mainly because mathematical and computational prop-

erties of lattices provide basis for advanced schemes, such as digital signatures,

identity-based and attribute-based encryption, zero-knowledge proof and fully

homomorphic schemes, and some of the lattice-based cryptosystems are likely

to be effective against quantum computing attacks in the future. Many of these

lattice-based schemes rely on a polynomial-time algorithm which samples from

a discrete Gaussian distribution over a lattice. Thus discrete Gaussian sampling

is one of the fundamental tools of lattice cryptography.

Discrete Gaussian over lattices has been well studied in mathematics [1, 2]

and becomes an exceedingly useful analytical tool in discussing the computa-

tional complexity of lattice problems [5, 6, 13]. A discrete Gaussian sampling

algorithm takes a basis of the lattice Λ, a vector c ∈ Rn, and a width parameter

s > 0 as inputs, and outputs a vector v that obeys the distribution DΛ+c,s which

assigns a probability proportional to e−π‖v−c‖
2/s2 . Two of the most influential

discrete Gaussian sampling algorithms are Babai’s nearest-plane algorithm [7]

and the sampling algorithm of Gentry, Peikert and Vaikuntanathan [11]. Babai’s

algorithm was proposed in 1986 and Gentry, Peikert and Vaikuntanathan im-

proved it by replacing the deterministic rounding process in each iteration by a

probabilistic rounding process which is determined by its distance from the tar-

get point [7]. The work [11] also provided an analysis of the sample distribution

using smoothing parameter of Micciancio and Regev [8], in terms of statistical

distance. A further improvement and extension of the sampling algorithm of [11]

was obtained by Peikert [14] in 2010, where a parallelizable Gaussian sampling

algorithm is established based on the famous convolution theorem of discrete

Gaussian as well as its theoretical bound. The convolution theorem of discrete

Gaussian allows the generation of a sample with relatively large standard devia-

tion s by combining results of different samples with small standard deviation s′.

This technique greatly improves the efficiency for sampling with large standard

deviation. Many practical improvements about Gaussian sampling have been

made based on the convolution theorem. For example, Pöppelmann, Ducas and

Güneysu proposed a highly efficient lattice-based signatures on reconfigurable

hardware in 2014 [15] and Micciancio and Walter provided a generic Gaussian

sampling algorithm with high efficiency and constant-time in 2017 [10]. Improve-

ments have been reported in recent work [12, 16], where results of [10] were

further utilized and expanded.
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The error estimation of discrete Gaussian sampling is one of the key is-

sues. The influence of float-point errors has reveived special attention because

precision directly decides the time and space complexity of practical sampling.

In 2010, Peikert [14] gave a theoretical error estimation under statistical dis-

tance, with an error bound 2ε ( where ε ≤ 1/2 is with respect to the smooth-

ing parameter ) without considering floating-point errors and truncation errors.

Pöppelmann, Ducas and Güneysu [15] adapted Peikert’s analysis by scaling the

standard deviation s′ of one of the base samplers by a factor of 11 and provided

an error estimation about the convolution as 32ε2 under the Kullback-Leibler

divergence. With this bound, [15] reduces the precision by half and claims the

same size of errors. Furthermore, Micciancio and Walter [10] improved the anal-

ysis about error estimation of convolution theorem by using a novel notion of

“max-log” distance. Another kind of approach [16] is based on Rényi divergence

which improved the result of [3, 4]. These work use a metric other than statistical

distance to prove 2p security with p/2 precision.

In this paper, we make two important observations (Propositions 1 and 2)

in the area of practical analysis and propose a new practical convolution theo-

rem for rejection sampling based on these observations, under sum-like metrics

(i.e. statistical distance, KL-divergence, Rényi-divergence) and max-like met-

rics (i.e. relative difference, max-log distance). Our bounds are well consistent

with experiment results. We note that the error estimation depends on sampling

method as well and the error bounds for rejection sampling are usually large.

The successful application of the observations indicate that they can be very

useful in analyzing practical probability distribution. Besides, this paper also

contains some new technical frameworks and improved inequalities concerning

discrete Gaussian measure.

The rest of the paper is organized as follows. In section 2, we introduce

some background about lattice, discrete Gaussian sampling, as well as error

estimation results for convolution theorem from [10, 14, 15]. Our observations and

their proofs are are presented in section 3. In section 4, we use the observations

to consider convolution theorem of discrete Gaussian sampling. Then we discuss

applications of the new practical convolution theorem and provide experiments.

Finally, a conclusion is given in section 5.

2 Preliminaries

2.1 Error Estimation

Statistical Distance. Statistical distance is defined as the sum of absolute
errors, let P and Q be two distributions over a common countable set S, the
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statistical distance between distributions P and Q, denoted as ∆SD, is

∆SD(P,Q) =
1

2

∑
x∈S

|P (x)−Q(x)|

Relative Difference. The relative difference is defined as the maximum ratio
between absolute error and corresponding probability, let P and Q be two distri-
butions over a common countable set S, the relative difference, denoted as ∆RE

between distributions P and Q, is

∆RE(P,Q) = max
x∈S

δRE(P (x), Q(x))

where δRE(P (x), Q(x)) = |P (x)−Q(x)|
P (x) .

Kullback-Leibler Divergence. Let P and Q be two distributions over a com-
mon countable set Ω, and let S ⊂ Ω be the strict support of P (P (i) > 0 iff
i ∈ S). The Kullback-Leibler divergence, denoted as ∆KL of Q from P , is defined
as

∆KL(P‖Q) =
∑
x∈S

P (x) ln
P (x)

Q(x)

where ln(x/0) = +∞ for any x > 0.

Max-log Distance. This metric was first introduced in [10]. Given two distri-
butions P and Q over a common countable set S, their max-log distance ∆ML

is defined as

∆ML(P,Q) = max
x∈S

δML(P (x), Q(x))

where δML(P (x), Q(x)) = | lnP (x)− lnQ(x)|.
Rényi-divergence. Given two distributions P and Q over a common countable

set S, for α ∈ (1,+∞), their Rényi-divergence is defined in [16] as

∆RDα(P‖Q) =
(∑
x∈S

P (x)α

Q(x)α−1

) 1
α−1

and for α = +∞ Rényi-divergence is defined as

∆RD∞(P‖Q) = max
x∈S

P (x)

Q(x)

Relationships between Metrics. For a real number x and its p-bit ap-
proximation x̄ which stores the p most significant bits of x in binary. More
specifically, if x = 2k

∑+∞
i=1 xi2

−i with xi ∈ {0, 1} and x1 = 1, we denote the
rounding function with precision p as Rdp whose evaluation at x is Rdp(x) =
2k(
∑p
i=1 xi2

−i + xi+12−p). We write x̄ = Rdp(x) and obtain

δRE(x, x̄) < 2−p

by computing |x̄ − x|/x̄ = 2k|xi+12−p−1 −
∑+∞
i=p+2 xi2

−i|/(2k(
∑p
i=1 xi2

−i +

xi+12−p)) < 2−p−1/2−1 = 2−p.
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A relation that links statistical distance and ∆KL is described by the follow-
ing Pinsker’s inequality

∆KL(P‖Q) ≥ 2∆2
SD(P,Q).

For ∆KL and ∆RE , the inequality

∆KL(P‖Q) ≤ 2∆2
RE(P,Q)

was proved in [15] under the condition that ∆RE(P,Q) < 1/4. Actually, this

argument is a special case of a general result: assume that for any i ∈ S,

there exists some δ(i) ∈ (0, 1/4) such that |P (x) − Q(x)| ≤ δ(x)P (x), then

∆KL(P‖Q) ≤ 2
∑
x∈S δ

2(x)P (x) holds. The relationship between ∆KL and ∆RE

follows by setting δ(i) = ∆RE(P,Q).
Recently in [10], the above relation was further improved to

∆KL(P‖Q) ≤ (8/9)∆2
RE(P,Q).

In fact, [10] established a more general inequality ∆KL(P‖Q) ≤ ∆2
RE(P,Q)

2(1−∆RE(P,Q))2

for the case ∆RE(P,Q) < 1 1.
The following relationship between Rényi-divergence and relative difference

is given in [16].

∆RDα(P‖Q) ≤
(

1 +
α(α− 1)∆2

RE

2(1−∆RE)α+1

) 1
α−1

.

Lemma 4.2 of [10] sets up a relation between ∆ML and ∆RE . Here we estab-

lish a slightly more precise inequality for these two quantities with a rigorous

proof. Since the proof uses the Taylor series directly without involving O. It

should be pointed out that we assume that P and Q share exactly the same

strict support S. This is always true if the condition ∆RE(P,Q) < 1 holds.

Lemma 2.1 If ∆RE(P,Q) < 1, then

∣∣∆ML(P,Q)−∆RE(P,Q)
∣∣ ≤ ∆2

RE(P,Q)

2(1−∆RE(P,Q))
.

Proof. Note that for |t| < 1, we have | ln(1− t)| =
∣∣t+ t2

2 + t3

3 + · · ·
∣∣. For x ∈ S,

we set tx = P (x)−Q(x)
P (x) . On the one hand, we have∣∣∣∣ ln Q(x)

P (x)

∣∣∣∣ =
∣∣ ln(1− tx)

∣∣ =
∣∣tx +

t2x
2

+
t3x
3

+ · · ·
∣∣ ≤ |tx|+ |tx|2

2
+
|tx|3

3
+ · · ·

≤ ∆RE(P,Q) +
∆2
RE(P,Q)

2
+
∆3
RE(P,Q)

3
+ · · ·

≤ ∆RE(P,Q) +
∆2
RE(P,Q)

2(1−∆RE(P,Q))
.

1 Under the condition that δRE(Q(xi), P (xi)) ≤ 1
4
, it can be shown that ∆KL(P‖Q) ≤

11
18
∆2
RE(Q,P ) by using the absolutely convergent Taylor series of ln(1− P (xi)−Q(xi)

P (xi)
).
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This gives ∆ML(P,Q) ≤ ∆RE(P,Q) +
∆2
RE(P,Q)

2(1−∆RE(P,Q)) .

On the other hand,

∣∣∣∣ ln Q(x)
P (x)

∣∣∣∣ =
∣∣ ln(1− tx)

∣∣ ≥ |tx| − ∣∣ t2x2 +
t3x
3 + · · ·

∣∣. So

|tx| ≤
∣∣∣∣ ln Q(x)

P (x)

∣∣∣∣+
∣∣ t2x

2
+
t3x
3

+ · · ·
∣∣ ≤ max

x∈S

∣∣∣∣ ln Q(x)

P (x)

∣∣∣∣+
∆2
RE(P,Q)

2
+
∆3
RE(P,Q)

3
+ · · ·

≤ ∆ML(P,Q) +
∆2
RE(P,Q)

2(1−∆RE(P,Q))
.

This yields ∆RE(P,Q) ≤ ∆ML(P,Q) +
∆2
RE(P,Q)

2(1−∆RE(P,Q)) and the lemma is proved.

ut

It can be easily verified that the result of the lemma is also true if we use δRE
and δML.

For distribution Pi and Qi over support
∏
i Si, [10] also proved that if

∆ML(Pi|ai, Qi|ai) ≤ 1/3 for all i and ai ∈
∏
j<i Sj , then

∆SD((Pi)i, (Qi)i) ≤ ‖(max
ai

∆ML(Pi|ai, Qi|ai))i‖2 (1)

2.2 Discrete Gaussian Sampling

Given x ∈ Rn and and a countable set A ⊂ Rn , we define the Gaussian function

ρs,c(x) = e−π
‖x−c‖2

s2 and Gaussian sum ρs,c(A) =
∑
x∈A ρs,c(x), then Pr(x) =

ρs,c(x)
ρs,c(A) gives a discrete (Gaussian) probability distribution on A which we call

DA,c,s. The subindexes c or/and s are omitted if c = 0 or/and s = 1. Gaussian

function can be defined in terms of a positive definite matrix instead of s.
The insight-conveying concept of smoothing parameter of Micciancio and

Regev [8] for an n-dimensional lattice Λ is with respect to an ε > 0 and given
by ηε(Λ) = min{r : ρ1/r(Λ

∗) ≤ 1 + ε}. One of the bounds given in [8] states

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))/π · λn(Λ).

For the special case of Λ = Z, we have

ηε(Z) ≤
√

ln 2(1 + 1/ε)/π.

This, together with the fact that 2e−πηε(Z)2 < ρ 1
ηε(Z)

(Z \ {0}) ≤ ε, yields

2

eπ(ηε(Z))2
< ε ≤ 2

eπ(ηε(Z))2 − 2
.

We shall assume that ηε(Z) ≥ 1 since ε is small. Note that ρ(Z) < 1.086435, it

is thus meaningful to choose ε < 0.086 in the rest of our discussion.
Next, we will prove a little tighter tail bound about discrete Gaussian prob-

ability which improves Lemma 4.1 of [11]. To this end, we also need to develop
a slightly more precise estimation over Banaszczyk lemma [2] for the case of Z.
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Lemma 2.2 Let s, t be positive numbers such that ts ≥ 1 and c ∈ [0, 1). We have

1. ∑
k∈Z

|k−c|≥ts

ρs(k − c) ≤ 2e−πt
2

(
1 +

e−
2πt
s

2
(ρs(Z)− 1)

)
. (2)

2. If s ≥ ηε(Z), then

∑
x∈Z

|x−c|≥t·s

Prx←DZ,c,s(x) ≤ 2e−πt
2

· 1 + ε

1− ε

1 + e
− 2πt

s

2
(ρs(Z)− 1)

ρs(Z)

 . (3)

Remarks.

1. We include a proof of the lemma in the appendix.

2. We remark that the proof of equation (2) can be easily extended to get

an alternative proof of Banaszczyk lemma (Lemma 2.4 in [2]) for a general

lattice L ⊂ Rn.

3. Our new bound (2) improves the original bound 2e−πt
2

ρs(Z) to Ce−πt
2

ρs(Z)

with C = 2
ρs(Z) + e−

2πt
s

(
1− 1

ρs(Z)

)
. Obviously under the natural condition

s ≥ 1 we have that C ≤ 2 2. This C can be much smaller. For example, in

our later application, we will choose s = 34, t = 6, so C < 0.38.

2.3 Convolution Theorem and its Improvements

In 2010, a convolution theorem for discrete Gaussian was formulated and proved

by Peikert [14] which utilizes smoothing parameter. The convolution theorem

states

Theorem 2.3 (Convolution Theorem [14]) Let Σ1, Σ2 > 0 be positive definite
matrices and set Σ = Σ1 +Σ2 and Σ−1

3 = Σ−1
1 +Σ−1

2 . Let Λ1, Λ2 be lattices such
that
√
Σ1 ≥ ηε(Λ1) and

√
Σ3 ≥ ηε(Λ2) for some positive ε ≤ 1/2, and let c1, c2 ∈

Rn be arbitrary. Choose x2 ← DΛ2+c2,
√
Σ2

and x1 ← x2 + DΛ1+c1−x2,
√
Σ1

. If

D̃c1+Λ1,
√
Σ is the distribution of x1, then

δRE(PrD̃
c1+Λ1,

√
Σ

[x = x̄], P rD
c1+Λ1,

√
Σ

[x = x̄]) ≤ (
1 + ε

1− ε )2 − 1.

This convolution theorem was strengthened by Micciancio and Peikert in

2013 (Theorem 3.3 of [9]). We observe that the proof in [9] can be modified

so that an improved version of Theorem 3.3 of [9] can be stated. For a vector

z ∈ Zm, we denote zmax and zmin to be the largest and smallest components (in

absolute values) of z respectively, then our form of the theorem is

2 Note that by the Poisson Summation formula we get s < ρs(Z) < s+ 2se−πs
2

1−e−3πs2
.
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Theorem 2.4 Let Λ be an n-dimensional lattice, z ∈ Zm a nonzero integer
vector, s ∈ Rm with si ≥

√
z2

max + z2
minηε(Z) for all i ≤ m and ci + Λ ar-

bitrary cosets. Let yi be independent samples from Dci+Λ,si , respectively. Let
Y =

∑
i zici + gcd(z)Λ and s =

√∑
i(zisi)

2. Then D̃Y,s, the distribution of
y =

∑
ziyi, is close to DY,s. More precisely,

δRE(PrD̃Y,s [x = x̄], P rDY,s [x = x̄]) ≤ 1 + ε

1− ε − 1.

Remark. We note that the assumption of Theorem 3.3 of [9] was si ≥
√

2‖z‖∞ηε(Z).

Our version is more efficient as
√
z2

max + z2
min ≤

√
2‖z‖∞. Notice that in applica-

tions, one often requires gcd(z) = 1, so zmax > zmin and hence
√
z2

max + z2
min <√

2‖z‖∞. The improvement has a significant impact on estimating ε with respect

to the smoothing parameter ηε. To illustrate simply, for a fixed s, the original

result gives an error εold ≤ 2e
−π s2

2z2max while ours shows εnew ≤ 2e
−π s2

z2max+z2
min .

So for some choices of parameters (e.g. zmax is much larger than zmin), our esti-

mated error may be as finer as the square of the previous one, i.e., εnew ≈ ε2
old.

The proof of the current version of the theorem just modifies the last part of

that given in [9] and we include that part in the appendix.

Pöppelmann, Ducas and Güneysu considered one-dimensional case in [15].

Using ∆KL instead of ∆SD and with one lattice being sampled to be kZ, their

improved convolution theorem states

Theorem 2.5 (Convolution Theorem [15]) Let x1 ← DZ,s1 , x2 ← DkZ,s2 for
some positive reals s1, s2, and let s−2

3 = s−2
1 + s−2

2 and s2 = s2
1 + s2

2. For any
ε ∈ (0, 1/2) if s1 ≥ ηε(Z) and s3 ≥ ηε(kZ), to the distribution of x = x1 + x2,
denoted as Dx, is close to DZ,s under KL-divergence

∆KL(Dx‖DZ,s) ≤ 2(1− (
1 + ε

1− ε )2)2.

Another useful bound in studying error estimation of convolution theorem

is also proposed in [10] which describes errors when continuously using approx-

imated output results as inputs of the next round.

Theorem 2.6 Let ∆ be a metric. Let AP be an algorithm querying a distribution
ensemble Pθ at most q times. Then

∆(AQ, R) ≤ ∆(AP , R) + q ·∆(Pθ, Qθ)

for any distribution R and any ensemble Qθ.

Micciancio and Walter are the first to analyze error estimation of convolution

discrete Gaussian sampling using the metric ∆ML by combining equation (1),

theorem 2.3, theorem 2.4, and theorem 2.6. Their result is also the first practical

refinement of convolution theorem that takes floating-point errors into account.

The following two corollaries from [10] give error estimation under max-log dis-

tance.
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Corollary 2.7 (Corollary 4.1 of [10]) Let z ∈ Zm be a nonzero integer vector

with gcd(z) = 1 and s ∈ Rm with si ≥
√

2‖z‖∞ηε(Z) for all i ≤ m. Let yi
be independent samples from D̃Z,si , respectively, with ∆ML(DZ,si , D̃Z,si) ≤ µi
for all i. Let D̃Z,s be the distribution of y =

∑
ziyi and s2 =

∑
s2
i . Then

∆ML(DZ,s, D̃Z,s) . 2ε+
∑
i µi.

Remark. The assumption of si ≥
√

2‖z‖∞ηε(Z) can be replaced by si ≥√
z2

max + z2
minηε(Z) according to Theorem 2.4.

Corollary 2.8 (Corollary 4.2 of [10]) Let s1, s2 > 0 with s2 = s2
1 + s2

2 and

s−2
3 = s−2

1 + s−2
2 . Let Λ = KZ be a copy of the integer lattice Z scaled by

a constant K. For any c1 and c2 ∈ R, denote the distribution of x1 ← x2 +

D̃c1−x2+Z,s1 , where x2 ← D̃c2+Λ,s2 , by D̃c1+Z,s. If s1 ≥ ηε(Z), s3 ≥ ηε(Λ) =

Kηε(Z), ∆ML(Dc2+Λ,s2 , D̃c2+Λ,s2) ≤ µ1 and ∆ML(Dc+Z,s1 , D̃c+Z,s1) ≤ µ2 for

any c ∈ R, then ∆ML(Dc1+Z,s, D̃c1+Z,s) . 4ε+ µ1 + µ2.

It should be noted that the above theorems and corollaries hold true only

under some specific sampling methods (e.g., reverse CDT). Sampling method

must be specified when use them in designing cryptosystems. However, as it

will be shown later, under various metrics other than statistical distance, one

may not be able to get such finer bounds for rejection sampling. We also re-

mark that it seems that the statistical distance is a better metric to distinguish

distributions by looking at characteristic functions of probabilities. Our bounds

under KL-divergence, Rényi-divergence and Max-log distance using Rejection

sampling may have no influence on estimating security level, but it is seen that

the techniques used in this paper are novel and effective in analyzing probability

distributions.

3 Two Critical Observations about Practical Errors

In this section, we make two novel observations about practical errors. These

two observations are the keys to more precisely determine the dominant term

of practical errors in discrete Gaussian sampling. We first define two bounds

for practical errors: εt = ρ1/t(Z) − 1 and µ = 2−p. Note that for t > 1, εt =

2
∑+∞
i=1 e

−πt2i2 ∈ (2e−πt
2

, 2e−πt
2

1−e−3πt2
). We will use εt to control the truncation

error with respect to t, and µ to control float-point errors.

Our first observation indicates that, in general, the sum of the stored prob-

abilities cannot be close to 1 by the order of µ2.

Proposition 1 Let P1, ..., Pn be a finite probability distribution and P̄1, ..., P̄n
the corresponding p-bits approximations (i.e. P̄i = Rdp(Pi)). We have

∣∣1− n∑
i=1

P̄i
∣∣ ≤ µ.
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Moreover, this bound is sharp in the sense that it cannot be improved to < µ
2 .

Proof. Write Pi = 2ki
∑∞
j=1 xi,j2

−j with xi,1 = 1 and xi,j ∈ {0, 1} for j =

2, 3, · · · . Since
∑n
i=1 Pi = 1, i.e.,

∑n
i=1 2ki−1+2−1

∑n
i=1 xi,22ki−1+2−2

∑n
i=1 xi,32ki−2+

· · · = 1, we see that
1

2
≤

n∑
i=1

2ki−1 ≤ 1.

Note that P̄i = Rdp(Pi) = 2ki(
∑p
j=1 xi,j2

−j + xi,p+12−p), we get

n∑
i=1

P̄i =

n∑
i=1

2ki(

p∑
j=1

xi,j2
−j + xi,p+12−p)

=

n∑
i=1

2ki(

∞∑
j=1

xi,j2
−j −

∞∑
j=p+1

xi,j2
−j + xi,p+12−p)

= 1 +

n∑
i=1

2kixi,p+12−p−1 −
n∑
i=1

2kixi,p+22−p−2 − · · ·

= 1 + 2−p
( n∑
i=1

2ki−1xi,p+1 − 2−1
n∑
i=1

2ki−1xi,p+2 − 2−2
n∑
i=1

2ki−1xi,p+3 − · · ·
)

Therefore
n∑
i=1

P̄i ≤ 1 + 2−p
n∑
i=1

2ki−1xi,p+1 ≤ 1 + 2−p
n∑
i=1

2ki−1 ≤ 1 + 2−p,

and
n∑
i=1

P̄i ≥ 1− 2−p
(
2−1

n∑
i=1

2ki−1xi,p+2 + 2−2
n∑
i=1

2ki−1xi,p+3 + · · ·
)

≥ 1− 2−p
(
2−1

n∑
i=1

2ki−1 + 2−2
n∑
i=1

2ki−1 + · · ·
)

= 1− 2−p
n∑
i=1

2ki−1 ≥ 1− 2−p.

Thus ∣∣1− n∑
i=1

P̄i
∣∣ ≤ µ.

Next, we shall construct a counterexample to show that
∣∣1 −∑n

i=1 P̄i
∣∣ < µ

2 is
false. There are many such examples. We give a simple one: Let P1 = 2−1+2−p−2

and P2 = 1− P1. Then P̄1 = 2−1 and P̄2 = 2−1(2−1 + 22 + · · ·+ 2−p). So

P̄1 + P̄2 = 2−1 + 2−2 + · · ·+ 2−p−1 = 1− 2−p−1 = 1− µ

2
.

Remarks

1. We should remark that there are more cases for
∣∣1−∑n

i=1 P̄i
∣∣ ≥ µ

4 . However,

the probability for
∣∣1−∑n

i=1 P̄i
∣∣ ≤ µ2 is extremely small.
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2. Letting P ′i = P̄i∑n
i=1 P̄i

, then P̄i
1+2−p ≤ P ′i ≤ P̄i

1−2−p . We observe that in most

cases, Rdp(P
′
i ) = P̄i for all i = 1, 2, · · · , n. In other words, for many cases,

normalizing the stored probabilities achieves nothing in terms of storage. We

shall call this anti-intuitive phenomena the Distribution Precision Paradox.

3. We also have
∑n
i=1Rdp(P

′
i ) = 1 +O(µ). This can be seen from the fact that∣∣Rdp(P ′i )− P̄i∣∣ ≤ 2−p+1P̄i.

4. The proposition naturally leads to a result that floating-point errors are

mostly around O(µ) rather than O(µ2) for methods such as rejection sam-

pling. Given a fixed precision p, one may try to redistribute 1−
∑n
i=1Rdp(P

′
i )

to make the sum of the stored probabilities get closer to 1. However this does

not seem to change the situation because the method also introduces a larger

relative error for corresponding Rdp(P
′
i ). These expanded relative errors fi-

nally cause non-decreasing floating-point errors under all metrics mentioned

above.
5. When adding truncation errors into consideration, we can get a similar re-

sult that normalization process will not efficiently remove the influence of
truncation errors on the sum of probabilities because of the limitation of the
storage space. As a result, in a base sampler of discrete Gaussian sampling,
we always have

n∑
i=1

Rdp(P
′
i ) = 1 +O(µ) +O(εt).

Possibly due to the extremely small tail bound of the discrete Gaussian mea-

sure, truncation errors are often ignored in the previous considerations. Our

second observation reveals a contrary result for the case of convolution of two

discrete Gaussian variables. We actually show that during the process of convo-

lution, the ignored part may contribute significantly and become the main term

with respect to several metrics. Though we will discuss this issue in great detail

later, we describe its conclusion here.

Let x1, x2 be sampled from Ds independently and be restricted on the trun-

cation ranges S1 = [−ts, ts] (namely, supports of x1 and x2 are all in S1). Let

a, b be positive integers with gcd(a, b) = 1 and x = ax1 + bx2. The probabil-

ity of x is computed by the convolution, denoted by P ′(x). We also restrict

the support of x to S = [−t
√
a2 + b2s, t

√
a2 + b2s]. Setting η =

√
a2+b2

s , ψ =

min{
√
a2+b2−a

b ,
√
a2+b2−b
a } and ω = 1− η

ψt , we can state our observation as

Proposition 2 Let P (x) be the probability of x for the ideal discrete Gaussian

distribution D√a2+b2s. If st ≥
√
a2+b2

ψ , then

∆RE(P ′, P ) ≤ εω
2ψ2

t .

Moreover, this bound is sharp in the sense that it cannot be improved to <

ε
(
√

2−1)2

t .
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Remarks

1. The proof of this result will be given in the next section (Lemma 4.2). It can

be seen that ω2ψ2 ≤ (
√

2− 1)2 and our experiments (Table 2 and Figure 4)

in next section show that our bound is sharp and ∆RE(P ′, P ) ≤ ε(
√

2−1)2

t is

false. However, the inequality ∆RE(P ′, P ) ≤ O(εt) was assumed previously,

2. It is also interesting to note if st <
√
a2+b2

ψ , ∆RE(P ′, P ) can be close to 1.

The facts described in the propositions have not been previously noted. More

precise error estimations are given for computations based on rejection sampling

under sum-like metrics (e.g., KL-divergence, Rényi-divergence) and max-like

metrics ( e.g., relative difference, max-log distance). Thus the two observations

(i.e., propositions 1 and 2) are the keys to transforming theoretical results into

practical ones, we will take practical convolution theorem as an example to show

how they work in the next section.

4 Refinement of Practical Convolution Theorem and Its

Appplication

This section will be divided into two parts to consider practical issues of convo-

lution of discrete Gaussian samplings using rejection sampling. It mainly devotes

to a derivation of convolution theorem with more accurate bounds. We would

like to remark that using the two observations of the previous section is the key

to determine the dominant term.

4.1 Practical Convolution Theorem and Its Error Estimation

In this part, we provide a step-by-step derivation of the practical convolution

theorem in detail, with a more precise coefficients for the dominant terms. We

will use the revised version of Convolution Theorem (Theorem 2.4) for dealing

with two random variables, and analyse three types of errors, namely, convolution

errors, truncation errors, as well as floating-point errors. The effectiveness of con-

volutions are evaluated by statistical distance, KL-divergence, Rényi-divergence,

relative difference and max-log distance. We will use the tail bound from Lemma

2.2 to control truncation errors.

Recall that for a real number t > 1, we use εt = ρ1/t(Z) − 1 to control the

truncation error with respect to t. For positive integers a, b be positive and real

number s1, we also defined η =
√
a2+b2

s1
, ψ =

√
a2+b2−a

b and ω = 1 − η
ψt in last

section.

Now, we state our version of convolution theorem.
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Theorem 4.1 Let a > b ∈ Z be nonzero integers with gcd(a, b) = 1 and s ∈ R2

with s1 = s2 ≥
√
a2 + b2ηε(Z) 3 . Let xi ∈ [−tsi, tsi] be independent samples

from DZ,si respectively, with floating-point error µi ≤ µ for i = 1, 2. Let D̃Z,s be

the distribution of x = ax1 + bx2 ∈ S = [−ts, ts] where s =
√
a2s2

1 + b2s2
2. Then

∆SD(D̃Z,s, DZ,s) ≤ C1εt + µ+ ε+O(ε2t + µε+ εtε+ εtµ)

∆RE(D̃Z,s, DZ,s) ≤ C3ε
ω2ψ2

t + 2µ+ 2ε+O(ε1+ω
2ψ2

t + µε+ εψ
2

t ε+ εψ
2

t µ)

∆ML(D̃Z,s, DZ,s) ≤ C3ε
ω2ψ2

t + 2µ+ 2ε+O(ε2ω
2ψ2

t + µ2 + ε2 + µε+ εψ
2

t ε+ εψ
2

t µ)

∆KL(D̃Z,s‖DZ,s) ≤ (2C1 + C4)εt + 2µ+ 2ε2 +O(ε2t + µ2 + ε3 + µε+ εtε+ εtµ)

∆RDα(D̃Z,s‖DZ,s) ≤ 1 + (2C1 + C4)εt + 2µ+
α

2
ε2 +O(ε2t + µ2 + ε3 + µε+ εtε+ εtµ).

where C1 =
1− 1

2
e
− 2πt
s1

s1
+ 1

2
e
−2πt
s1 , C3 = 2(

1−e−π(2ωψηt+η2)
)
(1+e−2πη2 (1+e−4πη2 ))

, and

C4 =
1− 1

2
e
− 2πt

s

s
+ 1

2
e
−2πt
s . In particular, when t = ηε(Z) and εt = ε,

∆SD(D̃Z,s, DZ,s) ≤ (C1 + 1)ε+ µ+O(ε2 + εµ)

∆RE(D̃Z,s, DZ,s) ≤ C3ε
ω2ψ2

+ 2µ+O(ε+ εω
2ψ2

µ)

∆ML(D̃Z,s, DZ,s) ≤ C3ε
ω2ψ2

+ 2µ+O(ε2ω
2ψ2

+ µ2 + εω
2ψ2

µ)

∆KL(D̃Z,s‖DZ,s) ≤ (2C1 + C4)ε+ 2µ+O(ε2 + µ2 + εµ)

∆RDα(D̃Z,s‖DZ,s) ≤ 1 + (2C1 + C4)ε+ 2µ+O(ε2 + µ2 + εµ).

We would like to remark that C1, C3, C4 are considered as constants because

the parameters of convolution theorem are selected as s1 = s2 ≥
√
a2 + b2ηε(Z)�

1, t ≥ ηε(Z) � 1. It is obvious that C1, C4 ∈ (0, 1) and C1 = O(e−2πt/s1), C4 =

O(e−2πt/s). We also have εt = O(e−2πt2) ≤ ε = O(e−2πη2ε(Z)) and µ ≤ 2−p

(p ∈ [53, 200]), note that e−2πt2 ≤ e−2πη2ε(Z) � e−2πt � e−2πt/s ≤ e−2πt/s1 (i.e

when takes s1 = 34, t = ηε(Z) = 6, εt = ε ≈ 2−160 and C1 ≥ ε1/(ts1) ≈ 2−0.78

and there are similar cases for C3 and C4). So C1, C3, C4 can be viewed as

constants that do not affect the analysis of εt, ε and µ.

We would also like to remark that, for rejection sampling, our bounds are

usually large than those in [15, 16, 10] for corresponding metrics (and with respect

to other sampling methods). According to the discussion of our observations,

these bounds may not be substantially improved.

Our analysis of practical convolution theorem can be divided into three parts

by the nature of errors, i.e., convolution errors, floating-point errors and trun-

cation errors. Details of our analysis will be given in the following subsections.

Our version of convolution theorem (Theorem 2.4) will be used.

3 It is note that our discussion can be extended to the case of s1 6= s2. We choose

s1 = s2 is for the purpose of simplifying our discussion. This is also a very common

setup in practice.
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4.2 Error Analysis–Proof of Theorem 4.1

We will denote a distribution with practical errors as D̃ and an ideal distribution
asD in this section. We start the analysis by considering two base samplers which
samples x1 ← D̃c1,s1 and x2 ← D̃c2,s2 respectively. As the practical precision as
well as the set of x1, x2 can not be infinite, there exists both truncation errors
and floating-point errors for base samplers. Without loss of generality, we assume
c = c1 = c2 = 0, s1 = s2. The truncation ranges for x1 and x2 are denoted by
S1 = [−ts1, ts1] and S2 = [−ts2, ts2] respectively. As mentioned earlier, we set

εt = 2
∑+∞
i=1 e

−πt2i2 to be the truncation error and we know that εt < 0.086463
for all t > 1. Denote floating-point errors as µ1, µ2 with µ1 ≤ µ, µ2 ≤ µ. We first
treat truncation errors

PrD̃s1
(x = x1) =

ρs1(x1)∑
x∈S1

ρs1(x)

PrDs1 (x = x1) =
ρs1(x1)∑
x∈Z ρs1(x)

From Lemma 2.2 and the fact that ρs1(Z) > s1 we get

∑
x1∈Z
|x1|≥ts1

ρs1 (x) ≤ 2e
−πt2

(
1 +

1

2
e
− 2πt
s1 (ρs1 (Z)− 1)

)
≤ εt

(
1 +

1

2
e
− 2πt
s1 (ρs1 (Z)− 1)

)

≤ εt

 1− 1
2 e
− 2πt
s1

s1
+

1

2
e
−2πt
s1

 ρs1 (Z) = C1 · εtρs1 (Z)

where C1 =
1− 1

2 e
− 2πt
s1

s1
+ 1

2e
−2πt
s1 .

From the fact that ρs1(Z) < s1 + 2s1e
−πs21

1−e−3πs21
and εt ∈ (2e−πt

2

, 2e−πt
2

1−e−3πt2
), we

get

∑
x1∈Z
|x1|≥ts1

ρs1 (x) ≥
2e−πt

2

1− e
− 2πt
s1

≥ εt
1− e−3πt2

1− e
− 2πt
s1

≥ εt


1−e−3πt2

1−e
− 2πt
s1

s1 +
2s1e

−πs21

1−e−3πs21

 ρs1 (Z) = C2 · εtρs1 (Z)

where C2 =

1−e−3πt2

1−e
− 2πt
s1

s1+
2s1e

−πs21

1−e−3πs21

.

These yield that for all x1 ∈ S1

PrDs1 (x = x1)

1− C2εt
≤ PrD̃s1 (x = x1) ≤

PrDs1 (x = x1)

1− C1εt

Since the probabilities of base samplers are stored with finite precision p
which may introduce relative errors as large as µ ≤ 2−p, for a base sampler
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which samples x1 ← D̃s1 (or x2 ← D̃s2), we have

PrDs1 (x = x1)

1− C2εt
≤ [1− µ, 1 + µ] · PrD̃s1 (x = x1) ≤

PrDs1 (x = x1)

1− C1εt

PrDs1 (x = x1)

1− C2εt + µ+O(εtµ)
≤ PrD̃s1 (x = x1) ≤

PrDs1 (x = x1)

1− C1εt − µ+O(εtµ)
(4)

As C1 > C2, the relative error is bounded by

δRE(PrD̃s1
(x = x1), P rDs1 (x = x1)) ≤ C1εt + µ+O(εtµ)

Next, let us analyze the joint distribution of the two independent base sam-

plers. Recall that we set s1 = s2 and c = c1 = c2 = 0, and S1 = [−ts1, ts1],

S2 = [−ts2, ts2], S = [−ts, ts] with s =
√
a2s2

1 + b2s2
2.

The Convolution Theorem (Thoerem 2.5) proves that

δRE(PrD̃Y,s [x = x̄], P rDY,s [x = x̄]) ≤ 1 + ε

1− ε − 1.

It should be noted that Theorem 2.5 applies to the ideal situation where we can
obtain all possibilities with neither truncation errors nor floating-point errors,
thus for all xc ∈ S = [−ts, ts], PrD̃Y,s(x = xc) =

∑
x1∈Z,x2∈Z

xc=ax1+bx2

PrDs1 (x =

x1) · PrDs2 (x = x2). As a result, we have

PrDs(x = xc) = (1 + a(xc)) ·
∑

x1∈Z,x2∈Z
xc=ax1+bx2

PrDs1 (x = x1) · PrDs2 (x = x2)

where (1 + a(xc)) ∈ [ 1−ε
1+ε ,

1+ε
1−ε ] for all xc ∈ Z. On the other hand, we know the

probability of convolution of two base samples is given by

PrD̃s(x = xc) =
∑

x1∈S1,x2∈S2
xc=ax1+bx2

PrD̃s1
(x = x1) · PrD̃s2 (x = x2)

According to the previous analysis about relative error of base samplers, it is

clear that for some Ct ∈
[

1
(1−C2εt+µ)2

, 1
(1−C1εt−µ)2

]
, where C1, C2 as previously

defined. We have



16 Zhongxiang Zheng, Xiaoyun Wang, Guangwu Xu, Chunhuan Zhao

Figure 1. xc = ax1 + bx2 in the plane of

(x1, x2), the Horizontal Axis is for x1 and the

Vertical Axis for x2

Figure 2. Relationship between Bounds and

Practical Errors Measured by ∆SD, ∆KL with

Different Precisions, the Horizontal Axis is for

Precisions and the Vertical Axis for log2 of the

Errors

PrD̃s (x = xc)

=
∑

x1∈S1,x2∈S2
xc=ax1+bx2

PrD̃s1
(x = x1) · PrD̃s2 (x = x2)

= Ct ·
∑

(x1,x2)∈S1×S2
xc=ax1+bx2

PrDs1
(x = x1) · PrDs2 (x = x2)

= Ct ·

 ∑
(x1,x2)∈Z2
xc=ax1+bx2

PrDs1
(x = x1) · PrDs2 (x = x2)−

∑
(x1,x2)/∈S1×S2
xc=ax1+bx2

PrDs1
(x = x1) · PrDs2 (x = x2)


= Ct · (1− b(xc)) ·

∑
(x1,x2)∈Z2
xc=ax1+bx2

PrDs1
(x = x1) · PrDs2 (x = x2)

= Ct ·
1− b(xc)
1 + a(xc)

· PrDs (x = xc)

= g(xc) · PrDs (x = xc)

where g(xc) = Ct· 1−b(xc)1+a(xc)
, with b(xc) = β(xc)

α(xc)
=

∑
(x1,x2)/∈S1×S2
xc=ax1+bx2

PrDs1
(x=x1)·PrDs2 (x=x2)∑

(x1,x2)∈Z2
xc=ax1+bx2

PrDs1
(x=x1)·PrDs2 (x=x2) .

Now we shall analyse b(xc). Given xc, we denote `xc the line defined by
the equation xc = ax1 + bx2 in the (x1, x2)-plane. We are concerning with the
integral point (x1, x2) ∈ Z2 on the line `xc . Note that

PrDs1 (x = x1) · PrDs2 (x = x2) =
(e−π/s

2
1)(x

2
1+x

2
2)

(ρs1(Z))2
=

1

ρ2s1(Z)
e
−π

x21+x22
s21 .

So we can connect the convolution probabilities with the distances from the

origin of the (x1, x2)-plane, as it is shown in Fig 1.
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Since gcd(a, b) = 1, we may assume a > b without loss of generality. By the
extended Euclidean algorithm, there are positive integers u < b, v < a such that

au− bv = 1.

Let ST0 = {k(b,−a) : k ∈ Z} denote the set of integral solutions of ax1+bx2 = 0.
Then the set of integral solutions of `xc : ax1 + bx2 = xc is

STxc = xc(u,−v) + ST0.

This means that a point in STx is of the form : (xcu+ kb,−xcv − ka).
The point on `xc that is closest to the origin is

P =
( axc
a2 + b2

,
bxc

a2 + b2
)

= (xcu+ ξb,−xcv − ξa)

with ξ = −ub+vaa2+b2 xc. So the two possible shortest vectors in STxc are

P0 = (xcu+ bξcb,−xcv − bξca) and P1 = (xcu+ dξeb,−xcv − dξea).

Consider a vector (xcu+ kb,−xcv − ka) ∈ STxc . Its norm relates the norms
of P0, P1 through the following4 5

‖(xcu+ kb,−xcv − ka)‖2 =

{
‖P0‖2 + (i2 − 2i(ξ − bξc)), if i = k − bξc,
‖P1‖2 + (i2 + 2i(dξe − ξ)), if i = k − dξe.

(5)

The relation (5) will be used in deriving explicit formulas of α(xc) and β(xc).

These formulas enable us to establish a key estimation for the relative convolu-

tion error. More precisely, this estimation states

Lemma 4.2 If s1t ≥
√
a2+b2

ψ ,

b(xc) =
β(xc)

α(xc)
≤ C3e

−πω2ψ2t2 .

We include a proof of the lemma in the appendix due to space limitations, which

also gives a proof Proposition 2.

According to Lemma 4.2, we see that

g(xc) = Ct ·
1− b(xc)
1 + a(xc)

≥
1

(1− C2εt + µ)2
(1− 2ε)(1− C3e

−πω2ψ2t2
)

≥
1

(1− C2εt + µ)2
(1− 2ε)(1− C3ε

ω2ψ2

t )

= 1− C3ε
ω2ψ2

t − 2µ− 2ε+O(ε
1+ω2ψ2

t ) +O(ε
ω2ψ2

t µ) +O(ε
ω2ψ2

t ε) +O(µε)

4 Here we just verify the second relation of (5), and the other is similar. ‖(xcu +

kb,−xcv − ka)‖2 − ‖P1‖2 = (k − dξe)(2xcub + 2xcva) + (k2 − dξe2)(a2 + b2) =

(a2+b2)(k−dξe)
(

2ub+va
a2+b2

xc+k+dξe
)

= (a2+b2)i
(
−2ξ+i+2dξe

)
= (i2+2i(dξe−ξ)).

5 It should be noted that the result of (5) is obtained under the condition s1 = s2, for

the case when s1 6= s2, a similar result can also be derived with a small difference as

ξ = −us
2
2b+vs

2
1a

s21a
2+s22b

2 xc.



18 Zhongxiang Zheng, Xiaoyun Wang, Guangwu Xu, Chunhuan Zhao

To analysis ∆RE , we have

∆RE(D̃Z,s, DZ,s)

= max
x∈S

δRE(PrD̃s (x), PrDs (x))

= max
x∈S

|PrD̃s (x)− PrDs (x)|
PrD̃s (x)

= max
x∈S
|g(x)− 1|

≤ C3ε
ω2ψ2

t + 2µ+ 2ε+O(ε
1+ω2ψ2

t ) +O(ε
ω2ψ2

t µ) +O(ε
ω2ψ2

t ε) +O(µε).

And from lemma 2.1, we also have

∣∣∆ML(D̃Z,s, DZ,s)−∆RE(D̃Z,s, DZ,s)
∣∣ ≤ ∆2

RE(D̃Z,s, DZ,s)

2(1−∆RE(D̃Z,s, DZ,s))
.

So

∆ML(D̃Z,s, DZ,s) ≤ ∆RE(D̃Z,s, DZ,s) ·
(

1 +
1

2
∆

2
RE(D̃Z,s, DZ,s) +∆

3
RE(D̃Z,s, DZ,s)

)
= C3ε

ω2ψ2

t + 2µ+ 2ε+O(ε
2ω2ψ2

t + µ
2

+ ε
2

+ µε+ ε
ψ2

t ε+ ε
ψ2

t µ).

It is seen that the truncations in the base samplers bring an extra error
for the joint distribution after convolution. More specifically, the extra error
is negligible when x is close to the center, but it acts as the dominant term
when x is close to the edges. This error has a profound effect in computing
max-like divergences, such as ∆ML and ∆RE , however, when considering sum-
like divergences, such as ∆SD, ∆KL and ∆RD, it contributes little because the
corresponding probability is very small. So we use a general bound PrD̃s(x) ≤(
1 + 2C1εt + 2µ+ 2ε+O(ε2

t + µε+ εtε+ εtµ)
)
·PrDs(x) (obtained by ignoring

b(xc)) to make following analysis about ∆SD, ∆KL

∆SD(D̃Z,s, DZ,s) =
1

2

∑
x∈S
|PrD̃s (x)− PrDs (x)|

≤
1

2
·
(

2C1εt + 2µ+ 2ε+O(ε
2
t + µε+ εtε+ εtµ)

)∑
x∈S

PrDs (x)

≤
1

2
·
(

2C1εt + 2µ+ 2ε+O(ε
2
t + µε+ εtε+ εtµ)

)
= C1εt + µ+ ε+O(ε

2
t + µε+ εtε+ εtµ)
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For ∆KL, we let PrD̃s(x) = (1 + c(x))PrDs(x) with |c(x)| ≤ 2C1εt + 2µ +

2ε+O(ε2
t + µε+ εtε+ εtµ), we have

∆KL(D̃Z,s‖DZ,s) =
∑
x∈S

ln

(
PrD̃s (x)

PrDs (x)

)
· PrD̃s (x)

=
∑
x∈S

ln

(
1 + c(x)

)
· (1 + c(x))PrDs (x)

=
∑
x∈S

(
c(x) +

1

2
c
2
(x) +O(c

3
(x))

)
· PrDs (x)

≤
∑
x∈S

c(x)PrDs (x) +
1

2

(
2C1εt + 2µ+ 2ε+O(ε

2
t + µε+ εtε+ εtµ)

)2 ∑
x∈S

PrDs (x)

+O

(
(2C1εt + 2µ+ 2ε)

3

)

It is also noted that, according to Lemma 2.2

∑
x∈S

PrDs(x) =
∑
x∈Z

PrDs(x)−
∑
x/∈S

PrDs(x) ≥ 1− εt ·
1 + ε

1− ε

1 + e
− 2πt

s

2
(ρs(Z)− 1)

ρs(Z)



According to an early analysis of Equation (4),
∑
x1∈S1

PrD̃s1
(x1) ≤ 1 +

C1εt + µ ( and
∑
x2∈S2

PrD̃s2
(x2) ≤ 1 + C1εt + µ), we see that

∑
x∈S

PrD̃s(x) =
∑
x∈S

(
1 + c(x)

)
PrDs(x)

=
∑
x∈S

PrDs(x) +
∑
x∈S

c(x)PrDs(x)

From Proposition Proposition 1, we get∑
x∈S

PrD̃s (x) =
∑

x1∈S1,x2∈S2

PrD̃s1
(x1) · PrD̃s2 (x2)−

∑
x1∈S1,x2∈S2
x=ax1+bx2 /∈S

PrD̃s1
(x1) · PrD̃s2 (x2)

≤
∑

x1∈S1,x2∈S2

PrD̃s1
(x1) · PrD̃s2 (x2)

≤ 1 + 2µ+ 2C1εt +O(µ
2
) +O(ε

2
t ) +O(µεt).

Therefore,∑
x∈S

c(x)PrDs (x) =
∑
x∈S

PrD̃s (x)−
∑
x∈S

PrDs (x)

≤ 2µ+ 2C1εt + εt ·
1 + ε

1− ε

 1 + e
− 2πt

s
2 (ρs(Z)− 1)

ρs(Z)

+O(µ
2

+ ε
2
t + µεt)

≤ (2C1 + C4)εt + 2µ+O(µ
2

+ ε
2
t + µεt + εtε).

where C4 =
1− 1

2 e
− 2πt

s

s + 1
2e
−2πt
s .
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This yields

∆KL(D̃Z,s‖DZ,s)

≤
∑
x∈S

c(x)PrDs (x) +
1

2
(2C1εt + 2µ+ 2ε)

2
∑
x∈S

PrDs (x) +O
(

(2C1εt + 2µ+ 2ε)
3
)

≤ (2C1 + C4)εt + 2µ+ 2ε
2

+O(ε
2
t + µ

2
+ ε

3
+ µε+ εtε+ εtµ).

Now we analyse ∆RD. Let PrD̃s(x) = (1 + c(x))PrDs(x) where |c(x)| ≤
2C1εt + 2µ+ 2ε+O(ε2

t + µε+ εtε+ εtµ). By the Taylor bound give in [16], we
have

∑
x∈S

PrD̃s (x)α

PrDs (x)α−1
≤
∑
x∈S

(
(1 + c(x))PrDs (x) + (1− a)c(x)PrDs (x) +

α(α− 1)c2(x)

2(1− c(x))α+1
· PrD̃s (x)

)

As
∑
x∈S c(x)PrDs(x) ≤ (2C1 +C4)εt + 2µ+O(µ2 + ε2

t +µεt + εtε), we get

∑
x∈S

PrD̃s (x)α

PrDs (x)α−1
≤ 1 + (2C1 + C4)(α− 1)εt + 2(α− 1)µ+

α(α− 1)

2
ε
2

+O(ε
2
t + µ

2
+ ε

3
+ µε+ εtε+ εtµ).

and hence

∆RDα (D̃Z,s‖DZ,s) =
(∑
x∈S

PrD̃s (x)α

PrDs (x)α−1

) 1
α−1

≤ 1 + (2C1 + C4)εt + 2µ+
α

2
ε
2

+O(ε
2
t + µ

2
+ ε

3
+ µε+ εtε+ εtµ).

4.3 Experiment Results

In this subsection, we describe our experiments about the practical errors of con-

volution discrete Gaussian sampling, followed by an analysis about experiments

results.

4.3.1 Convolution Errors, Truncation Errors and Floating-point

Errors

Our first experiment is to exhibit the influences of convolution errors, truncation

errors and floating-point errors respectively. More specifically, we choose s1 = s2

and compute the probability distributions for x1 ← DZ,s1 and x2 ← DZ,s2
under different precisions where x1 ∈ [−ts1, ts1], x2 ∈ [−ts2, ts2]. Then we com-

pute the probability distribution of the variable x̃ = ax1 + bx2, denoted as

D̃Z,s=
√
a2s21+b2s22

, and compare it with a pre-computed and much more accurate

probability distribution for x ← DZ,s=
√
a2s21+b2s22

(i.e the probability distribu-

tion is computed with a much larger precision and t) to get a result of output

errors. And it is clear that the approach fits well with the practical situations

such as rejection sampling.
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The detailed parameters are selected as s1 = s2 = 19.53
√

2π, a = 11, b = 1,

s =
√
a2s2

1 + b2s2
2, x1 ∈ [−ts1, ts1], x2 ∈ [−ts2, ts2], the experiment is conducted

with t varying from 3 to 8 and precision varying from 53 to 200. For the contrast

probability distribution, the precision is selected as 500 and t = 10 which make

truncation errors and floating-point errors as small as possible. An overview

result is displayed in Table 16, and we will make further analysis for ∆SD and

∆KL.

Table 1. Experiment1: Practical Errors with Different Precisions and t
t log2(εt) Precisions log2(µ) log2(∆SD) log2(∆KL) log2(∆RD2

) log2(∆RD200
)

53 -54 -44.74 -44.70 -45.68 -44.43

73 -74 -44.74 -44.71 -45.74 -44.44

93 -94 -44.74 -44.71 -45.74 -44.44

3 -39.79 113 -114 -44.74 -44.71 -45.74 -44.44

133 -134 -44.74 -44.71 -45.74 -44.44

153 -154 -44.74 -44.71 -45.74 -44.44

173 -174 -44.74 -44.71 -45.74 -44.44

193 -194 -44.74 -44.71 -45.74 -44.44

53 -54 -52.11 -51.11 -50.11 -51.10

73 -74 -70.97 -69.97 -68.96 -69.95

93 -94 -89.69 -91.11 -90.11 -91.10

5 -112.31 113 -114 -89.69 -111.36 -110.36 -111.3

133 -134 -89.69 -118.49 -120.83 -118.07

153 -154 -89.69 -118.49 -120.83 -118.07

173 -174 -89.69 -118.49 -120.83 -118.07

193 -194 -89.69 -118.49 -120.83 -118.07

53 -54 -52.11 -51.11 -50.11 -51.10

73 -74 -70.97 -69.97 -68.96 -69.95

93 -94 -89.69 -91.11 -90.11 -91.10

7 -221.09 113 -114 -89.69 -111.41 -110.41 -111.40

133 -134 -89.69 -129.41 -128.40 -129.40

153 -154 -89.69 -149.16 -148.15 -149.15

173 -174 -89.69 -171.41 -170.41 -169.84

193 -194 -89.69 -178.09 -177.08 -170.44

We have obtained bounds ∆SD ≤ C1εt+µ+ε, ∆KL ≤ (2C1+C4)εt+2µ+2ε2

and ∆RDα ≤ 1 + (2C1 + C4)εt + 2µ+ α
2 ε

2 in Section 4, where µ ≤ 2−p. As the

bound ε is determined by the relation s1 = s2 ≥
√
a2 + b2ηε(Z) according to

6 Due to the space limit, Table 1 only lists about 0.3% of the total results, to

obtain the complete results, one can access the public codes of our experiments

from https://github.com/zhengzx/Gsample or run a program by oneself. It also

should be noted that ∆KL and ∆RE are not symmetric metrics, and different

input orders lead to different results, however, the difference is quite small, i.e.∣∣ log2(
∆KL(DZ,s‖D̃Z,s)

∆KL(D̃Z,s‖DZ,s)
)
∣∣ ≤ O(1).
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Figure 3. Relationship between Bounds and

Practical Errors Measured by ∆RD2
and

∆RD200
with Different Precisions, the Horizon-

tal Axis is for Precisions and the Vertical Axis

for log2(|∆RDα − 1|)

Figure 4. Relationship between theretical

bounds and practical errors measured by

∆RE , ∆ML with different t. For each case, the

result remains unchanged with precisions vary-

ing from 53 to 200, the Horizontal Axis is for t

and the Vertical Axis for log2 of the Errors

Theorem 4.1, we have

ηε(Z) ≈
19.53

√
2π

√
112 + 12

⇒ ε ≤ 2
−88.02

∆SD(D̃Z,s, DZ,s) ≤ C1εt + µ+ 2
−88.02

∆KL(D̃Z,s‖DZ,s) ≤ (2C1 + C4)εt + 2µ+ 2
−175.05

∆RDα (D̃Z,s‖DZ,s) ≤ (2C1 + C4)εt + 2µ+ α · 2−177.05
.

Take t = 3, 5, 7 as examples with precisions vary from 53 to 200, then
When t = 3, εt ≤ 2−39.79, C1εt ≤ 2−41.29, (2C1 + C4)εt ≤ 2−39.38, we have

∆SD(D̃Z,s, DZ,s) ≤ 2
−41.29

∆KL(D̃Z,s‖DZ,s) ≤ 2
−39.38

∆RDα (D̃Z,s‖DZ,s) ≤ 2
−39.38

.

When t = 5, εt ≤ 2−112.31, C1εt ≤ 2−114.16, (2C1 + C4)εt ≤ 2−112.25, we have

∆SD(D̃Z,s, DZ,s) ≤ 2
−88.02

+ µ

∆KL(D̃Z,s‖DZ,s) ≤ 2
−112.25

+ 2µ

∆RDα (D̃Z,s‖DZ,s) ≤ 2
−112.25

+ 2µ.

And when t = 7, εt ≤ 2−221.09, C1εt ≤ 2−223.28, (2C1 +C4)εt ≤ 2−221.37, we have

∆SD(D̃Z,s, DZ,s) ≤ 2
−88.02

+ µ

∆KL(D̃Z,s‖DZ,s) ≤ 2
−175.05

+ 2µ

∆RDα (D̃Z,s‖DZ,s) ≤ α · 2−177.05
+ 2µ.

From Fig 2 and 3, we find our theoretical bounds for ∆SD, ∆RD and ∆KL

fit well with practical results.
As for∆RE and∆ML, we select following parameters to conduct experiments:

s1 = s2 = 34, a = 4, b = 3, s =
√
a2s2

1 + b2s2
2, x1 ∈ [−ts1, ts1], x2 ∈ [−ts2, ts2],
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with t varying from 3 to 8 and precisions varying from 53 to 200. For the contrast
probability distribution, the precision is selected as 500 and t = 10 which make
truncation errors and floating-point errors as small as possible. An overview of
the result is shown in Table 2 and the details can be found in Fig 4. Our analysis
of ∆RE and ∆ML gives

∆ML(DZ,s, D̃Z,s) ≈ ∆RE(DZ,s, D̃Z,s) ≤ C3ε
ω2ψ2

t + 2µ+ 2ε

where ψ = (
√

42 + 32 − 4)/3 ≈ 0.3333, ω ≈ 0.9265, C3 ≈ 0.9466.

As C3ε
ω2ψ2

t � max(2µ, 2ε), our estimation indicates that the practical errors

may not change when the precisions varies from 53 to 200 which seems to be

well supported by the experiment.

Table 2. Experiment2: Practical Errors with Different Precisions and t
t log2(εt) Precisions log2(∆RE) log2(∆ML)

3.0 -39.79 53-200 -7.30 -7.30

4.0 -71.52 53-200 -11.01 -11.01

5.0 -112.31 53-200 -15.93 -15.93

6.0 -162.17 53-200 -21.88 -21.88

7.0 -221.09 53-200 -28.33 -28.33

8.0 -289.07 53-200 -36.27 -36.27

5 Conclusion

In this paper, we make two critical observations about practical errors and take

the practical error estimation for convolution theorem with respect to discrete

Gaussian sampling (using rejection method) as an example to show how to use

these observations to more precisely determine the dominate term of practical

errors. Extensive experiments have been conducted and the results highly agree

with our derived bound. Our result shows that error estimations of a convolution

theorem under KL-divergence, Max-log distance and Rényi-divergence depend

on the use of sampling methods; in particular, finer error bounds do not hold

when using rejection sampling. As it seems that the statistical distance is a

better metric to distinguish distributions by looking at characteristic functions of

probabilities. Our more precise bounds under KL-divergence, Rényi-divergence

and Max-log distance using Rejection sampling have no influence on estimating

security level, but this successful application reveals the proposed observations

are very effective in analyzing practical probabilities. Moreover, some technical

tools including several improved inequalities for discrete Gaussian measure are

also developed.
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Appendix I: Proof of Lemma 2.2

Note that ∑
k∈Z

|k−c|≥ts

ρs(k − c) = e−πt
2 ∑

k∈Z
|k−c|≥ts

e
−π (k−c)2−s2t2

s2

= e−πt
2 ∑
k≥c+ts

e
− π
s2

(|k−c|−ts)(|k−c|+ts)

+e−πt
2 ∑
k≤c−ts

e
− π
s2

(|k−c|−ts)(|k−c|+ts)
.

Since ∑
k≥c+ts

e
− π
s2

(|k−c|−ts)(|k−c|+ts)
=

∑
k≥dc+tse

e
− π
s2

(k−(c+ts))2
e−

2π
s

(k−(c+ts))t

≤ 1 + e−
2πt
s

∞∑
k=dc+tse+1

e
− π
s2

(k−(c+ts))2

≤ 1 + e−
2πt
s

∞∑
k=1

e
−π k

2

s2 ,

and ∑
k≤c−ts

e
− π
s2

(|k−c|−ts)(|k−c|+ts) ≤
∑

k≤bc−tsc

e
− π
s2

(k−(c−ts))2
e−

2π
s
|k−(c−ts)|t

≤ 1 + e−
2πt
s

−∞∑
k=bc−tsc−1

e
− π
s2

(k−(c−ts))2

≤ 1 + e−
2πt
s

−∞∑
k=−1

e
−π k

2

s2 .

So we get an improved Banaszczyk bound

∑
|k−c|≥ts

ρs(k − c) ≤ 2e−πt
2

(
1 +

e−
2πt
s

2
(ρs(Z)− 1)

)
.

�

Appendix II: Proof of Theorem 2.4

We just include the modification part here. Readers are referred to the proof

Theorem 3.2 of [9] for necessary notations.

Proof. Our goal is to show that the result holds for a larger scope of si where

si ≥
√
z2
max + z2

minηε(Z).

When bounding the smoothing parameter of L in [9]

η(L) ≤ η((S′)−1 · (Z ⊗ Λ)) ≤ ηε(Z) · b̃l(Z)/min(si)
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where Z = Zm∩ker(zT ) = {v ∈ Zm : 〈z,v〉 = 0} and b̃l(Λ) represents the Gram-

Schmidt minimum of a lattice Λ where b̃l(Λ) = minB ‖B̃‖, ‖B̃‖ = maxi ‖b̃i‖ and

the minimum is taken over all bases B of Λ.

Micciancio and Peikert bound b̃l(Z) ≤ min(‖z‖,
√

2‖z‖∞) because there exist

a full-rank set of vectors zi ·ej−zj ·ei ∈ Z where zi has the minimal |zi| 6= 0 and

j 6= i ∈ [1, ..,m]. Among this set of vectors, we have maxi ‖b̃i‖ =
√
z2
max + z2

min

where
√
z2
max + z2

min ≤ ‖z‖ when m = 2 it takes equality and
√
z2
max + z2

min ≤√
2‖z‖∞ when zmax = zmin it takes equality.

And by bounding b̃l(Z) ≤
√
z2
max + z2

min, we have η(L) ≤ ηε(Z)·b̃l(Z)/min(si) ≤
ηε(Z) ·

√
z2
max + z2

min/min(si). And for si ≥
√
z2
max + z2

minηε(Λ), it is seen that

ηε(Z) ·
√
z2
max + z2

min/min(si) ≤ 1. �

Appendix III: Proof of Lemma 4.2

Recall that we use the following notations: η =
√
a2+b2

s1
, ψ =

√
a2+b2−a

b and
ω = 1 − η

ψt . Our goal is to show that under the condition of s1 = s2 and

s1t ≥
√
a2+b2

ψ , we have

b(xc) =
β(xc)

α(xc)
≤ Ce−πω

2ψ2t2 .

where C = 2

(1−e−π(2ωψηt+η2))(1+e−2πη2 (1+e−4πη2 ))
.

We first analyse α(xc)

α(xc) =
1

ρ2s1(Z)

∑
(x1,x2)∈Sxc

e
−π

x21+x22
s21 .

Note that ξ = −ub+vaa2+b2 xc. By (5), we know that

∞∑
k=dξe+1

e
−π (xcu+kb)

2+(xcv+ka)
2

s21 = e
−π ‖P1‖

2

s21

∞∑
i=1

e−πη
2(i2+2i(dξe−ξ)),

and
−∞∑

k=bξc−1

e
−π (xcu+kb)

2+(xcv+ka)
2

s21 = e
−π ‖P0‖

2

s21

∞∑
i=1

e−πη
2(i2+2i(ξ−bξc)).

Thus

α(xc) =


1

ρ2s1
(Z)

e−π ‖P1‖
2

s21
∑∞
i=0 e

−πη2(i2+2i(dξe−ξ)) + e
−π ‖P0‖

2

s21
∑∞
i=0 e

−πη2(i2+2i(ξ−bξc))

 , if ξ /∈ Z,

1
ρ2s1

(Z)

e−π ‖P0‖
2

s21 + 2e
−π ‖P0‖

2

s21
∑∞
i=1 e

−πη2i2

 , if ξ ∈ Z.
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Let

d0 = e−πη
2(1+2(ξ−bξc))(1 + e−πη

2(3+2(ξ−bξc))),

d1 = e−πη
2(1+2(dξe−ξ))(1 + e−πη

2(3+2(dξe−ξ))).

We have

1 + d0 ≤
∞∑
i=0

e−πη
2(i2+2i(ξ−bξc)),

1 + d1 ≤
∞∑
i=0

e−πη
2(i2+2i(dξe−ξ)).

These yield an estimation of α(x), if ξ /∈ Z

1

ρ2s1(Z)

(
e
−π ‖P1‖

2

s21 (1 + d1) + e
−π ‖P0‖

2

s21 (1 + d0)

)
≤ α(x);

if ξ ∈ Z

(1 + 2d0)e
−π ‖P0‖

2

s21

ρ2s1(Z)
≤ α(x).

And as for β(xc), we have

β(xc) =
1

ρ2s1(Z)

∑
(x1,x2)∈Sxc

|x1|≥s1t or |x2|≥s1t

e
−π

x21+x22
s21 .

where |xc| ≤
√
a2 + b2s1t.

Three cases shall be discussed separately

1. (a− b)s1t ≤ xc ≤
√
a2 + b2s1t;

2. −(a− b)s1t < xc < (a− b)s1t;
3. and −

√
a2 + b2s1t ≤ xc ≤ −(a− b)s1t.

Case I: (a− b)s1t ≤ xc ≤
√
a2 + b2s1t.



28 Zhongxiang Zheng, Xiaoyun Wang, Guangwu Xu, Chunhuan Zhao

In this case, condition |x1| ≥ s1t or |x2| ≥ s1t corresponds to k ≤
⌊−s1t−xv

a

⌋
or k ≥

⌈
s1t−xu

b

⌉
. So by (5),

β(xc) =
1

ρ2s1
(Z)


∞∑

k=

⌈
s1t−xcu

b

⌉ e
−π (xcu+kb)

2+(xcv+ka)
2

s21 +

−∞∑
k=

⌊
−s1t−xv

a

⌋ e
−π (xu+kb)2+(xv+ka)2

s21



=
1

ρ2s1
(Z)

e−π
‖P1‖

2

s21

∞∑
i=

⌈
s1t−xcu

b

⌉
−dξe

e
−πη2(i2+2i(dξe−ξ))

+

1

ρ2s1 (Z)

e−π
‖P0‖

2

s21

−∞∑
i=

⌊
−s1t−xcv

a

⌋
−bξc

e
−πη2(i2−2i(ξ−bξc))



Note that (a− b)s1t ≤ xc ≤
√
a2 + b2s1t, we see that

⌈
s1t− xcu

b

⌉
− dξe ≥ s1t− xcu

b
− ξ − 1 ≥

√
a2 + b2 − a
b
√
a2 + b2

s1t− 1

Obviously,
√
a2+b2−b
a
√
a2+b2

≥
√
a2+b2−a
b
√
a2+b2

as a > b > 0, we get

⌊−s1t− xcv
a

⌋
− bξc ≤

−s1t− xcv
a

− ξ + 1 ≤ −
√
a2 + b2 − b
a
√
a2 + b2

s1t+ 1 ≤ −(

√
a2 + b2 − a
b
√
a2 + b2

s1t− 1).

Case III: −
√
a2 + b2s1t ≤ xc ≤ −(a− b)s1t.

In this case, condition |x1| ≥ s1t or |x2| ≥ s1t corresponds to k ≤
⌊−s1t−xcu

b

⌋
or k ≥

⌈
s1t−xcv

a

⌉
. So similarly with Case I, we see that

⌈
s1t− xcv

a

⌉
− dξe ≥

s1t− xcv
a

− ξ − 1 ≥
√
a2 + b2 − b
a
√
a2 + b2

s1t− 1 ≥
√
a2 + b2 − a
b
√
a2 + b2

s1t− 1.

Also

⌊
−s1t− xcu

b

⌋
− bξc ≤ −s1t− xcu

b
− ξ + 1 ≤ −(

√
a2 + b2 − a
b
√
a2 + b2

s1t− 1).

Case II: −(a− b)s1t < xc < (a− b)s1t.
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In this case, condition |x1| ≥ s1t or |x2| ≥ s1t corresponds to k ≤
⌊−s1t−xcv

a

⌋
or k ≥

⌈
s1t−xcv

a

⌉
. So by (5),

β(x) =
1

ρ2s1
(Z)


∞∑

k=

⌈
s1t−xcv

a

⌉ e
−π (xcu+kb)

2+(xv+ka)2

s21 +

−∞∑
k=

⌊
−s1t−xcv

a

⌋ e
−π (xcu+kb)

2+(xcv+ka)
2

s21



=
1

ρ2s1
(Z)

e−π
‖P1‖

2

s21

∞∑
i=

⌈
s1t−xcv

a

⌉
−dξe

e
−πη2(i2+2i(dξe−ξ))

+

1

ρ2s1
(Z)

e−π
‖P0‖

2

s21

−∞∑
i=

⌊
−s1t−xcv

a

⌋
−bξc

e
−πη2(i2−2i(ξ−bξc))



Obviously, a2+2b2−ab
a(a2+b2) ≥

√
a2+b2−a
b
√
a2+b2

as a > b > 0, we have

⌈
s1t− xcv

a

⌉
− dξe ≥

s1t− xcv
a

− ξ − 1 ≥
a2 + 2b2 − ab
a(a2 + b2)

s1t− 1 ≥
√
a2 + b2 − a
b
√
a2 + b2

s1t− 1.

and

⌊−s1t− xcv
a

⌋
− bξc ≤

−s1t− xcv
a

− ξ + 1 ≤ −
a2 + 2b2 − ab
a(a2 + b2)

s1t+ 1 ≤ −(

√
a2 + b2 − a
b
√
a2 + b2

s1t− 1).

When s1t ≥
√
a2+b2

ψ , we have ω ≥ 0 and ψ
η t − 1 ≥ ωψ

η t. As a result, for all

xc ∈ [−
√
a2 + b2s1t,

√
a2 + b2s1t], we have

−∞∑
i=

⌊
−s1t−xcv

a

⌋
−bξc

e
−πη2(i2−2i(ξ−bξc)) ≤ D0, and

∞∑
i=

⌈
s1t−xcv

a

⌉
−dξe

e
−πη2(i2+2i(dξe−ξ)) ≤ D0.

where D0 = e−πω
2ψ2t2

1−e−π(2ωψηt+η2)
.

So

β(x) ≤ 1

ρ2s1(Z)

e−π ‖P1‖
2

s21

∞∑
i=
⌈
s1t−xcv

a

⌉
−dξe

e−πη
2(i2+2i(dξe−ξ))

+

1

ρ2s1(Z)

e−π ‖P0‖
2

s21

−∞∑
i=
⌊−s1t−xcv

a

⌋
−bξc

e−πη
2(i2−2i(ξ−bξc))


≤ 1

ρ2s1(Z)
D0

(
e
−π ‖P1‖

2

s21 + e
−π ‖P0‖

2

s21

)
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Thus when ξ ∈ Z

b(xc) =
β(xc)

α(xc)
≤
D0

(
e
−π ‖P1‖

2

s21 + e
−π ‖P0‖

2

s21

)

e
−π ‖P0‖2

s21 (1 + 2d0)

=
(1 + e−π/s

2
1)e−πψ

2ω2t2

(1− e−π(2ωψηt+η2))(1 + 2e−πη2(1 + e−3πη2))

≤ D1e
−πω2ψ2t2

where D1 = 1+e−π/s
2
1

(1−e−π(2ωψηt+η2))(1+2e−πη2 (1+e−3πη2 ))
.

And when ξ /∈ Z, assume ‖P1‖2 ≥ ‖P0‖2 without loss of generality, we have

b(xc) =
β(xc)

α(xc)
≤ D0e

−π ‖P1‖
2

s21 +D0e
−π ‖P0‖

2

s21

e
−π ‖P1‖2

s21 (1 + d1) + e
−π ‖P0‖2

s21 (1 + d0)

≤ 2D0e
−π ‖P0‖

2

s21

e
−π ‖P0‖2

s21 (1 + d0)

≤ 2e−πω
2ψ2t2

(1− e−π(2ωψηt+η2))(1 + 2e−2πη2(1 + e−4πη2))

≤ D2e
−πω2ψ2t2

where D2 = 2
(1−e−π(2ωψηt+η2))(1+2e−2πη2 (1+e−4πη2 ))

.

Let C = D2 > D1, for all ξ, we have

b(xc) ≤ Ce−πω
2ψ2t2

�

It should be noted that to ensure ω = 1 −
√
a2+b2

ψs1t
≥ 0, s1t ≥

√
a2+b2

ψ is

required. Without this requirement, b(xc) could be very close to 1 and the dis-

cussion would not be meaningful.

Besides, theorem 4.1 demands s1 ≥
√
a2 + b2ηε(Z), t ≥ ηε(Z) and ηε(Z) can

be regarded as a constant because it is controlled by ε which is related to the

designed errors. We have

ω ≥ 1− 1

ψη2
ε(Z)

It is seen that a larger a/b leads to smaller ψ as well as ω and turns out to be a

much larger b(xc).


