1

In this paper we describe the solution submitted by our team to the second task
of iDASH Privacy & Security Workshop 2017 competition [1]. Before proceed-
ing to solution description itself we start by introducing some background and
related works. Afterwards we describe more formally competition problem and

Secure top most significant genome variants
search: iDASH 2017 competition

Sergiu Carpov, Thibaud Tortech

CEA, LIST

Point Courrier 172
91191 Gif-sur-Yvette Cedex, France

Abstract

Background One of the 3 tracks of iDASH Privacy & Security Work-
shop 2017 competition was to execute a whole genome variants search
on private genomic data. Particularly, the search application was to find
the top most significant SNPs (Single-Nucleotide Polymorphisms) in a
database of genome records labeled with control or case. Privacy and con-
fidentiality of genome data had to be ensured using Intel SGX enclaves.
The typical use-case of this application is the multi-party computation
(each party possessing one or several genome records) of the SNPs which
statistically differentiate control and case genome datasets.

Results In this paper we discuss the solution submitted by our team
to this competition. Our solution consists of two applications: (i) com-
press and encrypt genome files and (ii) perform genome processing (top
most important SNPs search). We have opted for a horizontal treatment
of genome records and heavily used parallel processing. Rust program-
ming language was employed to develop both applications. Execution
performance of the processing applications scales well and very good per-
formance metrics are obtained. Contest organizers selected it as the best
submission amongst other received competition entries and our team was
awarded the first prize on this track.

Introduction

a typical use case.

Background and related works

DNA is the molecule that stores genetic instructions used by any living organism
in their growth, development and functioning. The DNA molecules are orga-
nized in chains which form the genome. Studying human genome has plenty of
practical applications in the medical, social and legal fields. Any two individu-
als share about 99.9% of their genomic DNA and the remaining 0.1% track the
differences between them. The vast majority of these differences take the form
of single-nucleotide polymorphism (SNP). A SNP is a substitution of one base
pair at a certain location when compared to a reference genome. As example,
genome SNP variations are studied in order to track disease genes or heritable
traits.

One important genomic application is the search for top most significant
SNPs, in a dataset labeled with control and case, which are chosen according
to the statistical 2 test. As an example, this application can be used to detect
genome differences between a group of persons which has a disease and another
group which does not have it. The most significant SNPs (supposedly) influence
disease susceptibility.

Genome sequencing cost decreases each year [4]. More and more genome
data is available for full scale medical research [29]. Cloud storage and comput-
ing is a straightforward solution to the challenge of storing and processing huge
amounts of genomic data [24]. However, outsourcing genomic data to an un-
trusted cloud environment can be difficult or even impossible because of privacy
and confidentiality concerns [13, 5]. Many research works [19, 21, 10] study the
inference of sensitive personal information (e.g. person identity and appearance,
disease condition) from genomic data.

Homomorphic encryption is a solution which can ensure genomic data pri-
vacy while being able to perform computations. Homomorphic property of
group based cryptography was stated in [26]. The first fully homomorphic en-
cryption scheme (supporting both addition and multiplication) was introduced
by Gentry in [15]. Since then, several other authors proposed new and more
efficient homomorphic encryption schemes [14, 16, 20]. The most recent one
[9] being able to execute a 2-input Boolean gate in less than 13 milliseconds®.
From an applicative point of view, the authors of [6, 23, 30, 28] introduced and
discussed the use of homomorphic encryption to genomic data processing (e.g.
genetic association, logistic regression, genomic medicine). Secure multi-party
computation protocols can also be used to provide private genomic data analy-
sis [22, 31, 27]. The main issue of these solutions is the performance bottleneck
when applied to large-scale genomic data computations.

Hardware assisted privacy preserving solutions (i.e. Intel Software Guard
Extensions (SGX)) allow to leverage the performance gap of cryptography only
based solutions (e.g. homomorphic and functional encryption, multi-party com-
putation protocols, etc.). Intel SGX allows to pragmatically instantiate diverse
cryptographic concepts without huge overhead. Secure genomic computations

1On a side note, this encryption scheme was used by 2 teams in the third track of iDASH
2017 competition [1].

using Intel SGX have been studied in many research works: rare disease analysis
[8], genomic queries [7], etc. This year’s iDASH competition second track was
to perform a whole genome variants search in a multi-party context. In what
follows, we introduce a more detailed description of Intel SGX.

Overview of Intel SGX

Intel’s Software Guard Extensions (SGX) was first introduced in 2015 on the
Skylake micro-architecture. The aim of this extension is to provide a Trusted
Execution Environment (TEE) in which applications can protect critical code
and data against malicious privileged system code (operating system, hyper-
visor, BIOS, etc.). The trusted part of the application is called an enclave in
SGX dialect. The key point is that enclave code and data inside the CPU
perimeter run in the clear, but are encrypted outside. Figure 1 illustrates the
execution of an application using SGX.

@ Application

/_ Untrusted Part Trusted Part)
of App of App

Call Gate

Process
Secrets

Create Enclave

:

CallTrusted() Return o

Cont%o

Privileged System Code
0S, VMM, BIOS, SMM, ...

Figure 1: SGX runtime execution?.

SGX is built on three components:

e 17 new CPU instructions,

e a Memory Encryption Engine (MEE) to encrypt/decrypt on the fly,

e a MEE buffer of 128MB, in which 96MB are available to the application.

More information on Intel SGX can be found in the white-paper [18] and a
detailed description [11]. Possible use cases of SGX applications are secure
remote computation, secure web browsing, digital rights management, etc.

2Image taken from https://software.intel.com/en-us/sgx/details

Even if at first view one can think that Intel SGX allows to securely exe-
cute applications on encrypted data, particular attention should be paid to the
manner applications are implemented. Existing works [17, 25, 32] present side-
channel (cache timing, page faults, memory access patterns) attacks on SGX
enclaves. They arrive to discover secrets (e.g. secret key of an encryption al-
gorithm) from applications executed inside an enclave. This attack is possible
because of the information which leaks from application execution and highly
depends on how the application was implemented.

VCF file format

The Variant Call Format (VCF') is a format of text files used for storing genome
variations. Compared to other file formats which store lots of redundant data
(as mentioned earlier 99.9% of genome is shared between individuals), a VCF
file tracks only differences from a reference genome. In this work we suppose
that VCF files contain only SNP gene differences. A sample of VCF file (first 8
lines) is given below:

##real id in 1000genome project: HG00253

#CHROM POS ID REF ALT QUAL FILTER TYPE
13110 rsb540538026 G A 100 PASS heterozygous
13116 rs62635286 T G 100 PASS heterozygous
13118 rs200579949 A G 100 PASS heterozygous
14930 rs75454623 A G 100 PASS heterozygous
15211 rs78601809 T G 100 PASS homozygous
18849 rsb33090414 C G 100 PASS homozygous

N
[P PP P I

A VCF file contains meta-information lines (starting with two ”#“ sym-
bols), one header line (starting with a ”#“ symbol) and then one data line per
SNP. Each SNP information line contains exactly 8 fields. First 5 fields are:
chromosome identifier (CHROM), position within chromosome (POS), unique
SNP identifier (ID), reference (REF) and alternate (ALT) base. We consider
that chromosome and position fields are integers. SNP identifier is a string.
Reference and alternate base are non equal symbols from the set {4,C,G,T,N}.
The last field (TYPE) describes if SNP is heterozygous or homozygous. One
important property of VCF files is that SNPs are sorted in increasing order by
chromosome and position.

Use-case

An important step towards better understanding of human genome is the share
of genomic data between entities possessing genome databases (research insti-
tutions, state agencies, etc.). This does not necessarily imply an actual share of
genomic databases between two or more entities, which can be a cumbersome
and even impossible due to legal restrictions®. It can materialize itself in car-
rying out analyzes on a joined view of individual databases and sharing only

3Legislation in many countries impose a strict regulation on human genome privacy and
confidentiality when storing, sharing and manipulating genomic databases.

the results of these analyses. The whole genome variants search for the top
most important SNPs introduced previously is a good example of such analysis.
Obtained results will have smaller statistical error because of a larger size input
dataset when compared to an analysis performed over individual datasets.

Computation server
SGX enclave
sk _1 - sk n
o <
1
4+ o »
AES(vcf 2,5k 2) T S g4 =
S v H n
- Q
L+ [0 v C o
/ a S 2 -
o
(8 B
“ AES(vcf_n,sk_n)

Figure 2: Use-case for multi-party search over encrypted genomic data.

Figure 2 illustrates a typical use-case of computing the top most important
SNPs for several entities. n actors possessing genomic data files (VCF format
for illustration) are involved in this use-case. Confidentiality of genomic data
is ensured by dedicated hardware (Intel SGX — introduced in the previous sub-
section). The process starts with establishing trust in the computation server,
namely the SGX enclave. The SGX enclave proves its authenticity to an actor,
a key-exchange protocol (e.g. Diffie-Hellman) is used to establish a shared
secret (a symmetric encryption key sk;, i € 1...n) between the actor and the
enclave. Once a trusted communication channel is established each actor sends
its encrypted VCF files to the computation server. In our case, AES encryption
with 128-bit keys in GCM (Galois/Counter Mode) mode is used. The GCM
mode provides both data authenticity (integrity) and confidentiality.

Application: top most important SNPs search

The algorithm (a high-level view) for finding the top K most important SNPs in
a genomic dataset labeled with control and case consists in the following steps:

1 compute SNP presence counters CTRL_CNT and CASE_CNT in control and
respectively case VCF files,

2 compute the x? statistic for each found SNP,
3 return the top K most important SNPs.

CTRL_CNT and CASE_CNT are maps which associate to each SNP an integer value
designating the number of control and respectively case VCF files this SNP is
found in. For example CTRL_CNT[SNP] gives the number of control VCF files
containing genome difference SNP. We recall that homozygous SNPs count twice
in these presence maps.

x? statistic

The Pearson’s x? test allows to determine if there is significant difference be-
tween observed and expected frequencies in one or more categories. In the
context of genome search use-case the y? test is used to find which SNP dis-
tributions have the largest evidence of statistical difference between case and
control datasets.

Let s be a SNP found in a VCF file. Let n¢; and neqse denote the number
of times SNP variation s appears in control and respectively case files (zero if
not present). We have n.,; = CTRL_CNT [s] and n.qse = CASE_CNT [s]. Let Nt
and N.qse be respectively the number of control and the number of case files
multiplied by 2 (as homozygous counts twice). SNP s observed frequencies O
and expected frequencies E are given by:

O = [nctrh Ncase, th'rl — Ncases Ncase - ncase]
E= [thrl 'vacase'fathrl : (lff)aNCase’ (1*f)]

Here, f = (netritncase) /(Noyi+Nease) 18 8 frequency in both datasets.

The x? test statistic value is equal to >, (Qi—E:)?/E,. The p-value is the
probability that a random variable following a 2 distribution will be larger
than the above test statistic value (i.e. the survival function). The SNPs which
have the largest p-values are those whose distributions differ the most in case
and control datasets. To find the top K most significant SNPs one needs to
compute p-values for each SNP in input genome dataset and to return K SNPs
with largest p-values.

2 Software architecture

In this section we describe the global software architecture of our solution. We
limit the discourse to genome processing part only and ignore the key-exchange
part. Thus, in what follows we suppose that actors trust the SGX enclave and
that the enclave has all the decryption keys.

We split the genome processing use-case operation in two parts: (i) compress
and encrypt input genome data files and (ii) build CTRL_CNT and CASE_CNT maps
and compute top K most important SNPs (denoted the processing part). Each
part is implemented in a separate application. The first application (compress
and encrypt) is performed by the actors possessing VCF files and the second
one by the enclave. In the following subsections we discuss in more details these
applications.

Compress & Encrypt

As expected, this application compresses and encrypts a VCF file given as input.
The compression step consists in rewriting SNPs from a text format into an
equivalent binary format. Each VCF file SNP (i.e. a data line) is packed into
80 bits (10 bytes). Table 1 gives more information about the number of bits

Table 1: Binary SNP format (in bits). Total size is 10 bytes.
CHROM | POS | ID | REF & ALT | TYPE
5 32 37) 1

Table 2: SNP block format (in bytes). Total size is 32 + 10 - n bytes.
SNP count (n) | IV | MAC | SNP 1 | ... | SNPn
4 12 16 10 10

allocated to each SNP data line field. This compression is adapted to the specific
VCF file format used in the contest and becomes lossy when the generic VCF
format is used.

Before proceeding to encryption a given number of contiguous SNPs are
grouped into blocks. Block binary SNPs are encrypted using AES in GCM
mode. The format of a block of encrypted SNPs is given in Table 2. Here,
the first field gives the number of SNPs in the block. IV is a random nonce
used so that same input block of SNPs generates a different ciphertext. MAC
is the message authentication code output of AES-GCM encryption needed to
prove block authenticity. Followed by the encrypted stream of binary formatted
SNPs.

In a compressed VCF file all the blocks contain the same number of SNPs,
except for the last one. Compressed and encrypted files are smaller when com-
pared to initial ones, therefore the network traffic between the actors and the
computation server is also lower. Another advantage is that using binary format
input files inside an enclave is less prone to side-channel information leakage.

Processing

Searching for the top most important SNPs starts once all of the encrypted VCF
files are received by the computation server. In the high-level algorithm given
in previous section, during first step SNP counters CTRL_CNT and CASE_CNT are
computed. All input VCF files must be read through before these maps are
completely filled in and can be used to compute 2 statistic p-values.

We notice that for computing the x? statistic for a given SNP s we need
only the presence counters for this SNP (i.e. map values CTRL_CNT [s] and
CASE_CNT [s]). The idea of horizontal partitioning the computation follows from
the previous remark. Instead of filling presence maps for all SNPs, they are
filled for a small range of SNPs solely. The x? statistics are calculated for these
SNPs. A list of top most significant SNPs is updated as a function of obtained
p-values. Afterwards this procedure is repeated for a new range of SNPs.

The main advantage of horizontally partitioning the treatment is that SNP
maps (CTRL_CNT and CASE_CNT) size stay small. A drawback is that input VCF
files need to be accessed several times. The fact that SNPs are ordered (by
chromosome and position) in input VCF files allows to reduce the number of

accesses.

| 1: Create and initialize enclave

17

| 2: Register control and case VCF files

A: all SNPs done? = End

No

7: Update top most SNP list

| 3: Clear SNP presence maps
N N7

4: Find SNP range to process from
next 4 blocks of the first file

= B: all files done?

No

| 5: Get file last treated block number

7

| 6: Process blocks until 1st file last SNP seen

Figure 3: Processing algorithm block diagram.

The block diagram of the processing application is shown in Figure 3. The
process starts with enclave creation and initialization (step 1). In step 2 enclave
registers case and control VCF files. It simply memorizes VCF file identifiers
together with boolean flags indicating whether this file belongs to case or control
dataset. Horizontal partitioning of input dataset is performed in the main loop
(label ” A“) of the application.

During each main loop iteration a specific range of SNPs is processed. The
4 blocks of the first VCF file serve as reference range (step 4 in diagram). Thus,
the SNP range to treat starts at the first SNP from the first block and ends
at the last SNP of the fourth block. In the inner loop (label ”B¢), the SNPs
belonging to the reference range from each VCF file are used to update SNP
presence maps: CTRL_CNT for control files and CASE_CNT for case files. Last
treated block index for each VCF file is memorized so that the next time (next
main loop iteration) the application knows which block to start with.

Once all VCF files have been treated x? statistic p-value is computed for each
SNP in maps CTRL_CNT and CASE_CNT. The global list of top K most important
SNPs is adequately updated as a function of newly obtained SNP p-values (step
7 in diagram). Main loop is executed till all SNPs have been treated.

3 Implementation and Results

In this section we describe in more details the applications we have implemented
and the obtained execution results on a sample genomic dataset. The sample
dataset has 1000 case and 1000 control VCF files. The size of dataset is approx-
imatively 27 GB. It was provided by contest organizers for testing purposes.
Final evaluation datasets are similar to this one.

All the applications have been executed on a 5-th generation Intel(R) Xeon(R)
CPU E3-1240 (3.50GHz) with 16 GB of RAM memory and an SSD disk. Rust
programming language was used to implement the applications. A Rust frame-
work for programming SGX based applications is used, instead of the C/C++
one provided by Intel.

In what follows, we roughly describe the Rust programming language and
the used SGX framework. Afterwards, implementation details and execution
results for the developed applications are presented. In the last subsection we
discuss in more details two building blocks used in the processing application.

Rust programming language

Rust is a new system programming language supported by Mozilla research. The
aim of Rust is to be a language for highly concurrent and safe systems. Unlike
C/C++, Rust has been designed with safety in mind from ground up. Mozilla
describe Rust as a “safe, concurrent and practical language”. The performance
of idiomatic Rust programs is comparable to ones written in C/C++. The most
important strengths of Rust as a programming language are:

e zero-cost abstraction,

e type safety,

e guaranteed memory safety,
e threads without data races.

Rust is influenced by safe functional programming languages like Haskell
and OCaml, and its syntax is very close to the ML family languages.

Rust-SGX SDK

Intel provides a Software Development Kit (SDK) for implementing SGX ap-
plication. This SDK is a set of libraries and tools that allows developers to
write and debug SGX applications using C/C++ language. As previously said
C/C++ are unsafe languages. Developers should be very careful when imple-
menting SGX applications in order to prevent memory bugs (buffer overflow,
use-after-free, phantom references, etc.), which could lead to vulnerabilities and
thus compromise enclave application security. Using Rust it is possible to cir-
cumvent this pitfall without sacrificing execution performance.

Rust-SGX SDK [12] is a framework that allows to implement SGX appli-
cations in Rust. This framework is developed by Baidu-X lab and is available
here [3]. The framework provides a preconfigured docker image which easies its
use.

Applications
Compress & Encrypt

The first implemented application builds a compressed and encrypted version
of each VCF file given as input. It starts by parsing a given number (i.e. block
size) of VCF data lines, encoding them in binary format and encrypting them
using AES. We recall that each data line is an SNP variation. In our study,
we have chosen to encode 2080 SNPs per block, 2080 being a common multiple
of binary format SNP size (10 bytes) and AES block size (16 bytes). A block
of SNPs has a size of approximatively 20 KB. OpenSSL library [2] is used to
perform AES encryptions.

The compress and encrypt application uses 4 threads. Each thread treats
an input VCF file. Newly obtained encrypted VCF files are written to disk.
Disk input/output bandwidth is the bottleneck of this application, which has
to read 27 GB and write 5.5 GB. When an SSD disk is used to store output
files the execution time is approximatively 65 seconds. We have also tested to
output files to a RAM disk. In this case execution time dropped to 50 seconds,
representing a 23% gain.

Processing

The processing application has two binary modules, one (the main application)
is executed in the public domain and other (enclave application) in the protected
domain. Enclave binary module is signed, which ensures that only authenticated
modules are executed by the SGX extension. As said earlier, we ignored the
key-exchange phase. The AES decryption key is hard-coded into application.
Communication between main application and enclave is done through a light
interface (ecall functions in SGX terms):

e encl_init loads and initializes enclave binary module,

e encl_register registers a given list of VCF files labeled with control and
case,

e encl_begin starts treatment of new SNP range (main loop iteration start
in Figure 3),

e encl_run treats a SNP range for a VCF file (inner loop labeled “B”),
e encl_end ends main loop iteration.

Enclave application is executed on 8 threads. Each thread treats a SNP range
from a file (i.e. inner loop in the block diagram). A custom thread-safe hash map
is used for counting SNP variations. The hash map is cleared when treatment of
a new SNP range begins (in ecall function encl_begin). After SNP variations
from all VCF files have been added to the hash map (ecall encl_run) the output
list of most important SNPs is updated (ecall encl_end). x? statistics are

10

computed for each SNP variation using a leakage free numerical integration
algorithm (described in following subsection).

The execution time of the processing application is under 7 seconds. The
main part of it is due to VCF file reading. No significant difference was observed
when either SSD or RAM disk was used as input medium.

Building blocks

Here, we describe two important building blocks used in the processing ap-
plication. In particular, a lock-free hash-map we have implemented to count
SNP variations (CTRL_CNT and CASE_CNT) and the computation of x? statistic
using numeric integration. Both building blocks were designed to leak as little
information as possible about encrypted data (hide SNP position and contents).

Thread-safe hash table

SNP variations are counted and stored in associative maps CTRL_CNT and CASE_CNT.
The key of these maps is built from SNP fields: chromosome number, variation
position, reference and alternate base. These fields uniquely identify a SNP
variation. Hash maps (in the text we use hash table term also) are used as im-
plementations for SNP variations counters. A simple Fibonacci hashing method
is used to map an SNP identifier to the hash table space. Hashes are XOR-ed
with a random value, generated at enclave application start, in order to minimize
information leakage from memory access patterns of sequel enclave application
executions.

Rust standard library hash table implementation (std: :collections: :HashMap)
is not thread safe. A synchronization mechanism (e.g. mutex) is needed for write
accesses. One can synchronize write accesses at the global hash map level. The
issue of this solution is that the whole hash map is blocked during a write op-
eration and a single thread only will be able to write to it. In our solution, we
have implemented a hash map from scratch where synchronization is done at
element level. With this implementation each thread is able to write/update
the hash map in parallel.

In our implementation the hash map is an array of N elements indexed by
the hash of SNP identifier. N is chosen such that the hash map size is lower
than processor L3 cache size (8MB in our case). In our application hash map
can store up to N = 282914 SNPs (approximatively 6630KB). This size was
empirically chosen in order to minimize hash map memory reallocations (in
performed tests no reallocation is needed) and to have a reasonable fill ratio
(= 50 — 60%). Each hash map element contains 3 fields:

e state of the current element,
e element key (SNP identifier),
o clement value (SNP variation count).

An element can be in one of the following states (given by field state):

11

e empty — element is empty and available for new entry,
e update — ongoing entry element creation or value update,
e wait — entry is initialized and can be updated.

At the beginning of the execution all hash table elements are in empty state.
When a new SNP entry is added or an existing SNP is updated, update state
is used to synchronize concurrent threads trying to access this element. State
wait means that element is free to be updated.

Leakage free x? statistic computation

The x? statistic p-value computation is performed in two steps:
e statistic value is computed from observed and expected SNP frequencies,
e 2 distribution survival function is evaluated to get the p-value.

The survival function is a strictly decreasing function. Finding SNPs with high-
est p-values (i.e. top most important ones) is equivalent to finding SNPs which
have the lowest 2 statistic values. In our implementation the top most impor-
tant SNPs list is updated (step 7 in block diagram from figure 3) according to
SNP 2 statistic value. The p-values are computed when algorithm terminates
only for the resulting SNPs.

The x? statistic value expression can be computed directly without leaking
information on input values. On the contrary, survival function does not have
a closed-form expression and must be evaluated by integrating x2 probabil-
ity density function. We have implemented a numerical integration algorithm
(trapezoidal rule) for this task. In order to accelerate this computation, we
store an array of precomputed survival function values and perform the nu-
merical integration for small ranges only. Our numerical integration algorithm
implementation has no information leakage and the array of precomputed values
is obliviously accessed.

4 Conclusions and perspectives

In this paper we have discussed the solution submitted to the third track of the
2017 iDASH competition. The goal of this track was to develop an application
for searching the top most important SNPs in a genomic dataset. It was re-
quested to use Intel SGX in order to ensure the privacy and the confidentiality
of genomic data.

Our discourse begins with an introduction to a global view of the solution:
a typical use-case and the block diagram. Afterwards we describe some imple-
mentation details and execution results on a sample dataset. Shared memory
parallelism (i.e. threads) was heavily used to increase execution performance.
Aggregated execution time of compression & encryption and processing appli-
cations is about 1 minute. The compression & encryption step is the heaviest

12

part, needing approximatively 50 seconds (mainly due to I/O bandwidth bot-
tleneck). In the typical use-case we have discussed about, this execution time
is evenly distributed over implied parties (i.e. each party encrypts its own VCF
files). Data space size of our processing application was smaller than processor’s
L3 cache size which contributed a lot to minimizing the number of costly page
evictions.

Intel SGX enclave mechanism is not the “holy grail” for privacy preserving
computations. Several works from the literature describe side-channel attacks
on SGX enclave applications, all these attacks being possible because of code
vulnerability. Even if it was outside of contest’s goal, we have given a partic-
ular attention to lower information leakage from application execution in SGX
enclave. We have implemented our enclave application and in particular two
software blocks, hash table and y? statistics computation, with small informa-
tion leakage.

In perspective, we think that our compression step can be further optimized.
That is to say, a larger compression rate can be obtained without limiting the
functionality of the performed computation. This will allow to further optimize
communication size and the performance of the processing application. Also,
we think that a more formal analysis of the information which our enclave
application leaks is needed in order to better understand the challenge of the
outsourced computation.

Funding

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 727528 (KONFIDO - Secure and Trusted Paradigm for Interoperable
eHealth Services).

References

[1] iDASH Privacy & Security Workshop 2017, Accessed 25 Dec 2017.
[2

OpenSSL: Cryptography and SSL/TLS Toolkit, Accessed 25 Dec 2017.

=)

Rust SGX SDK provides the ability to write Intel SGX applications in Rust
Programming Language., Accessed 25 Dec 2017.

=

The Cost of Sequencing a Human Genome, Accessed 25 Dec 2017.

<1

Mary R Anderlik and Mark A Rothstein. Privacy and confidentiality of
genetic information: what rules for the new science? Annual review of
genomics and human genetics, 2(1):401-433, 2001.

[6] Joppe W Bos, Kristin Lauter, and Michael Naehrig. Private predictive
analysis on encrypted medical data. Journal of biomedical informatics,
50:234-243, 2014.

13

[7]

[10]

[11]

[12]

[18]

[19]

Feng Chen, Chenghong Wang, Wenrui Dai, Xiaogian Jiang, Noman Mo-
hammed, Md Momin Al Aziz, Md Nazmus Sadat, Cenk Sahinalp, Kristin
Lauter, and Shuang Wang. PRESAGE: PRivacy-preserving gEnetic testing
via SoftwAre Guard Extension. BMC medical genomics, 10(2):48, 2017.

Feng Chen, Shuang Wang, Xiaogian Jiang, Sijie Ding, Yao Lu, Jihoon Kim,
S Cenk Sahinalp, Chisato Shimizu, Jane C Burns, Victoria J Wright, et al.
Princess: Privacy-protecting rare disease international network collabora-
tion via encryption through software guard extensions. Bioinformatics,
33(6):871-878, 2016.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene.
Improving TFHE: faster packed homomorphic operations and efficient cir-
cuit bootstrapping. Technical report, IACR Cryptology ePrint Archive
2017, 430, 2017.

Peter Claes, Denise K Liberton, Katleen Daniels, Kerri Matthes Rosana,
Ellen E Quillen, Laurel N Pearson, Brian McEvoy, Marc Bauchet, Arslan A
Zaidi, Wei Yao, et al. Modeling 3D facial shape from DNA. PLoS genetics,
10(3):e1004224, 2014.

Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryp-
tology ePrint Archive, 2016:86, 2016.

Yu Ding, Ran Duan, Long Li, Yueqgiang Cheng, Yulong Zhang, Tanghui
Chen, Tao Wei, and Huibo Wang. POSTER: Rust SGX SDK: Towards
Memory Safety in Intel SGX Enclave. In CCS, pages 2491-2493, 2017.

Yaniv Erlich and Arvind Narayanan. Routes for breaching and protecting
genetic privacy. Nature Reviews Genetics, 15(6):409-421, 2014.

Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homo-
morphic Encryption. TACR Cryptology ePrint Archive, 2012:144, 2012.

Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In
STOC, volume 9, pages 169-178, 2009.

Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully Homomorphic En-
cryption with Polylog Overhead. In Proceedings of the 31st Annual Interna-
tional Conference on Theory and Applications of Cryptographic Techniques,
EUROCRYPT’12, pages 465-482. Springer-Verlag, 2012.

Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller.
Cache Attacks on Intel SGX. In EUROSEC, 2017.

Shay Gueron. A Memory Encryption Engine Suitable for General Purpose
Processors. IACR Cryptology ePrint Archive, 2016:204, 2016.

Melissa Gymrek, Amy L McGuire, David Golan, Eran Halperin, and
Yaniv Erlich. Identifying personal genomes by surname inference. Science,
339(6117):321-324, 2013.

14

[20]

[21]

[25]

[26]

[27]

[28]

[29]

Shai Halevi and Victor Shoup. Algorithms in HElib. In CRYPTO, volume
8616 of Lecture Notes in Computer Science, pages 554-571, 2014.

Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav
Tembe, Jill Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nel-
son, and David W Craig. Resolving individuals contributing trace amounts
of DNA to highly complex mixtures using high-density SNP genotyping
microarrays. PLoS genetics, 4(8):€1000167, 2008.

Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards practical pri-
vacy for genomic computation. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on, pages 216-230. IEEE, 2008.

Kristin Lauter, Adriana Lopez-Alt, and Michael Naehrig. Private computa-
tion on encrypted genomic data. In International Conference on Cryptology
and Information Security in Latin America, pages 3-27. Springer, 2014.

Richard LeDuc, Matthew Vaughn, John M Fonner, Michael Sullivan,
James G Williams, Philip D Blood, James Taylor, and William Barnett.
Leveraging the national cyberinfrastructure for biomedical research. Jour-
nal of the American Medical Informatics Association, 21(2):195-199, 2013.

Urs Miiller. Software Grand Exposure:{SGX} Cache Attacks Are Practi-
cal. In 11th USENIX Workshop on Offensive Technologies,{ WOOT} 2017,
Vancowver, BC, Canada, August 14-15, 2017, 2017.

Ronald L Rivest, Len Adleman, and Michael L. Dertouzos. On data
banks and privacy homomorphisms. Foundations of secure computation,
4(11):169-180, 1978.

Haoyi Shi, Chao Jiang, Wenrui Dai, Xiaoqian Jiang, Yuzhe Tang, Lucila
Ohno-Machado, and Shuang Wang. Secure multi-pArty computation grid
LOgistic REgression (SMAC-GLORE). BMC medical informatics and de-
cision making, 16(3):89, 2016.

Kalpana Singh, Renaud Sirdey, Frangois Artiguenave, David Cohen, and
Sergiu Carpov. Towards Confidentiality-strengthened Personalized Ge-
nomic Medicine Embedding Homomorphic Cryptography. In ICISSP, pages
325-333, 2017.

Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengx-
iang Zhai, Miles J Efron, Ravishankar Iyer, Michael C Schatz, Saurabh
Sinha, and Gene E Robinson. Big data: astronomical or genomical? PLoS
biology, 13(7):€1002195, 2015.

Shuang Wang, Yuchen Zhang, Wenrui Dai, Kristin Lauter, Miran Kim,
Yuzhe Tang, Hongkai Xiong, and Xiaogian Jiang. HEALER: Homomorphic
computation of ExAct Logistic rEgRession for secure rare disease variants
analysis in GWAS. Bioinformatics, 32(2):211-218, 2015.

15

[31] Wei Xie, Murat Kantarcioglu, William S Bush, Dana Crawford, Joshua C
Denny, Raymond Heatherly, and Bradley A Malin. SecureMA: protecting
participant privacy in genetic association meta-analysis. Bioinformatics,
30(23):3334-3341, 2014.

[32] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating systems. In Se-
curity and Privacy (SP), 2015 IEEE Symposium on, pages 640-656. IEEE,
2015.

16

