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Abstract. In this paper, we optimize the performances and compare
several recent masking schemes in bitslice on 32-bit arm devices, with a
focus on multiplication. Our main conclusion is that efficiency (or ran-
domness) gains always come at a cost, either in terms of composabil-
ity or in terms of resistance against horizontal attacks. Our evaluations
should therefore allow a designer to select a masking scheme based on im-
plementation constraints and security requirements. They also highlight
the increasing feasibility of (very) high-order masking that are offered
by increasingly powerful embedded devices, with new opportunities of
high-security devices in various contexts.

1 Introduction

Nowadays, higher-order masking is one of the soundest approaches to protect
the implementation of a block cipher against side-channel attacks. Recent stud-
ies have shown that the bitslice implementation strategy can provide the best
performances in software [DPV01,BGRV15,GR17,JS17]. This strategy allows to
perform parallel evaluations of a Boolean circuit where the logical gates are re-
placed by instructions working on registers of several bits. Then, higher-order
masking is applied at the Boolean level, where the linear gates become linear
instructions working on registers and non-linear gates become calls to secure
bitwise non-linear operations.

Since secure non-linear operations are quadratic in the masking order d
(whereas for linear operation the cost is in O(d)), their evaluation is the main
bottleneck for implementers. In the past couple of years, several multiplication
schemes have been proposed in the literature offering different tradeoffs between
security (e.g., in terms of composability or resistance against so-called horizontal
attacks) and performances (timings, randomness requirements).

One of the most popular algorithms is the so-called ISW multiplication
scheme introduced in the seminal work of Ishai, Sahai and Wagner at Crypto



2003 [ISW03]. It provides composable security captured by the notion of Strong
Non Interference (SNI). Based on this construction, Beläıd et al. proposed at
Eurocrypt 2016 [BBP+16] a variant with randomness savings at the cost of only
satisfying the (weaker) Non Interference (NI) notion. At CHES 2016, Battis-
tello et al. [BCPZ16] went the other way by proposing not only SNI security
but also improved resistance against horizontal attacks, at the cost of increased
randomness requirements. Eventually, at Eurocrypt 2017, Barthe et al. intro-
duced an alternative approach to the ISW-based multiplications. This approach
is optimized for parallel implementations such as bitslicing and handles regis-
ters that hold all the shares of a given bit. It also comes with different secu-
rity risks in terms of assumptions. Namely, storing the shares of a single bit
potentially allows better resistance against shares re-combinations due to tran-
sitions [CGP+12,BGG+14], while leading to higher risks of re-combinations due
to couplings [CBG+17]. Journault and Standaert [JS17] compared this new ap-
proach with the ISW approach for the AES S-box implemented by Goudarzi
and Rivain [GR17], showing that for the optimal case, i.e. the masking order is
equal to the size of the register, Barthe et al. ’s approach slightly outperforms
ISW multiplication. However, no comparison has been made with other masking
orders.

In this paper, we aim to optimize and compare these different masking
schemes, in order to better understand the performance gains and overheads
that correspond to their different security guarantees. For this purpose, we first
try to increase the efficiency of these four schemes, not only at the algorithmic
level, but also by taking into account the implementation perspective and pos-
sible implementation tricks. We also propose an efficient way to evaluate the
Barthe et al. multiplication when the masking order is lower than the architec-
tures size. Subsequently, we propose a comparison regarding different aspects
such as timing cost, memory overhead, randomness usage and the given secu-
rity level for each of these multiplications. Ultimately, the goal of this paper
is therefore to provide insight to designers and developers who wish to protect
efficiently a block cipher with higher-order masking (i.e., which multiplication
scheme to use depending on their needs, depending on their hardware limitations
or security requirements).

This paper is organized as follows. Section 2 gives some preliminaries on bit-
slice higher-order masking and security notions. We then introduce in Section 3
the four multiplications studied and discuss the proposed optimization either at
the algorithmic level or for the implementation prospective. Section 4 presents
the two refresh mask algorithms (ISW and Barthe et al. based) that are needed
when implementing a block cipher. Finally, Section 5 describes our implementa-
tions and the obtained performances to compare the multiplications as well as
the refreshing procedures.

The code source of all our implementations is available on Github [GJRS18]
under the GPL licence (v3).
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2 Preliminaries

2.1 Bitsliced Higher-Order Masking

One of the most studied countermeasure against said-channel attacks is mask-
ing, a.k.a. secret sharing. It consists in splitting a secret value x into d shares
x1, x2, . . . , xd satisfying

x = x1 ⊕ x2 ⊕ · · · ⊕ xd

where x2, · · · , xd are randomly distributed and x1 is computed accordingly. The
parameter d is then called the masking order.

Recently, bitslicing has been shown to give excellent performances for block
cipher implementations protected with masking in software [GR17,JS17]. The
bitslice implementation strategy is to perform parallel evaluations of a Boolean
circuit where the logic gates are replaced by instructions working on registers
of several bits. In the context of masked implementations of block ciphers, this
strategy is applied to speed up the evaluations of S-boxes, which are then com-
puted in parallel. Each XOR gate in the underlying Boolean circuit gives rise to
d bitwise XOR instructions and each AND gate is replaced by a secure bitwise
AND operation based on a secure multiplication scheme such as the ones studied
in this paper.

2.2 Security Notions

In the following we informally recall the different security models usually consid-
ered in the side-channel community, starting from the abstract probing model
(NI/SNI security), then the intermediate bounded moment model and finally
the practical noisy leakage model.

At Crypto 2003, Ishai, Sahai and Wagner introduced in their seminal pa-
per [ISW03] the so-called probing model. In this model, the adversary is allowed
to probe a limited number of wires in a target (protected) circuit. If no adversary
is able to recover secret information using up to t probes, the circuit is said to
be t-probing secure. In their paper, the authors show how to achieve t-probing
security using masking of order d = 2t + 1. It was later shown that a t-probing
secure multiplication can be obtained with d = t + 1 shares [RP10] but this
approach might result in some security flaws while composing several masked
operations without proper mask refreshing [CPRR14]. The stronger notion of
SNI has then been introduced in [BBD+16]: it allows to prove t-probing security
with only d = t + 1 shares for the composition of several gadgets. In particular,
any masked circuit composed of t-SNI secure gadgets is also t-SNI secure (and
therefore t-probing secure).

Next, the bounded moment model was introduced in [BDF+17] as a relax-
ation of the probing model in order to capture parallel implementations of mask-
ing schemes where all the shares might be contained in a single register and pro-
cessed in a single cycle (which is hardly captured with the probing model). The
idea of the bounded moment model is to look at the higher-order moments to
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get a security parameter (since the security of a masked implementation usually
comes from the need to evaluate higher-order statistical moments).

Eventually, the noisy leakage model was introduced by Prouff and Rivain
in [PR13] and reflects concrete adversaries who obtain an intermediate value per-
turbed by a noisy leakage function. This is a more realistic side-channel model
as this is typically what an attacker can recover from a side-channel analysis.
Masking can be formally shown to be a sound countermeasure in such a model
since the information revealed on a variable x by noisy leakages on the shares
x1, . . . , xd decreases exponentially with the masking order d [CJRR99,PR13].
The latter model is in general more tricky to manipulate, but is strictly needed
to evaluate security against so-called horizontal attacks, where the repeated ma-
nipulation of the shares enable to get rid of a part of the noise as the masking
order d grows. Under the condition of sufficient noise and independence, security
in the noisy leakage model is implied by probing security [DDF14].

2.3 ARMv7 Architectures

We made our implementation in the generic ARM v7 assembly language. Most
of the ARM processors are composed of 16 registers of 32 bits, ranging from R0
to R15: registers R0 to R12 are known as variable registers and are available for
computation. The three last registers are usually reserved for special purposes:
R13 is used as the stack pointer (SP), R14 is the link register (LR) storing the
return address during a function call, and R15 is the program counter (PC).

The ARM instruction set is essentially composed of three classes (summa-
rized in Table 1): the data instructions which performs arithmetic operations on
the register, the memory instructions which allows to load and store data and
the branching instructions which are used for loops, conditional statements and
function calls. One important feature of the ARM assembly is the barrel shifter
allowing any data instruction to shift one of its operands at no extra cost in
terms of clock cycles. However to fully benefit from its efficiency, the rotation
offset for the barrel shifter needs to be defined with immediate values instead of
registers.

Table 1. ARM instructions.

Class Examples Clock cycles

Data instructions EOR, ADD, SUB, AND, MOV 1

Memory instructions LDR, STR / LDM, STM 3 or n + 2

Branching instructions B, BX, BL 3 or 4

Eventually, we assume that our target architecture include a True Random
Number Generator (TRNG), that frequently fills a register with a fresh 32-bit
random string. We consider two different settings for this TRNG: the setting
of [GR17] where one needs to wait 10 clock cycles to get a new random string;
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and the one of [JS17] where one needs to wait 80 clock cycles to get a new
random string. The TRNG register can then be read at the cost of a single load
instruction.

3 Secure Multiplications

In this section we describe optimized low-level implementations of the four fol-
lowing secure multiplications:

ISW (Ishai-Sahai-Wagner, Crypto’03): probing secure multiplication,
BDF+ (Barthe et al. , Eurocrypt’17): bounded-moment secure multiplication,
BBP+ (Beläıd et al. , Eurocrypt’16): ISW gadget with randomness saving,
BCPZ (Battistello et al. , CHES’16): ISW gadget with additional refreshing.

Each multiplication is described at the algorithmic level and at the implemen-
tation level (with possible implementation tricks). We further give implementa-
tion results (clock cycles and code size) in the first TRNG setting. The four
schemes are then compared in terms of performances, randomness consumption,
and security guarantees in Section 5 in both TRNG settings.

3.1 ISW: the Standard Probing-Secure Multiplication

At Crypto 2003, Ishai, Sahai and Wagner [ISW03] proposed an algorithm to
securely compute an AND gate for any number of shares d, the so-called ISW
multiplication is described in Algorithm 1. They also introduced the probing
model and proved that their multiplication has a security order t = b(d− 1)/2c
in this model. The security proof was extended to the order t = d− 1 in [RP10]
and to the stronger t-SNI property in [BBD+16], both extensions assuming in-
dependent input sharings.

Algorithm 1 ISW (Ishai-Sahai-Wagner, Crypto’03)

Input: sharings (a1, . . . , ad) ∈ {0, 1}32×d and (b1, . . . , bd) ∈ {0, 1}32×d

Output: sharing (c1, . . . , cd) ∈ {0, 1}32×d such that
⊕

i ci = (
⊕

i ai) ∧ (
⊕

j bj)
1. for i = 1 to d do
2. ci ← ai ∧ bi
3. end for
4. for i = 1 to d do
5. for j = i + 1 to d do
6. s← {0, 1}32
7. s′ ← (s⊕ (ai ∧ bj))⊕ (aj ∧ bi)
8. ci ← ci ⊕ s
9. cj ← cj ⊕ s′

10. end for
11. end for
12. return (c1, . . . , cd)
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From two sharings (a1, . . . , ad) and (b1, . . . , bd), the ISW multiplication sim-
ply computes all the d2 crossed products ai · bj which are then summed in d new
shares ci with new random elements ri,j . Each new random element is involved
twice in the new shares implying

⊕
i ci =

⊕
i,j ai · bj = (

⊕
i ai) · (

⊕
j bj). The

ISW scheme is pictured in Algorithm 1 for the bitwise setting, where ∧ and ⊕
denote the (32-bit) bitwise AND and XOR.

From the implementation viewpoint, we follow the work of [GR17] and imple-
ment the scheme without any particular implementation trick for any masking
order d. In order to push forward the optimization, we also propose a version
of the code where the nested loops are unrolled for specific values of d, namely
when d is a power of 2. The performances of our low-levels implementations are
summarized in Table 2. We observe that unrolling the loops allows us to save
15% to 23% clock cycles with an overhead factor from 3 to 200 for the code size.
The only case where the unrolling fully benifits in both time and memory is for
d = 2.

Table 2. Implementation results for the ISW multiplication

clock cycles code size (bytes) register usage random usage
d 2 4 8 16 32 2 4 8 16 32

Straight ISW 75 291 1155 4611 18435 164 164 164 164 164 10 d (d− 1)/2

Unrolled ISW 58 231 949 3876 15682 132 464 1848 7500 30324 8 d (d− 1)/2

3.2 BDF+: a Bounded-Moment Secure Multiplication

At Eurocrypt 2017, Barthe et al. introduced a new way to compute a secure
multiplication specifically tailored for the bitwise context (i.e. for bitslice imple-
mentations) [BDF+17]. Their scheme handles registers holding all the shares of
a given bit whereas in traditional ISW-based scheme, the shares of a variable
are stored in different registers for security reasons. Nevertheless, Barthe et al.
show that their multiplication is secure in the relaxed bounded moment model,
which is argued to be sound in practice.

Intuitively the BDF+ multiplication can be decomposed in different steps:
the loading of the input shares a and b; the computation of the partial products
between a and b; the loading of fresh randomness r; and the compression phase
where these partial products are XORed all together and separated by the fresh
randomness.

Its implementation is especially efficient when the number of shares d is
equal to the size of the registers in the target architecture. This has been shown
in [JS17] for the case d = 32. However, a question left open in the latter work is
the scenario where the number of shares mismatches the register size. This issue
is addressed hereafter.
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For this purpose, we generalize the BDF+ algorithm to a scenario where d can
be lower than the register size. We propose a parallel version of this algorithm
in which several sharings are stored in a register (e.g. 4 sharings of order d = 8
in one 32-bit register) and we describe an efficient way to perform sharing-wise
rotations to keep good performances in such a non-optimal scenario. The main
restriction is that our generalization only works for masking order that are power
of 2 (so that the sharing size divides the register size), including the case d = 2
which was not taken into account in the original publication. The optimized
BDF+ multiplication is described in Algorithm 2.

Algorithm 2 BDF+ (Barthe et al. , Eurocrypt’17)

Input: shares a = (a1, · · · , ad) ∈ {0, 1}32, shares b = (b1, · · · , bd) ∈ {0, 1}32
Output: shares c = (c1, · · · , cd) ∈ {0, 1}32
1. x1 ← a ∧ b
2. r ← {0, 1}32
3. y1 ← x1 ⊕ r
4. if d = 2 then
5. x2 ← a ∧ ROT(b, 1)
6. y2 ← y1 ⊕ x2

7. c← y2 ⊕ ROT(r, 1)
8. else
9. for i = 1 to d/2− 1 do

10. if i mod 2 = 0 then
11. r ← {0, 1}32
12. end if
13. x2i ← a ∧ ROT(b, i)
14. x2i+1 ← ROT(a, i) ∧ b
15. y3i−1 ← y3i−2 ⊕ x2i

16. y3i ← y3i−1 ⊕ x2i+1

17. y3i+1 ← y3i ⊕ ROT(r, i mod 2)
18. end for
19. xd ← a ∧ ROT(b, d/2)
20. c← y3b(d−1)/2c+1 ⊕ xd

21. end if
22. return c

Encoding. In order to make full use of the register when d is less than 32
(i.e. d is not equal to the architecture size), but d is a power of 2, we fill the
input registers with k = 32/d words of d shares. We thus process k secure
multiplications in parallel. More specifically, let us denote w0, . . . , w31 the bits
of a 32-bit register w (from MSB to LSB). For d = 16, w encodes 2 secret bits

z0 and z1 such that
⊕15

i=0 wi = z0 and
⊕31

i=16 wi = z1. For d = 8, w encodes

4 secret bits z0, z1, z2 and z3 such that
⊕7

i=0 wi = z0 and
⊕15

i=8 wi = z1 and⊕23
i=16 wi = z2 and

⊕31
i=24 wi = z3, and so on.
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Efficient sharing-wise rotation. Algorithm 2 can directly be applied on
multi-sharing input registers. The only operation which needs to be modified
accordingly is the rotation ROT(w, i). We propose an efficient low-level imple-
mentation for such a sharing-wise rotation. Our method relies on the observation
that applying an i-bit rotation to every d-bit chunck in a word w can be obtained
by the following equation:

ROT(w, i) =
(
(w � i) ∧ maskd,i

)
⊕
(
(w � d− i) ∧ maskd,i

)
(1)

where maskd,i is a selection mask defined as

maskd,i = 11 . . . 1︸ ︷︷ ︸
d−i

00 . . . 0︸ ︷︷ ︸
i

‖ · · · ‖ 11 . . . 1︸ ︷︷ ︸
d−i

00 . . . 0︸ ︷︷ ︸
i

,

and maskd,i denotes its complement. From this equation we can directly compute
the sharing-wise rotation. The main trick in the implementation is to efficiently
deal with the generation of maskd,i and the sharing-wise rotation.

The mask generation is decomposed into two steps. The first step allows to
setup the mask correctly: maskd,0 is initialized with the value 0xFFFFFFFF. We
then need a correction value which will be used to update the mask correctly.
correction is initialized with values given in Table 3. Note that these operations
are performed only once at the beginning of the multiplication. The second step
will update the mask for the rotation according to the offset of the rotation given
by the following formula:

maskd,i = maskd,0 ⊕ (correction� i)

In practice, we only store maskd,0 and correction in two registers and we update
them accordingly in each iteration of the loop. The cost of the update is 2 cycles.

;;mask update

EOR $mask , $mask , $correction

LSL $correction , $correction , #1

Note that we make use of another register in order to store maskd,1 (i.e. the
rotation by 1) which is always needed to compute the rotations of the random
values (instead of computing it again each time).

Table 3. Possible values for correction

d 2 4 8 16

correction 0x5555555 0x11111111 0x01010101 0x00010001

The rotation ROT(w, i) is then quite straightforward to implement as de-
scribes hereafter:
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;; rotation of $w by $i

AND $tmp , $mask , $w , LSL $i

LSR $w , $w , $(d-i)

BIC $w , $w , $mask

EOR $w , $tmp , $w

Since the offsets of the shift lie in a register, we cannot benefit from the barrel
shifter. Hence the overall cost of one rotation is 5 cycles.

In Table 4, we report results of our implementation of the BDF+ multiplica-
tion for d ranging from 2 to 32 for the generic version and an unrolled version
(where the main advantage is to be able to hardcode the masks and values for
the shifts). We observe that the unrolled version for d = 32 is faster and has less
code size than for d = 16. This is easily explained by the fact that we can make
full use of the barrel shifter in the case d = 32. Moreover, we observe that the
unrolled version is 40% to 80% faster than the regular version. This is due to
the fact that we can hardcode the masks, which makes the barrel shifter work
again. The code size of the unrolled version ranges from 0.3 to 3 times the generic
one. Note also that the code size of the generic version is decreasing as d grows
because we compute the correction value iteratively (i.e. it needs log(32/d)
iterations).

Table 4. Performance results for BDF+ (generic and unrolled)

clock cycles code size (bytes) registers random usage
d 2 4 8 16 32 2 4 8 16 32

BDF+ generic n/a 77 146 285 n/a n/a 248 244 240 n/a 13 d(d− 1)/4e
BDF+ unrolled 34 47 81 149 120 280 356 504 808 748 13 d(d− 1)/4e

3.3 BBP+: Towards Optimal Randomness Consumption

Beläıd et al. at Eurocrypt 2016 [BBP+16] tackled the problem of minimizing
the amount of randomness required in a secure multiplication. They described
a generic algorithm which makes use of less randomness than ISW, reducing

the former randomness requirement from d (d−1)
2 to d2

4 + d. As opposed to the
ISW multiplication (which achieves (d− 1)-SNI security), this algorithm is only
proven (d − 1)-NI secure. The original description of this secure multiplication
(see [BBP+16]) is generic for any masking order d ≥ 4 (specific algorithms for
the case where d = 2 and 3 are given in their paper). However, it makes use of
several conditional branches to process additional operations depending on the
parity of the order d and/or of the loop index i.

We rewrote the algorithm such that all the conditional branches are removed,
without affecting the correctness (see Algorithm 3). These changes lead to sev-
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eral improvements in practice: first replacing if/else statement with loops allows
avoiding several conditional branches treatment that are quit expensive in ARM
assembly. Moreover, by rewriting the algorithm in such a way, we can compute
all the randomness on-the-fly and avoid multiple load and store instructions for
the correction step. Such improvements come at the cost of a less genereic al-
gorithm (it only works for even orders d). For the sake of comparison, we have
implemented both algorithms to show the performance gained in clock cycles
and code size (see Table 5). We can see that our improvements allow a gain in
timing ranging from 18% to 20% with an overhead of only 80 bytes of memory.
Furthermore, we also unrolled the nested loops in order to get better results
in timings. The timing gain ranges from 17% to 60% with an overhead factor
between 3.5 and 50 for the code size for d ≥ 8 only. For smaller d’s, the unrolled
version is better for both timing and code size.

Algorithm 3 BBP+ (Beläıd et al. , Eurocrypt’16) w/o conditional branches

Input: sharings (a1, . . . , ad) ∈ {0, 1}32×d and (b1, . . . , bd) ∈ {0, 1}32×d

Output: sharing (c1, . . . , cd) ∈ {0, 1}32×d such that
⊕

i ci = (
⊕

i ai) ∧ (
⊕

j bj)
1. c1 ← a1 ∧ b1
2. c2 ← a2 ∧ b2
3. for i = 3 to d− 1 by 2 do
4. ci ← ai ∧ bi
5. ci+1 ← ai+1 ∧ bi+1

6. si ← {0, 1}32
7. end for
8. for i = 1 to d− 1 by 2 do
9. ri,i+1 ← {0, 1}32

10. LoopRow(i, i + 3)
11. ci ← ci ⊕ (ri,i+1 ⊕ ai ∧ bi+1 ⊕ ai+1 ∧ bi)
12. LoopRow(i + 1, i + 3)
13. ci+1 ← ci+1 ⊕ r
14. end for

Algorithm 4 LoopRow Procedure

Input: indexes i, t randoms (sj)j∈{3,...,d−1}
1. for j = d down to t by 2 do
2. ri,j ← {0, 1}32
3. ci ← ci ⊕

(
r ⊕ (ai ∧ bj ⊕ aj ∧ bi)⊕ sj−1 ⊕ (ai ∧ bj−1 ⊕ aj−1 ∧ bi)

)
4. cj ← cj ⊕ ri,j
5. end for
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Table 5. Implementation results for the BBP+ multiplication

clock cycles code size (bytes) register usage random usage
d 2 4 8 16 32 2 4 8 16 32

Original BBP+ n/a 334 1204 4552 17680 n/a 344 344 344 344 12 d + d2/4

Optimized BBP+ 88 274 970 3658 14218 428 428 428 428 428 12 d + d2/4

Unrolled BBP+ 36 161 775 3018 11920 100 344 1544 5996 23732 11 d + d2/4

3.4 BPCZ: Towards Security against Horizontal Attacks

At CHES 2016, Battistello et al. described a horizontal side-channel attack on
the standard ISW multiplication [BCPZ16]. This attack essentially consists in
reducing the noise in the targeted values by averaging them. More precisely,
during the computation of Algorithm 1, each share ai (resp. bi) is manipulated
d times. Hence one can average the noise and reduce it by a factor

√
d (in a

standard deviation metric). Such an attack is inherent to the ISW scheme and
implies that despite the probing-security, increasing the masking order d implies
increasingly high noise requirements for the masking countermeasure to bring
security improvements (i.e., for the noise to be large enough after averaging, it
has to increase before averaging).

Battistello et al. also proposed a mitigation of such a horizontal attack. Their
multiplication, given in Algorithm 5, is similar to the standard ISW multiplica-
tion but the matrix of the crossed products ai · bj is computed differently (see
Algorithm 6): refreshings are regularly inserted to avoid the multiple apparition
of each share ai (resp. bi). The RefreshMasks operation is a simple ISW-based
refreshing as described later in Section 4. The authors also proved that their
multiplication is (d− 1)-SNI secure.

Algorithm 5 BCPZ (Battistello et al. , CHES’16)

Input: shares ai such that
∑

i ai = a, shares bi such that
∑

i bi = b
Output: shares ci such that

∑
i ci = a · b

1. Mi,j ← MatMult((x1, . . . , xd), (y1, . . . , yd))
2. for i = 1 to d do
3. ci ←Mi,i

4. end for
5. for i = 1 to d do
6. for j = i + 1 to d do
7. s← F
8. s′ ← (s + Mi,j) + Mj,i

9. ci ← ci + s
10. cj ← cj + s′

11. end for
12. end for
13. return c1, ..., cd
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Algorithm 6 MatMult

Input: the n-sharings (xi)i∈[1..n] and (yi)i∈[1..n] of x∗ and y∗ respectively
Output: the n2-sharing (Mi,j)i∈[1..n],j∈[1..n] of x∗ · y∗
1. if n = 1 then
2. M ← [x1 · y1]
3. else
4. X(1) ← (x1, . . . , xn/2), X(1) ← (xn/2+1, . . . , xn)

5. Y (1) ← (y1, . . . , yn/2), Y (1) ← (yn/2+1, . . . , yn)

6. M (1,1) ← MatMult(X(1),Y (1))
7. X(1) ← RefreshMasks(X(1)), Y (1) ← RefreshMasks(Y (1))
8. M (1,2) ← MatMult(X(1),Y (2))
9. M (2,1) ← MatMult(X(2),Y (1))

10. X(2) ← RefreshMasks(X(2)), Y (2) ← RefreshMasks(Y (2))
11. M (2,2) ← MatMult(X(2),Y (2))

12. M ←
(
M (1,1) M (1,2)

M (2,1) M (2,2)

)
13. end if
14. return M

The implementation of Algorithm 5 is straightforward (same as ISW). The
main challenge is to efficiently implement Algorithm 6 in a recursive way. In fact,
due to the restrictive amount of registers available, using functions to perform
the recursion in ARM assembly becomes very costly. Each recursive call needs
to have access to several informations: the correct set of input sharings, namely
the start of X1, X2, Y 1 and Y 2 as well as the correct adresses for the output
sharings. This means that several registers containing those information needs to
be pushed to the stack prior to each call to a recursive function and poped before
the computation. As push and pop are basically load and store in ARM assembly
the total cost of managing the inputs and outputs of a recursive function is
approximately equal to a dozen of clock cycles for each recursive calls. This
costs, on top of the associated jumps for each recursive fucntion, is equivalent
to the computation of a complete ISW multiplication. Therefore and since we
restrict ourselves in this study to d ≤ 32, we developed the MatMult procedure
with macros. Specifically, for each masking order d that is a power of 2, we
simply implements Algorithm 6 using macros for each possible input sharing
size n ∈ {2, 4, . . . , 32}, which allows us to save several clock cycles. However the
main drawback of implementing the MatMult procedure in such way is that the
code size exponentially grows. To lower down the explosion of the code size, we
have also implemented a version of the code where the terminal case macro (for
n = 2) is implemented as a function. This allows us to divide by up to 5 the
code size while having a performance decrease of around 20%. Both timing and
code size for the BPCZ multiplication with the two versions of the MatMult
procedure are given in Table 6.
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Table 6. Implementation results for the BCPZ multiplication

clock cycles code size (bytes) register random usage
d 2 4 8 16 32 2 4 8 16 32

BCPZ (macros) 108 498 2106 8698 35386 240 648 2324 9368 38168 13 (log(d)− 1)d2/2− (d/2− 1)d

BCPZ (functions) 134 593 2529 10473 42649 400 476 780 1996 6860 13 (log(d)− 1)d2/2− (d/2− 1)d

4 Refresh Masks

Most of the multiplication gadgets rely on the condition that their two inputs
have to be independently shared in order to guaranty full security (and avoid
doubling the number of shares instead). But in complex circuit involving many
multiplications and other linear operations, this condition might not always be
fulfilled (e.g. the two inputs of a multiplication might be linearly related) leading
to security flaws as pointed out by Coron et al. [CPRR14]. Refreshing gadgets (in
particular SNI ones) allow avoiding such kind of behavior if used systematically
on one of the input of the multiplication. In this section, we describe and compare
the refresh gadgets associated to their multiplication, i.e. the ISW refresh and
the BDF+ refresh.

4.1 ISW

A sound refresh can be performed by using the ISW multiplication: it simply
consist in multiplying the shares ai by the vector (1, 0, · · · , 0) and has been
proven (d − 1)-SNI secure. The ISW refresh needs d(d − 1)/2 random bits and
performs d(d− 1) additions. The overall algorithm is described in Algorithm 7.

Algorithm 7 ISW Refresh

Input: shares a1, a2, . . . , ad

Output: shares c1, c2, . . . , cd such that
∑d

i=1 ci =
∑d

i=1 ai

1. for i = 1 to d do
2. ci ← ai

3. end for
4. for i = 1 to d do
5. for j = i + 1 to d do
6. r ← {0, 1}32
7. ci ← ci ⊕ r
8. cj ← cj ⊕ r
9. end for

10. end for
11. return c1, c2, . . . , cd

As shown by Goudarzi and Rivain [GR17], this refreshing procedure can
be optimized by partially unrolling the nested loops by taking advantages of
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Table 7. Implementation results for the ISW refresh

clock cycles code size (bytes) register usage random usage
d 2 4 8 16 32 2 4 8 16 32

ISW Refresh 51 72 239 933 3761 224 224 224 224 224 10 d (d− 1)/2

available registers. This allows to load multiple shares at once and perform the
sound operations on all of them, instead of doing it one by one. Namely, for
masking orders equal to power of 2, this allows to load the ai’s four by four,
namely loading ai, ai+1, ai+2, ai+3 and have the number of operations in the
nested loop divided by 4. As in ARM assembly, the multiple load instruction is
more efficient that several single loads, this improvement yields a very efficient
ISW-based refresh implementation. The performance results of the ISW refresh
can be found in Table 7.

4.2 BDF+ Refresh

Barthe et al. in [BDF+17], along with their multiplication gadget, also provide
a refreshing gadget described in Algorithm 8. It simply consists in XORing the
share to refresh by a random value and a rotation of it. The iteration of the BDF+

refresh d(d − 1)/3e times makes it SNI secure. The overall BDF+ refresh needs
dd(d − 1)/3e random bits and performs 2d(d − 1)/3e additions and d(d − 1)/3e
ROT. There is no particular implementations tricks except we use the same
ROT algorithm introduced in Section 3.2 in order to keep the correctness with
the specific encoding. Implementation results can be found in Table 8.

Algorithm 8 BDF+ Refresh

Input: shares a
Output: shares c
1. r ← {0, 1}32
2. c← a⊕ r ⊕ ROT(r, 1)
3. return c

Table 8. Implementation results for the BDF+ refresh

clock cycles code size (bytes) register usage random usage
d 2 4 8 16 32 2 4 8 16 32

BDF+ Refresh 25 25 25 25 16 116 116 116 116 110 10 d
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5 Comparisons and discussion

We conclude the paper by comparing the different implementations and dis-
cussing their pros and cons regarding both the security properties they guarantee
and the performances they allow.

5.1 High level comparison

In Table 9 we gather the four multiplications we studied in this paper and we
compare them at an algorithmic level. Namely, we give the operation counts (in
terms of 32-bit XOR, 32-bit AND, and sharing-wise ROT) to perform a secure
32-bit AND between two sharings. The NI/SNI row specifies if the considered
multiplication is SNI- or NI-secure. The row “max use of shares” represents
(informally) the level of protection against horizontal side-channels attacks: O(d)
means that each shares is processed a linear number in d times (i.e. no protection)
and O(1) means that each shares is processed a constant number of times (i.e.
protection).

We differentiate two cases for the BDF+ multiplication. A first case where
we consider the multiplication alone, which is SNI until d = 3 and only NI secure
afterwards. A second case where we consider the composition of the multplication
with one iteration of the BDF+ refresh (described in Section 4), which is SNI
secure up to d = 8 and only NI secure afterwards (see [BDF+17]). The cost
difference between these two versions is simply the cost of an elementary refresh
(i.e., the addition of a share of zero). Finding the number of such refreshes that
are required to be SNI at any order is an open problem. Note that for BDF+,
the results are given for d calls to the multiplication (since each call allows to
compute 32/d elements).

We note that we did not perform the same addition for the BBP+ multi-
plication since it would imply the need of a more expensive SNI refresh on the
output, which would contradict the goal of [BBP+16] to minimize randomness
by mixing NI and SNI multiplications instead of solely SNI multiplications (and
in particular, if an SNI multiplication is then required, one could use the ISW
one, or the BDF+ up to order 8).

Algorithm: ISW BDF+

(BM model)
BDF+ w. refresh

(BM model)
BBP+ BCPZ

NI/SNI: SNI SNI
(up to d = 3)

SNI
(up to d = 8)

NI SNI

Max use of shares: O(d) O(d) O(d) O(d) O(1)

XOR-32 count: 2d(d− 1) d(3d/2− 1) d(3d/2 + 1) (7d2 − 6d)/4 d2 log(d) + 2d

AND-32 count: d2 d2 d2 d2 d2

ROT count: 0 d(5d/4− 1) 5d2/4 0 0

Random bits: 16d(d− 1) 32dd(d− 1)/4e 32dd(d−1)/4e+32 8d2 + 16d− 1 16d2 log(d) + d

Table 9. Comparison of the multiplications at the algorithmic level.
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We also recall that this table does not mention the different risks of unsatis-
fied (independence) assumption mentioned in introduction. Namely the fact that
the BDF+ multiplication can suffer from a reduced security order due to cou-
plings while for the other algorithms, the main risk of security order reduction
comes from transition-based leakages.

5.2 Implementation-based comparison

Based on the results in the previous sections, we can compare the performances of
our implementations of the multiplications for bitsliced inputs with higher-order
masking in ARM v7. We make the comparison for five masking orders, namely
2, 4, 8, 16 and 32. Moreover, we also give the performance results for two sets of
TRNG. For the first one (called the TRNG-1 settings in the following), we make
the same assumption as in [GR17] that we need to wait 10 clock cycles to get
a fresh 32-bit random word. For the second one (called the TRNG-2 settings in
the following), we make the same assumption as in [JS17] that we need to wait
80 clock cycles to get a fresh 32-bit random word. Finally, in order to have a fair
comparison between the four algorithms the implementation results are given for
the computation of a multiplication between two shared 32-bit operands. This
means that for the 3 ISW-based multiplication (ISW, BCPZ, BBP+) the results
are given for a single call to their respective functions, whereas for the BDF+

multiplication the results are given for d calls to the function (since each calls
allows to compute 32/d elements). The overall results are given in Tables 10
and 11 for respectively the TRNG-1 and the TRNG-2 settings. As illustration,
we also plot the performances in clock cycles (log scale) for both TRNG-1 and
TRNG-2 settings in Figure 1 and Figure 2 respectively.

Table 10. Multiplication performances for TRNG-1.

TRNG-1
clock cycles code size (bytes)

d 2 4 8 16 32 2 4 8 16 32

ISW 75 291 1155 4611 18435 164 164 164 164 164
ISW unrolled 58 231 949 3876 15682 132 464 1848 7500 30324

BDF+ n/a 308 1168 4560 n/a n/a 248 244 240 n/a
BDF+ unrolled 68 188 648 2384 3840 280 356 504 808 748

BDF+ (+ refresh) n/a 408 1568 5360 n/a n/a 360 356 352 n/a
BDF+ unrolled (+ refresh) 118 288 1048 3184 5440 392 468 616 920 960

BBP+ 88 274 970 3658 14218 428 428 428 428 428
BBP+ unrolled 36 161 775 3018 11910 100 344 1544 5996 23732

BCPZ (macros) 108 498 2106 8698 35386 240 648 2334 9368 38168
BCPZ (macros + functions) 134 593 2529 10473 42649 400 476 780 1996 6860

ISW Refresh 51 72 239 933 3761 236 236 236 236 236

BDF+ Refresh 50 50 50 50 50 128 128 128 128 128

As expected the BCPZ offers the worst performances because of the many
refreshings which intend to provide resistance to horizontal side-channel attacks,
for both of the TRNG settings.
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Table 11. Multiplication performances for TRNG-2.

TRNG-2
clock cycles code size (bytes)

d 2 4 8 16 32 2 4 8 16 32

ISW 166 837 3703 15531 63571 500 500 500 500 500
ISW unrolled 149 777 3497 14796 60818 480 872 2508 9264 36600

BDF+ n/a 672 2624 10384 n/a n/a 596 592 588 n/a
BDF+ unrolled 250 552 2104 8208 27136 448 500 876 1204 1192

BDF+ (+ refresh) n/a 1136 3552 12240 n/a n/a 1016 1012 1008 n/a
BDF+ unrolled (+ refresh) 482 1016 3032 10064 30848 868 920 1296 1624 1612

BBP+ 270 820 2790 10210 38970 800 800 800 800 800
BBP+ unrolled 127 525 2504 9479 36581 436 716 2096 7172 27776

BCPZ (macros) 199 1408 7202 32358 136942 576 1032 2988 11372 45932
BCPZ (macros + functions) 225 1503 7625 34133 144205 760 836 1128 2344 7208

ISW Refresh 142 345 2241 10761 46713 412 412 412 412 412

BDF+ Refresh 116 116 116 116 116 420 420 420 420 420

The BBP+ multiplication outperforms the ISW multiplication (up to 25%
faster) even in the case where the randomness is cheap. The difference becomes
more significant in the TRNG-2 context (up to 40% faster), since BBP+ have
reduced randomness requirements.

For the TRNG-2 settings, we can also observe that unrolling the loops does
not offer an interesting tradeoff as the gain in timing is not very significant
compared to the code size overhead.

As shown in Table 2 of [BDF+17], the iteration of the BDF+ refresh requires
a bit less randomness than ISW one but is more computationally involved. This
is well reflected in Tables 10: the ISW refresh has better performances than the
BDF+ refresh for the TRNG-1 setting while it is the opposite for the TRNG-2
setting.

Fig. 1. Multiplication performances for TRNG-1 in clock cycles
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Fig. 2. Multiplication performances for TRNG-2 in clock cycles
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Overall, BDF+ and BBP+ multiplications provide the best performances in
both TRNG settings thanks to their lower randomness requirements (compared
to the classical ISW). Of course these two multiplications also have weaker se-
curity guaranties (in terms of composability and resistance against horizontal
attacks). On the other hand, ISW and BCPZ offer better security guaranties
and hence are more involved in terms of randomness requirements, making these
differences more visible in the TRNG-2 setting.

Conclusion and Future Work. One interesting consequence of this observa-
tion is that it raises interesting optimization problems on how to best exploit
different multiplications in order to obtain the best security vs. performance
tradeoff for full implementations (e.g., of block ciphers), which is a nice scope
for further research.

Our implementations heavily relies on the use of the barrel shifter of the
ARM 32-bit architecture. Comparing these schemes on different architectures
and with different register sizes could lead to different performance results (even
though the general trend should not differ due to the randomness requirements
of the different schemes).

Of course these schemes should also be evaluated considering their practical
side-channel security and not only software performances. By providing the code
on an open source platform, we hope that this will provide good material for
future research in that direction.
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interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 16: 23rd Conference on Computer and Commu-
nications Security, pages 116–129, Vienna, Austria, October 24–28, 2016.
ACM Press.
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