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Abstract. Special purpose factoring algorithms have discouraged the adop-
tion of multi-power RSA, even in a post-quantum setting. We revisit the

known attacks and find that a general recommendation against repeated fac-

tors is unwarranted. We find that one-terabyte RSA keys of the form n =
p21p

3
2p

5
3p

7
4 · · · p

πi
i · · · p22528720044 are competitive with one-terabyte RSA keys of the

form n = p1p2p3p4 · · · pi · · · p231 . Prime generation can be made to be a factor
of 100 000 times faster at a loss of at least 1 but not more than 17 bits of

security against known attacks. The range depends on the relative cost of bit

and qubit operations under the assumption that qubit operations cost 2c bit
operations for some constant c.

1. Introduction

An RSA modulus is a “publicly specified product, n, of two large secret prime
numbers p and q” [17]. This – a direct quote from the paper that introduced RSA
– is an uncontroversial and historically accurate definition. But, while n = pq is
the most common form for RSA moduli in deployment, it is not clear that things
should be this way. A lot has changed since [17] was written. The bit-length of
n that provide “adequate security” has increased decade by decade. Why hasn’t
the number of factors? Or their multiplicity? Assuming modest, or even dramatic,
reductions in the cost of factoring, what shape should RSA moduli take in the long
term?

If you adhere to some dictum like the right form is that which maximizes security
as a function of the bit length of n, then n = pq is quite plausibly the right form.
However, security is not the only measure of a cryptosystem. Users consider compu-
tational efficiency, compactness, resistance to side-channel attacks, and intellectual
property claims, among other attributes. So there may be room for alternative key
forms.

Indeed, a number of alternatives to n = pq have been proposed. The fact that it
is possible to use n = pe11 p

e2
2 · · · p

e`
` was mentioned in the RSA patent [18]. Other

proposals in the literature tend to focus on improving efficiency.

• Takagi [22] has suggested n = prq. This form admits a fast decryption
algorithm based on Takagi’s earlier work [21] on “multi-block” RSA with
modulus nk = (pq)k.

E-mail address: jschanck@uwaterloo.ca.
Date: 2018-04-06.

1



2 MULTI-POWER POST-QUANTUM RSA

• Lim, Kim, Yie, and Lee [11] have suggested n = prqs. They claim that
n = p2q3 is 15 times faster than n = pq for 8192-bit n. They consider, but
dismiss, the use of more than two primes.
• Shamir [19] has suggested unbalanced moduli, n = pq, with q much larger

than p. He has also proposed efficiency enhancements so that large n can be
used – large enough that the system is “likely to provide long term security
even to professional paranoids.”
• Collins, Hopkins, Langford, and Sabin [4] have patented efficient methods

for using moduli of the form n = p1p2 · · · p` where each prime is ≈ (lg n)/`
bits and ` > 2 is a constant.
• Bernstein, Heninger, Lou, and Valenta [1] have suggested n = p1p2 · · · p`

where each prime is of (lg lg n)2+o(1) bits and ` grows proportionally with
n. They propose key generation, encryption, and decryption routines that
each cost (lg n)(lg lg n)O(1) bit operations.

All of these proposals sacrifice the security of the standard RSA key form for
greater efficiency – even Shamir’s “paranoids” appear to have limited patience for
slow cryptography. The efficiency gains are largely in decryption and are due to
the decryption algorithms of Quisquater and Couvreur [16] and Takagi [21]. The
cost of these decryption algorithms, at least for moduli with a constant number of
prime factors, depends on the size of the private primes rather than the size of n.

Special purpose factoring algorithms limit the extent to which one can use small
primes in RSA. Lenstra’s elliptic curve method (ECM) heuristically finds a prime
p that divides n in exp

(
(log p)1/2+o(1)

)
bit operations. Hence, a system designer

who tries to maximize performance for a given bit length must weigh the cost of
ECM against the cost of the best general purpose factoring algorithm in his attack
model.

The number field sieve, a pre-quantum general purpose factoring algorithm,
factors n in exp

(
(log n)1/3+o(1)

)
bit operations. As such, small private primes

weaken security when minp|n log p < (log n)2/3, at least asymptotically. The non-
asymptotic analysis is somewhat more delicate: for lg n ≈ 2048 no more than 3
equally sized private primes should be used, and for lg n ≈ 4096 no more than 4
equally sized private primes should be used [8].

Shor’s quantum factoring algorithm dramatically reconfigures the relationship
between special and general purpose factoring algorithms. Shor’s algorithm factors
arbitrary n with high probability using only (lg n)2+o(1) qubit operations. For some
n the cost can even be reduced to (log n)1+o(1) qubit operations. Faced with Shor’s
algorithm, one has to consider whether honest parties are left with any advantage
over attackers. This advantage can be formalized as a “cost/performance ratio” –
the cost of the best attack on the system divided by the cost of using the system.

The proposal of Bernstein, Heninger, Lou, and Valenta [1], which we will call
“multi-prime post-quantum RSA” or “multi-prime pqRSA”, is an attempt to maxi-
mize the cost/performance ratio of RSA against Shor’s algorithm. The use of small
primes is still a liability in a post-quantum setting, but their use is also a neces-
sity. The cost/performance ratio of RSA with n = pq is constant (assuming qubit
operations and bit operations have equal cost), while the cost/performance ratio of
multi-prime pqRSA is (lg n)1+o(1).

Could a different key form provide an even larger post-quantum cost/performance
ratio? There is some evidence that other forms are more efficient in practice. Boneh
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and Shacham [3] have compared multi-prime RSA, n = p1p2p3, with Takagi’s vari-
ant, n = p21p2, and have found that decryption in Takagi’s system is faster. This
suggests that a multi-power post-quantum RSA, with n = pe11 p

e2
2 . . . pe`` , might have

better performance than multi-prime post-quantum RSA. However, attackers might
also have better cost.

Bernstein, Heninger, Lou, and Valenta dismiss post-quantum parameterizations
of Takagi’s system due to worrisome structure. In [1] they write,

One can try to further accelerate key generation using Takagi’s idea
[22] of choosing n as pk−1q. We point out two reasons that this
is worrisome. The first reason is lattice attacks [2]. The second
reason is that any nth power modulo n has small order, namely
some divisor of (p − 1)(q − 1); Shor’s algorithm finds the order at
relatively high speed once the nth power is computed.

We will elaborate on these two concerns in the remainder of this article.

1.1. Structure of this document. In Sections 2 and 3 we review lattice based
factoring and its cost. In Sections 4 and 5 we review Shor’s algorithm and its
cost. In Section 6 we propose a particular exponent sequence for multi-power post-
quantum RSA and examine the implications of this choice. Readers familiar with
Coppersmith’s technique and Shor’s algorithm are encouraged to skip to Section 6
and refer to Sections 3 and 5 as needed.

1.2. Notation. We use standard notation, o(·), O(·), ω(·), Ω(·), for asymptotic
growth rates. The natural logarithm is denoted log and the logarithm to base 2
is denoted lg. Euler’s totient function is denoted φ(n). The bit operation cost of
(lg n)-bit (modular) multiplication is denoted M(lg n).

2. Factoring with Coppersmith’s Technique

The first concern, “lattice attacks,” refers to Boneh, Durfee, and Howgrave-
Graham’s work [2] on factoring numbers of the form n = pkq. Their algorithm is
based on Coppersmith’s technique, and outperforms Lenstra’s elliptic curve method
for large k. Coppersmith’s technique is a general method for finding small modular
roots of univariate polynomials. More formally, it solves some instances of the
following problem.

Problem 1. Given a rational polynomial

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0,

and positive integers R and P , enumerate all integers x0 such that f(x0) ≡ 0
(mod P ) and |x0| < R.

The difficulty of Problem 1 varies dramatically with R and P . The Berlekamp-
Zassenhaus-van Hoeij algorithm solves Problem 1 in randomized polynomial time
when the factorization of P is known. Coppersmith’s technique solves some in-
stances even when the factorization of P is not known.

We will describe a formulation of Coppersmith’s technique due to Howgrave-
Graham [9]. Our emphasis will be on factoring integers of the form n = pkq with
p and q of known bit length and k large. Howgrave-Graham’s version of Copper-
smith’s technique solves a generalization of Problem 1 in which only a multiple of
P , rather than P itself, is given.
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Problem 2. Given a rational polynomial

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0,

positive integers R and N , a real number β, and a promise that N has a divisor P
of size Nβ, enumerate all integers x0 such that f(x0) ≡ 0 (mod P ) and |x0| < R.

Both variants of the problem have applications to factoring and the cryptanalysis
of RSA; Alexander May has compiled an extensive survey of these applications [12].

Suppose that n = pkq and that we know some bits of p. For example, suppose
that we know the high bits of p; or equivalently, that we know an integer u for
which p− u is a small (unknown) integer r. Then the rational polynomial

(1) f(x) = (u+ x)k/n

evaluates to 1/q at x = r. Likewise f2(r) = 1/q2, f3(r) = 1/q3, and every polyno-
mial of the form

(2) h(~a;x) =

m−1∑
i=0

k−1∑
j=0

aik+jf(x)ixj ,

with ~a ∈ Zkm, satisfies h(~a; r) ∈ q−(m−1)Z. In other words, qm−1h(~a; r) is an
integer for every ~a ∈ Zkm. Coppersmith’s technique involves constructing ~a in such
a way as to guarantee that |h(~a; r)| < q−(m−1) and, consequently, that h(~a; r) = 0.

Remarkably, such an ~a can be constructed in polynomial time whenever suffi-
ciently many bits of p are known. This is made precise by Theorem 1.

Theorem 1. Let N = P kQ for positive integers P , Q, and k with k > 2. Let
f(x) = akx

k + ak−1x
k−1 + · · ·+ a1x+ a0 with gcd{N, a0, a1, . . . , ak} = 1. Let R be

such that

R <
1

2

(
P k/Q

)1/(k+1)
.

Then all integers x0 satisfying f(x0) ≡ 0 (mod P k) and |x0| < R can be enumerated
at a cost of

k11+o(1) lgN + k10+o(1) lg2N

bit operations.

2.1. Constructing a short polynomial for fixed R. The set of rational poly-
nomials of degree at most d is denoted Q[x]≤d. Observe that Q[x]≤d is a Q-vector
space of dimension d+ 1. We equip this space with the usual coefficient norm,∥∥c0 + c1x+ · · ·+ cdx

d
∥∥ =

√
c20 + c21 + · · ·+ c2d,

so that we can view the integer span of a finite collection of elements of Q[x]≤d as
a lattice.

A basis for a full rank lattice L ⊂ Q[x]≤d is a set of d + 1 linearly independent
polynomials in L. The determinant, or co-volume, of L is detL := |detB| where B
is the matrix of coefficient vectors of a basis of L.

For a rational number t the evaluation map x 7→ t is a linear functional on
Q[x]≤d, which one can think of as an inner product of a coefficient vector with
(1, t, t2, . . . , td). Thus, for g(x) ∈ Q[x]≤d we have

(3) |g(t)| ≤
√
Ct ‖g(x)‖
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with Ct =
∑d
i=0 t

2i. More conveniently, when |t| ≤ 1 we have

(4) |g(t)| <
√
d+ 1 ‖g(x)‖ .

This simple fact, the Cauchy-Schwarz inequality, proves to be quite useful. Pre-
serving the motivation and definition of f(x) in Eq. 1, recall that we are looking for
a small integer r. The definition of small is made precise by introducing a number
R such that |r| < R. Suppose s ∈ Z and |s| < R, then Equation 4 can be applied,
with t = s/R, to polynomials of the form

ĥ(~a;x) =

m−1∑
i=0

k−1∑
j=0

aik+jf(xR)i(xR)j , with ~a ∈ Zkm.

These polynomials form a lattice in Q[x]≤km−1. The parameter ~a expresses ĥ(~a;x)
in the basis

H =


1, (xR), (xR)2, . . . , (xR)k−1,

f(xR), f(xR)(xR), f(xR)(xR)2, . . . , f(xR)(xR)k−1,
f(xR)2, f(xR)2(xR), f(xR)2(xR)2, . . . , f(xR)2(xR)k−1,

· · ·
f(xR)m−1, f(xR)m−1(xR), f(xR)m−1(xR)2, . . . , f(xR)m−1(xR)k−1

 .

Note that H contains exactly one element of each degree from 0 to km− 1. So
H is in fact a basis for a lattice of rank km. Moreover, the corresponding matrix
of coefficient vectors is triangular, so we can easily compute |detH|. The leading
coefficient of f(xR)i(xR)j is Rik+j/ni, hence

|detH| =
m−1∏
i=0

k−1∏
j=0

Rik+j/ni

= Rkm(km−1)/2n−km(m−1)/2.

(5)

The lattice reduction algorithm of Lenstra, Lenstra, and Lovász (LLL) can be
used to find “short” elements of a lattice in polynomial time. The exact meaning
of “short” is provided by the following fact.

Fact 1 (LLL [10]). Let (~b1,~b2, . . . ,~bd) be an LLL-reduced basis of a lattice L. Then

‖~b1‖ ≤ 2(d−1)/4(detL)1/d.

We omit the precise definition of LLL-reduced; for now it suffices to know that
an LLL-reduced basis can be produced, in polynomial time, by applying the LLL
algorithm to a basis of L.

If ĥ(x) is the first vector obtained by applying LLL to H, then

‖ĥ(x)‖ ≤ 2(km−1)/4 |detH|1/km(6)

The question now is whether this is small enough to ensure that ĥ(r/R) = 0.

2.2. Optimizing R. We will determine the largest R for which

(7) |ĥ(s/R)| < q−(m−1)
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for all s ∈ Z with |s| < R. When Eq. 7 is satisfied, we are able to recover r, and

factor n, by computing the rational roots of ĥ(x). Equations 4, 5, and 6 imply

|ĥ(s/R)| <
√
km ‖ĥ(x)‖

=
√
km 2(km−1)/4R(km−1)/2n−(m−1)/2.

Observe that
√
km 2(km−1)/4 < 2(km−1)/2 for integers k and m with km > 7. So

Equation 7 is satisfied, for km > 7, when

(8) (2R)(km−1)/2 < n(m−1)/2q−(m−1).

Taking logarithms we have

(9) lg 2R <
m− 1

km− 1
(lg n− 2 lg q) .

The bound on R in the statement of Theorem 1 is recovered by taking m = k and
writing lg n = k lg p+ lgp q.

3. The cost of lattice attacks.

We will now consider the cost of using Theorem 1 to factor n of the form n =
pe11 p

e2
2 . . . peLL . For simplicity we will assume that the prime factors of n are of equal

bit length and that the ei are in decreasing order.

Let E =
∑L
i=1 ei. Suppose E ≥ 5, so that there exist integers P , Q, and k

with k > 2 and n = P kQ. Let R be as in Theorem 1. An attacker has to guess
lgP − lgR bits of P to construct an f(x), as in Equation 1, to which Theorem 1
can be applied. With the upper bound on R from Theorem 1 we have

lgP − lgR > lgP − 1

k + 1
(k lgP − lgQ)

=
1

k + 1
(lgP + lgQ).

(10)

The cost of checking a guess is dominated by LLL. Thus, factoring n = P kQ with
Coppersmith’s technique costs

(11) 2lgP−lgR · poly(k,N) > (PQ)1/(k+1) · poly(k,N)

bit operations, where poly(k,N) is the cost of lattice reduction. The expected cost
of guessing lgP − lgR bits of P will be comparable to the cost of ECM when
lgP − lgR ≈

√
lg p1. Note that lgP + lgQ is at least (lg p1)L, since each prime

dividing n must occur to some power in P or Q. If L is constant with respect to n,
as it is for n = pkq, the condition to beat ECM is k = Ω(

√
lg p1), as was reported

in [2]. However, if L grows with n, then one needs k = Ω(L
√

lg p1).

The LLL algorithm costs d5+o(1)(lgB)2+o(1) bit operations where d is the lattice
rank and lgB is the number of bits needed to represent the longest vector of the
input basis. The o(1) terms assume fast multiplication techniques.

Much of the algorithmic research on lattice reduction focuses on improving the
constant 2(d−1)/4 in Fact 1. In Equation 8 we discarded any impact these algorithms
could have, with little consequence.
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On the other hand, Stehlé and Nguyen’s L2 variant of LLL [13] does seem to
help. They use (carefully analyzed) floating point arithmetic to produces an LLL-
reduced basis in d5+o(1) lgB+d4+o(1) lg2B bit operations. The complexity claim in
the statement of Theorem 1 is recovered with m = k, d = k2, and lgB = O(k lgN).

The cost can also be improved by using Novocin, Stehlé, and Villard’s L̃1 variant
of LLL [14]. That algorithm costs d5+o(1) lgB+dω+1+o(1)(lgB)1+o(1) bit operations,
where ω < 2.373 is the matrix multiplication exponent.

4. Shor’s Algorithm.

We turn now to quantum attacks. We will describe Shor’s algorithm without the
usual machinery of unitary transformations on complex euclidean space. Instead
we break the algorithm into four steps: initialization, randomization, modular ex-
ponentiation, and the quantum Fourier transform. We give a high level description
of each step, the cost of each step, and the probability of events that we label

“R
(i)
j = k.” The event “R

(i)
j = k” should be read as “terminating Shor’s algorithm

after step i and reading qubit register j yields outcome k.”
The computation involves two qubit registers. The first register represents an

element of Z/SZ, for an S that our analysis will determine later. The second register
represents an element of Z/nZ, where n is the number to be factored. Each step of
the algorithm may use “scratch” registers as well, but we assume that these scratch
registers are statistically independent from the data registers in between steps1.
The cost of each step is given as the depth of a quantum circuit that performs that
step. Circuit depth is measured in elementary single- and two-qubit gates, hereafter
“qubit operations.”

Shor’s algorithm computes the multiplicative order of 3 modulo n, i.e the small-
est r such that 3r ≡ 1 (mod n). If r is even, and 3r/2 6≡ −1 (mod n), then
gcd(3r/2 − 1, n) is a non-trivial factor of n. If r is odd, or 3r/2 ≡ −1 (mod n),
then one tries again with a different constant in place of 3. The algorithm proceeds
as follows.

Step 1: The registers are initialized to 0, i.e.

Pr[R
(1)
1 = 0 ∧R(1)

2 = 0] = 1.

The cost of this step is omitted.
Step 2: The first register is transformed so that it represents the uniform dis-

tribution on Z/SZ:

Pr[R
(2)
1 = x ∧R(2)

2 = 0] = 1/S

for all x ∈ Z/SZ. When S is a power of 2 the circuit for this operation – parallel
Hadamard gates on each qubit of the first register – has depth 1.

Step 3: The value modexp(3, x, n) := 3x mod n is calculated and stored in the
second register. The transformation (x, 0) 7→ (x,modexp(3, x, n)) is a bijection, so
this does not affect the probability of finding x in the first register, i.e.

Pr[R
(3)
1 = x ∧ R

(3)
2 = modexp(3, x, n)] = 1/S

1Standard reversible computing techniques make this a benign assumption, though it is slightly
stronger than what is needed.
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for all x ∈ Z/SZ. This operation costs (lgS) · M(lg n) qubit operations, where
M(lg n) is the cost of (lg n)-bit modular multiplication. It is reasonable to ex-
pect that quantum modular multiplication will cost (lg n)1+o(1) qubit operations,
matching the classical bit operation cost2.

Step 4: The (approximate) Z/SZ quantum Fourier transform is applied to
the first register. This costs (lgS)1+o(1) qubit operations [5]. The effect of this

transformation is best described by the distribution ofR
(4)
1 conditioned onR

(4)
2 = 3k

mod n. Since 3 is of multiplicative order r we may assume 0 ≤ k < r. Then for
y ∈ Z/SZ Shor shows that

(12) Pr[R
(4)
1 = y | R(4)

2 = 3k mod n] =

∣∣∣∣∣∣∣
√
r

S

bS−k−1
r c∑
b=0

exp
(
2πib ryS

)∣∣∣∣∣∣∣
2

.

We will say that y is good if there exists an integer d such that

(13)

∣∣∣∣ yS − d

r

∣∣∣∣ ≤ 1

2S
.

Shor shows that for good y the right hand side of Equation 12 is at least 1/3r. If
S > 2r then there are at least φ(r) pairs (d, y) for which d/r is in lowest terms and
y is good. Hence, for S > 2r, the total probability assigned to the set of good y is
at least φ(r)/3r = O(1/ log log r).

The algorithm terminates after step 4. Shor’s strategy for recovering r from
the known quantities y and S is to compute the convergents of the continued frac-
tion expansion of y/S. If S > r2 then Equation 13 is a sufficient condition (well
known in the theory of Diophantine approximation) for d/r to appear among the
convergents. For S of this size there are also techniques that amplify the success
probability from O(1/ log log r) to O(1) through classical post-processing alone [20].
We ignore the bit operation cost of post-processing, including the cost of computing
gcd(3r/2 − 1, n).

5. The cost of period finding.

The (lgS) · M(lg n) qubit operations in step 3 are the dominant cost of Shor’s
algorithm. For general integers, Shor recommends taking S to be the power of two
between n2 and 2n2. However, for certain integers one can take S slightly smaller.

This brings us to the second reason that Bernstein, Heninger, Lou, and Valenta
find n = pkq to be worrisome. Since φ(n) = pk−1(p − 1)(q − 1) the multiplicative
order of any nth power in (Z/nZ)× divides (p − 1)(q − 1). Hence, we may take
S = ((p− 1)(q − 1))2 ≈ n4/(k+1) so long as we by replace the constant 3 in Step 3
with 3n mod n. The cost of computing 3n mod n is (lg n) ·M(lg n) bit operations.

Following this, the cost of Step 3 of Shor’s algorithm is O( lgn
k+1 ) · M(lg n) qubit

operations. In other words, “Shor’s algorithm finds the order at relatively high
speed once the nth power is computed” [1].

The same argument applies to more general multi-power moduli n = pe11 p
e2
2 . . . peLL .

The adversary can take S = n2L/E where E =
∑
i ei. The asymptotic cost

of factoring such n by Shor’s algorithm is (lg n) · M(lg n) bit operations plus

2State of the art quantum circuits for mod-n multiplication cost 32(lgn)2 + O(lgn) qubit
operations [7], but there are no fundamental barriers to implementing fast multiplication.
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O(LE lg n) · M(lg n) qubit operations. If E − L is large, and qubit operations are
much more expensive than bit operations, this could be a dramatic improvement.

6. Multi-power pqRSA

The multi-prime post-quantum RSA system proposed in [1] uses fast multipli-
cation techniques to reduce the cost of users’ operations when n = p1p2 · · · p` and
` grows as lg n/(lg lg n)2+o(1). The multi-power post-quantum RSA system we pro-
pose here applies similar techniques to reduce the cost of users’ operations when
n = pe11 p

e2
2 · · · p

eL
L and L grows as (lg n)1/(2+o(1)). Our decryption procedure follows

[22] and [11] in using a Newton iteration to compute a cube root modulo peii from
a cube root modulo pi.

The constraints on parameter selection for multi-prime pqRSA come from ECM
and Shor’s algorithm. When repeated factors are allowed we also need to ensure
that lattice attacks cost more than ECM and that special purpose variants of Shor’s
algorithm do not eliminate our cost/performance ratio.

6.1. Parameters. We take

n = p21p
3
2p

5
3p

7
4 · · · p

πi
i · · · p

πL

L

where πi is the ith prime. As in [1], we take each prime factor of n to be of
bit length (lg lg n)2+o(1). We also take pi ≡ 2 (mod 3) for i = 1, . . . , L so that
encryption exponent 3 can be used.

We define E(L) =
∑
i≤L πi. The prime number theorem suggests that E(L) ∼

1
2L

2 logL. To obtain keys of a specified bit-length we choose L such that E(L) =

lg n/(lg lg n)2+o(1).
For concreteness we will focus on 1-terabyte keys, lg n = 243. We follow [1] and

fix the bit length of the pi at 4096 bits. We then take L = 20044, which gives
E(20044) = 231.0001....

6.2. Security.

6.2.1. Small factor attacks. The asymptotic security analysis of multi-power pqRSA
with respect to trial division, Pollard’s p− 1 method, Williams’ p+ 1 method, and
Lenstra’s elliptic curve method is identical to multi-prime pqRSA. This is also true
for variants of these algorithms that use Grover’s algorithm as a subroutine. We
refer to [1] for a detailed discussion of why these attacks are not likely to succeed
at a cost of less than 2140 bit operations when 4096-bit primes are used.

Note that Peralta and Okamoto [15] describe a method to speed up ECM for
moduli of the form n = p2q. This method does not improve on the asymptotic
exp((log p)1/2+o(1)) cost estimate for ECM that is used here.

6.2.2. Lattice attacks. The lattice attack in Section 2 is competitive with ECM
when the attacker needs to guess fewer than

√
lg p1 = (lg lg n)1+o(1) bits. We will

argue that there do not exist integers P , Q, and k, with n = P kQ, for which the
lattice attack is competitive with ECM. From Equation 10, we see that P , Q, and
k must satisfy

(14)
1

k + 1
(lgP + lgQ) ≤ (lg lgn)1+o(1).

Observe that p21p
3
2 · · · p

πj

j | Q for j such that πj < k. The sum of the primes less

than k grows at least as fast as the sum of the first k/ log k integers. In particular



10 MULTI-POWER POST-QUANTUM RSA

the sum dominates k. Hence lgQ = ω((lg lg n)2k) and we see that Eq. 14 cannot be
satisfied. It is a simple exercise to show that replacing Equation 14 with a condition
based on Equation 9 does not improve the situation.

Even if a satisfying k did exist, the cost of LLL would be prohibitive. Theorem
1 suggests a cost of well over k10 lg n bit operations. Taking k smaller than L
is unrealistic, as lgP + lgQ grows super-linearly with L. With lg n = 243 and
L = 20044 we have L10 lg n > 2185.

The cost of lattice reduction becomes an enormous obstacle if one attempts to
guess bits of P using Grover search.

6.2.3. Period finding. As described in Section 5, one can reduce the cost of period
finding by replacing the constant 3 in Shor’s algorithm with 3n mod n. The re-
sulting cost is (lg n) · M(lg n) bit operations plus (lgS) · M(lg n) qubit operations
where S = n2L/E . For our multi-power pqRSA moduli lgS = (lg n)1/2+o(1), so the
cost of Shor’s algorithm is (lg n) ·M(lg n) bit operations plus (lg n)1.5+o(1) ·M(lg n)
qubit operations.

Bernstein, Heninger, Lou, and Valenta [1] estimateM(lg n) using contemporary
speed records for multiplication in F260 . Assuming that integer multiplication can
be made as fast as binary polynomial multiplication, that reduction modulo n is
free, and that bit operations have the same cost as qubit operations, they suggest
that M(243) ≈ 256 bit (or qubit) operations.

For our 1-terabyte multi-power pqRSA parameters S = (24096L)2 ≈ 22
27

. Con-
sequently, Shor’s algorithm costs (lg n) · M(243) ≈ 299 bit operations plus (lgS) ·
M(243) ≈ 283 qubit operations. Compare this with the cost of attacking 1-terabyte
multi-prime pqRSA: with S = n2 Shor’s algorithm costs (lg n) · M(243) ≈ 2100

qubit operations.

6.3. Efficiency. Apart from decryption, the user’s computations in multi-power
pqRSA are identical to the user’s computations in multi-prime pqRSA. We refer the
reader to [1] for the justification that key generation and encryption take (lg n)1+o(1)

bit operations.
Multi-power pqRSA decryption may be somewhat faster than multi-prime pqRSA

decryption, but we do not expect a significant asymptotic improvement. To decrypt
a ciphertext c, one first uses a remainder tree to compute c mod pπi

i for i = 1, . . . , L.
One then computes the cube root of c modulo each pi. The decryption algorithm
differs from multi-prime pqRSA in that there are two distinct interpolation steps.
The first, as in [22, 11], lifts the cube root of c modulo pi to a cube root of c
modulo pπi

i for i = 1, . . . , L. The second uses a CRT tree to construct the cube
root of c modulo n. If there is any speedup for multi-power pqRSA decryption,
it is likely due to the fact that fewer cube roots need to be computed. The two
interpolation steps together are likely as expensive as the CRT tree in multi-prime
pqRSA. Regardless, decryption will cost (lg n)1+o(1) bit operations.

We have not implemented multi-power pqRSA, and can only estimate its non-
asymptotic efficiency. Bernstein, Heninger, Lou, and Valenta report a prime gener-
ation rate of between 750 and 1585 primes per core-hour. They also report that a
set of 231 primes was generated in 1 975 000 core-hours [1]. At the same rate, gen-
erating the 20 044 primes needed for a 1-terabyte multi-power pqRSA key would
take only 18.5 core-hours. Keep in mind that the full key generation procedure also
involves a large product tree.



MULTI-POWER POST-QUANTUM RSA 11

6.3.1. Cost/performance ratio. Multi-prime pqRSA key generation, encryption, and
decryption all cost (lg n)1+o(1) bit operations. The best attack costs (lg n)2+o(1)

qubit operations. As there is no reason to believe that qubit operations are less ex-
pensive than bit operations, we can safely say that there is a quadratic gap between
the attacker’s cost and the user’s cost. The gap could be larger if qubit operations
are fundamentally more expensive than bit operations.

Multi-power pqRSA key generation, encryption, and decryption, likewise, cost
(lg n)1+o(1) bit operations. The best attack costs (lg n)2+o(1) bit operations plus
(lg n)1.5+o(1) qubit operations. If qubit operations cost the same as bit operations,
then multi-power pqRSA users still enjoy a quadratic advantage against attackers.
This remains true when qubit operations cost C bit operations, for any constant
C. The quadratic advantage is only threatened when the cost of qubit operations
grows with n.

7. Conclusion

One-terabyte multi-prime pqRSA key generation is quite costly. In one test,
prime generation took “four months running on spare compute capacity of a 1,400-
core cluster” and evaluating the product tree took “about four days” [1]. A user
with a comparable machine should be able to generate a multi-power pqRSA key
in just 5 days. The speedup comes with some loss in security, but quantifying this
loss presents challenges.

In Section 6.2.3 we saw that if bit operations and qubit operations have equal
cost, then 1-terabyte multi-power pqRSA users suffer a 1 bit security loss. However,
if qubit operations are much more expensive than bit operations, these users suffer
a 17 bit security loss – albeit from a higher initial security level.

The security gap could be amplified in other cost models. For instance, if
qubit operations cost O(lg n) bit operations, then the cost of attacking multi-prime
pqRSA is (lg n)3+o(1) bit operations, while the cost of attacking multi-power pqRSA
is only (lg n)2.5+o(1) bit operations. This may seem unrealistic, but there are models
where each qubit operation in Shor’s algorithm costs O(lg n) bit operations.

In [6] the cost of a quantum circuit is expressed in “surface code cycles.” Each
surface code cycle involves error correction that can be assigned a cost in bit op-
erations. The amount of error correction that needs to be done grows with the
number of qubits in the quantum circuit. Hence, the bit operation cost of quantum
computation, in this model, scales with both the number of qubits and the depth
of the circuit.

Shor’s algorithm needs at least lgS + lg n qubits for the registers described in
Section 4. This is 3 lg n for multi-prime pqRSA, and only slightly more than lg n
for multi-power pqRSA. Suppose the cost of error correction is 2c bit operations
per qubit per qubit operation (possibly with c negative). Then the error correction
needed for an attack on multi-prime pqRSA costs 2143+lg 3+c bit operations, and
the error correction needed for an attack on multi-power pqRSA modulus costs
2126+c bit operations.

Questions about the relative cost of bit and qubit operations will need to be
answered whether users choose multi-prime pqRSA, multi-power pqRSA, or some
other system. Even if users decide that no variant of pqRSA is fast enough for
their needs, a robust quantum cryptanalysis of RSA will greatly improve our un-
derstanding of the post-quantum security of other systems.
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